Neurocomputing 658 (2025) 131738

Contents lists available at ScienceDirect - >
Neurocomputing -
ELSEVIER journal homepage: www.elsevier.com/locate/neucom
Exact Gauss-Newton optimization for training deep neural networks
Mikalai Korbit* ®, Adeyemi D. Adeoye ©, Alberto Bemporad ©, Mario Zanon
IMT School for Advanced Studies Lucca, Lucca, Italy
ARTICLE INFO ABSTRACT
Communicated by J. Na We present Exact Gauss-Newton (EGN), a stochastic second-order optimization algorithm that combines the

generalized Gauss-Newton (GN) Hessian approximation with low-rank linear algebra to compute the descent
direction. Leveraging the Duncan-Guttman matrix identity, the parameter update is obtained by factorizing a
matrix which has the size of the mini-batch. This is particularly advantageous for large-scale machine learning
problems where the dimension of the neural network parameter vector is several orders of magnitude larger than

Keywords:
Stochastic optimization
Second-order optimization

Gauss-newton hessian approximation the batch size. Additionally, we show how improvements such as line search, adaptive regularization, and mo-
Machine learning mentum can be seamlessly added to EGN to further accelerate the algorithm. Moreover, under mild assumptions,
Reinforcement learning we prove that our algorithm converges in expectation to a stationary point of the objective. Finally, our numeri-

cal experiments demonstrate that EGN consistently exceeds, or at most matches the generalization performance
of well-tuned SGD, Adam, GAF, SQN, and SGN optimizers across various supervised and reinforcement learning

tasks.
1. Introduction methods for ML problems has been limited due to the complexity of cal-
Ovtimizati) . | role in Machine L . ML ith culating and storing the Hessian and the computational load of solving
ptimization plays a pivotal role in Machine Learning (ML), wit the linear system Hd = —g, where H is the (approximate) Hessian

gradient-based methods being at the forefront. Stochastic Gradient
Descent (SGD) [1], a first-order stochastic optimization algorithm, and
its accelerated versions such as momentum-based approaches [2-5],
adaptive learning rates [6-8], and a combination of the two [9-11],
have been instrumental in numerous ML applications. For example, in
Computer Vision (CV) ResNets [12] are trained with SGD, AdaGrad [6] is
used for training recommendation systems [13], language models GPT-
3 [14] and LLaMA [15] are optimized with Adam [9] and AdamW [16],
respectively. Despite their cheap and relatively easy-to-implement up-
dates, first order-methods (FOMs) suffer from several shortcomings.
FOMs are sensitive to hyper-parameter selection, and the optimal hyper-
parameter set typically does not transfer well across different problems
which leads to a costly procedure of hyper-parameter tuning. Also, FOMs
are slow to converge in the flat regions of the loss landscape, where the
Hessian is ill-conditioned [17].

Second-order methods (SOMs) incorporate the (approximate) curva-
ture information into the update in order to effectively precondition the
gradient vector. In contrast to first-order algorithms, SOMs are shown
to be robust to the selection of hyper-parameters [18] and to potentially
offer faster convergence [19,20]. So far, the adoption of second-order

matrix, g is the gradient of the loss function, and d is the descent di-
rection. Addressing these computational challenges, most approaches
use a combination of Hessian approximation and an efficient algorith-
mic technique for solving the linear system. Common approximations to
the Hessian include diagonal scaling [21,22], the empirical Fisher ma-
trix [23], the quasi-Newton approach [24-26], and the Gauss-Newton
(GN) approximation [27-29].

In this work, we follow the Gauss-Newton approach to Hessian ap-
proximation. We apply a special derivation inspired by [44,45] which
uses an efficient exact linear algebra identity—the Duncan-Guttman
(DG) formula [30,31]—to speed up the inversion of the Hessian ma-
trix. Compared to Hessian-free optimization (HFO) [32-34] and Inexact
Gauss-Newton (iGN) [28], this approach allows Exact Gauss-Newton
(EGN) to solve the system Hd = —g exactly with the same algorithmic
complexity burden. Moreover, compared to methods that directly apply
the Sherman-Morrison-Woodbury (SMW) formula (see, e.g., [23]), we
solve for the descent direction in fewer matrix operations, thus reducing
the algorithmic complexity.

Our contributions are as follows.

* Corresponding author.
Email address: mikalai.korbit@imtlucca.it (M. Korbit).

https://doi.org/10.1016/j.neucom.2025.131738
Received 29 April 2025; Received in revised form 25 July 2025; Accepted 4 October 2025

Available online 9 October 2025
0925-2312/© 2025 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

http://www.sciencedirect.com/science/journal/0925-2312
https://www.elsevier.com/locate/NEUCOM
https://orcid.org/0009-0005-2472-338X
https://orcid.org/0000-0001-7048-0984
https://orcid.org/0000-0001-6761-0856
https://orcid.org/0000-0001-5925-0440
mailto:mikalai.korbit@imtlucca.it
https://doi.org/10.1016/j.neucom.2025.131738
https://doi.org/10.1016/j.neucom.2025.131738
http://creativecommons.org/licenses/by/4.0/

M. Korbit, A.D. Adeoye, A. Bemporad et al.

» We propose the EGN algorithm, which relies on a regularized
Gauss-Newton Hessian matrix and exploits the Duncan-Guttman
identity to efficiently solve the linear system.

» We provide a theoretical analysis of the EGN algorithm and establish
that EGN finds a stationary point in expectation for a large enough
iteration count.

* We evaluate the performance of EGN on several supervised learn-
ing and reinforcement learning tasks using various neural network
architectures.

2. Related work

Our method can be viewed within the broader context of approx-
imate second-order stochastic optimization. Some notable approaches
include diagonal scaling [21,22], Krylov subspace descent [35], Hessian-
free optimization [32-34], quasi-Newton approaches [24-26,36,37],
Gauss-Newton [27,38] and Natural Gradient [39,40] methods. A de-
tailed overview of second-order optimization methods for large-scale
machine learning problems can be found in [18,41,42].

Most closely related to our work are the algorithms inspired by the
Gauss-Newton approach. Such methods approximate the Hessian of the
loss function using only first-order sensitivities. In practice, the damped
version of the Gauss-Newton direction is often calculated, forming the
stochastic Levenberg-Marquardt (SLM) group of algorithms. We can clas-
sify SLM methods by three dimensions: (a) by the type of the Jacobian
estimation algorithm used; (b) by the matrix inversion algorithm; and (c)
by additional adaptive parameters and acceleration techniques. Based
on this paradigm we summarize selected SLM algorithms in Table 1.

The Jacobian can either be calculated exactly through the reverse
mode of automatic differentiation as proposed by, e.g., [27-29] or be
estimated approximately. Low rank Jacobian estimation is suggested by
the NLLS1 and NLLSL algorithms [29] with experimental results show-
ing almost on par performance with the exact Jacobian version of the
methods. SGN2 [28] uses SARAH estimators for approximating function
values and Jacobians with SGN2 performing better than SGN [28] that
assumes the exact Jacobian. In [22] the Gauss-Newton-Bartlett (GNB) es-
timator is introduced to adapt the GN method to large-scale classification
problems. EGN does not mandate a specific computation technique for
the Jacobian. In our experiments we rely on backpropagation deferring
other methods to further research.

Solving Hd = —g naively for a neural network with d parameters
has complexity © (d®). The procedure becomes practically infeasible
even for networks of moderate size, so several alternative approaches
have been proposed. Following [20], we distinguish between inex-
act and exact solutions to the linear system. Inexact methods rely on
iterative algorithms to solve the system approximately in as few iter-
ations as possible. Among such algorithms we mention the Conjugate
Gradient (CG) method used in Hessian-free optimization [33,34] as
well as in GN methods like SGN [27] and LM [43]; the Accelerated
Dual Proximal-Gradient (ADPG) method proposed in [28] for SGN and
SGN2 solvers; the Stochastic Gradient Iteration approach (SGI), analysed
in [20] as part of the Newton-SGI solver. Exact methods are typically
based on linear algebra identities. For example, in [23,29] the system is
solved exactly with the Sherman-Morrison-Woodbury (SMW) formula.

Table 1

A survey on Gauss-Newton methods for large-scale stochastic optimization.

Neurocomputing 658 (2025) 131738

Contrarily, we follow [45] and derive the EGN update formula using
the Duncan-Guttman matrix identity [30,31].

State-of-the-art implementations of the GN algorithm often include
additional improvements to address the issues of stochasticity of the
Hessian matrix, computational load of calculating the Jacobian and
adaptive hyper-parameter tuning. Just as with the gradient, the stochas-
tic sampling introduces noise in the Hessian which leads to the erroneous
descent direction. A common solution to combat noisy estimates is to
add temporal averaging (or momentum), e.g., with exponential mov-
ing averages (EMA). Examples of such approach are AdaHessian [21]
and Sophia [22] that keep EMA of a diagonal Hessian, as well as [34]
that incorporates momentum into the HFO framework. The idea of re-
using the Hessian estimate from previous iterations is formalized in [46]
showing that evaluating the Hessian “lazily” once per k iterations sig-
nificantly reduces the computational burden while at the same time
does not degrade the performance that much. Although second-order
methods typically require less tuning [18,27,38], the SLM approach
still requires setting a learning rate « and the regularization parame-
ter A. The line search for «, common in the deterministic optimization,
is problematic in the stochastic setting due to the high variance of the
loss gradient norm [47]. Still, there are promising attempts to incorpo-
rate line search into quasi-Newton methods [36], HFO [34] as well as
Gauss-Newton [43]. Adaptive regularization in a manner similar to the
deterministic Levenberg-Marquardt approach is proposed in [23,48].

3. Preliminaries

We use boldface letters to denote vectors and matrices. The n x n
identity matrix is denoted by I,, and we omit the subscript when the
size is clear from the context. The subscript ¢ represents the iteration
within the optimization loop, and may be omitted to avoid overloading
the notation. We define the standard inner product between two vectors
X,y as (x,y) := x'y. The standard Euclidean norm is denoted by || - ||,
and the expected value of a random variable is denoted by E[-].

We adopt the Empirical Risk Minimization (ERM) framework [49]
and consider the problem of finding the weights w € R of a parametric
function ® : R”xR? — R, e.g., a neural network, such that it minimizes
the empirical risk over a dataset D consisting of N pairs (y;,x;) where
x; € R™ is a vector of features and y; € R¢, ¢ > 1 is a target vector. We
want to solve the following optimization problem:

w* € arg min Ly (W) := Eeop [Ln(W;)], ®
weRd)

where ¢ is a random variable with distribution P:. The objective function
is expressed as a finite-sum of functions L y (w; &;) over the realization D
of £, and

Ly(w) =

|Mz

2 27 (300 w) @

i=1
is the empirical risk with #: R x R® — R — a loss function, involving a
single pair (y;,x;) only.

