
Contents lists available at ScienceDirect

Neurocomputing

journal homepage: www.elsevier.com/locate/neucom

Exact Gauss-Newton optimization for training deep neural networks

Mikalai Korbit

∗

iD , Adeyemi D. Adeoye
iD , Alberto Bemporad

iD , Mario Zanon
iD

IMT School for Advanced Studies Lucca, Lucca, Italy

A R T I C L E I N F O

Communicated by J. Na

Keywords:

Stochastic optimization

Second-order optimization

Gauss-newton hessian approximation

Machine learning

Reinforcement learning

A B S T R A C T

We present Exact Gauss-Newton (EGN), a stochastic second-order optimization algorithm that combines the

generalized Gauss-Newton (GN) Hessian approximation with low-rank linear algebra to compute the descent

direction. Leveraging the Duncan-Guttman matrix identity, the parameter update is obtained by factorizing a

matrix which has the size of the mini-batch. This is particularly advantageous for large-scale machine learning

problems where the dimension of the neural network parameter vector is several orders of magnitude larger than

the batch size. Additionally, we show how improvements such as line search, adaptive regularization, and mo-

mentum can be seamlessly added to EGN to further accelerate the algorithm. Moreover, under mild assumptions,

we prove that our algorithm converges in expectation to a stationary point of the objective. Finally, our numeri-

cal experiments demonstrate that EGN consistently exceeds, or at most matches the generalization performance

of well-tuned SGD, Adam, GAF, SQN, and SGN optimizers across various supervised and reinforcement learning

tasks.

1. Introduction

Optimization plays a pivotal role in Machine Learning (ML), with

gradient-based methods being at the forefront. Stochastic Gradient

Descent (SGD) [1], a first-order stochastic optimization algorithm, and

its accelerated versions such as momentum-based approaches [2–5],

adaptive learning rates [6–8], and a combination of the two [9–11],

have been instrumental in numerous ML applications. For example, in

Computer Vision (CV) ResNets [12] are trained with SGD, AdaGrad [6] is

used for training recommendation systems [13], language models GPT-

3 [14] and LLaMA [15] are optimized with Adam [9] and AdamW [16],

respectively. Despite their cheap and relatively easy-to-implement up-

dates, first order-methods (FOMs) suffer from several shortcomings.

FOMs are sensitive to hyper-parameter selection, and the optimal hyper-

parameter set typically does not transfer well across different problems

which leads to a costly procedure of hyper-parameter tuning. Also, FOMs

are slow to converge in the flat regions of the loss landscape, where the

Hessian is ill-conditioned [17].

Second-order methods (SOMs) incorporate the (approximate) curva-

ture information into the update in order to effectively precondition the

gradient vector. In contrast to first-order algorithms, SOMs are shown

to be robust to the selection of hyper-parameters [18] and to potentially

offer faster convergence [19,20]. So far, the adoption of second-order

methods for ML problems has been limited due to the complexity of cal-

culating and storing the Hessian and the computational load of solving

the linear system 𝐇𝐝 = −𝐠, where 𝐇 is the (approximate) Hessian

matrix, 𝐠 is the gradient of the loss function, and 𝐝 is the descent di-

rection. Addressing these computational challenges, most approaches

use a combination of Hessian approximation and an efficient algorith-

mic technique for solving the linear system. Common approximations to

the Hessian include diagonal scaling [21,22], the empirical Fisher ma-

trix [23], the quasi-Newton approach [24–26], and the Gauss-Newton

(GN) approximation [27–29].

In this work, we follow the Gauss-Newton approach to Hessian ap-

proximation. We apply a special derivation inspired by [44,45] which

uses an efficient exact linear algebra identity—the Duncan-Guttman

(DG) formula [30,31]—to speed up the inversion of the Hessian ma-

trix. Compared to Hessian-free optimization (HFO) [32–34] and Inexact

Gauss-Newton (iGN) [28], this approach allows Exact Gauss-Newton

(EGN) to solve the system 𝐇𝐝 = −𝐠 exactly with the same algorithmic

complexity burden. Moreover, compared to methods that directly apply

the Sherman-Morrison-Woodbury (SMW) formula (see, e.g., [23]), we

solve for the descent direction in fewer matrix operations, thus reducing

the algorithmic complexity.

Our contributions are as follows.

∗ Corresponding author.

Email address: mikalai.korbit@imtlucca.it (M. Korbit).

https://doi.org/10.1016/j.neucom.2025.131738

Received 29 April 2025; Received in revised form 25 July 2025; Accepted 4 October 2025

Neurocomputing 658 (2025) 131738

Available online 9 October 2025
0925-2312/© 2025 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

http://www.sciencedirect.com/science/journal/0925-2312
https://www.elsevier.com/locate/NEUCOM
https://orcid.org/0009-0005-2472-338X
https://orcid.org/0000-0001-7048-0984
https://orcid.org/0000-0001-6761-0856
https://orcid.org/0000-0001-5925-0440
mailto:mikalai.korbit@imtlucca.it
https://doi.org/10.1016/j.neucom.2025.131738
https://doi.org/10.1016/j.neucom.2025.131738
http://creativecommons.org/licenses/by/4.0/

M. Korbit, A.D. Adeoye, A. Bemporad et al.

• We propose the EGN algorithm, which relies on a regularized

Gauss-Newton Hessian matrix and exploits the Duncan-Guttman

identity to efficiently solve the linear system.

• We provide a theoretical analysis of the EGN algorithm and establish

that EGN finds a stationary point in expectation for a large enough

iteration count.

• We evaluate the performance of EGN on several supervised learn-

ing and reinforcement learning tasks using various neural network

architectures.

2. Related work

Our method can be viewed within the broader context of approx-

imate second-order stochastic optimization. Some notable approaches

include diagonal scaling [21,22], Krylov subspace descent [35], Hessian-

free optimization [32–34], quasi-Newton approaches [24–26,36,37],

Gauss-Newton [27,38] and Natural Gradient [39,40] methods. A de-

tailed overview of second-order optimization methods for large-scale

machine learning problems can be found in [18,41,42].

Most closely related to our work are the algorithms inspired by the

Gauss-Newton approach. Such methods approximate the Hessian of the

loss function using only first-order sensitivities. In practice, the damped

version of the Gauss-Newton direction is often calculated, forming the

stochastic Levenberg-Marquardt (SLM) group of algorithms. We can clas-

sify SLM methods by three dimensions: (a) by the type of the Jacobian

estimation algorithm used; (b) by the matrix inversion algorithm; and (c)

by additional adaptive parameters and acceleration techniques. Based

on this paradigm we summarize selected SLM algorithms in Table 1.

The Jacobian can either be calculated exactly through the reverse

mode of automatic differentiation as proposed by, e.g., [27–29] or be

estimated approximately. Low rank Jacobian estimation is suggested by

the NLLS1 and NLLSL algorithms [29] with experimental results show-

ing almost on par performance with the exact Jacobian version of the

methods. SGN2 [28] uses SARAH estimators for approximating function

values and Jacobians with SGN2 performing better than SGN [28] that

assumes the exact Jacobian. In [22] the Gauss-Newton-Bartlett (GNB) es-

timator is introduced to adapt the GN method to large-scale classification

problems. EGN does not mandate a specific computation technique for

the Jacobian. In our experiments we rely on backpropagation deferring

other methods to further research.

Solving 𝐇𝐝 = −𝐠 naively for a neural network with 𝑑 parameters

has complexity 

(

𝑑

3

)

. The procedure becomes practically infeasible

even for networks of moderate size, so several alternative approaches

have been proposed. Following [20], we distinguish between inex-

act and exact solutions to the linear system. Inexact methods rely on

iterative algorithms to solve the system approximately in as few iter-

ations as possible. Among such algorithms we mention the Conjugate

Gradient (CG) method used in Hessian-free optimization [33,34] as

well as in GN methods like SGN [27] and LM [43]; the Accelerated

Dual Proximal-Gradient (ADPG) method proposed in [28] for SGN and

SGN2 solvers; the Stochastic Gradient Iteration approach (SGI), analysed

in [20] as part of the Newton-SGI solver. Exact methods are typically

based on linear algebra identities. For example, in [23,29] the system is

solved exactly with the Sherman-Morrison-Woodbury (SMW) formula.

Contrarily, we follow [45] and derive the EGN update formula using

the Duncan-Guttman matrix identity [30,31].

State-of-the-art implementations of the GN algorithm often include

additional improvements to address the issues of stochasticity of the

Hessian matrix, computational load of calculating the Jacobian and

adaptive hyper-parameter tuning. Just as with the gradient, the stochas-

tic sampling introduces noise in the Hessian which leads to the erroneous

descent direction. A common solution to combat noisy estimates is to

add temporal averaging (or momentum), e.g., with exponential mov-

ing averages (EMA). Examples of such approach are AdaHessian [21]

and Sophia [22] that keep EMA of a diagonal Hessian, as well as [34]

that incorporates momentum into the HFO framework. The idea of re-

using the Hessian estimate from previous iterations is formalized in [46]

showing that evaluating the Hessian “lazily” once per 𝑘 iterations sig-

nificantly reduces the computational burden while at the same time

does not degrade the performance that much. Although second-order

methods typically require less tuning [18,27,38], the SLM approach

still requires setting a learning rate 𝛼 and the regularization parame-

ter 𝜆. The line search for 𝛼, common in the deterministic optimization,

is problematic in the stochastic setting due to the high variance of the

loss gradient norm [47]. Still, there are promising attempts to incorpo-

rate line search into quasi-Newton methods [36], HFO [34] as well as

Gauss-Newton [43]. Adaptive regularization in a manner similar to the

deterministic Levenberg-Marquardt approach is proposed in [23,48].

3. Preliminaries

We use boldface letters to denote vectors and matrices. The 𝑛 × 𝑛

identity matrix is denoted by 𝐈 𝑛

, and we omit the subscript when the

size is clear from the context. The subscript 𝑡 represents the iteration

within the optimization loop, and may be omitted to avoid overloading

the notation. We define the standard inner product between two vectors

𝐱, 𝐲 as ⟨𝐱, 𝐲⟩ ∶= 𝐱

⊤ 𝐲. The standard Euclidean norm is denoted by ‖ ⋅ ‖,

and the expected value of a random variable is denoted by E[⋅].
We adopt the Empirical Risk Minimization (ERM) framework [49]

and consider the problem of finding the weights 𝐰 ∈ R

𝑑 of a parametric

function Φ ∶ R

𝑚 ×R

𝑑 → R

𝑐 , e.g., a neural network, such that it minimizes

the empirical risk over a dataset  consisting of 𝑁 pairs (𝐲 𝑖

, 𝐱 𝑖

) where

𝐱 𝑖

∈ R

𝑚 is a vector of features and 𝐲 𝑖 ∈ R

𝑐 , 𝑐 ≥ 1 is a target vector. We

want to solve the following optimization problem:

𝐰

∗ ∈ arg min
𝐰∈R

𝑑
 𝑁

(𝐰) ∶= E 𝜉∼𝑃 𝜉
[ 𝑁

(𝐰; 𝜉)], (1)

where 𝜉 is a random variable with distribution 𝑃 𝜉

. The objective function

is expressed as a finite-sum of functions  𝑁

(𝐰; 𝜉 𝑖

) over the realization 

of 𝜉, and

 𝑁 (𝐰) ∶=

1
𝑁

𝑁
∑

𝑖=1
𝓁
(

𝐲𝑖, Φ(𝐱 𝑖

;𝐰)

)

, (2)

is the empirical risk with 𝓁 ∶ R

𝑐 × R

𝑐 → R – a loss function, involving a

single pair
(

𝐲𝑖, 𝐱 𝑖
)

only.

We assume all these functions to be twice differentiable with respect

to 𝐰. Note that, while this assumption could be partially relaxed, we

stick to it for the sake of simplicity.

Table 1

A survey on Gauss-Newton methods for large-scale stochastic optimization.

Algorithm Jacobian estimation Solving the linear system Additional improvements

SGN [27] Exact via reverse mode autodiff Approximate with CG –

LM [43] Exact via reverse mode autodiff Approximate with CG Line search, momentum,

uphill step acceptance

SGN [28] Exact via reverse mode autodiff Approximate with ADPG –

SGN2 [28] Approximate with SARAH estimators Approximate with ADPG –

NLLS1, NLLSL [29] Rank-1, Rank-L approximation Exact with SMW formula –

SMW-GN [23] Exact via reverse mode autodiff Exact with SMW formula Adaptive regularization

EGN (this paper) Any Jacobian estimation algorithm (exact via

backpropagation is the default)

Exact with DG identity (see

Theorem 4.1 and Lemma 4.2)

Line search, adaptive

regularization, momentum

Neurocomputing 658 (2025) 131738

2

M. Korbit, A.D. Adeoye, A. Bemporad et al.

3.1. Gradient-based optimization

Problem (1) is typically solved by variations of the Stochastic

Gradient Descent (SGD) method by sampling mini-batches  𝑡

from 

rather than processing the entire dataset in each iteration. We denote

the loss on a mini-batch  𝑏

as

 𝑏 (𝐰) ∶=

1
𝑏

𝑏
∑

𝑖=1
𝓁
(

𝐲𝑖, Φ(𝐱 𝑖

;𝐰)

)

, (3)

where 𝑏 is the batch size. The iterations take the form

𝐰 𝑡+1

← 𝐰 𝑡

+ 𝛼 𝑡𝐝 𝑡

, (4)

where 𝛼 𝑡 > 0 is a learning rate and 𝐝𝑡 is a descent

direction obtained from

the gradient. In general, we have 𝐝 𝑡

= −𝐂𝑡 𝐠𝑡

where 𝐂 𝑡

is a precondition-

ing matrix that scales, rotates, and shears the gradient of the mini-batch

loss 𝐠 ∶= ∇ 𝐰 . by𝑏 Notice that

setting 𝑏 = 1, 𝐂𝑡

= 𝐈𝑑

and 𝐝𝑡 = −𝐠𝑡

we recover the incremental SGD update [1]. In practice, the preferred

training algorithm is often an accelerated version of mini-batch SGD.