We assume all these functions to be twice differentiable with respect
to w. Note that, while this assumption could be partially relaxed, we
stick to it for the sake of simplicity.

Algorithm Jacobian estimation Solving the linear system Additional improvements

SGN [27] Exact via reverse mode autodiff Approximate with CG -

LM [43] Exact via reverse mode autodiff Approximate with CG Line search, momentum,
uphill step acceptance

SGN [28] Exact via reverse mode autodiff Approximate with ADPG -

SGN2 [28] Approximate with SARAH estimators Approximate with ADPG -

NLLS1, NLLSL [29] Rank-1, Rank-L approximation Exact with SMW formula -

SMW-GN [23] Exact via reverse mode autodiff Exact with SMW formula Adaptive regularization

EGN (this paper) Any Jacobian estimation algorithm (exact via

backpropagation is the default)

Exact with DG identity (see
Theorem 4.1 and Lemma 4.2)

Line search, adaptive
regularization, momentum

M. Korbit, A.D. Adeoye, A. Bemporad et al.

3.1. Gradient-based optimization

Problem (1) is typically solved by variations of the Stochastic
Gradient Descent (SGD) method by sampling mini-batches 5, from D
rather than processing the entire dataset in each iteration. We denote
the loss on a mini-batch £, as

b
L, 1= 3 X4 (v, O W), ©)
i=1

where b is the batch size. The iterations take the form
W < W +ad, (©))

where a, > 0is alearning rate and d, is a descent direction obtained from
the gradient. In general, we have d, = —C,g, where C, is a precondition-
ing matrix that scales, rotates, and shears the gradient of the mini-batch
loss g := VyL,. Notice that by setting b = 1, C, = I, and d, = —g,
we recover the incremental SGD update [1]. In practice, the preferred
training algorithm is often an accelerated version of mini-batch SGD.

Minimizing the quadratic approximation of the batch loss leads to
the following linear system

Hd, = -g, (5)

where H, := V2 £, is the Hessian matrix of the mini-batch loss. Finding
the direction d, by solving the system (5) using H, or its approximation
defines the broad spectrum of second-order methods. Setting C, = H’!
results in Newton’s method. This method suffers from several drawbacks:
(a) one needs to compute second-order derivatives with respect to w; (b)
C, has to be positive-definite to ensure descent; (c) the linear system (5)
must be solved, which in general scales cubically with the dimension of
w; and (d) since H; is a noisy estimate of the true Hessian of the empirical
risk £, H! can result in suboptimal conditioning. These issues and the
fact that w is of rather large dimension have made the direct application
of Newton’s method practically irrelevant in ML applications. Indeed,
for problems like Large Language Model (LLM) pre-training [14,15,50]
or CV tasks [12], w can be extremely high-dimensional, e.g., 314 - 10°
parameters for Grok-1 [51] model, 8 - 10° to 405 - 10° parameters for
LLaMA-family models [52] and 0.27 - 10° to 19.4 - 10® parameters for
ResNets [12], which explains why accelerated first-order methods are
usually preferred.

In order to make SOMs scalable for ML applications one could in-
stead approximate the inverse Hessian, i.e,, C, ~ H;!. Examples of
such preconditioning include diagonal scaling (e.g., with Hutchinson
method [21,22]) with the idea of extracting the (approximate) di-
agonal elements of H, while neglecting the off-diagonal terms; the
quasi-Newton approach [25,26] that approximates the Hessian using
the information from past and current gradients; and the Gauss-Newton
method [23,27] that leverages the Jacobian of the residuals, neglecting
second-order cross-derivatives, particularly suitable for loss functions
structured as (2). In this paper, we use the Gauss-Newton Hessian ap-
proximation which is shown to provide a good approximation of the true
Hessian for ML applications [17,53].

3.2. Generalized gauss-newton hessian approximation

We consider the Generalized Gauss-Newton (GGN) Hessian approxi-
mation scheme [41,53,54] which is suited for both regression and multi-
class classification tasks. The GGN Hessian approximation is constructed
using only first-order sensitivities (see the derivation in Appendix A) to
obtain

HON = 217Q) ®)

where we vertically stack individual Jacobians Jg, := W for each

sample in the batch B to form J = [Jg, Jo,]T € Rb*d and con-
struct a block diagonal matrix Q = blkdiag(Qy,,Qy,, .-, Qy,) € [Rbexbe

Neurocomputing 658 (2025) 131738
24 7 is . . .
where Q,, = L0P W) ¢ Rexe, As pointed out in [55], approxima-
tion (6) is justified since the true Hessian is dominated by the term
JTQJ. Using the inverse of the GGN Hessian as a preconditioner yields
the following direction

1 -1
A =—(27QJ,) & @)

which, by defining Aw = w — w,, corresponds to the solution of the
quadratic program

.1 1
dtGN = argA;nm EAWT ;J,TQ,J, Aw + gYTAw. (8)
N

GN
Hr

The Gauss-Newton step (7) solves issues (a) and, partially, (b), since
no second-order derivatives need to be computed and the Hessian ap-
proximation is positive semi-definite by construction provided that the
loss function 7 (y,.,CD(x,-;w)) is convex. A positive-definite Hessian ap-
proximation can easily be obtained from HCN, e.g., by adding to it
a small constant times the identity matrix. This approach is called
Levenberg-Marquardt (LM) [56] and is often used in practice, such that

HM = %JTQJ + A1, ©

with 4 > 0. The regularizer AI, serves a dual purpose: it ensures that
the approximate Hessian matrix is invertible and also helps to avoid
over-fitting [49].

The Gauss-Newton update, however, still potentially suffers from is-
sue (c), i.e., the need to solve a linear system, which can be of cubic
complexity, and (d) the noise in the Hessian estimate. Since issue (c) is a
centerpiece of our method, and issue (d) is an inherent part of stochastic
sampling we defer the discussion on both of them to Section 4.

We conclude by examining the GGN update in two common machine
learning tasks—regression and multi-class classification—and how it is
derived in each case.

Regression. Regression is a predictive modeling task where the objec-
tive is to predict a scalar numeric target. For regression tasks we define
the loss function ¢ as the mean squared error (MSE)

2 (y;, ®x;;w)) 1= (CD(x[;w)—y,-)z. (10)

1
2
We can show that the gradient and the GN Hessian for the MSE loss
read
1 1
g=-Jr, HN=_JTJ, an
b b
where J € R?? is a matrix of stacked Jacobians, and r € R is a \{rector
of residuals defined as r := [®(x;;w) -y, D(xy;w) -y, | -

Multi-class classification. The task of multi-class classification is to pre-
dict a correct class from ¢ classes given a vector of features x;. For such
problems the output of the neural network @ is a c-dimensional vector of
prediction scores (logits) z; = ®(x;; w) and the target vector is a one-hot
encoded vector y; = ¢,, where ¢, denotes column k of the identity matrix
I. and k is the index of the correct class. We define the loss function as
a softmax cross-entropy loss (CE)

c
£ (¥ @) 1= = 3 yixlog (o (z4)) a2
k=1
where o(z; ;) = %, ¥« and z; , are k-th elements of vectors y, and
=147 ’

z; respectively.

M. Korbit, A.D. Adeoye, A. Bemporad et al.

The gradient and the GN Hessian for the CE loss are

HON = %JTQJ, as)

1.7
=-Jr,
8%
where J € RY* js a matrix of stacked Jacobians, r €
R is a vector of (pseudo-)residuals defined as r i=

T
| (o (@) =y)T o (o(@w) —y,)" | and @ € Roxe
is a block diagonal matrix of stacked matrices Q,, that each have
o(z;,)(1 — o(z;) across the diagonal and —o(z;)o(z; ;) off-diagonal.

4. Algorithm

We are now ready to present the EGN algorithm. First, we will discuss
how one can efficiently solve the linear system. Then, we will discuss
further enhancements to the basic algorithm. Next, we address issue (c),
i.e., the problem of finding the solution of the symmetric linear system
H.d, = —g,.

Substituting the exact Hessian with the regularized Gauss-Newton
Hessian yields

1 1
(397Q + ALy)a™ =~y a4

where for the MSE loss ¢ = 1 and Q, = I,. Solving (14) for d'™ re-
quires one to factorize matrix H™™, carrying a complexity of O (d3). We
notice, however, that in practice one often has d > bc, i.e., the pa-
rameter vector is of very high dimension, e.g., d > 10°. In that case,
the GN Hessian matrix (6) is low-rank by construction. That allows us
to transfer the computationally expensive inversion operation from the
high-dimensional d x d space (which is the original dimension of the
Hessian) to the low-dimensional bc¢ X be space.

To that end, we follow an approach similar to the ones in [44,45]
which propose to utilize the Duncan-Guttman identity [30,31]. We
present this in Theorem 4.1 and Lemma 4.2 below for the Levenberg-
Marquardt direction. For a general presentation which considers smooth
regularization functions, we refer the interested reader to [45, Section
3l.

Theorem 4.1 ([30,31]). Assuming A and D are full-rank matrices, the
following identity holds

(A-B™D"'C)'B'™D! =A-'BT(D-CA"'BT) . 15)

By observing that Eq. (14) defining the direction d*M has the form of
the left-hand side of the identity (15) we state the following.

Lemma 4.2. The Levenberg-Marquardt direction d (Eq. (14)) for both MSE
and CE loss functions can be computed using Algorithm 1.

Proof. Substituting A = bAI;,, BT = -J7, C = Jand D = Q! into
Eq. (15) we get

_ _ _ -1
(b2, +37QY) T ITQ = ~(b21,) AT (@ + J(ba1,)IT) (16)
Multiplying both sides by Q~'r yields

(b1, +7Q1) ™ ATe =~ (bal,) T (Q! +J(bAId)_1JT)_]Q‘1r a7

Algorithm 1 EGN direction function.

1: Input: (pseudo-)residuals r, stacked Jacobians J, regularizer 4, batch
size b.
2: Solve the linear system for &: (QJJT + bAL,.)6 =r
O (b*c?d + b3c3)
3: Calculate direction d™M = —JTs // O (bed)
4: Return d"M

Neurocomputing 658 (2025) 131738

where the lhs of (17) is now equivalent to explicitly solving for d'M in
Eq. (14). Simplifying the rhs of (17) results in

d™M = T (b2Q ' +J37) Q. (18)

Applying the inverse of a product property, B"!A~! = (AB)7!, to the
expression (b1Q™! +JJT)71Q‘1 we have

(62Q7" +337) ' Q7 = (Q(62Q7" + W) = (baL,. +QUT). 19)
So that the direction can be calculated as

d™M = _JT(QUIT + b,) r, (20)
which corresponds to the procedure outlined in Algorithm 1. O

4.1. Comparison to existing methods

The key property of Algorithm 1 is that the system (5) is solved
exactly in contrast to approximate (or inexact) solutions that under-
pin algorithms such as HFO [32,34], Newton-SGI [20], LiSSA [19],
SGN [27] and iGN [28]. The benefits of having the exact solution are an-
alyzed in [20] with exact Newton methods enjoying faster convergence
rates than inexact ones. Our experiments (Section 6) also demonstrate
that the exact Gauss-Newton solver (EGN) consistently outperforms the
inexact version (SGN) across the majority of the problems. The com-
plexity of Algorithm 1 is dominated by the matrix multiplication JJT
that costs © (6% ¢? d) as well as solving the linear system of size bc X bc
with complexity O (b ¢3). Assuming d > be, the overall complexity of
Algorithm 1 is © (% 2 d).