Minimizing the quadratic approximation of the batch loss leads to

the following linear system

𝐇 (5)𝑡𝐝 𝑡

=

−𝐠 𝑡

,

where 𝐇 𝑡 ∶= ∇

2

𝐰 𝑏

is the Hessian matrix of the mini-batch loss. Finding

the direction 𝐝 𝑡 by solving the system (5) using 𝐇 𝑡

or its approximation

defines the broad spectrum of second-order methods. Setting 𝐂 𝑡

= 𝐇

−1
𝑡

results in Newton’s method. This method suffers from several drawbacks:

(a) one needs to compute second-order derivatives with respect to 𝐰; (b)

𝐂 𝑡

has to be positive-definite to ensure descent; (c) the linear system (5)

must be solved, which in general scales cubically with the dimension of

𝐰; and (d) since 𝐇 𝑡

is a noisy estimate of the true Hessian of the empirical

risk , 𝐇

−1
𝑡 can result in suboptimal conditioning. These issues and the

fact that 𝐰 is of rather large dimension have made the direct application

of Newton’s method practically irrelevant in ML applications. Indeed,

for problems like Large Language Model (LLM) pre-training [14,15,50]

or CV tasks [12], 𝐰 can be extremely high-dimensional, e.g., 314 ⋅ 10

9

parameters for Grok-1 [51] model, 8 ⋅ 10

9 to 405 ⋅ 10

9 parameters for

LLaMA-family models [52] and 0.27 ⋅ 10

6 to 19.4 ⋅ 10

6 parameters for

ResNets [12], which explains why accelerated first-order methods are

usually preferred.

In order to make SOMs scalable for ML applications one could in-

stead approximate the inverse Hessian, i.e., 𝐂 𝑡 ≈ 𝐇

−1
𝑡 . Examples of

such preconditioning include diagonal scaling (e.g., with Hutchinson

method [21,22]) with the idea of extracting the (approximate) di-

agonal elements of 𝐇 𝑡

while neglecting the off-diagonal terms; the

quasi-Newton approach [25,26] that approximates the Hessian using

the information from past and current gradients; and the Gauss-Newton

method [23,27] that leverages the Jacobian of the residuals, neglecting

second-order cross-derivatives, particularly suitable for loss functions

structured as (2). In this paper, we use the Gauss-Newton Hessian ap-

proximation which is shown to provide a good approximation of the true

Hessian for ML applications [17,53].

3.2. Generalized gauss-newton hessian approximation

We consider the Generalized Gauss-Newton (GGN) Hessian approxi-

mation scheme [41,53,54] which is suited for both regression and multi-

class classification tasks. The GGN Hessian approximation is constructed

using only first-order sensitivities (see the derivation in Appendix A) to

obtain

𝐇

GN =

1
𝑏
𝐉

⊤𝐐𝐉 (6)

𝜕
where we vertically stack individual Jacobians 𝐉Φ

∶= Φ(𝐱𝑖 ;𝐰) for each
[

𝑖
]

𝜕𝐰

sample in the batch  to form 𝐉
 ⊤

 = 𝐉Φ 1
… 𝐉 ∈ 𝑑

Φ R

𝑏𝑐× and
𝑏

 con-

struct a block diagonal matrix 𝐐 = blkdiag(𝐐 𝓁1

,𝐐 𝓁2
,… ,𝐐 𝓁

)
𝑏

 ∈ R

𝑏𝑐×𝑏𝑐 ,

2𝜕 𝓁(𝐲 ,Φ(𝐱 ;𝐰)) ×where

 𝐐 =

𝑖

 𝑖 ∈ 𝑐 𝑐

 R . As pointe𝓁 𝜕Φ2𝑖
 d out in [55], approxima-

tion (6) is justified since the true Hessian is dominated by the term

𝐉

⊤ 𝐐𝐉. Using the inverse of the GGN Hessian as a preconditioner yields

the following direction

()−1
𝐝GN 1

 = − 𝐉

⊤𝐐 𝐉 𝐠 , (7)𝑡 𝑏 𝑡 𝑡 𝑡 𝑡

which, by defining Δ𝐰 = 𝐰 − 𝐰

, corresponds to the solution of the𝑡

quadratic program

𝐝GN 1 1
 = arg min Δ𝐰 𝐉

2

⊤

𝑏

⊤
𝑡 𝐐𝑡 𝑡𝐉𝑡 Δ𝐰 + 𝐠⊤Δ𝐰 (8)𝑡 .

Δ𝐰 ⏟⏞⏟⏞⏟

𝐇GN
𝑡

The Gauss-Newton step (7) solves issues (a) and, partially, (b), since

no second-order derivatives need to be computed and the Hessian ap-

proximation is positive semi-definite by construction provided that the

loss function 𝓁

(

𝐲𝑖, Φ(𝐱 𝑖;𝐰)

)

is convex. A positive-definite Hessian ap-

proximation can easily be obtained from 𝐇

GN , e.g., by adding to it

a small constant times the identity matrix. This approach is called

Levenberg-Marquardt (LM) [56] and is often used in practice, such that

𝐇

LM =

1
𝑏

𝐉

⊤𝐐𝐉 + 𝜆𝐈 𝑑 (9)

with 𝜆 > 0. The regularizer 𝜆𝐈 𝑑 serves a dual purpose: it ensures that

the approximate Hessian matrix is invertible and also helps to avoid

over-fitting [49].

The Gauss-Newton update, however, still potentially suffers from is-

sue (c), i.e., the need to solve a linear system, which can be of cubic

complexity, and (d) the noise in the Hessian estimate. Since issue (c) is a

centerpiece of our method, and issue (d) is an inherent part of stochastic

sampling we defer the discussion on both of them to Section 4.

We conclude by examining the GGN update in two common machine

learning tasks—regression and multi-class classification—and how it is

derived in each case.

Regression. Regression is a predictive modeling task where the objec-

tive is to predict a scalar numeric target. For regression tasks we define

the loss function 𝓁 as the mean squared error (MSE)

𝓁
(

𝐲𝑖, Φ(𝐱 𝑖;𝐰)

)

∶=

1
2
(

Φ(𝐱 𝑖

;𝐰) − 𝐲 𝑖
) 2. (10)

We can show that the gradient and the GN Hessian for the MSE loss

read

𝐠 =

1
𝑏
𝐉

⊤𝐫, 𝐇

GN =

1
𝑏
𝐉

⊤ 𝐉, (11)

×where 𝐉 ∈ R

𝑏 𝑑 is a matrix of stacked Jacobians, and 𝐫
[

 ∈ R

𝑏 is a vector

]⊤
of residuals defined as 𝐫 ∶= Φ(𝐱1 ;𝐰) − 𝐲 1

… Φ(𝐱 .𝑏) − 𝐲

;𝐰 𝑏

Multi-class classification. The task of multi-class classification is to pre-

dict a correct class from 𝑐 classes given a vector of features 𝐱 . For𝑖

such

problems the output of the neural network Φ is a 𝑐-dimensional vector of

prediction scores (logits) 𝐳 𝑖 = Φ(𝐱 𝑖; 𝐰) and

the target vector is a one-hot

encoded vector 𝐲 𝑖 = 𝑒 ,𝑘 where 𝑒 𝑘

denotes column 𝑘 of the identity matrix

𝐈 and 𝑘 is index𝑐 the of the correct class. We

define the loss function as

a softmax cross-entropy loss (CE)

𝑐
 ()

∑
(())

𝓁 𝐲𝑖,Φ(𝑖 ;𝐰) ∶= − 𝐲 𝐱 𝑖,𝑘 log 𝜎 𝐳 𝑖,𝑘

, (12)
𝑘=1

𝐳
where 𝜎(𝐳𝑖,𝑘

) = 𝑒

𝑖,𝑘
∑𝑐 𝐳

, 𝐲 and 𝐳

are 𝑘-th elements of vectors 𝐲 and𝑖,𝑗 𝑖,𝑘
𝑗=1 𝑒

𝑖,𝑘 𝑖

𝐳 𝑖

respectively.

Neurocomputing 658 (2025) 131738

3

M. Korbit, A.D. Adeoye, A. Bemporad et al.

The gradient and the GN Hessian for the CE loss are

1 1𝐠 = 𝐉⊤
𝑏

 𝐫, 𝐇GN
 = 𝐉⊤

𝑏
 𝐐𝐉, (13)

where 𝐉

 ∈ R

𝑏𝑐×𝑑 is a matrix of stacked Jacobians, 𝐫 ∈
R

𝑏𝑐 is a vector of (pseudo-)residuals defined as 𝐫 ∶=
[]

(()) (())

 ⊤
𝜎 Φ(𝐱 ;𝐰)

 − 𝐲 ⊤
 … Φ(𝐱 ;𝐰) − 𝐲

 ⊤ ×𝜎
, and 𝐐 ∈ R

𝑏𝑐 𝑏𝑐
1 1

𝑏 𝑏
is a block diagonal matrix of stacked matrices 𝐐𝓁 that

𝑖
 each have

𝜎(𝐳 𝑖,𝑘)(1 − 𝜎(𝐳)) across the diagonal𝑖,𝑘

and −𝜎(𝐳 𝑖,𝑘

)𝜎(𝐳𝑖,𝑙) off-diagonal.

4. Algorithm

We are now ready to present the EGN algorithm. First, we will discuss

how one can efficiently solve the linear system. Then, we will discuss

further enhancements to the basic algorithm. Next, we address issue (c),

i.e., the problem of finding the solution of the symmetric linear system

𝐇 𝑡

𝐝 𝑡

= −𝐠𝑡

.

Substituting the exact Hessian with the regularized Gauss-Newton

Hessian yields

()1 1𝐉⊤ 𝐐𝑡𝐉𝑡 + 𝜆𝑡

𝐈 𝐝LM𝑡 𝑑 𝑡 = − 𝐉⊤𝐫
𝑏

 (14)

𝑡 𝑡

,
𝑏

where for the MSE loss 𝑐 = 1 and 𝐐 𝑡

= 𝐈 𝑏. Solving (14) for 𝐝

LM

𝑡 re-

quires one to factorize matrix 𝐇

LM, carrying a complexity of 

(

𝑑

3

)

. We

notice, however, that in practice one often has 𝑑 ≫ 𝑏𝑐, i.e., the pa-

rameter vector is of very high dimension, e.g., 𝑑 > 10

6 . In that case,

the GN Hessian matrix (6) is low-rank by construction. That allows us

to transfer the computationally expensive inversion operation from the

high-dimensional 𝑑 × 𝑑 space (which is the original dimension of the

Hessian) to the low-dimensional 𝑏𝑐 × 𝑏𝑐 space.

To that end, we follow an approach similar to the ones in [44,45]

which propose to utilize the Duncan-Guttman identity [30,31]. We

present this in Theorem 4.1 and Lemma 4.2 below for the Levenberg-

Marquardt direction. For a general presentation which considers smooth

regularization functions, we refer the interested reader to [45, Section

3].

Theorem 4.1 ([30,31]). Assuming 𝐀 and 𝐃 are full-rank matrices, the

following identity holds

(

𝐀 − 𝐁

⊤ 𝐃

−1𝐂
)−1𝐁

⊤ 𝐃

−1 = 𝐀

−1𝐁

⊤(

𝐃 − 𝐂𝐀

−1 𝐁

⊤) −1 . (15)

By observing that Eq. (14) defining the direction 𝐝

LM has the form of

the left-hand side of the identity (15) we state the following.

Lemma 4.2. The Levenberg-Marquardt direction 𝐝 (Eq. (14)) for both MSE

and CE loss functions can be computed using Algorithm 1.

Proof. Substituting 𝐀 = 𝑏𝜆𝐈 𝑑 , 𝐁

⊤ = −𝐉

⊤ , 𝐂 = 𝐉 and 𝐃 = 𝐐

−1 into

Eq. (15) we get

(

𝑏𝜆𝐈 𝑑

+ 𝐉

⊤𝐐𝐉

) −1𝐉

⊤ 𝐐 = −
(

𝑏𝜆𝐈𝑑
) −1𝐉

⊤

(

𝐐

−1 + 𝐉
(

𝑏𝜆𝐈𝑑
) −1𝐉

⊤
) −1

(16)

Multiplying both sides by 𝐐

−1 𝐫 yields

(

𝑏𝜆𝐈 𝑑

+ 𝐉

⊤𝐐𝐉

) −1𝐉

⊤ 𝐫 = −
(

𝑏𝜆𝐈𝑑
) −1𝐉

⊤
(

𝐐−1 + 𝐉
(

𝑏𝜆𝐈𝑑
) −1𝐉

⊤
) −1

𝐐

−1 𝐫 (17)

Algorithm 1 EGN direction function.

1: Input: (pseudo-)residuals 𝐫, stacked Jacobians 𝐉, regularizer 𝜆, batch

size 𝑏.
()

2: Solve the

 linear system for 𝛿: 𝐐𝐉𝐉

⊤ + 𝑏𝜆𝐈 𝑏𝑐 𝛿 = 𝐫

(

//
)



𝑏

2 𝑐

2 𝑑 + 𝑏

3 𝑐

3

3: Calculate direction LM
 𝐝 = −𝐉

⊤𝛿 //  (𝑏𝑐𝑑)
LM4: Return 𝐝

where the lhs of (17) is now equivalent to explicitly solving for 𝐝

LM in

Eq. (14). Simplifying the rhs of (17) results in

(

LM
)

𝐝

 = −𝐉⊤

 𝑏𝜆𝐐−1

−1
 + 𝐉𝐉⊤

 𝐐−1
 𝐫. (18)

(

−1a

−1Applying the inverse of product property, 𝐁

 𝐀 = (𝐀𝐁)−1
)

 , to the

expression 𝑏𝜆

 𝐐

−1 + 𝐉𝐉 −1⊤

 𝐐−1
 we have

() (()) ()

𝐐−1 + 𝐉𝐉 −1 −1𝑏𝜆

−1 =

𝐐 𝑏𝜆

𝐐 + 𝐉𝐉⊤
 −1 −1

⊤
 𝐐

 = 𝑏𝜆𝐈𝑏𝑐 +𝐐𝐉𝐉

⊤

 . (19)

So that the direction can be calculated as

(

𝐝LM = −𝐉⊤
)

𝐐𝐉𝐉⊤ + 𝑏𝜆𝐈
 −1

 𝑏𝑐

𝐫, (20)

which corresponds to the procedure outlined in Algorithm 1. □

4.1. Comparison to existing methods

The key property of Algorithm 1 is that the system (5) is solved

exactly in contrast to approximate (or inexact) solutions that under-

pin algorithms such as HFO [32,34], Newton-SGI [20], LiSSA [19],

SGN [27] and iGN [28]. The benefits of having the exact solution are an-

alyzed in [20] with exact Newton methods enjoying faster convergence

rates than inexact ones. Our experiments (Section 6) also demonstrate

that the exact Gauss-Newton solver (EGN) consistently outperforms the

inexact version (SGN) across the majority of the problems. The com-

plexity of Algorithm 1 is dominated by the matrix multiplication 𝐉𝐉

⊤

that costs 

(

𝑏

2 𝑐

2 𝑑

)

as well as solving the linear system of size 𝑏𝑐 × 𝑏𝑐

with complexity 

(

𝑏

3 𝑐

3

)

. Assuming 𝑑 > 𝑏𝑐, the overall complexity of

Algorithm 1 is 

(

𝑏

2 𝑐

2 𝑑

)

.