A common alternative way to solve the Levenberg-Marquardt linear
system (14) exactly is to apply the SMW identity, as in [23,29,48,57].
The SMW identity states

(A+UCV)" = A~ —A~'U(C™ + VAT'U) VAL 1)

With A = AI;, U = J7, C = ;Q, and V = J, we obtain the SMW-GN
matrix inversion [23]:

o Loty L)
=537 (e0 45T . 22)

-1
(3rrQi+a,) =
As with EGN, the dominant term is JJT. However, even with efficient
ordering of operations, there are at least two © (#? ¢? d) matrix mul-
tiplications while EGN requires just one. Beyond doubling the per-step
cost, the additional multiplication can introduce extra rounding error
that gradually accumulates [58].

Another important consideration is the non-regularized case. When
Levenberg damping is disabled (1 = 0), A in (21) is singular and the
SMW inverse is undefined. EGN remains well-posed provided QJJ7 is
invertible, making it applicable to pure Gauss-Newton steps.

We support our theoretical findings with the empirical comparison
of solving Eq. (14) using both SMW and EGN methods (Table 2). EGN
achieves up to 1.6x speed-up compared to SMW on larger models (d >
10%), which translates into substantial training-time savings since the
solver is invoked at every iteration.

For completeness, we note here that another option to solve (14)
exactly is through the QR factorization of JT (see pseudocode

Table 2

Wall-clock time (seconds, mean over 1000 runs) to solve (14) with
SMW and EGN across different model sizes for b = 32, ¢ = 10 on
NVIDIA RTX A4000 GPU.

d 1K 10K 100K 1M 2M
SMW 0.0010 0.0013 0.0044 0.0368 0.0747
EGN 0.0008 0.0011 0.0028 0.0246 0.0517

M. Korbit, A.D. Adeoye, A. Bemporad et al.

in Appendix B). The complexity of such an approach is also O (»* ¢? d),
dominated by the economy size QR decomposition of J'. However,
performing a QR decomposition is significantly more expensive than
performing matrix-matrix multiplications and, in practice, EGN is pre-
ferred.

The CG method is an essential part of, e.g., HFO [32,34], SGN [27],
Newton-CG [20], LM [43], and Distributed Newton’s method with op-
timal shrinkage [59]. The complexity of CG approximately solving
Eq. (14) is O(I1d?) where I is the number of CG iterations [56]. A typ-
ical number of CG iterations ranges from 3 in [34] to 50 in [60]. Note
that, unless the number of classes ¢ is high (which is one of the limita-
tions of EGN addressed in Section 6.3), we have /d? > b? ¢2 d, such that
EGN solves the system both exactly and faster than CG.

4.2. Additional improvements

In addition to estimating the Hessian-adjusted direction, most state-
of-the-art SOMs employ strategies to reduce variance of gradient and
Hessian estimates, safeguard against exploding gradients, and dynami-
cally adjust hyper-parameters to training steps. Next, we explore several
enhancements to EGN, including momentum acceleration [9,21,34] to
mitigate issue (d)-that is, the noise in Hessian estimates; line search [43,
47,61] to ensure steps are sufficiently short to decrease the loss; and
adaptive regularization [23,34,43] to achieve faster convergence and
simplify hyper-parameter tuning.

Momentum. A significant challenge in second-order methods is the
noise introduced in Hessian estimates due to stochastic sampling.
Consider the update direction d, = —H;!g,, where both the approxi-
mate Hessian H, and the gradient g, are stochastic estimates of the true
derivatives of the empirical risk (2). Conditioning the gradient with a
noisy Hessian inverse can lead to inaccurate descent directions, imped-
ing convergence. To mitigate this issue, temporal averaging techniques
(or momentum) are employed to stabilize updates and accelerate conver-
gence by combining information from previous iterations with current
estimates. In ML applications, common momentum variants include
simple accumulation [6], exponential moving average (EMA) [7], bias-
corrected EMA [9,21] and momentum with an extrapolation step [2].

For diagonal scaling methods, including first-order accelerated al-
gorithms [6,7,9] and SOMs [21,22], the accumulated estimates of both
first and second moments are kept separately resulting in ©(d) space
complexity. For Gauss-Newton methods we could alternatively reduce
the variance of the Jacobian J, e.g., with SVRG [62], SAGA [63] or
SARAH [64], which results in a space complexity of O (bcd). Another
option is to apply momentum to the descent direction d,, explored
in [34,61], which requires storing a vector of size d. Since we never
explicitly materialize either the Hessian or the gradient (Algorithm 1),
we follow the latter approach with bias-corrected EMA by default.

Line search. Line search is a widely used technique in deterministic op-
timization [56] that iteratively adjusts the learning rate to satisfy some
minimum criteria (e.g., Wolfe’s conditions), ensuring adequate decrease
in the loss function. Allowing « to automatically adapt to each train-
ing step can significantly reduce the need for manual tuning, which is
often time-consuming and computationally expensive. However, extend-
ing line search methods to the stochastic setting poses challenges due to
the inherent noise in gradient estimates, making it difficult to guarantee
the same theoretical properties as in the deterministic case [47]. Despite
these challenges, line search has been successfully applied in practice to
both stochastic FOMs [61,65] and SOMs [36,43]. In EGN we adopt the
strategy proposed by Ref. [61], which incorporates a reset mechanism
at the beginning of each search to minimize the computational overhead
of evaluating the loss function (Algorithm 4 in the Appendix).

Adaptive regularization. Adaptive regularization techniques for
stochastic SOMs are explored in [23,32,34,43] modifying the origi-
nal Levenberg-Marquardt rule to the stochastic setting. The central

Neurocomputing 658 (2025) 131738

Algorithm 2 EGN.
1: Input: training dataset D, initial weights w,, initial regularizer 4,
momentum strength f.
2: Initialize momentum: m, = 0
3: fortin 1..T do
4: Sample a mini-batch B, from D

5. Estimate r, and J, (e.g., via backpropagation)

6: Find direction d, via Algorithm 1

7: Calculate the momentum term: m, < fm,_; + (1 — p)d,
8 Update direction: d, « 1':1—/’3[

9:

Line search for «, via Algorithm 4
10: Update weights: w,,; < w, + a,d,
11: Update 4, via Algorithm 5

12: end for

13: Return w,

idea is to track p, defined as the ratio between the decrease in the
actual loss function (3) and the decrease in the quadratic model
M@Aw) = L, (y,.Px;w)) + glAw + ZLbAwTJ;rQ,J,Aw, where
Aw = w — w,. This yields

£b (y,, (I)(Xy;wt+1)) - l:[; (yt» (I)(Xf;wx))

pi= =] ~ ; (23)
g Aw+ —AWTJ QJ, Aw

which measures the accuracy of the quadratic model. In case p is small
or negative, M (Aw) provides inaccurate approximation and the value
4 is increased. Conversely, if p is large, A is decreased to give more
weight to M (Aw) (see Algorithm 5 in the Appendix). As empirically
found by Ref. [34], compared to the deterministic LM the increase/de-
crease coefficients need to be less aggressive to reduce the oscillations
of 4.

Algorithm 2 incorporates all the improvements discussed above, ef-
fectively addressing issues (a)-(d) associated with SOMs and eliminating
the need for manual hyper-parameter tuning.

5. Convergence analysis

In this section, we analyze the convergence of EGN in the general
non-convex setting.

In EGN, we consider the sequence of iterates {w, },,; where each w, is
computed via (4) with d, = d*™. We aim to minimize the function £ y (w)
using, for each realization £ ~ P, the Hessian estimator H(w, &) and
the gradient estimator g(w, &). Thén, at each iteration 7, the mini-batch
estimates g, and H, of the gradient and Hessian are

1 1
g =7 X ew.g) = @249
& EeB;
_1 1T
H = 5%3 Hw.&) 1= 117 Q.,. (25)

In our analysis, we make use of the following assumptions.

Assumption 5.1. The function L is lower-bounded on its domain, i.e.,
—o0 < L} = inf IEN(W). In addition, L is twice differentiable with
weRd

Lipschitz continuous first-order derivatives, i.e., 3L, € R such that
[VENO®) = VENW|| < Ly W= W], VW, WeR (26)

Assumption 5.2. At any iteration 1, g(w,, &) is an unbiased estimator of
VLN (W), ie.,

E:[g(w,,)] = VL (W) 27)
Moreover, we have
Ee [leow. &) - V|| < o2, (28)

where ¢, > 0 is a variance parameter.

M. Korbit, A.D. Adeoye, A. Bemporad et al.

Assumption 5.3. At any iteration t, kI < Q, < kI with & > k > 0.
Additionally, 35, ¢ satisfying 0 < ¢ < & such that ¢ < ||J,|| < & forall t > 0.

Assumption 5.4. At any iteration t, and for any random ma-
trix B, satisfying B, > ul with y > 0, E[(VLy(W,),B,g)w,]
uK (VLN W)IIELg, |W,]ll, where K = (3(bA, + £62))/(5 bA,).

These assumptions are standard in stochastic optimization litera-
ture [41,66,67], and they hold naturally or can be easily enforced for
typical neural network architectures and loss functions used in ma-
chine learning practice. Notably, the variance of the stochastic gradient
estimator (Assumption 5.2) is more directly controllable from a practi-
tioner’s perspective by selecting a sufficiently large batch size or adding
a momentum term that uses past gradients to inform the direction of
update (see, e.g., [41,67,68]). We also remark that the matrix B, in
Assumption 5.4 may be interpreted as a preconditioner. Depending on
the nature of its conditional correlation with g, given w,, a large batch
size can enhance the practicality of the assumption. In practice, either
this conditional correlation is nonexistent (see the comment on [41,
Assumption 4.3(b)]), or the contribution of g, is inversely scaled by the
(large) batch size as in the proof of Lemma 5.5 below.

In Lemma 5.5, we prove a descent lemma for EGN under the given
conditions.