A common alternative way to solve the Levenberg-Marquardt linear

system (14) exactly is to apply the SMW identity, as in [23,29,48,57].

The SMW identity states

(𝐀 + 𝐔𝐂𝐕)

−1 = 𝐀

−1 − 𝐀

−1 𝐔
(

𝐂

−1 + 𝐕𝐀

−1 𝐔

) −1𝐕𝐀

−1 . (21)

With 𝐀 = 𝜆𝐈 𝑑

, 𝐔 = 𝐉

⊤, 𝐂 =

1
𝑏𝐐, and 𝐕 = 𝐉, we obtain the SMW-GN

matrix inversion [23]:

(1
𝑏
𝐉

⊤𝐐𝐉 + 𝜆𝐈 𝑑

) −1
= 1

𝜆

𝐈 𝑑 − 1
𝜆

2

𝐉

⊤
(

𝑏𝐐

−1 +

1

𝜆

𝐉𝐉

⊤
) −1

𝐉. (22)

As with EGN, the dominant term is 𝐉𝐉

⊤. However, even with efficient

ordering of operations, there are at least two 

(

𝑏

2 𝑐

2 𝑑

)

matrix mul-

tiplications while EGN requires just one. Beyond doubling the per-step

cost, the additional multiplication can introduce extra rounding error

that gradually accumulates [58].

Another important consideration is the non-regularized case. When

Levenberg damping is disabled (𝜆 = 0), 𝐀 in (21) is singular and the

SMW inverse is undefined. EGN remains well-posed provided 𝐐𝐉𝐉

⊤ is

invertible, making it applicable to pure Gauss-Newton steps.

We support our theoretical findings with the empirical comparison

of solving Eq. (14) using both SMW and EGN methods (Table 2). EGN

achieves up to 1.6× speed-up compared to SMW on larger models (𝑑 ≥
10

5), which translates into substantial training-time savings since the

solver is invoked at every iteration.

For completeness, we note here that another option to solve (14)

exactly is through the QR factorization of 𝐉

⊤
𝑡 (see pseudocode

Table 2

Wall-clock time (seconds, mean over 1000 runs) to solve (14) with

SMW and EGN across different model sizes for 𝑏 = 32, 𝑐 = 10 on

NVIDIA RTX A4000 GPU.

𝑑 1K 10K 100K 1M 2M

SMW 0.0010 0.0013 0.0044 0.0368 0.0747

EGN 0.0008 0.0011 0.0028 0.0246 0.0517

Neurocomputing 658 (2025) 131738

4

M. Korbit, A.D. Adeoye, A. Bemporad et al.

in Appendix B). The complexity of such an approach is also 

(

𝑏

2 𝑐

2 𝑑

)

,

dominated by the economy size QR decomposition of 𝐉

⊤ . However,

performing a QR decomposition is significantly more expensive than

performing matrix–matrix multiplications and, in practice, EGN is pre-

ferred.

The CG method is an essential part of, e.g., HFO [32,34], SGN [27],

Newton-CG [20], LM [43], and Distributed Newton’s method with op-

timal shrinkage [59]. The complexity of CG approximately solving

Eq. (14) is (𝑙𝑑

2) where 𝑙 is the number of CG iterations [56]. A typ-

ical number of CG iterations ranges from 3 in [34] to 50 in [60]. Note

that, unless the number of classes 𝑐 is high (which is one of the limita-

tions of EGN addressed in Section 6.3), we have 𝑙𝑑

2 > 𝑏

2 𝑐

2 𝑑, such that

EGN solves the system both exactly and faster than CG.

4.2. Additional improvements

In addition to estimating the Hessian-adjusted direction, most state-

of-the-art SOMs employ strategies to reduce variance of gradient and

Hessian estimates, safeguard against exploding gradients, and dynami-

cally adjust hyper-parameters to training steps. Next, we explore several

enhancements to EGN, including momentum acceleration [9,21,34] to

mitigate issue (d)–that is, the noise in Hessian estimates; line search [43,

47,61] to ensure steps are sufficiently short to decrease the loss; and

adaptive regularization [23,34,43] to achieve faster convergence and

simplify hyper-parameter tuning.

Momentum. A significant challenge in second-order methods is the

noise introduced in Hessian estimates due to stochastic sampling.

Consider the update direction 𝐝 𝑡

= −𝐇

−1
𝑡 𝐠 𝑡, where both the approxi-

mate Hessian 𝐇 𝑡

and the gradient 𝐠 𝑡

are stochastic estimates of the true

derivatives of the empirical risk (2). Conditioning the gradient with a

noisy Hessian inverse can lead to inaccurate descent directions, imped-

ing convergence. To mitigate this issue, temporal averaging techniques

(or momentum) are employed to stabilize updates and accelerate conver-

gence by combining information from previous iterations with current

estimates. In ML applications, common momentum variants include

simple accumulation [6], exponential moving average (EMA) [7], bias-

corrected EMA [9,21] and momentum with an extrapolation step [2].

For diagonal scaling methods, including first-order accelerated al-

gorithms [6,7,9] and SOMs [21,22], the accumulated estimates of both

first and second moments are kept separately resulting in  (𝑑) space

complexity. For Gauss-Newton methods we could alternatively reduce

the variance of the Jacobian 𝐉, e.g., with SVRG [62], SAGA [63] or

SARAH [64], which results in a space complexity of  (𝑏𝑐𝑑). Another

option is to apply momentum to the descent direction 𝐝 𝑡

, explored

in [34,61], which requires storing a vector of size 𝑑. Since we never

explicitly materialize either the Hessian or the gradient (Algorithm 1),

we follow the latter approach with bias-corrected EMA by default.

Line search. Line search is a widely used technique in deterministic op-

timization [56] that iteratively adjusts the learning rate to satisfy some

minimum criteria (e.g., Wolfe’s conditions), ensuring adequate decrease

in the loss function. Allowing 𝛼 to automatically adapt to each train-

ing step can significantly reduce the need for manual tuning, which is

often time-consuming and computationally expensive. However, extend-

ing line search methods to the stochastic setting poses challenges due to

the inherent noise in gradient estimates, making it difficult to guarantee

the same theoretical properties as in the deterministic case [47]. Despite

these challenges, line search has been successfully applied in practice to

both stochastic FOMs [61,65] and SOMs [36,43]. In EGN we adopt the

strategy proposed by Ref. [61], which incorporates a reset mechanism

at the beginning of each search to minimize the computational overhead

of evaluating the loss function (Algorithm 4 in the Appendix).

Adaptive regularization. Adaptive regularization techniques for

stochastic SOMs are explored in [23,32,34,43] modifying the origi-

nal Levenberg-Marquardt rule to the stochastic setting. The central

Algorithm 2 EGN.

1: Input: training dataset , initial weights 𝐰0 , initial regularizer 𝜆 0

,

momentum strength 𝛽.

2: Initialize momentum: 𝐦 0

= 0
3: for 𝑡 in 1 ...𝑇 do

4: Sample a mini-batch  from 𝑡

5: Estimate 𝐫 𝑡

and 𝐉

(e.g., via backpropagation)𝑡
6: Find direction 𝐝𝑡

via Algorithm 1

7: Calculate the momentum term: 𝐦𝑡

← 𝛽𝐦𝑡 −1

+ (1 − 𝛽)𝐝 𝑡
𝐦

8: Update direction: 𝐝𝑡

←

𝑡
1−𝛽

𝑡

9: Line search for 𝛼 via𝑡 Algorithm 4

10: Update weights: 𝐰𝑡 ←+1 𝐰𝑡 + 𝛼 𝑡

𝐝𝑡

11: Update 𝜆 𝑡+1

via Algorithm 5

12: end for

13: Return 𝐰 𝑡

idea is to track 𝜌, defined as the ratio between the decrease in the

actual loss function
(

 (3) and
)

 the decrease in the quadratic model

 (Δ𝐰) = 𝑏 𝐲 𝑡, Φ(𝐱𝑡 ;𝐰𝑡) + 1

⊤

𝐠 Δ𝐰 + Δ𝐰⊤
 𝐉

⊤𝐐 𝐉 Δ𝐰, where𝑡 2 𝑏 𝑡 𝑡 𝑡
Δ𝐰 = 𝐰 − 𝐰𝑡 . This yields

𝜌 ∶=

 𝑏
(

𝐲𝑡, Φ(𝐱 𝑡

;𝐰 𝑡+1

)

)

−  𝑏

(

𝐲 𝑡

, Φ(𝐱 𝑡;𝐰 𝑡)
)

𝐠⊤𝑡 Δ𝐰 +

1
2 𝑏Δ𝐰

⊤ 𝐉

⊤
𝑡 𝐐𝑡𝐉𝑡Δ𝐰

, (23)

which measures the accuracy of the quadratic model. In case 𝜌 is small

or negative,  (Δ𝐰) provides inaccurate approximation and the value

𝜆 is increased. Conversely, if 𝜌 is large, 𝜆 is decreased to give more

weight to  (Δ𝐰) (see Algorithm 5 in the Appendix). As empirically

found by Ref. [34], compared to the deterministic LM the increase/de-

crease coefficients need to be less aggressive to reduce the oscillations

of 𝜆 𝑡

.

Algorithm 2 incorporates all the improvements discussed above, ef-

fectively addressing issues (a)–(d) associated with SOMs and eliminating

the need for manual hyper-parameter tuning.

5. Convergence analysis

In this section, we analyze the convergence of EGN in the general

non-convex setting.

In EGN, we consider the sequence of iterates {𝐰 𝑡

} 𝑡≥1

where each 𝐰 𝑡

is

computed via (4) with 𝐝 𝑡

≡ 𝐝

LM
𝑡 . We aim to minimize the function  𝑁

(𝐰)
using, for each realization 𝜉 ∼ 𝑃 𝜉

, the Hessian estimator 𝐇(𝐰, 𝜉) and

the gradient estimator 𝐠(𝐰, 𝜉). Then, at each iteration 𝑡, the mini-batch

estimates 𝐠 𝑡 and 𝐇 𝑡

of the gradient and Hessian are

1 1𝐠𝑡 = 𝐠(𝐰, 𝜉 𝑖) ∶= 𝐉⊤ 𝐫 ,
𝑏 𝜉𝑖 ∈

𝑡

𝑏
 𝑡

(24)

𝑡

1 ∑ 1𝐇 𝑡 = 𝐇(𝐰, 𝜉
𝑏

⊤
𝑖) ∶= 𝐉 𝐐 (25)𝑡𝐉𝑡.

𝜉

𝑡
𝑖 ∈

𝑏
𝑡

In our analysis, we make use of the following assumptions.

Assumption 5.1. The function 𝑁 is lower-bounded on its domain, i.e.,

−∞ < 

∗ ∶= inf 𝑁

(𝐰). In addition,  is twice𝑁 with
∈R

𝑁
𝐰

 differentiable
𝑑

Lipschitz continuous first-order derivatives, i.e., ∃𝐿 1

∈ R such that

‖

‖

∇

𝑁 (𝐰 ‖̄) − ∇ (𝐰̃) ‖ , ∀ ∈ 𝑑
‖

≤ 𝐿1 ‖𝐰̄ − 𝐰̃ 𝐰̄, 𝐰̃ R

 𝑁

. (26)

Assumption 5.2. At any iteration 𝑡, 𝐠(𝐰

, 𝜉) is an𝑡 unbiased estimator of

∇ ,𝑁 (𝐰) i.e.,

 𝑡

E 𝜉

[𝐠(𝐰𝑡 , 𝜉)] = ∇𝑁

(𝐰𝑡). (27)

Moreover, we have
[]

E

‖

𝜉 ‖

𝐠(𝐰 𝑡 , 𝜉) − ∇ 𝑁 (𝐰 𝑡)

‖

2
‖

≤ 2
 𝜎 𝑔 , (28)

where 𝜎 > 0 is a variance parameter.𝑔

∑

Neurocomputing 658 (2025) 131738

5

M. Korbit, A.D. Adeoye, A. Bemporad et al.

Assumption 5.3. At any iteration 𝑡, 𝜅𝐈 ≤ 𝐐 ≤𝑡

𝜅̄𝐈 with 𝜅̄ ≥ 𝜅 ≥ 0.
Additionally, ∃ ‖𝜎

‖̄ , 𝜎 satisfying 0 < 𝜎 ≤ 𝜎̄ such that 𝜎 ≤
‖

𝐉

𝜎 ≥𝑡‖ ≤ ̄ for all 𝑡 0.

Assumption 5.4. At any iteration 𝑡, and
[

for any random ma-

trix 𝐁
]

 satisfying 𝐁 ⪰ 𝜇𝐈 with 𝜇 > 0, E ⟨∇ (𝐰

𝐠

),𝐁

⟩|

𝑡 𝑡 𝑁 𝑡 𝑡 𝑡 𝐰 𝑡

≥
𝜇𝐾‖∇ 𝑁 (𝐰𝑡)‖‖E[𝐠𝑡 |𝐰 ‖

2, where .𝑡]

𝐾 = (3(𝑏𝜆 𝑡

+ 𝜅̄𝜎̄

))∕(5 𝑏𝜆𝑡)

These assumptions are standard in stochastic optimization litera

ture [41,66,67], and they hold naturally or can be easily enforced for

typical neural network architectures and loss functions used in ma-

chine learning practice. Notably, the variance of the stochastic gradient

estimator (Assumption 5.2) is more directly controllable from a practi-

tioner’s perspective by selecting a sufficiently large batch size or adding

a momentum term that uses past gradients to inform the direction of

update (see, e.g., [41,67,68]). We also remark that the matrix 𝐁 in𝑡

Assumption 5.4 may be interpreted as a preconditioner. Depending on

the nature of its conditional correlation with 𝐠 𝑡

given 𝐰 ,𝑡 a large batch

size can enhance the practicality of the assumption. In practice, either

this conditional correlation is nonexistent (see the comment on [41,

Assumption 4.3(b)]), or the contribution of 𝐠 𝑡

is inversely scaled by the

(large) batch size as in the proof of Lemma 5.5 below.

-

In Lemma 5.5, we prove a descent lemma for EGN under the given

conditions.

Lemma 5.5. Let {𝐰 } be the sequence of iterates generated by (𝑡 4) with

𝐝 ≡𝑡

 𝐝LM and let Assumptions𝑡

max5.1–5.3 hold. Suppose there exists 𝛼

> 0
such that 𝛼

 ≤𝑡 𝛼

max for all 𝑡 in Algorithm 4. Then,

E[ 𝑁 (𝐰 𝑡+1

)|𝐰 𝑡] ≤  𝑁

(𝐰 𝑡) −

𝛼 𝑡
2

‖∇ 𝑁

(𝐰 𝑡)‖

2 +
3𝜎

2
𝑔𝛼

2
𝑡

10 𝑏𝜆 𝑡𝛼

max

. (29)

Proof. From Assumption 5.1, we have

 𝑁

(𝐰 𝑡+1) ≤  𝑁

(𝐰 𝑡

) + ⟨∇ 𝑁

(𝐰 𝑡

),𝐰 𝑡+1

− 𝐰 𝑡

⟩ +

𝐿 1
2

‖

‖

𝐰𝑡+1

− 𝐰 𝑡
‖

‖

2

=  𝑁 (𝐰 𝑡

) − 𝛼 𝑡

⟨

∇ 𝑁 (𝐰 𝑡

),

(1
𝑏

𝐉

⊤
𝑡 𝐐 𝑡

𝐉 𝑡

+ 𝜆 𝑡

𝐈

) −1
𝐠 𝑡

⟩

+
𝛼

2
𝑡 𝐿 1

2

‖

‖

‖

‖

‖

(1
𝑏

𝐉

⊤
𝑡 𝐐 𝑡

𝐉 𝑡 + 𝜆 𝑡

𝐈

)−1
𝐠 𝑡

‖

‖

‖

‖

‖

2

. (30)

()−11Next, we set 𝐁 𝑡 = 𝐉

⊤𝐐 𝑡

𝐉 +𝑏 𝑡 𝑡 𝜆 𝑡𝐈

 in Assumption

5.4. From

Assumption 5.3, we can

 show that 𝐁 ⪰ 𝜇𝐈 𝜇 ∶= 𝑏∕(𝑏𝜆 + 𝜅̄𝜎̄

2with𝑡 𝑡

).
Using this result and Assumption 5.3 in (30), we obtain

 𝑁

(𝐰 𝑡+1) ≤  𝑁

(𝐰 𝑡) − 𝛼 𝑡 ⟨∇ 𝑁 (𝐰 𝑡

),𝐁 𝑡

𝐠 𝑡⟩ +
𝑏

2 𝛼

2
𝑡 𝐿 1

2(𝑏𝜆 𝑡

+ 𝜅𝜎

2)

2

‖𝐠 𝑡

‖

2 . (31)

Notice that by Assumption 5.2, we have E[𝐠 |𝐰] = ∇ Hence,

(𝐰
[

). the𝑡 𝑡 𝑁

𝑡
]

inequality in Assumption 5.4 can be written as E ⟨∇

(𝐰

),𝐁

𝐠 ⟩|𝐰

≥𝑁 𝑡 𝑡 𝑡 𝑡
𝜇𝐾‖∇ (𝐰)‖

2. Taking conditional expectation on both sides𝑁 𝑡 of (31)

with respect to 𝜉 and using Assumption 5.4, we get

E[ 𝑁 (𝐰 𝑡+1

)|𝐰 𝑡] ≤  𝑁

(𝐰 𝑡) −

3𝛼 𝑡
5𝜆 𝑡

‖∇ 𝑁 (𝐰 𝑡

)‖

2 +
𝑏

2 𝛼

2
𝑡 𝐿 1

2(𝑏𝜆 𝑡

+ 𝜅𝜎

2)

2
E[‖𝐠 𝑡‖

2

|𝐰 𝑡

].

(32)

Using Assumption 5.2, we have

E[‖𝐠 𝑡‖

2

|𝐰 𝑡

] = E[‖𝐠 𝑡 − ∇ 𝑁 (𝐰 𝑡

) + ∇ 𝑁 (𝐰 𝑡

)‖

2

|𝐰 𝑡

]

= E[‖∇ 𝑁 (𝐰 𝑡

)‖

2

|𝐰 𝑡] + 2E[⟨𝐠 𝑡

− ∇ 𝑁 (𝐰 𝑡),∇ 𝑁 (𝐰 𝑡)⟩|𝐰 𝑡]

+ E[‖𝐠 𝑡

− ∇ 𝑁 (𝐰 𝑡)‖

2

|𝐰 𝑡

]

= ‖∇ 𝑁 (𝐰 𝑡)‖

2 + E[‖𝐠 𝑡 − ∇ 𝑁

(𝐰 𝑡)‖

2

|𝐰 𝑡

]

≤ ‖∇ 𝑁 (𝐰 𝑡)‖

2 +
𝜎

2
𝑔

𝑏
. (33)

Now, using (33) in (32), we obtain

E[ 𝑁

(𝐰 𝑡+1)|𝐰 𝑡

] ≤  𝑁

(𝐰 𝑡) −

(

3𝛼 𝑡
5𝜆 𝑡

−
𝑏

2 𝛼

2
𝑡 𝐿 1

2(𝑏𝜆 𝑡

+ 𝜅𝜎

2)

2

)

‖∇ 𝑁 (𝐰 𝑡

)‖

2

+
𝑏𝜎

2
𝑔𝛼

2
𝑡 𝐿 1

2(𝑏𝜆 𝑡

+ 𝜅𝜎

2)

2

. (34)

By choosing 𝛼 to be sufficiently𝑡 small, we can set 𝛼max

 = 1∕𝑐1 in

2

Algorithm 4,

 where 𝑐 =

 1

(5 𝑏

2𝜆

2

𝐿1

)∕(3(𝑏𝜆

+ 𝜅𝜎) .𝑡 With this selection,𝑡
inequality (34) holds, which completes the proof. □

Assumption 5.4 is necessary to prove the result in Lemma 5.5 due to

the correlation between 𝐁 and If𝑡 𝐠 .𝑡

these quantities were not correlated,

then one could exploit Assumptions 5.2–5.3: by taking the expected

value and using (27), one could then bound 𝐁 𝑡 ⪰ 𝜇𝐈 to obtain the desired

bound with 𝐾 = 1. Clearly, that would yield different constants in our

next results, but their nature would remain unaltered. Note that this sug-

gests alternative versions of EGN, in which the correlation is removed

by construction at the expense of an increased computational burden.

A thorough investigation of such schemes is beyond the scope of this

paper.

Unlike classical stochastic quasi-Newton and SGD (𝐇 𝑡

= 𝐈 𝑑

) methods,

the loss decrease condition of EGN has an explicit nonlinear dependence

on the batch size 𝑏. In the regime 𝑏 ≫ 1, the influence of the variance

parameter 𝜎 𝑔

diminishes.

We prove next the following result about the convergence of EGN.

Theorem 5.6. Let the assumptions in Lemma 5.5 hold, and assume 𝜆 𝑡

≡ 𝜆
𝛼0 1is fixed for all

 𝑡. Let 𝛼𝑡 = (𝑡+1)𝑎

for some 0 < 𝛼0

< 1, 2 < 𝑎 < 1. Then, the
loss gradient approaches 0 in expectation as the iteration count 𝑇 → ∞.

Proof. Following the proof of Lemma 5.5, we max

 fix 𝛼 = 1∕𝑐 1

in

Algorithm 4, with 𝑐 1 =

 (5 𝑏 2
)∕(3(2𝜆 𝑡𝐿 1 𝑏𝜆 ,𝑡 + 𝜅𝜎

2) and

take the condi-

tional expectation on both sides of (29). This yields

E[ 𝑁

(𝐰 𝑡+1

)] ≤ E[ 𝑁 (𝐰 𝑡

)] − 1
2
𝛼 𝑡E[‖∇ 𝑁 (𝐰 𝑡)‖

2] + 𝐶𝛼

2
𝑡 , (35)

3
where 𝐶 ∶=

𝜎

2
𝑔 𝑐 1

 . (35)10 𝑏𝜆 Summing over

𝑡 = 0, 1, … , 𝑇 − 1, we obtain
𝑡

E[ 𝑁 (𝐰 𝑇)] ≤ E[ 𝑁 (𝐰 0)] − 1
2

𝑇 −1
∑

𝑡=0
𝛼 𝑡E[‖∇ 𝑁 (𝐰 𝑡

)‖

2] + 𝐶
𝑇 −1
∑

𝑡=0
𝛼

2
𝑡 . (36)

= 𝛼0Assuming that the learning rates are given by 𝛼

 for some𝑡 (𝑡+1)𝑎 0

<

𝛼 0 < 1 1, 2 < 𝑎 < 1, we have

𝑇 −1
∑

𝑡=0
𝛼

2
𝑡 = 𝐷 < ∞.

Next, consider a random variable 𝐳 𝑇

satisfying 𝑃 [𝐳 𝑇

= 1
 𝐰 𝑡

] =

 , for all𝑇 𝑡.
Consequently,

E[‖∇ 𝑁 (𝐳 𝑇)‖

2] =

1
𝑇

𝑇 −1
∑

𝑡=0
E[‖∇ 𝑁 (𝐰 𝑡)‖

2],

such that, using also 𝛼 ≤ 𝛼

for all𝑡2 𝑡1

𝑡 2

≥ 𝑡 1

, (36) becomes

E[ 𝑁

(𝐰 𝑇)] ≤ E[ 𝑁 (𝐰 0

)] − 𝛼 𝑇 −1

1
2
𝑇E[‖∇ 𝑁 (𝐳 𝑇

)‖

2] + 𝐶𝐷.

Then, using E[ 𝑁

(𝐰 𝑇)] ≥ 

⋆

𝑁 we have

E[‖∇ 𝑁 (𝐳 𝑇)‖

2] ≤ 2

E[ 𝑁

(𝐰 0)] − 

∗
𝑁

𝛼𝑇−1𝑇
+ 2𝐶𝐷

𝛼𝑇−1𝑇

= 2

E[ 𝑁

(𝐰 0)] − 

∗
𝑁

𝛼 0

𝑇

1−𝑎
+ 2𝐶𝐷

𝛼 0 𝑇

1−𝑎

.

Taking the limit for 𝑇 → ∞ we finally have

lim
𝑇 →∞

E[‖∇ 𝑁 (𝐳 𝑇

)‖

2] ≤ 0.

□

Neurocomputing 658 (2025) 131738

6

M. Korbit, A.D. Adeoye, A. Bemporad et al.

6. Experiments

We conduct a series of experiments to measure the performance of

EGN on several supervised learning and reinforcement learning tasks.

We select five baseline solvers: SGD [1], Adam [9], SGD with mo-

mentum and Gradient Activation Function (GAF) [69], a Quasi-Newton

solver (SQN) [24,25,41], and SGN [27]. SGD acts as a most basic base-

line with the computationally cheapest update; Adam is a widely used

accelerated FOM for training DNNs; GAF is a recent first-order variant

that reports faster convergence on deep networks; SGN is an inexact

Gauss-Newton solver against which we evaluate the practical advantages

of solving the system (5) exactly; and SQN acts as an alternative to Gauss-

Newton that approximates the Hessian via low-rank updates. Since

first-order methods typically require fewer computations per iterate, in

order to obtain a fair comparison we monitor the wall time instead of the

number of iterations. The learning rates are selected as the best perform-

ing 𝛼 after a grid search in the logspace 𝛼 ∈ [10

−9 , 1]. Additionally, for

SGN we search for the optimal “number of CG iterations” within the set

{3, 5, 10, 20, 50}. For EGN we introduce two extra hyper-parameters: “line

search” {True, False} and “momentum” {0.0, 0.9}. The best performing

sets of hyper-parameters as well as detailed description of the datasets

are available in Appendix C. The size of the mini-batch for all problems

is 128. All the experiments are conducted on the Tesla T4 GPU in the

Google Colab environment with float32 precision.

6.1. Supervised learning

For the regression task, we select three datasets: California

Housing [70], Superconductivity [71], and Diamonds [72] with 20640,

21263, and 53940 training samples, respectively. For classification, we

use the IMDB Reviews dataset [73] containing 25000 instances of movie

reviews. Across all problems, the model Φ is a Feedforward Neural

Network (FFNN) with three dense layers of 32, 64 and 32 units fol-

lowed by the ReLU activation function with a total of 4449 parameters

(𝑑 = 4449). The loss function during the training is a least-squares

loss (10) for regression and softmax cross-entropy loss (12) for classifi-

cation. The datasets are split into training and test sets in the proportion

of 90∕10 percent. Numerical features are scaled and categorical features

are one-hot encoded. To measure the performance, we plot the evolution

of the evaluation metric on unseen data (test set) with respect to wall

time (in seconds). The evaluation metric is Root Mean Squared Error

(RMSE) for regression and accuracy for classification.

The results are presented in Fig. 1 and Table 3. On all but the IMDB

Reviews dataset EGN has achieved both faster convergence and lower

test set error than any other optimization algorithm. On IMDB Reviews

SGN is faster than EGN, however, the two solvers achieve the same

accuracy after reaching convergence.

6.2. Reinforcement learning

We demonstrate the application of EGN to reinforcement learn-

ing in two scenarios: continuous action spaces with Linear-Quadratic

Regulator (LQR) and discrete action spaces using Deep Q-Network

(DQN) [74].

Learning LQR controllers. Given a discrete time-invariant linear system

with continuous states and actions, and a quadratic reward function

Fig. 1. Learning curves on the test set for SGD, Adam, GAF, SQN, SGN and EGN.

The shaded area represents ±1 standard deviation around the mean (thick line)

for 10 seeds.

our task is to learn the optimal value function 𝑣

∗ (𝑠) and the optimal

policy 𝜋

∗ (𝑠) such that we maximize the cumulative return. Such prob-

lems can be solved in a data-driven fashion with the policy iteration

procedure [75] (outlined in Appendix C.2). It is well known that the

optimal value function is quadratic and the optimal policy function is

linear [76]. Consequently, we define Φ as a quadratic function of states

and actions. We track the norm of the difference between the optimal

LQR controller calculated analytically knowing the system matrices and

the learned weights of the model.

We select two linear systems from the Compleib set of benchmarks

[77]. The first system is a deterministic model of a binary distillation

tower (BDT) [78], and the second one represents the linearized verti-

cal plane dynamics of an aircraft (UAV) with noise [79]. The results

are displayed in the top two charts of Fig. 2 and Table 4. Both EGN

and SGN outperform first-order methods by a considerable margin,

with EGN enjoying slightly faster convergence in both cases, while SGN

achieves a marginally lower error on the stochastic LQR upon reaching

convergence.

Reinforcement learning with DQN. Adopting the problem formulation of

Ref. [74], we aim to learn the weights of a neural network that represent

a 𝑄-value function 𝑞(𝑠, 𝑎) that maps states 𝑠 and actions 𝑎 into scores

Table 3

Performance after training completion (supervised learning).