Lemma 5.5. Let {w,} be the sequence of iterates generated by (4) with
d, = d* and let Assumptions 5.1-5.3 hold. Suppose there exists "™ > 0
such that a, < o™ for all t in Algorithm 4. Then,

202

§1 (29)

a
ELLN ()Wl < Ly V) = SIVEN I + 15772

Proof. From Assumption 5.1, we have

L, 2
LnWei1) S LyW) +(VEN(W), Wiy — W)+ — ”wr+1 wr”

=Ly(w,) - <V£N(w, (JTQ,J,+M) g,>

2
arzL

2

1 -1
(ZJ:—Qer + }‘rl) g (30)

-1

Next, we set B, = (iJ,TQ,J,+/1,I> in Assumption 5.4. From

Assumption 5.3, we can show that B, > ul with y := b/(bA, + ©52).
Using this result and Assumption 5.3 in (30), we obtain

2.2

ba; L,)
LyWi) < Lyw) — o (VLN (W), B,g,) + —2”31” . (31)

Notice that by Assumption 5.2, we have E[g,|w,] = VL y(w,). Hence, the
inequality in Assumption 5.4 can be written as E [(VLy(w,), B,g)|w,]| >
uK||VL y(w,)|?. Taking conditional expectation on both sides of (31)
with respect to & and using Assumption 5.4, we get

2 2

3a,
E[LN (W DIW] < Ly (W,) — 5—/{|IV£N(W,)|I2 + Elllg, [I*w,1.
t

K62)2
(32)

Using Assumption 5.2, we have

ElllgI*Iw,] = Elllg, - VLN (W) + VL y (W) w,]
= E[IVLy (W)l Iw,] + 2E[(g, — VLN (W), VL (W))W,]

+Elllg, - VLN W)l w,]
= |VLywW)I? +Elllg, — VLN W) W,]
2, %
<IVENWI? + (33)

Neurocomputing 658 (2025) 131738

Now, using (33) in (32), we obtain

3a, bz(x? L, 2
ElLy (W DIW] < Ly(w,) - 51 o o2 VLN W
A 2bA, + k6?)
bo2a? L

Lz' (34)

2(bA, + k0?)
By choosing «, to be sufficiently small, we can set «™* = 1/¢, in
Algorithm 4, where ¢, = (5 b24,L,)/(3(bA, + ko). With this selection,
inequality (34) holds, which completes the proof. O

Assumption 5.4 is necessary to prove the result in Lemma 5.5 due to
the correlation between B, and g,. If these quantities were not correlated,
then one could exploit Assumptions 5.2-5.3: by taking the expected
value and using (27), one could then bound B, > uI to obtain the desired
bound with K = 1. Clearly, that would yield different constants in our
next results, but their nature would remain unaltered. Note that this sug-
gests alternative versions of EGN, in which the correlation is removed
by construction at the expense of an increased computational burden.
A thorough investigation of such schemes is beyond the scope of this
paper.

Unlike classical stochastic quasi-Newton and SGD (H, = I;) methods,
the loss decrease condition of EGN has an explicit nonlinear dependence
on the batch size b. In the regime b > 1, the influence of the variance
parameter o, diminishes.

We prove next the following result about the convergence of EGN.
Theorem 5.6. Let the assumptions in Lemma 5.5 hold, and assume 4, = A
is fixed for all t. Let a, = (+1>" for some 0 < ay < 1, 5 < a < 1. Then, the

loss gradient approaches 0 in expectation as the lteranon count T — co.

Proof. Following the proof of Lemma 5.5, we fix a™* = 1/¢; in
Algorithm 4, with ¢, = (5 b?A,L,)/(3(bA, +Q2)2, and take the condi-
tional expectation on both sides of (29). This yields

1
ELL N (W] < BILN)] = S o EIIVE N (w)IP] + Cay. (35)
2
where C := 130 o, . Summing (35) over t =0, 1,...,T — 1, we obtain
T 1 T-1
E[L y(W)] < E[Ly (W)l — = 2 aBIIVLNW)IP1+C Y a?. (36)

=0

for some 0 <

Assuming that the learning rates are given by a, = (r+1)"

a0<1,%<a<l,wehave

T

atzzD<oo.

t:

Il
=}

Next, consider a random variable z; satisfying P[z; = w,] = % for all 7.
Consequently,

T-1
EOIVEn @I = 7 2 VLN

1=
such that, using also «,, < «,, for allt, > t;, (36) becomes
E[L Ny (wp)] < E[£L §(Wo)] — a7y %TE[IIVEN(ZT)IIZ] +CD.
Then, using E[£L y (Wp)] > E;*V we have

E[L -L*
BV)l < 20X W1 £y | 26D

ar T ar T
3 Z]E[CN(WO)] - Ly 20D
- a T1-a a Tl-a :

Taking the limit for T — oo we finally have
Jim E[[IVLy(zp)]*] 0.

M. Korbit, A.D. Adeoye, A. Bemporad et al.

6. Experiments

We conduct a series of experiments to measure the performance of
EGN on several supervised learning and reinforcement learning tasks.

We select five baseline solvers: SGD [1], Adam [9], SGD with mo-
mentum and Gradient Activation Function (GAF) [69], a Quasi-Newton
solver (SQN) [24,25,41], and SGN [27]. SGD acts as a most basic base-
line with the computationally cheapest update; Adam is a widely used
accelerated FOM for training DNNs; GAF is a recent first-order variant
that reports faster convergence on deep networks; SGN is an inexact
Gauss-Newton solver against which we evaluate the practical advantages
of solving the system (5) exactly; and SQN acts as an alternative to Gauss-
Newton that approximates the Hessian via low-rank updates. Since
first-order methods typically require fewer computations per iterate, in
order to obtain a fair comparison we monitor the wall time instead of the
number of iterations. The learning rates are selected as the best perform-
ing « after a grid search in the logspace a € [10~°, 1]. Additionally, for
SGN we search for the optimal “number of CG iterations” within the set
{3,5,10,20,50}. For EGN we introduce two extra hyper-parameters: “line
search” {True, False} and “momentum” {0.0,0.9}. The best performing
sets of hyper-parameters as well as detailed description of the datasets
are available in Appendix C. The size of the mini-batch for all problems
is 128. All the experiments are conducted on the Tesla T4 GPU in the
Google Colab environment with float32 precision.

6.1. Supervised learning

For the regression task, we select three datasets: California
Housing [70], Superconductivity [71], and Diamonds [72] with 20640,
21263, and 53940 training samples, respectively. For classification, we
use the IMDB Reviews dataset [73] containing 25000 instances of movie
reviews. Across all problems, the model ® is a Feedforward Neural
Network (FFNN) with three dense layers of 32, 64 and 32 units fol-
lowed by the ReLU activation function with a total of 4449 parameters
(d = 4449). The loss function during the training is a least-squares
loss (10) for regression and softmax cross-entropy loss (12) for classifi-
cation. The datasets are split into training and test sets in the proportion
of 90/10 percent. Numerical features are scaled and categorical features
are one-hot encoded. To measure the performance, we plot the evolution
of the evaluation metric on unseen data (test set) with respect to wall
time (in seconds). The evaluation metric is Root Mean Squared Error
(RMSE) for regression and accuracy for classification.

The results are presented in Fig. 1 and Table 3. On all but the IMDB
Reviews dataset EGN has achieved both faster convergence and lower
test set error than any other optimization algorithm. On IMDB Reviews
SGN is faster than EGN, however, the two solvers achieve the same
accuracy after reaching convergence.

6.2. Reinforcement learning

We demonstrate the application of EGN to reinforcement learn-
ing in two scenarios: continuous action spaces with Linear-Quadratic
Regulator (LQR) and discrete action spaces using Deep Q-Network
(DQN) [74].

Learning LQR controllers. Given a discrete time-invariant linear system
with continuous states and actions, and a quadratic reward function

Table 3

Neurocomputing 658 (2025) 131738

California Housing

Superconductivity

0.70
u 4 16
2 z
+— 0.60 - -
3 g 14
% 0.55 - i
@ @
0.50 - 12 -
0 2 4 6 0 2 4 6
Wall Time (sec) Wall Time (sec)
Diamonds IMDB Reviews
6000 0.85
>
w 5000 9
= 4000 g 080y
o
4 <
& 3000 o
+— w0
& 2000 e 979
()
'_
1000 - =
1 1 7 1 1
0 10 20 0 00 10 20
Wall Time (sec) Wall Time (sec)
—— adam — gaf —— sgn
—— egn —— sgd sgn

Fig. 1. Learning curves on the test set for SGD, Adam, GAF, SQN, SGN and EGN.
The shaded area represents +1 standard deviation around the mean (thick line)
for 10 seeds.

our task is to learn the optimal value function v*(s) and the optimal
policy z*(s) such that we maximize the cumulative return. Such prob-
lems can be solved in a data-driven fashion with the policy iteration
procedure [75] (outlined in Appendix C.2). It is well known that the
optimal value function is quadratic and the optimal policy function is
linear [76]. Consequently, we define ® as a quadratic function of states
and actions. We track the norm of the difference between the optimal
LQR controller calculated analytically knowing the system matrices and
the learned weights of the model.

We select two linear systems from the Compleib set of benchmarks
[77]. The first system is a deterministic model of a binary distillation
tower (BDT) [78], and the second one represents the linearized verti-
cal plane dynamics of an aircraft (UAV) with noise [79]. The results
are displayed in the top two charts of Fig. 2 and Table 4. Both EGN
and SGN outperform first-order methods by a considerable margin,
with EGN enjoying slightly faster convergence in both cases, while SGN
achieves a marginally lower error on the stochastic LQR upon reaching
convergence.

Reinforcement learning with DQN. Adopting the problem formulation of
Ref. [74], we aim to learn the weights of a neural network that represent
a Q-value function ¢(s,a) that maps states s and actions a into scores

Performance after training completion (supervised learning).

Optimizer California housing Superconduct Diamonds IMDB reviews
SGD 0.539 + 0.006 13.788 + 0.698 1008.936 + 54.940 0.809 + 0.011
Adam 0.519 + 0.009 12.052 + 0.381 947.258 + 130.079 0.820 + 0.008
GAF 0.524 + 0.006 12.193 + 0.293 857.817 + 109.033 0.822 + 0.006
EGN 0.518 + 0.009 11.961 + 0.207 840.500 + 126.444 0.830 + 0.001
SGN 0.522 + 0.007 12.121 + 0.196 998.688 + 61.489 0.830 + 0.001
SQN 0.539 + 0.008 14.070 + 0.141 844.951 + 48.109 0.824 + 0.001

M. Korbit, A.D. Adeoye, A. Bemporad et al.

BDT (Deterministic LQR) UAV (Stochastic LQR)

80 80
== 60 60
B
|
x40 40
3

20 20 -

0O 5 10 15 00 5 10 15

Wall Time (sec) Wall Time (sec)

Acrobot-v1 Freeway-v1

Episodic Return

0 2 3 00 17 33 50

Wall Time (min) Wall Time (min)

—— adam —— egn — sgd —— sgn
Fig. 2. Learning curves for SGD, Adam, SGN and EGN. The shaded area rep-
resents +1 standard deviation around the mean return (thick line) for 10

seeds.