Optimizer California housing Superconduct Diamonds IMDB reviews

SGD 0.539 ± 0.006 13.788 ± 0.698 1008.936 ± 54.940 0.809 ± 0.011

Adam 0.519 ± 0.009 12.052 ± 0.381 947.258 ± 130.079 0.820 ± 0.008

GAF 0.524 ± 0.006 12.193 ± 0.293 857.817 ± 109.033 0.822 ± 0.006

EGN 0.518 ± 0.009 11.961 ± 0.207 840.500 ± 126.444 0.830 ± 0.001

SGN 0.522 ± 0.007 12.121 ± 0.196 998.688 ± 61.489 0.830 ± 0.001

SQN 0.539 ± 0.008 14.070 ± 0.141 844.951 ± 48.109 0.824 ± 0.001

Neurocomputing 658 (2025) 131738

7

M. Korbit, A.D. Adeoye, A. Bemporad et al.

Fig. 2. Learning curves for SGD, Adam, SGN and EGN. The shaded area rep-

resents ±1 standard deviation around the mean return (thick line) for 10

seeds.

(𝑄-values) for a discrete set of actions. Once training is complete, the

optimal policy is formed by calculating the 𝑄-value of each action and

choosing the highest-scoring action.

We build upon CleanRL [80] framework for running RL experiments,

selecting two environments: Acrobot-v1 and Freeway-v1. Acrobot-v1 is

an OpenAI gym [81] environment with a 6-dimensional state vector and

a set of 3 discrete actions where the goal is to swing the free end of

the connected joints above a given height in as few steps as possible.

Freeway-v1 is a MinAtar [82] environment that emulates the original

Freeway Atari game. The state is represented by a 10 × 10 image and

there are 3 discrete actions available. For Acrobot-v1 the network Φ is a

FFNN with three dense layers of 32, 64 and 32 units followed by the ReLU

activation function with a total of 4515 parameters. For Freeway-v1 we

design a compact CNN, comprising of a convolutional layer with sixteen

3 × 3 filters and ReLU activation, followed by flattening, a 64-unit dense

layer with ReLU, and a final dense layer outputting 𝑄-values for all

actions (𝑑 = 103683).
The cumulative returns from each completed episode are recorded

and displayed in the bottom two charts of Fig. 2. The results for both

Acrobot-v1 and Freeway-v1 show no distinct advantage among the

solvers, as they all reach similar episodic returns. We notice, however,

that EGN slightly outperforms other optimizers by achieving a higher

return level at convergence (see Table 4).

6.3. Limitations

Explicit gradients. Unlike first-order methods that rely on the average

gradient of the batch loss, Gauss-Newton methods require the full

Jacobian matrix, which contains the gradients of each sample. As a re-

sult, backpropagation for EGN is more time-consuming than for FOMs.

Moreover, this can lead to increased GPU memory usage, especially with

high-dimensional parameter vectors.

Large batch sizes. In our experiments we observed that the cost of com-

puting the derivatives and the subsequent cost of computing the step

(Algorithm 1) are comparable. However, for large batch sizes (𝑏 > 128)

we observed that the computational times increased significantly. Fig. 3

quantifies how the direction calculation stage begins to dominate the

update time as the batch size grows. While EGN remains an efficient

drop-in replacement for first-order methods within the commonly-used

range 32 ≤ 𝑏 ≤ 128, scaling to very large batches will require additional

techniques. We suspect this to be related to hardware limitations and

leave a systematic study of such mitigations to future work.

Large number of classes for multi-class classification. By incorporating

the softmax function into the loss Eq. (12) we introduce coupling

between the individual outputs of Φ in the denominator
∑𝑐

𝑗=1 𝑒

𝐳 𝑖,𝑗 , which

makes the Jacobian 𝐉 a dense 𝑏𝑐 × 𝑑 matrix. Speeding up the calculation

of 𝐉 remains an open research question and constitutes a major obsta-

cle in using Gauss-Newton methods for tasks involving a large number

of classes, e.g., LLM pre-training. One possible solution could consist in

moving the softmax function directly into the model Φ as the last layer

of the network and then only computing the Jacobian with respect to

the correct class, resulting in 𝐉 ∈ R

𝑏×𝑑 . This approach, however, yields

a Hessian approximation that becomes singular close to the solution,

Fig. 3. Proportion of total update time spent in Algorithm 1 as a function of

batch size for fully-connected neural networks (MLPs) of various sizes. Curves

show the mean over 1000 runs; shaded regions denote ±1 standard deviation.

Absolute wall-clock times are reported in Appendix C.4.

Table 4

Performance after training completion (reinforcement learning).

Optimizer BDT UAV Acrobot-v1 Freeway-v1

SGD 64.058 ± 0.768 81.378 ± 0.306 −90.962 ± 13.484 56.996 ± 7.359

Adam 0.443 ± 0.297 0.157 ± 0.100 −98.489 ± 20.827 55.967 ± 2.251

EGN 0.000 ± 0.000 0.043 ± 0.031 −81.796 ± 11.778 58.916 ± 1.946

SGN 0.000 ± 0.000 0.033 ± 0.019 −114.052 ± 39.914 57.424 ± 3.611

Neurocomputing 658 (2025) 131738

8

M. Korbit, A.D. Adeoye, A. Bemporad et al.

which results in numerical instabilities that hinder convergence [83].

Another possibility suggested in [84] consists of replacing the softmax

cross-entropy loss with the multi-class hinge loss. Although the compu-

tation becomes faster for the hinge loss, empirical evidence shows that

the test set accuracy upon training completion is higher for the CE loss.

Finally, a promising approach is the Gauss-Newton-Bartlett (GNB) esti-

mator proposed by Ref. [22], which replaces the exact LM Hessian with

an approximation obtained by sampling the subset of predicted labels.

7. Conclusion

We presented the EGN algorithm, a stochastic second-order method

that efficiently estimates the descent direction by using a low-rank

Gauss-Newton Hessian approximation and leveraging the Duncan-

Guttman matrix identity. We demonstrated that EGN solves the system

𝐇

LM 𝐝 = −𝐠 exactly with less computational burden than other exact

Gauss-Newton methods, as well as inexact methods that rely on con-

jugate gradient iterates. We also proved that under mild assumptions

our algorithm converges in expectation. Our empirical results show that

EGN consistently matches or exceeds the generalization performance of

well-tuned SGD, Adam, GAF, SQN, and SGN optimizers across various

supervised and reinforcement learning tasks.

Future work will focus on addressing the shortcomings of EGN in

classification problems with a large number of classes. A promising di-

rection is to approximate the Gauss-Newton Hessian matrix to avoid

computing the full Jacobian of the network, e.g., using techniques such

as the Gauss-Newton-Bartlett estimator [22]. Another direction is to

study the performance of EGN on larger datasets and more complex

models.

CRediT authorship contribution statement

Mikalai Korbit: Writing – review & editing, Writing – original

draft, Visualization, Validation, Software, Resources, Project admin-

istration, Methodology, Investigation, Formal analysis, Data curation,

Conceptualization. Adeyemi D. Adeoye: Writing – review & editing,

Methodology, Formal analysis. Alberto Bemporad: Writing – review &

editing, Project administration, Methodology. Mario Zanon: Writing –

review & editing, Writing – original draft, Supervision, Project adminis-

tration, Methodology, Formal analysis, Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing financial

interests or personal relationships that could have appeared to influence

the work reported in this paper.

Acknowledgments

This work was partially funded by the European Union (ERC

Advanced Research Grant COMPACT, No. 101141351). Views and opin-

ions expressed are however those of the authors only and do not nec-

essarily reflect those of the European Union or the European Research

Council. Neither the European Union nor the granting authority can be

held responsible for them.

Appendix A. Proofs and derivations

A.1. Generalized gauss-newton hessian approximation

Claim. The generalized Gauss-Newton Hessian approximation scheme

for the batch loss (3) is 𝐇

GN =

1
𝑏 𝐉

⊤𝐐𝐉.

Proof. The derivative of the generic batch loss function (3) reads

𝜕
𝜕𝐰

 𝑏 =

𝜕
𝜕𝐰

[

1
𝑏

𝑏
∑

𝑖=1
𝓁

(

𝐲 𝑖

, Φ(𝐱 𝑖

;𝐰)
)

]

𝜕𝓁

𝜕𝓁
 =

𝜕ΦEmploying the chain rule we𝜕𝐰 𝜕Φ 𝜕𝐰 have

()

1 ∑

𝑏 𝜕𝓁 𝐲 , Φ(𝐱 ;𝐰) Φ(𝐱 ;𝐰) 1 ∑

𝑏
𝜕  𝑖 𝜕

= 𝑖 𝑖
 𝑏 =

𝐋
𝜕𝐰 𝑏 𝜕Φ 𝜕𝐰

𝑏 𝑖

𝐉Φ ,

𝑖
𝑖=1 𝑖=1

()

𝜕𝓁 𝐲𝐋 𝑖 ,Φ(𝐱= 𝑖

;𝐰) ∈ 1× 𝐉 𝜕Φ(𝐱

 = 𝑖

;𝐰)
where R

𝑐 and Φ ∈ R

𝑐×𝑑 . We obtain the𝑖 𝜕Φ 𝑖 𝜕𝐰
Hessian by differentiating the gradient

[]

1 ∑

𝑏

𝐇 𝜕=

 𝐋
𝜕𝐰 𝑖

𝐉 Φ𝑏 𝑖
𝑖=1

.

Using the product rule we arrive at

()

1 ∑

𝑏
∑

𝐇 =

[]

[

𝜕

𝐋

𝑐
]

𝑖

𝐉 Φ

+ 𝐋 𝜕
𝑏 𝑖 𝑖,𝑘 𝐉

𝐰 Φ
𝑖=1 𝜕 =1 𝜕𝐰 𝑖,𝑘

,
𝑘

where 𝐋 ∈ R is the -th of𝑖,𝑘 𝑘 element of the derivative

the loss with

respect to

 Φ, and 𝐉 1×
Φ ∈ R

𝑑 is the 𝑘-th row
𝑖,𝑘

 the Jacobian 𝐉Φ

. We obtain
 𝑖

the Gauss-Newton Hessian approximation by neglecting the second-term

of 𝐇 [17,53], such that

𝐇GN

1 ∑

𝑏

 =

[

𝜕]

𝐋

𝐉 .
𝑏 𝜕𝐰 𝑖

 Φ𝑖
𝑖=1

Given that

()

[] 𝜕2

 𝓁 𝐲 Φ(𝜕 𝐋 𝐉⊤ 𝑖, 𝐱
=

 𝑖;𝐰)

=
𝜕𝐰

𝑖 Φ𝑖 𝜕Φ2
 𝐉⊤Φ 𝐐𝓁

𝑖 𝑖
,

2
𝐐 = 𝜕 𝓁(𝐲

𝑖 ,Φ(𝐱𝑖 ;𝐰)) ∈ R

𝑐×where 𝑐
𝓁𝑖 𝜕Φ2

 is the second derivative of the loss with

respect to the function’s output, we have

𝐇GN

1 ∑

𝑏

 =

 𝐉⊤ 𝓁 𝐉
𝑏

Φ 𝐐

𝑖
𝑖

Φ𝑖
.

𝑖=1

Or using the compact notation

𝐇GN

1
 = 𝐉⊤𝐐𝐉

𝑏
 ,

where we vertically stack individual Jacobians 𝐉 Φ

for each sample in

𝐉
𝑖

the

×batch

  to form ∈ R

𝑏𝑐 𝑑 and form a block diagonal matrix 𝐐 =

blkdiag(𝐐𝓁1
,𝐐 𝓁 2

,… ,𝐐) ∈ R

𝑏𝑐×𝑏𝑐
𝓁

𝑏
. □

A.2. Gauss-newton hessian of the MSE loss function

1Claim. The gradient of

 the batch MSE loss is 𝐠 = 𝐉𝑏

⊤𝐫.

Proof. We define the residual vector 𝐫 as 𝐫 ∶=
[]

Φ(𝐱1 ;𝐰) − 𝐲1

… Φ(𝐱𝑏 ;𝐰)

 − 𝐲 ⊤

𝑏 . Recall that the stacked
×Jacobians of the neural network are denoted by 𝐉, with 𝐉 ∈ R

𝑏 𝑑

for the regression task. The batch loss (3) for MSE is

1 ∑

𝑏
)

𝑏

(𝐰) =

(1

 Φ(𝐱𝑖;𝐰)
 2 ⊤

2 𝑏
 − 𝐲𝑖 = 𝐫 .

2𝑖 𝑏
 𝐫

=1

So that

[]𝜕 𝜕
 = 𝑏

𝜕𝐰 𝑏

𝜕𝐫 𝜕Φ 1=
𝜕𝐫 𝜕 𝜕𝐰

 𝐫 .
𝑏

⊤ 𝐉
Φ

Since we define the gradient to be a column vector

()⊤
(𝜕

)1 ⊤ 1𝐠 =

 𝑏 = 𝐫 𝐉
𝐰 𝑏

⊤

 =
𝜕

 𝐉
𝑏

⊤𝐫.

□

Neurocomputing 658 (2025) 131738

9

M. Korbit, A.D. Adeoye, A. Bemporad et al.

batch GN 1Claim. The Hessian of the MSE loss is 𝐇 = 𝐉⊤

 𝑏 𝐉.

Proof. We obtain the Hessian by differentiating the gradient of the loss

𝐇 =

𝜕 1 ()

𝐠
𝜕𝐰

 =

𝜕 𝐉⊤𝐫

.
 𝑏 𝜕𝐰

Using the product rule of vector calculus

()

(())

1 [[

𝐇 = 𝐉⊤ 𝜕 [𝐫] +

𝜕]
∑

𝑏

2
]

𝐉⊤
 1=

𝑏 𝜕𝐰 𝐰

⊤

 𝐫 𝐉
𝑏

 𝐉

𝜕

𝜕+ Φ(𝐱 ;
 𝑖=1 𝜕 𝑖 𝐰)

2
 𝐫

𝐰
 𝑖

.

where 𝐫 is𝑖 ∈ R

the 𝑖-th element of 𝐫.
Neglecting the second term we obtain the Gauss-Newton approxima-

tion of the Hessian

𝐇GN 1
 = 𝐉⊤

𝑏
 𝐉.

□

A.3. Gauss-newton hessian of the multi-class cross-entropy loss function

Claim. The gradient of the batch multi-class cross-entropy loss is 𝐠 =
1𝐉⊤𝑏 𝐫.