(Q-values) for a discrete set of actions. Once training is complete, the
optimal policy is formed by calculating the Q-value of each action and
choosing the highest-scoring action.

We build upon CleanRL [80] framework for running RL experiments,
selecting two environments: Acrobot-v1l and Freeway-v1. Acrobot-v1 is
an OpenAl gym [81] environment with a 6-dimensional state vector and
a set of 3 discrete actions where the goal is to swing the free end of
the connected joints above a given height in as few steps as possible.
Freeway-vl is a MinAtar [82] environment that emulates the original
Freeway Atari game. The state is represented by a 10 x 10 image and
there are 3 discrete actions available. For Acrobot-v1 the network ® is a
FFNN with three dense layers of 32, 64 and 32 units followed by the ReLU
activation function with a total of 4515 parameters. For Freeway-v1l we
design a compact CNN, comprising of a convolutional layer with sixteen
3 x 3 filters and ReLU activation, followed by flattening, a 64-unit dense
layer with ReLU, and a final dense layer outputting Q-values for all
actions (d = 103683).

The cumulative returns from each completed episode are recorded
and displayed in the bottom two charts of Fig. 2. The results for both
Acrobot-vl and Freeway-vl show no distinct advantage among the
solvers, as they all reach similar episodic returns. We notice, however,
that EGN slightly outperforms other optimizers by achieving a higher
return level at convergence (see Table 4).

Neurocomputing 658 (2025) 131738

6.3. Limitations

Explicit gradients. Unlike first-order methods that rely on the average
gradient of the batch loss, Gauss-Newton methods require the full
Jacobian matrix, which contains the gradients of each sample. As a re-
sult, backpropagation for EGN is more time-consuming than for FOMs.
Moreover, this can lead to increased GPU memory usage, especially with
high-dimensional parameter vectors.

Large batch sizes. In our experiments we observed that the cost of com-
puting the derivatives and the subsequent cost of computing the step
(Algorithm 1) are comparable. However, for large batch sizes (b > 128)
we observed that the computational times increased significantly. Fig. 3
quantifies how the direction calculation stage begins to dominate the
update time as the batch size grows. While EGN remains an efficient
drop-in replacement for first-order methods within the commonly-used
range 32 < b < 128, scaling to very large batches will require additional
techniques. We suspect this to be related to hardware limitations and
leave a systematic study of such mitigations to future work.

Large number of classes for multi-class classification. By incorporating
the softmax function into the loss Eq. (12) we introduce coupling
between the individual outputs of ® in the denominator Z;= | €, which
makes the Jacobian J a dense bc x d matrix. Speeding up the calculation
of J remains an open research question and constitutes a major obsta-
cle in using Gauss-Newton methods for tasks involving a large number
of classes, e.g., LLM pre-training. One possible solution could consist in
moving the softmax function directly into the model ® as the last layer
of the network and then only computing the Jacobian with respect to
the correct class, resulting in J € R?. This approach, however, yields
a Hessian approximation that becomes singular close to the solution,

c —e— MLP 1K
-f_,—D 0.90 - —— MLP 10K
2 —e— MLP 100K
.{..‘; —e— MLP 1M
§o085-
=
1=
© 0.80 -
<
£
5 0.75
L
£
= 0.70 -
c
3
-4
© 0.65 -
k]
=
w—
© 0.60 -
=
1=
£
Q055+
<4
o
0.50- 1t ' ' ' ' ' '
8 16 32 64 128 256 512
Batch Size

Fig. 3. Proportion of total update time spent in Algorithm 1 as a function of
batch size for fully-connected neural networks (MLPs) of various sizes. Curves
show the mean over 1000 runs; shaded regions denote +1 standard deviation.
Absolute wall-clock times are reported in Appendix C.4.

Table 4

Performance after training completion (reinforcement learning).
Optimizer BDT UAV Acrobot-v1 Freeway-v1
SGD 64.058 + 0.768 81.378 + 0.306 —90.962 + 13.484 56.996 + 7.359
Adam 0.443 + 0.297 0.157 + 0.100 —98.489 + 20.827 55.967 + 2.251
EGN 0.000 + 0.000 0.043 + 0.031 —81.796 + 11.778 58.916 + 1.946
SGN 0.000 + 0.000 0.033 + 0.019 —114.052 + 39.914 57.424 + 3.611

M. Korbit, A.D. Adeoye, A. Bemporad et al.

which results in numerical instabilities that hinder convergence [83].
Another possibility suggested in [84] consists of replacing the softmax
cross-entropy loss with the multi-class hinge loss. Although the compu-
tation becomes faster for the hinge loss, empirical evidence shows that
the test set accuracy upon training completion is higher for the CE loss.
Finally, a promising approach is the Gauss-Newton-Bartlett (GNB) esti-
mator proposed by Ref. [22], which replaces the exact LM Hessian with
an approximation obtained by sampling the subset of predicted labels.

7. Conclusion

We presented the EGN algorithm, a stochastic second-order method
that efficiently estimates the descent direction by using a low-rank
Gauss-Newton Hessian approximation and leveraging the Duncan-
Guttman matrix identity. We demonstrated that EGN solves the system
H"Md = —g exactly with less computational burden than other exact
Gauss-Newton methods, as well as inexact methods that rely on con-
jugate gradient iterates. We also proved that under mild assumptions
our algorithm converges in expectation. Our empirical results show that
EGN consistently matches or exceeds the generalization performance of
well-tuned SGD, Adam, GAF, SQN, and SGN optimizers across various
supervised and reinforcement learning tasks.

Future work will focus on addressing the shortcomings of EGN in
classification problems with a large number of classes. A promising di-
rection is to approximate the Gauss-Newton Hessian matrix to avoid
computing the full Jacobian of the network, e.g., using techniques such
as the Gauss-Newton-Bartlett estimator [22]. Another direction is to
study the performance of EGN on larger datasets and more complex
models.

CRediT authorship contribution statement

Mikalai Korbit: Writing — review & editing, Writing — original
draft, Visualization, Validation, Software, Resources, Project admin-
istration, Methodology, Investigation, Formal analysis, Data curation,
Conceptualization. Adeyemi D. Adeoye: Writing — review & editing,
Methodology, Formal analysis. Alberto Bemporad: Writing — review &
editing, Project administration, Methodology. Mario Zanon: Writing —
review & editing, Writing — original draft, Supervision, Project adminis-
tration, Methodology, Formal analysis, Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Acknowledgments

This work was partially funded by the European Union (ERC
Advanced Research Grant COMPACT, No. 101141351). Views and opin-
ions expressed are however those of the authors only and do not nec-
essarily reflect those of the European Union or the European Research
Council. Neither the European Union nor the granting authority can be
held responsible for them.

Appendix A. Proofs and derivations
A.1. Generalized gauss-newton hessian approximation

Claim. The generalized Gauss-Newton Hessian approximation scheme
for the batch loss (3) is HEN = %JTQJ .

Proof. The derivative of the generic batch loss function (3) reads

b
0p 9 |1 .

Neurocomputing 658 (2025) 131738

_ 0

23 5w Ve have

Employing the chain rule Z

b b
1 ¢ fD(X, W) 0D(x;; W)
wle= ;g w = p & lde

o7 (y;, D(x;;w)) d(b(x ;W)

where L; = € R™¢ and J, € R°*. We obtain the

®
Hessian by differentiating the gradlent
b
J (1
= [E Z{LiJml] :
i=
Using the product rule we arrive at
1w (0 S
H=, ; (% (L] Jo, +];L,.,kN [Jq,th :

where L;, € R is the k-th element of the derivative of the loss with
respect to @, and J, | € R'*? is the k-th row the Jacobian J, . We obtain
the Gauss-Newton Hessian approximation by neglecting the second-term
of H [17,53], such that

b
1 [é]
=3 2w

Given that
0% (y;, D(x;; W)
9 L] =75 M =J3 Q..
ow i o0d2 i i
where Q, M € R*¢ is the second derivative of the loss with

o2
respect to the function’s output, we have

b
1
HON — =2 g Q ¢ o,
Or using the compact notation
LT
bJ QJ,
where we vertically stack individual Jacobians Jg, for each sample in

the batch B to form J € R**? and form a block diagonal matrix Q =
blkdiag(Qy,, Qp,, -, Qp,) € RP*be, O

A.2. Gauss-newton hessian of the MSE loss function

Claim. The gradient of the batch MSE loss is g = %JTr.
Proof. We define the residual vector r as r =
[D(x;; W) — D(x,; W) -y,]T. Recall that the stacked

Jacobians of the neural network are denoted by J, with J € R
for the regression task. The batch loss (3) for MSE is

L

b
75 2 ((I)(XI-;W) —y,~)2 = LrTr.

i=1

Ly(w) =

So that

9L, or 9P

9 1T
E[”]_ ar 0w b Y

Since we define the gradient to be a column vector

M. Korbit, A.D. Adeoye, A. Bemporad et al.

Claim. The Hessian of the batch MSE loss is HON = %JTJ .

Proof. We obtain the Hessian by differentiating the gradient of the loss
9 10 1

H= —g=-—
wE= 5w)

Using the product rule of vector calculus

= 11) <JT 9 [r]+ (— [JT])) = % (JTJ+ i % [@(x;; W) r,.>_
i=1

where r; € R is the i-th element of r.
Neglecting the second term we obtain the Gauss-Newton approxima-
tion of the Hessian

N_ 1T
—bJJ-
O

A.3. Gauss-newton hessian of the multi-class cross-entropy loss function

Claim. The gradient of the batch multi-class cross-entropy loss is g =
Iq7

-J'r.

b

Proof. We recall from Appendix A.1 that the partial derivative of the
generic loss function is

¢ (v <1><x, 29)

=_Z — s,

Assuming that Jo, is calculated during the backpropagation stage, we
df(y,-,(l)(x,v ;w))

examine the term
defined as

. The cross-entropy loss function (12) is

¢ (yi,cb(xi;w)) = —yiT log (o- (<I>(x,~;w))) s

where o is the softmax function defined as

eZik

X et

with a c-dimensional vector of prediction scores (logits) z; = ®(x;; w) and
a c-dimensional vector of probabilities p; = 6(z;). Applying the chain rule
and using the shorthand notation we obtain

o(z;) =

ot (y;, D(x;; W)
FIo)

o¢ 0p; 0z;

"~ 0p; dz; 0"
Differentiating the loss with respect to the softmax function yields

e
pi,c

i}

o _ [_yf_-l Vi
op; Pl P2

The derivative of the k-th element of the softmax function wrt the /-th
input z;, is split in two cases

_ {Pi,k(l —Pik)s
—PikPis>

So that the derivative ‘;—‘z’f € R¢ can be structured as

ifk=1
itk #1.

op;
0z;

op; .
d_z; = diag(p;) — p;p; -

5111

Comblmng = and , we obtain

__ Z (Q) Pl =P,
=1 \Pis —P; kP>

ifk=1
ifk#1,

o
0z; i

10

Neurocomputing 658 (2025) 131738

Which simplifies to

/4
@ ="Yik t Pik = Pik ~ Yik
Since 2 is the identity, we have

0P

ot (y;, ©(x;; W)

oD =P Vi

The same way as for the MSE loss, we define (pseudo-)residuals r; €

R as a column vector of probabilities minus the targets, i.e., (p; — y,-)T.

Substituting back into the loss derivative
18
- T
= 1—) z r; Jo
i=1
Since we define the gradient to be a column vector

_ 6£b T_ lb
g={ow) “\5

T
Z T J‘D/'
i=1

oL,

ow

T b
1
> = Z ZJ;’_I‘[.
i=1

Or in shorthand notation

where for each sample i in the batch B we vertically stack Jacobians Jg,
as well as residuals r; to form J € R**¢ and r € R’. |

Claim. The Hessian of the batch multi-class cross-entropy loss is HON =
317l

Proof. Recall that the GN Hessian for the generalized -case
(Appendix A.1) is

(A1)

b—l'—‘

b
Z Q. Jo,

The second derivative of the loss with respect to the function’s output

2 .
Q= W € Re*¢ for CE loss is

Jd
Qf, = 70 [Pi —y,-] .
Using the gradient of the softmax function derived earlier, we form a

symmetric matrix Q,, such that

pii(1—pi) —PiPi2 —Pi1Pic
Q, = —Pi2Pi pp(l=pp) .. _Pi2pic
—PicPi1 —PicPi2 pu‘(l Pw)

Or in compact notation
RS)
5 ,

Where Q is a block diagonal matrix

| 0 Q, 0 o
Q= 0 0 0
0 0 0 Qg

And J € R¥*4 ig vertically stacked Jacobians Jo,-

M. Korbit, A.D. Adeoye, A. Bemporad et al.

Appendix B. Algorithms

Algorithm 3 Calculate direction using QR factorization (MSE loss).

1:

U A WN

Input: (pseudo-)residuals r, stacked Jacobians of the model J,

regularizer A.

: Factorize J7 with economy sized QR: Q,R « qr (JT)
: Factorize: Q,R « gr (RRT + AI)

: Solve the linear system for 5: R6 = QTRr

: Calculate d'M = —Qs

: Return d"M

Algorithm 4 Armijo line search.

1.
: Initialize @, < min {a™*, a,_ c"}
: while £ (w,,;) > £ (w,) + xa,VL(w,)"d, do

NoOuhsw N

Input: direction d,, hyper-parameters ™k, c'P, cdown,

Update a, < a,cdo%n
Update w, | < W, + a,d,

: end while
: Return o,

Algorithm 5 Adaptive regularization [34].

1:

Input: batch B,, current weights w,, updated weights w,_;.

2: Calculate p according to (23)

©eNaD R W

. if p < 0.25 then

A1 < 1014,

: else if p > 0.75 then

Apr < 0.994,
else
Ap1 < A

: end if
10:

Return 4,

Neurocomputing 658 (2025) 131738

Appendix C. Experiment details
C.1. Supervised learning

California Housing [70], a part of the scikit-learn [85] datasets
package, consists of 20640 samples with 8 numerical features x encoding
relevant information, e.g., location, median income, etc.; and a real-
valued target y representing the median house value in California as
recorded by the 1990 U.S. Census.

Superconductivity [71] is a dataset of HuggingFace Datasets [86]
that contains 21263 instances of 79 numerical attributes (features x) and
critical temperatures (target y) of superconductors.

Diamonds [72] is a TFDS [87] dataset containing 53940 instances
of 9 physical attributes (both numerical and categorical features x) and
prices (target y) of diamonds.

IMDB Reviews [73] is a TFDS [87] dataset that contains 25000 train-
ing samples and 25000 testing samples of movie reviews in a text format.
Before passing the samples to the model ®, we pre-process the raw
text data with spaCy [88] en_core web_lg pipeline which converts a text
review into a 300-dimensional vector of numbers.

The optimal sets of hyper-parameters are presented in Table C.5.

C.2. Learning LQR controllers

Here, we define the problem of learning an LQR controller more for-
mally. Given a discrete time-invariant linear system with continuous
states S € R"s and actions A € R"e of form T'(s,a) = As+Ba+e and a re-
ward function (s, a) = s' Qs+a' Ra our task is to learn the optimal value
function v*(s) and the optimal policy z*(s) by interacting with T'(s, a),
where A € R"*"s and B € R"%*"s are system matrices, e ~ N (0,X)
is Gaussian noise, Q € R"s*"s is a negative semi-definite state reward
matrix and R € R"«*"« is a negative definite action reward matrix.

It is well-known [76] that the optimal value and policy functions
have the form:

v*(s) = s Ps + Vo, 7*(s) = Ks, (C.1)
where P € R"*"s is a negative semi-definite matrix, K € R"*"s is a state

feedback matrix, and V; = y(1 — NI Tr (PY).

Table C.5

Optimal hyper-parameters for supervised learning tasks.
Optimizer Learning rate Regularizer Momentum Line search #CG iterations
California housing
SGD 0.03 - - - -
Adam 0.001 - - - -
GAF 0.08 - 0.9 - -
EGN 0.4 1.0 0.9 False -
SGN 0.2 1.0 - -
SON 0.3 - 0.0 - -
Superconduct
SGD 0.0003 - - - -
Adam 0.01 - - - -
GAF 0.007 - 0.9 - -
EGN 0.05 1.0 0.0 False -
SGN 0.1 1.0 - - 10
SON 0.07 - 0.0 - -
Diamonds
SGD 2e-8 - - - -
Adam 0.0005 - - - -
GAF 0.001 - 0.0 - -
EGN 0.0005 1.0 0.0 False -
SGN 0.001 1.0 -
SON 0.004 - 0.0 -
IMDB reviews
SGD 0.005 - - - -
Adam 0.01 - - - -
GAF 0.003 - 0.9 - -
EGN 0.01 1.0 0.0 False -
SGN 0.05 1.0 -
SQN 0.02 - 0.0 - -

11

M. Korbit, A.D. Adeoye, A. Bemporad et al.

Algorithm 6 Generalized policy iteration for LQR.

1: Input: initial stabilizing policy K, initial weights w, learning rate
a, discount factor y, tolerance n = 108, LM regularizer .

2: Set policy iteration counter p = 1

3: repeat

4: GivenK,_, estimate the corresponding weights w through a policy

evaluation algorithm, e.g., Algorithm 7

Convert weights w to a matrix M

if M, is not positive-definite then
Return Error

end if

Improve policy K, = -M_!M,,

10: Setp=p+1

11: until “Kp -K, H <n

12: Return K,

© ® N

Algorithm 7 Policy evaluation for LQR.

1: Input: policy K, initial weights w,, learning rate a, discount factor
y, tolerance 5 = 1078,

2: Set policy evaluation counter i = 1

3: Initialize S,

4: repeat
5: Choose action A; ~ z(.S;) by following an exploratory policy z(s) =
Ks+e

6: Execute action A; and observe R;, S,
Obtain A’ by following a greedy policy z(s) = Ks

8: Convert [S;, A;] and [S;,, A’] to quadratic feature vectors x and
’

N

X
9: Calculate d; = (R, + W] (yx' —x)) x
10: Update weights w; « w;_; + a;d;
11: Seti=i+1
12: until ||w, —w,_||, <7
13: Return w;

To learn the optimal controller from data we can utilize Generalized
Policy Iteration [75,89] (Algorithm 6).

BDT. System matrices for the model of a binary distillation tower
(BDT) follow [78]. The matrices represent a continuous system. We
discretize the system using a Zero-Order Hold (ZOH) method with a
sampling rate of AT = 0.1s.

UAV. System matrices for the linearized vertical plane dynamics of
an aircraft (UAV) are taken from Ref. [79]. The matrices represent a
continuous system. We discretize the system using a Zero-Order Hold
(ZOH) method with a sampling rate of AT = 0.1s.

Table C.8

Table C.6

Optimal hyper-parameters for BDT and UAV.

Neurocomputing 658 (2025) 131738

Optimizer Learning rate Regularizer Momentum Line search #CG iterations
BDT

SGD 0.0000005 - - - -

Adam 0.1 - - - -

EGN 1.0 1.0 0.0 False -

SGN 1.0 1.0 - - 10
UAV

SGD 0.00008 - - - -

Adam 0.02 - - - -

EGN 0.2 1.0 0.0 False -

SGN 1.0 1.0 - - 10
Table C.7

Optimal hyper-parameters for Acrobot-vl and Freeway-v1.

Optimizer Learning rate Regularizer Momentum Line search #CG iterations
Acrobot-v1

SGD 0.001 - - - -

Adam 0.0003 - - -

EGN 0.1 1.0 0.0 False -

SGN 0.005 1.0 - - 3
Freeway-v1

SGD 0.1 - - - -

Adam 0.0003 - - - -

EGN 0.4 1.0 0.0 False -

SGN 0.5 1.0 - - 5

The optimal sets of hyper-parameters for LQR are presented in
Table C.6.

C.3. Reinforcement learning with DQN

Acrobot. Acrobot-v1 is an OpenAl gym [81] environment where the
goal is to swing the free end of the connected joints above a given height
in as few steps as possible. Transitions to any non-terminal state yield
reward R, = —1.

Freeway. Freeway-v1 is a part of MinAtar [82] package that emulates
the original Atari Freeway game which plays out on a 10 x 10 grid. The
goal is to reach the top of the screen starting at the bottom of the screen
maneuvering the obstacles appearing on the screen. A reward of +1 is
given upon reaching the top of the screen.

The optimal sets of hyper-parameters for reinforcement learning with
DON are presented in Table C.7.

C.4. Limitations

Table C.8

Wall-clock time (ms) per step for different batch sizes and MLP models, split into direction
finding stage (“Solve”) and remainder (“Other”). Means over 1000 runs (NVIDIA RTX A4000

GPU).