Proof. We recall from Appendix A.1 that the partial derivative of the

generic loss function is

()

𝜕 1 ∑

𝑏 𝜕𝓁 𝐲
 𝑖, Φ(𝐱𝑖 ;𝐰)

𝐰

𝑏 = 𝐉Φ .
𝜕 𝑏 =1 𝜕Φ

 𝑖

𝑖

Assuming that 𝐉Φ is
𝑖

 calculated
(

 during the
)

backpropagation stage, we

𝜕𝓁

examine the term
 𝐲𝑖 ,Φ(𝐱𝑖 ;𝐰)

 .𝜕Φ The cross-entropy loss function (12) is

defined as

() (())

𝓁 𝐲𝑖, Φ(𝐱𝑖 ;𝐰) ∶= −𝐲⊤ log 𝜎 Φ(𝐱𝑖;𝐰)𝑖 ,

where 𝜎 is the softmax function defined as

𝐳
𝜎(𝐳

𝑖,𝑘
 𝑖,𝑘)

𝑒=
∑𝑐 𝐳 ,

𝑗=1 𝑒 𝑖,𝑗

with a 𝑐-dimensional vector of prediction scores (logits) 𝐳 𝑖

= Φ(𝐱𝑖

;𝐰) and
a 𝑐-dimensional vector of probabilities 𝐩𝑖 =

𝜎(𝐳𝑖

). Applying the chain rule

and using the shorthand notation we obtain

()

𝜕𝓁 𝐲𝑖, Φ(𝐱𝑖 ;𝐰) 𝜕𝓁 𝜕𝐩 𝜕
= 𝑖 𝐳 𝑖

𝜕Φ
 .
𝜕𝐩𝑖

𝜕𝐳𝑖 𝜕Φ

Differentiating the loss with respect to the softmax function yields

[]𝐲

𝜕𝓁 = − 𝑖, 1 𝐲𝑖, 2 𝐲
 ,− ,… ,− 𝑖,𝑐

𝜕𝐩𝑖 𝐩𝑖, 1 𝐩
 .

𝑖, 2 𝐩𝑖,𝑐

The derivative of the 𝑘-th element of the softmax function wrt the 𝑙-th
input 𝐳𝑖,𝑙 is split in two cases

{

𝜕𝐩𝑖,𝑘 𝐩
=

𝜕𝐳

𝑖,𝑘

(1 − 𝐩𝑖,𝑘), if 𝑘 = 𝑙

𝑖,𝑙 −𝐩𝑖,𝑘 𝐩 𝑖,𝑙

, if 𝑘 ≠ 𝑙.

𝜕𝐩
So that the derivative

 𝑖 ∈ ×
𝜕

𝑐
𝐳𝑖

R

𝑐 can be structured as

𝜕𝐩𝑖 =
𝜕𝐳

⊤diag(𝐩

𝑖) − 𝐩𝑖 𝐩𝑖 .

𝑖

𝜕𝓁 𝜕𝐩
Combining and 𝑖 , we𝜕 obtain𝐩 𝑖 𝜕𝐳𝑖

∑

𝑐 ()

𝜕𝓁 𝐲

{

= − 𝑖,𝑙 𝐩𝑖,𝑘 (1 − 𝐩𝑖,𝑘), if 𝑘 = 𝑙

𝜕𝐳

𝑖,𝑘 𝐩𝑙=1 𝑖,𝑙 −𝐩𝑖,𝑘 𝐩 𝑖,𝑙

, if 𝑘 ≠ 𝑙,

Which simplifies to

𝜕𝓁 = −
𝐳

 𝐲 𝑖,𝑘 = 𝐩
𝜕 𝑖,𝑘 + 𝐩

𝑖,𝑘

− 𝐲𝑖,𝑘 .

𝑖,𝑘

𝜕𝐳
Since

 𝑖 is𝜕Φ the identity, we have

()

𝜕𝓁 𝐲𝑖, Φ(𝐱𝑖 ;𝐰)

=
𝜕Φ

 𝐩 𝑖

− 𝐲𝑖 .

The same way as for the MSE loss, we define (pseudo-)residuals 𝐫 ∈
(

)

 𝑖

R

𝑐

⊤
as a column vector of probabilities minus the targets, i.e., 𝐩𝑖 − 𝐲𝑖 .

Substituting back into the loss derivative

𝜕 𝑏

∑𝑏 1=

 𝐫⊤
𝜕𝐰 𝑏

 𝐉

𝑖 Φ 𝑖
𝑖=1

.

Since we define the gradient to be a column vector

()

()⊤ 𝑏𝜕 𝑏

𝐠 =

⊤ 1 ∑ ∑𝑏 1
 = 𝐫

𝜕𝐰 𝑏

⊤𝐉𝑖 Φ 𝑖
𝑖=1

= 𝐉⊤
𝑏 Φ 𝐫

𝑖 𝑖

.
𝑖=1

Or in shorthand notation

1𝐠 = 𝐉⊤
𝑏

 𝐫

where for each sample 𝑖 in the batch  we vertically stack Jacobians 𝐉Φ 𝑖
as well as residuals 𝐫

×

to form 𝑑
𝑖 𝐉 ∈ R

𝑏𝑐 and 𝐫 ∈ R

𝑏𝑐 . □

Claim. GN

 The Hessian of the batch multi-class cross-entropy loss is 𝐇 =
1𝐉⊤𝑏 𝐐𝐉.

Proof. Recall that the GN Hessian for the generalized case

(Appendix A.1) is

𝐇GN

1 ∑

𝑏

 =

 𝐉⊤ 𝐐 𝐉Φ . (A.1)
𝑏

Φ 𝓁𝑖 𝑖

𝑖

𝑖=1

The second derivative of the loss with respect to the function’s output

𝐐 𝜕

2 𝓁(𝐲 ,Φ(𝐱

𝑖 𝑖 ;𝐰)) 𝑐×𝑐 for CE loss is𝓁 𝜕

=

∈Φ

2𝑖
 R

[]

𝐐

𝜕= 𝐩

𝓁𝑖

𝜕Φ 𝑖 − 𝐲𝑖

.

Using the gradient of the softmax function derived earlier, we form a

symmetric matrix 𝐐 𝓁

such
𝑖

 that

⎡ 𝐩𝑖1(1
⎢

 − 𝐩𝑖) −𝐩

⎤1 𝑖1 …

𝐩 𝑖2 −𝐩 𝑖1

𝐩𝑖𝑐

 ⎥−𝐩 𝐩 𝐩 (1 − 𝐩) … −𝐩 𝐩

𝐐 𝓁

= ⎢

𝑖 2 𝑖1

 𝑖2 𝑖 2 𝑖2

 𝑖𝑐
⎥

⎢

𝑖
,

 ⋮ ⋮ ⋱ ⋮ ⎥

⎢

⎣

 ⎥−𝐩𝑖𝑐 𝐩𝑖 1 −𝐩𝑖𝑐 𝐩𝑖 2 … 𝐩𝑖𝑐 (1

− 𝐩𝑖𝑐

)
⎦

Or in compact notation

𝐇GN

1
 = 𝐉⊤

𝑏
 𝐐𝐉,

Where 𝐐 is a block diagonal matrix

⎡ 𝐐 0 0 0 ⎤

⎢

𝓁1
⎥

 0 𝐐 0 0

𝐐 𝓁2
⎢

 = ⎢

⎥

 0 0 0 ⎥

⋱
⎢

⎣

 ⎥0 0 0 𝐐

 𝓁𝑏 ⎦

And 𝐉 ∈ R

𝑏𝑐×𝑑 is vertically stacked Jacobians 𝐉Φ .
𝑖

□

Neurocomputing 658 (2025) 131738

10

M. Korbit, A.D. Adeoye, A. Bemporad et al.

Appendix B. Algorithms

Algorithm 3 Calculate direction using QR factorization (MSE loss).

1: Input: (pseudo-)residuals 𝐫, stacked Jacobians of the model 𝐉,
regularizer 𝜆.

()

2: Factorize 𝐉⊤

 with economy sized QR: 𝐐, 𝐑 ← qr 𝐉⊤
()

3: Factorize: 𝐐̃, 𝐑̃ ←

 qr 𝐑𝐑⊤

 + 𝜆𝐈

4: Solve the linear system for : 𝐑̃ 𝐐̃𝛿 𝛿 =

⊤ 𝐑𝐫
5: Calculate 𝐝LM

 = −𝐐𝛿

6: Return 𝐝LM

Algorithm 4 Armijo line search.

1: Input: direction 𝐝 max
 𝑡

 up
{

 down

, hyper-parameters , , , .

𝛼 ← min 𝛼
 }

𝛼 𝜅 𝑐 𝑐
2: Initialize max

 𝑡

 , 𝛼 𝑡−1

𝑐up

()

3: while  𝐰
 () ()⊤

𝑡+1 >

  𝐰

𝑡 + 𝜅𝛼𝑡

∇ 𝐰𝑡 𝐝 𝑡

do

4: Update 𝛼 ←𝑡 𝛼𝑡 𝑐down

5: Update 𝐰 ←𝑡+1 𝐰𝑡 + 𝛼𝑡

𝐝 𝑡
6: end while

7: Return 𝛼𝑡

Algorithm 5 Adaptive regularization [34].

1: Input: batch 𝑡 , current weights 𝐰 , .𝑡 updated weights 𝐰𝑡 +1

2: Calculate 𝜌 according to (23)

3: if 𝜌 < 0.25 then

4: 𝜆𝑡 ←+1 1.01𝜆 𝑡

5: else if 𝜌 > 0.75 then

6: 𝜆𝑡 ←+1 0.99𝜆 𝑡
7: else

8: 𝜆𝑡 ←+1 𝜆 𝑡
9: end if

10: Return 𝜆𝑡 +1

Appendix C. Experiment details

C.1. Supervised learning

California Housing [70], a part of the scikit-learn [85] datasets

package, consists of 20640 samples with 8 numerical features 𝐱 encoding

relevant information, e.g., location, median income, etc.; and a real-

valued target 𝐲 representing the median house value in California as

recorded by the 1990 U.S. Census.

Superconductivity [71] is a dataset of HuggingFace Datasets [86]

that contains 21263 instances of 79 numerical attributes (features 𝐱) and

critical temperatures (target 𝐲) of superconductors.

Diamonds [72] is a TFDS [87] dataset containing 53940 instances

of 9 physical attributes (both numerical and categorical features 𝐱) and

prices (target 𝐲) of diamonds.

IMDB Reviews [73] is a TFDS [87] dataset that contains 25000 train-

ing samples and 25000 testing samples of movie reviews in a text format.

Before passing the samples to the model Φ, we pre-process the raw

text data with spaCy [88] en_core_web_lg pipeline which converts a text

review into a 300-dimensional vector of numbers.

The optimal sets of hyper-parameters are presented in Table C.5.

C.2. Learning LQR controllers

Here, we define the problem of learning an LQR controller more for-

mally. Given a discrete time-invariant linear system with continuous

states  ∈ R

𝑛 𝑠 and actions  ∈ R

𝑛 𝑎 of form 𝑇 (𝑠, 𝑎) = 𝐀𝑠 + 𝐁𝑎 + 𝑒 and a re-

ward function 𝑟(𝑠, 𝑎) = 𝑠

⊤ 𝐐𝑠+𝑎

⊤ 𝐑𝑎 our task is to learn the optimal value

function 𝑣

∗ (𝑠) and the optimal policy 𝜋

∗ (𝑠) by interacting with 𝑇 (𝑠, 𝑎),

where 𝐀 ∈ R

𝑛 𝑠

×𝑛 𝑠 and 𝐁 ∈ R

𝑛 𝑎

×𝑛 𝑠 are system matrices, 𝑒 ∼  (0, Σ)

is Gaussian noise, 𝐐 ∈ R

𝑛 𝑠

×𝑛 𝑠 is a negative semi-definite state reward

matrix and 𝐑 ∈ R

𝑛 𝑎

×𝑛 𝑎 is a negative definite action reward matrix.

It is well-known [76] that the optimal value and policy functions

have the form:

𝑣

∗ (𝑠) = 𝑠

⊤ 𝐏𝑠 + 𝑉 0

, 𝜋

∗ (𝑠) = 𝐊𝑠, (C.1)

where 𝐏 ∈ R

𝑛 𝑠

×𝑛 𝑠 is a negative semi-definite matrix, 𝐊 ∈ R

𝑛 𝑎

×𝑛 𝑠 is a state

feedback matrix, and 𝑉 0

= 𝛾(1 − 𝛾)

−1 Tr (𝐏Σ).

Table C.5

Optimal hyper-parameters for supervised learning tasks.

Optimizer Learning rate Regularizer Momentum Line search #CG iterations

California housing

SGD 0.03 – – – –

Adam 0.001 – – – –

GAF 0.08 – 0.9 – –

EGN 0.4 1.0 0.9 False –

SGN 0.2 1.0 – – 5

SQN 0.3 – 0.0 – –

Superconduct

SGD 0.0003 – – – –

Adam 0.01 – – – –

GAF 0.007 – 0.9 – –

EGN 0.05 1.0 0.0 False –

SGN 0.1 1.0 – – 10

SQN 0.07 – 0.0 – –

Diamonds

SGD 2e-8 – – – –

Adam 0.0005 – – – –

GAF 0.001 – 0.0 – –

EGN 0.0005 1.0 0.0 False –

SGN 0.001 1.0 – – 5

SQN 0.004 – 0.0 – –

IMDB reviews

SGD 0.005 – – – –

Adam 0.01 – – – –

GAF 0.003 – 0.9 – –

EGN 0.01 1.0 0.0 False –

SGN 0.05 1.0 – – 5

SQN 0.02 – 0.0 – –

Neurocomputing 658 (2025) 131738

11

M. Korbit, A.D. Adeoye, A. Bemporad et al.

Algorithm 6 Generalized policy iteration for LQR.

1: Input: initial stabilizing policy 𝐊 0, initial weights 𝐰

 0

, learning rate

𝛼, discount factor 𝛾, tolerance

 𝜂 = 10

−8, LM regularizer 𝜖.
2: Set policy iteration counter 𝑝 = 1
3: repeat

4: Given 𝐊 𝑝−1 estimate the corresponding weights 𝐰 through a policy

evaluation algorithm, e.g., Algorithm 7

5: Convert weights 𝐰 to a matrix 𝐌

6: if 𝐌

is not𝑎𝑎 positive-definite then

7: Return Error

8: end if

9: Improve policy 𝐊 𝑝

−1

= −𝐌 𝐌𝑎𝑎 𝑎𝑠
10: Set 𝑝 = 𝑝 + 1

‖

11: until ‖
 ‖

 𝐊𝑝

−𝐊
‖

𝑝−1‖ <
‖

 𝜂
12: Return 𝐊𝑝

Algorithm 7 Policy evaluation for LQR.

1: Input: policy 𝐊, initial weights 𝐰0 , learning rate 𝛼, discount factor

𝛾, tolerance 𝜂 = 10

−8.