Batch size MLP 1K MLP 10 K MLP 100 K MLP 1M

Solve Other Solve Other Solve Other Solve Other
8 0.135 0.120 0.177 0.118 0.176 0.120 0.492 0.274
16 0.156 0.114 0.169 0.111 0.219 0.144 0.629 0.429
32 0.165 0.112 0.196 0.113 0.304 0.183 0.943 0.725
64 0.223 0.099 0.265 0.111 0.398 0.235 1.958 1.351
128 0.326 0.106 0.381 0.149 0.734 0.376 3.489 2.576
256 0.555 0.098 0.716 0.197 1.397 0.623 10.035 5.459

512 1.381 0.140 1.781

0.258 4.220 0.861

38.511 6.239

M. Korbit, A.D. Adeoye, A. Bemporad et al.

Data availability

Experiments were conducted using publicly available datasets. Full
details, including dataset sources, preprocessing steps, and experimental
settings, are provided in Section 6 and Appendix C.

References

(11
[2]

[3]

[4]

[5]

(6]
[71
[81
[91

[10]
[11]
[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]
[20]

[21]

[22]
[23]

[24]

[25]
[26]

[27]

[28]

[29]

[30]

[31]

H. Robbins, S. Monro, A stochastic approximation method, Ann. Math. Stat. (1951)
400-407.

Y. Nesterov, A method of solving a convex programming problem with convergence
rate O(1/k?), Dokl. Akad. Nauk SSSR 269 (3) (1983) 543.

1. Sutskever, J. Martens, G. Dahl, G. Hinton, On the importance of initialization
and momentum in deep learning, in: International Conference on Machine Learning,
PMLR, 2013, pp. 1139-1147.

J. Lucas, S. Sun, R. Zemel, R. Grosse, Aggregated momentum: stability through
passive damping, arXiv preprint arXiv:1804.00325, 2018.

J. Chen, C. Wolfe, Z. Li, A. Kyrillidis, Demon: improved neural network training
with momentum decay, in: ICASSP 2022-2022 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), IEEE, 2022, pp. 3958-3962.

J. Duchi, E. Hazan, Y. Singer, Adaptive subgradient methods for online learning and
stochastic optimization., J. Mach. Learn. Res. 12 (7) (2011).

G. Hinton, N. Srivastava, K. Swersky, Neural networks for machine learning. Lecture
6a overview of mini-batch gradient descent, Cited On 14 (8) (2012) 2.

M.D. Zeiler, Adadelta: an adaptive learning rate method, arXiv preprint
arXiv:1212.5701, 2012.

D.P. Kingma, J. Ba, Adam: a method for stochastic optimization, arXiv preprint
arXiv:1412.6980, 2014.

T. Dozat, Incorporating Nesterov momentum into Adam, (2016).

M. Zaheer, S. Reddi, D. Sachan, S. Kale, S. Kumar, Adaptive methods for nonconvex
optimization, Adv. Neural Inf. Process. Syst. 31 (2018).

K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
2016, pp. 770-778.

M. Naumov, D. Mudigere, H.-J.M. Shi, J. Huang, N. Sundaraman, J. Park, X. Wang,
U. Gupta, C.-J. Wu, A.G. Azzolini, et al, Deep learning recommendation model
for personalization and recommendation systems, arXiv preprint arXiv:1906.00091,
2019.

T.B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A. Neelakantan,
P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss, G. Krueger, T. Henighan,
R. Child, A. Ramesh, D.M. Ziegler, J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler, M.
Litwin, S. Gray, B. Chess, J. Clark, C. Berner, S. McCandlish, A. Radford, I. Sutskever,
D. Amodei, Language models are few-shot learners, arXiv:2005.14165, 2020.

H. Touvron, T. Lavril, G. Izacard, X. Martinet, M.-A. Lachaux, T. Lacroix, B. Roziére,
N. Goyal, E. Hambro, F. Azhar, et al, Llama: open and efficient foundation language
models, arXiv preprint arXiv:2302.13971, 2023.

I. Loshchilov, F. Hutter, Decoupled weight decay regularization, arXiv preprint
arXiv:1711.05101, 2017.

L. Sagun, U. Evci, V.U. Guney, Y. Dauphin, L. Bottou, Empirical analysis of the
hessian of over-parametrized neural networks, arXiv preprint arXiv:1706.04454,
2017.

P. Xu, F. Roosta, M.W. Mahoney, Second-order optimization for non-convex ma-
chine learning: an empirical study, in: Proceedings of the 2020 SIAM International
Conference on Data Mining, SIAM, 2020, pp. 199-207.

N. Agarwal, B. Bullins, E. Hazan, Second-order stochastic optimization for machine
learning in linear time, J. Mach. Learn. Res. 18 (1) (2017) 4148-4187.

R. Bollapragada, R.H. Byrd, J. Nocedal, Exact and inexact subsampled Newton
methods for optimization, I.M.A. J. Numer. Anal. 39 (2) (2019) 545-578.

Z. Yao, A. Gholami, S. Shen, M. Mustafa, K. Keutzer, M. Mahoney, Adahessian: an
adaptive second order optimizer for machine learning, in: Proceedings of the AAAI
Conference on Artificial Intelligence, vol. 35, 2021, pp. 10665-10673.

H. Liu, Z. Li, D. Hall, P. Liang, T. Ma, Sophia: a scalable stochastic second-order
optimizer for language model pre-training, arXiv preprint arXiv:2305.14342, 2023.
Y. Ren, D. Goldfarb, Efficient subsampled gauss-newton and natural gradient
methods for training neural networks, arXiv preprint arXiv:1906.02353, 2019.
N.N. Schraudolph, J. Yu, S. Gilinter, A stochastic quasi-Newton method for on-
line convex optimization, in: Artificial Intelligence and Statistics, PMLR, 2007, pp.
436-443.

R.H. Byrd, S.L. Hansen, J. Nocedal, Y. Singer, A stochastic quasi-Newton method for
large-scale optimization, SIAM J. Optim. 26 (2) (2016) 1008-1031.

A.S. Berahas, J. Nocedal, M. Takac, A multi-batch L-BFGS method for machine
learning, Adv. Neural Inf. Process. Syst. 29 (2016).

M. Gargiani, A. Zanelli, M. Diehl, F. Hutter, On the promise of the stochastic gen-
eralized gauss-newton method for training DNNs, arXiv preprint arXiv:2006.02409,
2020.

Q. Tran-Dinh, N. Pham, L. Nguyen, Stochastic Gauss-Newton algorithms for noncon-
vex compositional optimization, in: International Conference on Machine Learning,
PMLR, 2020, pp. 9572-9582.

J.J. Brust, Nonlinear least squares for large-scale machine learning using stochastic
Jacobian estimates, arXiv preprint arXiv:2107.05598, 2021.

W.J. Duncan, Lxxviii. Some devices for the solution of large sets of simultaneous lin-
ear equations: with an appendix on the reciprocation of partitioned matrices, Lond.,
Edinb., Dubl. Philos. Mag. J. Sci. 35 (249) (1944) 660-670.

L. Guttman, Enlargement methods for computing the inverse matrix, Ann. Math.
Stat. (1946) 336-343.

13

[32]

[33]

[34]
[35]
[36]
[37]
[38]
[39]
[40]
[41]
[42]
[43]

[44]

[45]
[46]

[47]

[48]

[49]
[50]
[51]
[52]
[53]
[54]

[55]

[56]
[57]

[58]
[59]

[60]

[61]

[62]

[63]

[64]

[65]
[66]
[67]
[68]
[69]

[70]

Neurocomputing 658 (2025) 131738

J. Martens, et al, Deep learning via Hessian-free optimization., in: ICML, vol. 27,
2010, pp. 735-742.

J. Martens, I. Sutskever, Learning recurrent neural networks with Hessian-free opti-
mization, in: Proceedings of the 28th International Conference on Machine Learning
(ICML-11), 2011, pp. 1033-1040.

R. Kiros, Training neural networks with stochastic Hessian-free optimization, arXiv
preprint arXiv:1301.3641, 2013.

O. Vinyals, D. Povey, Krylov subspace descent for deep learning, in: Artificial
Intelligence and Statistics, PMLR, 2012, pp. 1261-1268.

A.G. Wills, T.B. Schon, Stochastic quasi-Newton with line-search regularisation,
Automatica 127 (2021) 109503.

C. Liu, L. Luo, Quasi-Newton methods for saddle point problems, Adv. Neural Inf.
Process. Syst. 35 (2022) 3975-3987.

A. Botev, H. Ritter, D. Barber, Practical Gauss-Newton optimisation for deep learn-
ing, in: International Conference on Machine Learning, PMLR, 2017, pp. 557-565.
S.-I. Amari, Natural gradient works efficiently in learning, Neural Comput. 10 (2)
(1998) 251-276.

F. Kunstner, P. Hennig, L. Balles, Limitations of the empirical Fisher approximation
for natural gradient descent, Adv. Neural Inf. Process. Syst. 32 (2019).

L. Bottou, F.E. Curtis, J. Nocedal, Optimization methods for large-scale machine
learning, SIAM Rev. 60 (2) (2018) 223-311.

S. Sun, Z. Cao, H. Zhu, J. Zhao, A survey of optimization methods from a machine
learning perspective, IEEE Trans. Cybern. 50 (8) (2019) 3668-3681.

O. Pooladzandi, Y. Zhou, Improving levenberg-Marquardt algorithm for neural
networks, arXiv preprint arXiv:2212.08769, 2022.

A.D. Adeoye, A. Bemporad, SC-Reg: Training Overparameterized Neural Networks
under Self-Concordant Regularization, IMT School for Advanced Studies Lucca
(2021).

A.D. Adeoye, A. Bemporad, SCORE: Approximating curvature information under
self-concordant regularization, Comput. Optim. Appl. 86 (2) (2023) 599-626.

N. Doikov, M. Jaggi, et al, Second-order optimization with lazy hessians, in:
International Conference on Machine Learning, PMLR, 2023, pp. 8138-8161.

F.E. Curtis, K. Scheinberg, Adaptive stochastic optimization: a framework for ana-
lyzing stochastic optimization algorithms, IEEE Signal Process. Mag. 37 (5) (2020)
32-42.

Y. Hong, H. Bergou, N. Doucet, H. Zhang, J. Cranney, H. Ltaief, D. Gratadour,
F. Rigaut, D.E. Keyes, Stochastic Levenberg-Marquardt for Solving Optimization
Problems on Hardware Accelerators, Submitted to IEEE, 2020.

K.P. Murphy, Probabilistic Machine Learning: an Introduction, MIT Press, 2022,
probml.ai

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A.N. Gomez, L. Kaiser, L.
Polosukhin, Attention is all you need, Adv. Neural Inf. Process. Syst. 30 (2017).
xai-org, Grok-1, gitHub repository (2024) https://github.com/xai-org/grok-1

A. Dubey, A. Jauhri, A. Pandey, A. Kadian, A. Al-Dahle, A. Letman, A. Mathur,
A. Schelten, A. Yang, A. Fan, et al, The llama 3 herd of models, arXiv preprint
arXiv:2407.21783, 2024.