2: Set policy evaluation counter 𝑖 = 1

3: Initialize 𝑆 1
4: repeat

5: Choose action 𝐴 ∼ 𝜋(𝑆 an

) by following exploratory policy𝑖 𝑖 𝜋(𝑠) =
𝐊𝑠 + 𝑒

6: Execute action 𝐴 and𝑖 observe 𝑅 𝑖

, 𝑆 𝑖+1
7: Obtain

 𝐴

′ by following a greedy policy 𝜋(𝑠) = 𝐊𝑠
8: Convert [𝑆

 , 𝐴

] and [𝑆 +1, 𝐴

′] to quadratic𝑖 𝑖 𝑖 feature vectors 𝐱 and

𝐱

′

()′9: Calculate 𝐝 𝑖

⊤

= 𝑅𝑖 + 𝐰 (𝐱 −𝑖−1 𝛾 𝐱) 𝐱
10: Update weights 𝐰 ←𝑖

𝐰𝑖 −1 + 𝛼𝑖

𝐝𝑖
11: Set 𝑖 = 𝑖 + 1

12: until ‖
‖

𝐰𝑖

−
‖

 𝐰𝑖
‖

−1 ∞ < 𝜂
13: Return 𝐰𝑖

To learn the optimal controller from data we can utilize Generalized

Policy Iteration [75,89] (Algorithm 6).

BDT. System matrices for the model of a binary distillation tower

(BDT) follow [78]. The matrices represent a continuous system. We

discretize the system using a Zero-Order Hold (ZOH) method with a

sampling rate of Δ𝑇 = 0.1𝑠.

UAV. System matrices for the linearized vertical plane dynamics of

an aircraft (UAV) are taken from Ref. [79]. The matrices represent a

continuous system. We discretize the system using a Zero-Order Hold

(ZOH) method with a sampling rate of Δ𝑇 = 0.1𝑠.

Table C.6

Optimal hyper-parameters for BDT and UAV.

Optimizer Learning rate Regularizer Momentum Line search #CG iterations

BDT

SGD 0.0000005 – – – –

Adam 0.1 – – – –

EGN 1.0 1.0 0.0 False –

SGN 1.0 1.0 – – 10

UAV

SGD 0.00008 – – – –

Adam 0.02 – – – –

EGN 0.2 1.0 0.0 False –

SGN 1.0 1.0 – – 10

Table C.7

Optimal hyper-parameters for Acrobot-v1 and Freeway-v1.

Optimizer Learning rate Regularizer Momentum Line search #CG iterations

Acrobot-v1

SGD 0.001 – – – –

Adam 0.0003 – – – –

EGN 0.1 1.0 0.0 False –

SGN 0.005 1.0 – – 3

Freeway-v1

SGD 0.1 – – – –

Adam 0.0003 – – – –

EGN 0.4 1.0 0.0 False –

SGN 0.5 1.0 – – 5

The optimal sets of hyper-parameters for LQR are presented in

Table C.6.

C.3. Reinforcement learning with DQN

Acrobot. Acrobot-v1 is an OpenAI gym [81] environment where the

goal is to swing the free end of the connected joints above a given height

in as few steps as possible. Transitions to any non-terminal state yield

reward 𝑅 𝑡

= −1.

Freeway. Freeway-v1 is a part of MinAtar [82] package that emulates

the original Atari Freeway game which plays out on a 10 × 10 grid. The

goal is to reach the top of the screen starting at the bottom of the screen

maneuvering the obstacles appearing on the screen. A reward of +1 is

given upon reaching the top of the screen.

The optimal sets of hyper-parameters for reinforcement learning with

DQN are presented in Table C.7.

C.4. Limitations

Table C.8

Table C.8

Wall-clock time (ms) per step for different batch sizes and MLP models, split into direction

finding stage (“Solve”) and remainder (“Other”). Means over 1000 runs (NVIDIA RTX A4000

GPU).

Batch size MLP 1 K MLP 10 K MLP 100 K MLP 1 M

Solve Other Solve Other Solve Other Solve Other

8 0.135 0.120 0.177 0.118 0.176 0.120 0.492 0.274

16 0.156 0.114 0.169 0.111 0.219 0.144 0.629 0.429

32 0.165 0.112 0.196 0.113 0.304 0.183 0.943 0.725

64 0.223 0.099 0.265 0.111 0.398 0.235 1.958 1.351

128 0.326 0.106 0.381 0.149 0.734 0.376 3.489 2.576

256 0.555 0.098 0.716 0.197 1.397 0.623 10.035 5.459

512 1.381 0.140 1.781 0.258 4.220 0.861 38.511 6.239

Neurocomputing 658 (2025) 131738

12

M. Korbit, A.D. Adeoye, A. Bemporad et al.

Data availability

Experiments were conducted using publicly available datasets. Full

details, including dataset sources, preprocessing steps, and experimental

settings, are provided in Section 6 and Appendix C.

References

[1] H. Robbins, S. Monro, A stochastic approximation method, Ann. Math. Stat. (1951)

400–407.

[2] Y. Nesterov, A method of solving a convex programming problem with convergence

rate 𝑂(1∕𝑘

2), Dokl. Akad. Nauk SSSR 269 (3) (1983) 543.

[3] I. Sutskever, J. Martens, G. Dahl, G. Hinton, On the importance of initialization

and momentum in deep learning, in: International Conference on Machine Learning,

PMLR, 2013, pp. 1139–1147.

[4] J. Lucas, S. Sun, R. Zemel, R. Grosse, Aggregated momentum: stability through

passive damping, arXiv preprint arXiv:1804.00325, 2018.

[5] J. Chen, C. Wolfe, Z. Li, A. Kyrillidis, Demon: improved neural network training

with momentum decay, in: ICASSP 2022-2022 IEEE International Conference on

Acoustics, Speech and Signal Processing (ICASSP), IEEE, 2022, pp. 3958–3962.

[6] J. Duchi, E. Hazan, Y. Singer, Adaptive subgradient methods for online learning and

stochastic optimization., J. Mach. Learn. Res. 12 (7) (2011).

[7] G. Hinton, N. Srivastava, K. Swersky, Neural networks for machine learning. Lecture

6a overview of mini-batch gradient descent, Cited On 14 (8) (2012) 2.

[8] M.D. Zeiler, Adadelta: an adaptive learning rate method, arXiv preprint

arXiv:1212.5701, 2012.

[9] D.P. Kingma, J. Ba, Adam: a method for stochastic optimization, arXiv preprint

arXiv:1412.6980, 2014.

[10] T. Dozat, Incorporating Nesterov momentum into Adam, (2016).

[11] M. Zaheer, S. Reddi, D. Sachan, S. Kale, S. Kumar, Adaptive methods for nonconvex

optimization, Adv. Neural Inf. Process. Syst. 31 (2018).

[12] K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in:

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,

2016, pp. 770–778.

[13] M. Naumov, D. Mudigere, H.-J.M. Shi, J. Huang, N. Sundaraman, J. Park, X. Wang,

U. Gupta, C.-J. Wu, A.G. Azzolini, et al, Deep learning recommendation model

for personalization and recommendation systems, arXiv preprint arXiv:1906.00091,

2019.

[14] T.B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A. Neelakantan,

P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss, G. Krueger, T. Henighan,

R. Child, A. Ramesh, D.M. Ziegler, J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler, M.

Litwin, S. Gray, B. Chess, J. Clark, C. Berner, S. McCandlish, A. Radford, I. Sutskever,

D. Amodei, Language models are few-shot learners, arXiv:2005.14165, 2020.

[15] H. Touvron, T. Lavril, G. Izacard, X. Martinet, M.-A. Lachaux, T. Lacroix, B. Rozière,

N. Goyal, E. Hambro, F. Azhar, et al, Llama: open and efficient foundation language

models, arXiv preprint arXiv:2302.13971, 2023.

[16] I. Loshchilov, F. Hutter, Decoupled weight decay regularization, arXiv preprint

arXiv:1711.05101, 2017.

[17] L. Sagun, U. Evci, V.U. Guney, Y. Dauphin, L. Bottou, Empirical analysis of the

hessian of over-parametrized neural networks, arXiv preprint arXiv:1706.04454,

2017.

[18] P. Xu, F. Roosta, M.W. Mahoney, Second-order optimization for non-convex ma-

chine learning: an empirical study, in: Proceedings of the 2020 SIAM International

Conference on Data Mining, SIAM, 2020, pp. 199–207.

[19] N. Agarwal, B. Bullins, E. Hazan, Second-order stochastic optimization for machine

learning in linear time, J. Mach. Learn. Res. 18 (1) (2017) 4148–4187.

[20] R. Bollapragada, R.H. Byrd, J. Nocedal, Exact and inexact subsampled Newton

methods for optimization, I.M.A. J. Numer. Anal. 39 (2) (2019) 545–578.

[21] Z. Yao, A. Gholami, S. Shen, M. Mustafa, K. Keutzer, M. Mahoney, Adahessian: an

adaptive second order optimizer for machine learning, in: Proceedings of the AAAI

Conference on Artificial Intelligence, vol. 35, 2021, pp. 10665–10673.

[22] H. Liu, Z. Li, D. Hall, P. Liang, T. Ma, Sophia: a scalable stochastic second-order

optimizer for language model pre-training, arXiv preprint arXiv:2305.14342, 2023.

[23] Y. Ren, D. Goldfarb, Efficient subsampled gauss-newton and natural gradient

methods for training neural networks, arXiv preprint arXiv:1906.02353, 2019.

[24] N.N. Schraudolph, J. Yu, S. Günter, A stochastic quasi-Newton method for on-

line convex optimization, in: Artificial Intelligence and Statistics, PMLR, 2007, pp.

436–443.

[25] R.H. Byrd, S.L. Hansen, J. Nocedal, Y. Singer, A stochastic quasi-Newton method for

large-scale optimization, SIAM J. Optim. 26 (2) (2016) 1008–1031.

[26] A.S. Berahas, J. Nocedal, M. Takác, A multi-batch l-BFGS method for machine

learning, Adv. Neural Inf. Process. Syst. 29 (2016).

[27] M. Gargiani, A. Zanelli, M. Diehl, F. Hutter, On the promise of the stochastic gen-

eralized gauss-newton method for training DNNs, arXiv preprint arXiv:2006.02409,

2020.

[28] Q. Tran-Dinh, N. Pham, L. Nguyen, Stochastic Gauss-Newton algorithms for noncon-

vex compositional optimization, in: International Conference on Machine Learning,

PMLR, 2020, pp. 9572–9582.

[29] J.J. Brust, Nonlinear least squares for large-scale machine learning using stochastic

Jacobian estimates, arXiv preprint arXiv:2107.05598, 2021.

[30] W.J. Duncan, Lxxviii. Some devices for the solution of large sets of simultaneous lin-

ear equations: with an appendix on the reciprocation of partitioned matrices, Lond.,

Edinb., Dubl. Philos. Mag. J. Sci. 35 (249) (1944) 660–670.

[31] L. Guttman, Enlargement methods for computing the inverse matrix, Ann. Math.

Stat. (1946) 336–343.

[32] J. Martens, et al, Deep learning via Hessian-free optimization., in: ICML, vol. 27,

2010, pp. 735–742.

[33] J. Martens, I. Sutskever, Learning recurrent neural networks with Hessian-free opti-

mization, in: Proceedings of the 28th International Conference on Machine Learning

(ICML-11), 2011, pp. 1033–1040.

[34] R. Kiros, Training neural networks with stochastic Hessian-free optimization, arXiv

preprint arXiv:1301.3641, 2013.

[35] O. Vinyals, D. Povey, Krylov subspace descent for deep learning, in: Artificial

Intelligence and Statistics, PMLR, 2012, pp. 1261–1268.

[36] A.G. Wills, T.B. Schön, Stochastic quasi-Newton with line-search regularisation,

Automatica 127 (2021) 109503.

[37] C. Liu, L. Luo, Quasi-Newton methods for saddle point problems, Adv. Neural Inf.

Process. Syst. 35 (2022) 3975–3987.

[38] A. Botev, H. Ritter, D. Barber, Practical Gauss-Newton optimisation for deep learn-

ing, in: International Conference on Machine Learning, PMLR, 2017, pp. 557–565.

[39] S.-I. Amari, Natural gradient works efficiently in learning, Neural Comput. 10 (2)

(1998) 251–276.

[40] F. Kunstner, P. Hennig, L. Balles, Limitations of the empirical Fisher approximation

for natural gradient descent, Adv. Neural Inf. Process. Syst. 32 (2019).

[41] L. Bottou, F.E. Curtis, J. Nocedal, Optimization methods for large-scale machine

learning, SIAM Rev. 60 (2) (2018) 223–311.

[42] S. Sun, Z. Cao, H. Zhu, J. Zhao, A survey of optimization methods from a machine

learning perspective, IEEE Trans. Cybern. 50 (8) (2019) 3668–3681.

[43] O. Pooladzandi, Y. Zhou, Improving levenberg-Marquardt algorithm for neural

networks, arXiv preprint arXiv:2212.08769, 2022.

[44] A.D. Adeoye, A. Bemporad, SC-Reg: Training Overparameterized Neural Networks

under Self-Concordant Regularization, IMT School for Advanced Studies Lucca

(2021).

[45] A.D. Adeoye, A. Bemporad, SCORE: Approximating curvature information under

self-concordant regularization, Comput. Optim. Appl. 86 (2) (2023) 599–626.

[46] N. Doikov, M. Jaggi, et al, Second-order optimization with lazy hessians, in:

International Conference on Machine Learning, PMLR, 2023, pp. 8138–8161.

[47] F.E. Curtis, K. Scheinberg, Adaptive stochastic optimization: a framework for ana-

lyzing stochastic optimization algorithms, IEEE Signal Process. Mag. 37 (5) (2020)

32–42.

[48] Y. Hong, H. Bergou, N. Doucet, H. Zhang, J. Cranney, H. Ltaief, D. Gratadour,

F. Rigaut, D.E. Keyes, Stochastic Levenberg-Marquardt for Solving Optimization

Problems on Hardware Accelerators, Submitted to IEEE, 2020.

[49] K.P. Murphy, Probabilistic Machine Learning: an Introduction, MIT Press, 2022,

probml.ai

[50] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A.N. Gomez, Ł. Kaiser, I.

Polosukhin, Attention is all you need, Adv. Neural Inf. Process. Syst. 30 (2017).

[51] xai-org, Grok-1, gitHub repository (2024) https://github.com/xai-org/grok-1

[52] A. Dubey, A. Jauhri, A. Pandey, A. Kadian, A. Al-Dahle, A. Letman, A. Mathur,

A. Schelten, A. Yang, A. Fan, et al, The llama 3 herd of models, arXiv preprint

arXiv:2407.21783, 2024.

[53] V. Papyan, The full spectrum of deep net hessians at scale: dynamics with sample

size, arXiv preprint arXiv:1811.07062, 2018.

[54] N.N. Schraudolph, Fast curvature matrix-vector products for second-order gradient

descent, Neural Comput. 14 (7) (2002) 1723–1738.

[55] A.R. Sankar, Y. Khasbage, R. Vigneswaran, V.N. Balasubramanian, A deeper look at

the Hessian eigenspectrum of deep neural networks and its applications to regular-

ization, in: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35,

2021, pp. 9481–9488.

[56] J. Nocedal, S. Wright, Numerical Optimization, Springer Series in Operations

Research and Financial Engineering, Springer New York, 2006.

[57] M. Arbel, R. Menegaux, P. Wolinski, Rethinking Gauss-Newton for learning over-

parameterized models, Adv. Neural Inf. Process. Syst. 36 (2024).

[58] N.J. Higham, Accuracy and Stability of Numerical Algorithms, SIAM, 2002.

[59] F. Zhang, M. Pilanci, Optimal shrinkage for distributed second-order optimization,

in: International Conference on Machine Learning, PMLR, 2023, pp. 41523–41549.

[60] O. Chapelle, D. Erhan, et al, Improved preconditioner for Hessian free optimization,

in: NIPS Workshop on Deep Learning and Unsupervised Feature Learning, vol. 201,

Citeseer, 2011.

[61] S. Vaswani, A. Mishkin, I. Laradji, M. Schmidt, G. Gidel, S. Lacoste-Julien, Painless

stochastic gradient: interpolation, line-search, and convergence rates, Adv. Neural

Inf. Process. Syst. 32 (2019).

[62] R. Johnson, T. Zhang, Accelerating stochastic gradient descent using predictive

variance reduction, Adv. Neural Inf. Process. Syst. 26 (2013).

[63] A. Defazio, F. Bach, S. Lacoste-Julien, Saga: a fast incremental gradient method with

support for non-strongly convex composite objectives, Adv. Neural Inf. Process. Syst.

27 (2014).

[64] L.M. Nguyen, J. Liu, K. Scheinberg, M. Takáč, Sarah: a novel method for machine

learning problems using stochastic recursive gradient, in: International Conference

on Machine Learning, PMLR, 2017, pp. 2613–2621.

[65] C. Paquette, K. Scheinberg, A stochastic line search method with expected complex-

ity analysis, SIAM J. Optim. 30 (1) (2020) 349–376.

[66] S. Ghadimi, G. Lan, Stochastic first-and zeroth-order methods for nonconvex stochas-

tic programming, SIAM J. Optim. 23 (4) (2013) 2341–2368.

[67] R.M. Gower, M. Schmidt, F. Bach, P. Richtárik, Variance-reduced methods for

machine learning, Proc. IEEE 108 (11) (2020) 1968–1983.

[68] A. Defazio, L. Bottou, On the ineffectiveness of variance reduced optimization for

deep learning, Adv. Neural Inf. Process. Syst. 32 (2019).

[69] M. Liu, L. Chen, X. Du, L. Jin, M. Shang, Activated gradients for deep neural

networks, IEEE Trans. Neural Netw. Learn. Syst. 34 (4) (2021) 2156–2168.

[70] R.K. Pace, R. Barry, Sparse spatial autoregressions, Stat. Probab. Lett. 33 (3) (1997)

291–297.

Neurocomputing 658 (2025) 131738

13

http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0005
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0005
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0010
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0010
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0015
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0015
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0015
http://arxiv.org/abs/1804.00325
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0025
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0025
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0025
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0030
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0030
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0035
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0035
http://arxiv.org/abs/1212.5701
http://arxiv.org/abs/1412.6980
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0055
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0055
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0060
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0060
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0060
http://arxiv.org/abs/1906.00091
http://arxiv.org/abs/2005.14165
http://arxiv.org/abs/2302.13971
http://arxiv.org/abs/1711.05101
http://arxiv.org/abs/1706.04454
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0090
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0090
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0090
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0095
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0095
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0100
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0100
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0105
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0105
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0105
http://arxiv.org/abs/2305.14342
http://arxiv.org/abs/1906.02353
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0120
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0120
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0120
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0125
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0125
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0130
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0130
http://arxiv.org/abs/2006.02409
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0140
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0140
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0140
http://arxiv.org/abs/2107.05598
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0150
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0150
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0150
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0155
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0155
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0160
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0160
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0165
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0165
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0165
http://arxiv.org/abs/1301.3641
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0175
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0175
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0180
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0180
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0185
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0185
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0190
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0190
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0195
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0195
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0200
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0200
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0205
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0205
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0210
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0210
http://arxiv.org/abs/2212.08769
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0220
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0220
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0220
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0225
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0225
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0230
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0230
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0235
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0235
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0235
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0240
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0240
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0240
probml.ai
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0250
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0250
https://github.com/xai-org/grok-1
http://arxiv.org/abs/2407.21783
http://arxiv.org/abs/1811.07062
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0270
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0270
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0275
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0275
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0275
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0275
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0280
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0280
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0285
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0285
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0290
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0295
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0295
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0300
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0300
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0300
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0305
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0305
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0305
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0310
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0310
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0315
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0315
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0315
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0320
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0320
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0320
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0325
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0325
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0330
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0330
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0335
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0335
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0340
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0340
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0345
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0345
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0350
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0350

M. Korbit, A.D. Adeoye, A. Bemporad et al.

[71] K. Hamidieh, Superconductivty data, UCI Machine Learning Repository, DOI: 2018

https://doi.org/10.24432/C53P47

[72] H. Wickham, Ggplot2: Elegant Graphics for Data Analysis, Springer-Verlag New

York, 2016, https://ggplot2.tidyverse.org

[73] A.L. Maas, R.E. Daly, P.T. Pham, D. Huang, A.Y. Ng, C. Potts, Learning word vectors

for sentiment analysis, in: Proceedings of the 49th Annual Meeting of the Association

for Computational Linguistics: Human Language Technologies, Association for

Computational Linguistics, Portland, Oregon, USA, 2011, pp. 142–150, http://www.

aclweb.org/anthology/P11-1015

[74] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra,

M. Riedmiller, Playing atari with deep reinforcement learning, arXiv preprint

arXiv:1312.5602, 2013.

[75] S.J. Bradtke, B.E. Ydstie, A.G. Barto, Adaptive linear quadratic control using policy

iteration, in: Proceedings of 1994 American Control Conference-ACC’94, vol. 3, IEEE,

1994, pp. 3475–3479.

[76] E. Hazan, K. Singh, Introduction to online nonstochastic control, arXiv preprint

arXiv:2211.09619, 2022.

[77] F. Leibfritz, Compleib: Constrained matrix optimization problem library, (2006).

[78] E.J. Davison, Benchmark problems for control system design, Rep. I.F.A.C. Theory

Comm. (1990).

[79] Y.S. Hung, A.G.J. MacFarlane, Multivariable control: a quasiclassical approach,

(1982).

[80] S. Huang, R.F.J. Dossa, C. Ye, J. Braga, Cleanrl: high-quality single-file implementa-

tions of deep reinforcement learning algorithms, arXiv preprint arXiv:2111.08819,

2021.

[81] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, W.

Zaremba, OpenAI Gym, (2016). arXiv:arXiv:1606.01540.

[82] K. Young, T. Tian, Minatar: an atari-inspired testbed for thorough and reproducible

reinforcement learning experiments, arXiv preprint arXiv:1903.03176, 2019.

[83] R. Grosse, Taylor approximations, Neural Netw. Train. Dyn. Lect. Notes Univ.

Toronto (2021).

[84] B.M. Ozyildirim, M. Kiran, Levenberg–Marquardt multi-classification using hinge

loss function, Neural Netw. 143 (2021) 564–571.

[85] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,

P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M.

Brucher, M. Perrot, E. Duchesnay, Scikit-learn: machine learning in Python, J. Mach.

Learn. Res. 12 (2011) 2825–2830.

[86] Q. Lhoest, A. Villanova Del Moral, Y. Jernite, A. Thakur, P. von Platen, S. Patil,

J. Chaumond, M. Drame, J. Plu, L. Tunstall, J. Davison, M. Šaško, G. Chhablani,

B. Malik, S. Brandeis, T. Le Scao, V. Sanh, C. Xu, N. Patry, A. McMillan-Major, P.

Schmid, S. Gugger, C. Delangue, T. Matussière, L. Debut, S. Bekman, P. Cistac, T.

Goehringer, V. Mustar, F. Lagunas, A. Rush, T. Wolf, Datasets: a community library

for natural language processing, in: Proceedings of the 2021 Conference on Empirical

Methods in Natural Language Processing: System Demonstrations, Association for

Computational Linguistics, Online and Punta Cana, Dominican Republic, 2021, pp.

175–184, https://aclanthology.org/2021.emnlp-demo.21

[87] TensorFlow, TensorFlow datasets, a collection of ready-to-use datasets, https://

www.tensorflow.org/datasets

[88] M. Honnibal, I. Montani, S. Van Landeghem, A. Boyd, et al, Spacy: industrial-strength

natural language processing in Python, (2020).

[89] S.J. Bradtke, A.G. Barto, Linear least-squares algorithms for temporal difference

learning, Machine Learn. 22 (1) (1996) 33–57.

Author biography

Mikalai Korbit received his Master’s degree in Computer Science from the Georgia

Institute of Technology, USA. He is currently pursuing a Ph.D. in the Dynamical Systems,

Control, and Optimization (DYSCO) group at the IMT School for Advanced Studies

Lucca, Italy. Previously, he was a visiting researcher in the Intelligent Robotics group

at Aalto University, Finland. His research is focused on developing scalable second-order

optimization methods for large-scale deep neural networks.

Adeyemi D. Adeoye received the bachelor’s degree (Hons.) in mathematics from the

University of Ilorin, Ilorin, Nigeria, in 2016, the master’s degree in mathematical sci-

ences from the African Institute for Mathematical Sciences, Limbe, Cameroon, in 2018, and

the master’s degree in machine intelligence from the African Institute for Mathematical

Sciences, Kigali, Rwanda, in 2021. He obtained his Ph.D. degree with the Dynamical

Systems, Control, and Optimization Research Unit, IMT School for Advanced Studies

Lucca, Lucca, Italy. His research interests include mathematical optimization, data-driven

control, and neural networks.

Alberto Bemporad received his Master’s degree cum laude in Electrical Engineering in

1993 and his Ph.D. in Control Engineering in 1997 from the University of Florence,

Italy. In 1996/97 he was with the Center for Robotics and Automation, Department of

Systems Science & Mathematics, Washington University, St. Louis. In 1997-1999 he held

a postdoctoral position at the Automatic Control Laboratory, ETH Zurich, Switzerland,

where he collaborated as a Senior Researcher until 2002. In 1999-2009 he was with the

Department of Information Engineering of the University of Siena, Italy, becoming an

Associate Professor in 2005. In 2010-2011 he was with the Department of Mechanical

and Structural Engineering of the University of Trento, Italy. Since 2011 he has been a

Full Professor at the IMT School for Advanced Studies Lucca, Italy, where he served as

the Director of the institute from 2012 to 2015. He spent visiting periods at Stanford

University, the University of Michigan, and Zhejiang University. In 2011 he co-founded

ODYS S.r.l., a company specialized in developing model predictive control systems for

industrial production. He has published more than 400 papers in the areas of model

predictive control, hybrid systems, optimization, and automotive control, and is the co-

inventor of 21 patents. He is the author or coauthor of various software packages for model

predictive control design and implementation, including the Model Predictive Control

Toolbox (The Mathworks, Inc.) and the Hybrid Toolbox for MATLAB. He was an Associate

Editor of the IEEE Transactions on Automatic Control during 2001-2004 and Chair of

the Technical Committee on Hybrid Systems of the IEEE Control Systems Society from

2002 to 2010. He received the IFAC High-Impact Paper Award for the 2011-14 trien-

nial, the IEEE CSS Transition to Practice Award in 2019, the 2021 SAE Environmental

Excellence in Transportation Award, the 2024 Beale–Orchard-Hays Prize for Excellence

in Computational Mathematical Programming, and an ERC Advanced Research Grant in

2024. He has been an IEEE Fellow since 2010.

Mario Zanon received the Master’s degree in Mechatronics from the University of Trento

and the Diplôme d’Ingénieur from the École Centrale Paris, in 2010. After research stays

at the KU Leuven, University of Bayreuth, Chalmers University, and the University of

Freiburg he received the Ph.D. degree in Electrical Engineering from the KU Leuven in

November 2015. He held a Post-Doc researcher position at Chalmers University until

the end of 2017. In 2018 he became Assistant Professor at the IMT School for Advanced

Studies Lucca where he became Associate Professor in 2021. His research interests include

numerical methods for optimization, economic MPC, reinforcement learning, and the opti-

mal control and estimation of nonlinear dynamic systems, in particular for aerospace and

automotive applications.

Neurocomputing 658 (2025) 131738

14

https://doi.org/10.24432/C53P47
https://ggplot2.tidyverse.org
http://www.aclweb.org/anthology/P11-1015
http://www.aclweb.org/anthology/P11-1015
http://arxiv.org/abs/1312.5602
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0375
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0375
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0375
http://arxiv.org/abs/2211.09619
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0390
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0390
http://arxiv.org/abs/2111.08819
http://arxiv.org/abs/1903.03176
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0415
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0415
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0420
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0420
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0425
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0425
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0425
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0425
https://aclanthology.org/2021.emnlp-demo.21
https://www.tensorflow.org/datasets
https://www.tensorflow.org/datasets
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0445
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0445

	Exact Gauss-Newton optimization for training deep neural networks
	1 Introduction
	2 Related work
	3 Preliminaries
	3.1 Gradient-based optimization
	3.2 Generalized gauss-newton hessian approximation
	Regression
	Multi-class classification

	4 Algorithm
	4.1 Comparison to existing methods
	4.2 Additional improvements
	Momentum
	Line search
	Adaptive regularization

	5 Convergence analysis
	6 Experiments
	6.1 Supervised learning
	6.2 Reinforcement learning
	Learning LQR controllers
	Reinforcement learning with DQN

	6.3 Limitations
	Explicit gradients
	Large batch sizes
	Large number of classes for multi-class classification

	7 Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	Appendix A Proofs and derivations
	A.1 Generalized gauss-newton hessian approximation
	Claim

	A.2 Gauss-newton hessian of the MSE loss function
	Claim
	Claim

	A.3 Gauss-newton hessian of the multi-class cross-entropy loss function
	Claim
	Claim

	Appendix B Algorithms
	Appendix C Experiment details
	C.1 Supervised learning
	C.2 Learning LQR controllers
	BDT
	UAV

	C.3 Reinforcement learning with DQN
	Acrobot
	Freeway

	C.4 Limitations

	Data availability
	References
	Author biography