V. Papyan, The full spectrum of deep net hessians at scale: dynamics with sample
size, arXiv preprint arXiv:1811.07062, 2018.

N.N. Schraudolph, Fast curvature matrix-vector products for second-order gradient
descent, Neural Comput. 14 (7) (2002) 1723-1738.

A.R. Sankar, Y. Khasbage, R. Vigneswaran, V.N. Balasubramanian, A deeper look at
the Hessian eigenspectrum of deep neural networks and its applications to regular-
ization, in: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35,
2021, pp. 9481-9488.

J. Nocedal, S. Wright, Numerical Optimization, Springer Series in Operations
Research and Financial Engineering, Springer New York, 2006.

M. Arbel, R. Menegaux, P. Wolinski, Rethinking Gauss-Newton for learning over-
parameterized models, Adv. Neural Inf. Process. Syst. 36 (2024).

N.J. Higham, Accuracy and Stability of Numerical Algorithms, SIAM, 2002.

F. Zhang, M. Pilanci, Optimal shrinkage for distributed second-order optimization,
in: International Conference on Machine Learning, PMLR, 2023, pp. 41523-41549.
O. Chapelle, D. Erhan, et al, Improved preconditioner for Hessian free optimization,
in: NIPS Workshop on Deep Learning and Unsupervised Feature Learning, vol. 201,
Citeseer, 2011.

S. Vaswani, A. Mishkin, I. Laradji, M. Schmidt, G. Gidel, S. Lacoste-Julien, Painless
stochastic gradient: interpolation, line-search, and convergence rates, Adv. Neural
Inf. Process. Syst. 32 (2019).

R. Johnson, T. Zhang, Accelerating stochastic gradient descent using predictive
variance reduction, Adv. Neural Inf. Process. Syst. 26 (2013).

A. Defazio, F. Bach, S. Lacoste-Julien, Saga: a fast incremental gradient method with
support for non-strongly convex composite objectives, Adv. Neural Inf. Process. Syst.
27 (2014).

L.M. Nguyen, J. Liu, K. Scheinberg, M. Taka¢, Sarah: a novel method for machine
learning problems using stochastic recursive gradient, in: International Conference
on Machine Learning, PMLR, 2017, pp. 2613-2621.

C. Paquette, K. Scheinberg, A stochastic line search method with expected complex-
ity analysis, SIAM J. Optim. 30 (1) (2020) 349-376.

S. Ghadimi, G. Lan, Stochastic first-and zeroth-order methods for nonconvex stochas-
tic programming, SIAM J. Optim. 23 (4) (2013) 2341-2368.

R.M. Gower, M. Schmidt, F. Bach, P. Richtarik, Variance-reduced methods for
machine learning, Proc. IEEE 108 (11) (2020) 1968-1983.

A. Defazio, L. Bottou, On the ineffectiveness of variance reduced optimization for
deep learning, Adv. Neural Inf. Process. Syst. 32 (2019).

M. Liu, L. Chen, X. Du, L. Jin, M. Shang, Activated gradients for deep neural
networks, IEEE Trans. Neural Netw. Learn. Syst. 34 (4) (2021) 2156-2168.

R.K. Pace, R. Barry, Sparse spatial autoregressions, Stat. Probab. Lett. 33 (3) (1997)
291-297.

http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0005
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0005
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0010
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0010
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0015
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0015
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0015
http://arxiv.org/abs/1804.00325
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0025
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0025
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0025
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0030
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0030
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0035
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0035
http://arxiv.org/abs/1212.5701
http://arxiv.org/abs/1412.6980
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0055
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0055
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0060
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0060
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0060
http://arxiv.org/abs/1906.00091
http://arxiv.org/abs/2005.14165
http://arxiv.org/abs/2302.13971
http://arxiv.org/abs/1711.05101
http://arxiv.org/abs/1706.04454
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0090
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0090
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0090
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0095
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0095
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0100
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0100
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0105
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0105
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0105
http://arxiv.org/abs/2305.14342
http://arxiv.org/abs/1906.02353
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0120
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0120
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0120
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0125
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0125
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0130
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0130
http://arxiv.org/abs/2006.02409
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0140
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0140
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0140
http://arxiv.org/abs/2107.05598
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0150
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0150
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0150
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0155
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0155
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0160
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0160
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0165
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0165
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0165
http://arxiv.org/abs/1301.3641
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0175
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0175
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0180
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0180
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0185
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0185
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0190
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0190
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0195
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0195
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0200
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0200
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0205
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0205
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0210
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0210
http://arxiv.org/abs/2212.08769
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0220
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0220
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0220
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0225
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0225
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0230
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0230
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0235
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0235
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0235
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0240
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0240
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0240
probml.ai
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0250
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0250
https://github.com/xai-org/grok-1
http://arxiv.org/abs/2407.21783
http://arxiv.org/abs/1811.07062
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0270
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0270
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0275
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0275
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0275
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0275
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0280
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0280
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0285
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0285
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0290
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0295
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0295
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0300
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0300
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0300
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0305
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0305
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0305
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0310
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0310
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0315
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0315
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0315
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0320
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0320
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0320
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0325
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0325
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0330
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0330
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0335
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0335
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0340
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0340
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0345
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0345
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0350
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0350

M. Korbit, A.D. Adeoye, A. Bemporad et al.

[71] K. Hamidieh, Superconductivty data, UCI Machine Learning Repository, DOI: 2018
https://doi.org/10.24432/C53P47

H. Wickham, Ggplot2: Elegant Graphics for Data Analysis, Springer-Verlag New
York, 2016, https://ggplot2.tidyverse.org

A.L. Maas, R.E. Daly, P.T. Pham, D. Huang, A.Y. Ng, C. Potts, Learning word vectors
for sentiment analysis, in: Proceedings of the 49th Annual Meeting of the Association
for Computational Linguistics: Human Language Technologies, Association for
Computational Linguistics, Portland, Oregon, USA, 2011, pp. 142-150, http://www.
aclweb.org/anthology/P11-1015

V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra,
M. Riedmiller, Playing atari with deep reinforcement learning, arXiv preprint
arXiv:1312.5602, 2013.

S.J. Bradtke, B.E. Ydstie, A.G. Barto, Adaptive linear quadratic control using policy
iteration, in: Proceedings of 1994 American Control Conference-ACC’94, vol. 3, IEEE,
1994, pp. 3475-3479.

E. Hazan, K. Singh, Introduction to online nonstochastic control, arXiv preprint
arXiv:2211.09619, 2022.

F. Leibfritz, Compleib: Constrained matrix optimization problem library, (2006).
E.J. Davison, Benchmark problems for control system design, Rep. I.F.A.C. Theory
Comm. (1990).

Y.S. Hung, A.G.J. MacFarlane, Multivariable control: a quasiclassical approach,
(1982).

S. Huang, R.F.J. Dossa, C. Ye, J. Braga, Cleanrl: high-quality single-file implementa-
tions of deep reinforcement learning algorithms, arXiv preprint arXiv:2111.08819,
2021.

G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, W.
Zaremba, OpenAl Gym, (2016). arXiv:arXiv:1606.01540.

K. Young, T. Tian, Minatar: an atari-inspired testbed for thorough and reproducible
reinforcement learning experiments, arXiv preprint arXiv:1903.03176, 2019.

R. Grosse, Taylor approximations, Neural Netw. Train. Dyn. Lect. Notes Univ.
Toronto (2021).

B.M. Ozyildirim, M. Kiran, Levenberg-Marquardt multi-classification using hinge
loss function, Neural Netw. 143 (2021) 564-571.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,
P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M.
Brucher, M. Perrot, E. Duchesnay, Scikit-learn: machine learning in Python, J. Mach.
Learn. Res. 12 (2011) 2825-2830.

Q. Lhoest, A. Villanova Del Moral, Y. Jernite, A. Thakur, P. von Platen, S. Patil,
J. Chaumond, M. Drame, J. Plu, L. Tunstall, J. Davison, M. Sagko, G. Chhablani,
B. Malik, S. Brandeis, T. Le Scao, V. Sanh, C. Xu, N. Patry, A. McMillan-Major, P.
Schmid, S. Gugger, C. Delangue, T. Matussiére, L. Debut, S. Bekman, P. Cistac, T.
Goehringer, V. Mustar, F. Lagunas, A. Rush, T. Wolf, Datasets: a community library
for natural language processing, in: Proceedings of the 2021 Conference on Empirical
Methods in Natural Language Processing: System Demonstrations, Association for
Computational Linguistics, Online and Punta Cana, Dominican Republic, 2021, pp.
175-184, https://aclanthology.org/2021.emnlp-demo.21

TensorFlow, TensorFlow datasets, a collection of ready-to-use datasets, https://
www.tensorflow.org/datasets

M. Honnibal, I. Montani, S. Van Landeghem, A. Boyd, et al, Spacy: industrial-strength
natural language processing in Python, (2020).

S.J. Bradtke, A.G. Barto, Linear least-squares algorithms for temporal difference
learning, Machine Learn. 22 (1) (1996) 33-57.

[72]

[73]

[74]

[75]

[76]

[77]
[78]

[79]

[80]

[81]
[82]
[83]
[84]

[85]

[86]

[87]
[88]

[89]

Author biography

Mikalai Korbit received his Master’s degree in Computer Science from the Georgia
Institute of Technology, USA. He is currently pursuing a Ph.D. in the Dynamical Systems,
Control, and Optimization (DYSCO) group at the IMT School for Advanced Studies
Lucca, Italy. Previously, he was a visiting researcher in the Intelligent Robotics group
at Aalto University, Finland. His research is focused on developing scalable second-order
optimization methods for large-scale deep neural networks.

14

Neurocomputing 658 (2025) 131738

Adeyemi D. Adeoye received the bachelor’s degree (Hons.) in mathematics from the
University of Ilorin, Ilorin, Nigeria, in 2016, the master’s degree in mathematical sci-
ences from the African Institute for Mathematical Sciences, Limbe, Cameroon, in 2018, and
the master’s degree in machine intelligence from the African Institute for Mathematical
Sciences, Kigali, Rwanda, in 2021. He obtained his Ph.D. degree with the Dynamical
Systems, Control, and Optimization Research Unit, IMT School for Advanced Studies
Lucca, Lucca, Italy. His research interests include mathematical optimization, data-driven
control, and neural networks.

Alberto Bemporad received his Master’s degree cum laude in Electrical Engineering in
1993 and his Ph.D. in Control Engineering in 1997 from the University of Florence,
Italy. In 1996/97 he was with the Center for Robotics and Automation, Department of
Systems Science & Mathematics, Washington University, St. Louis. In 1997-1999 he held
a postdoctoral position at the Automatic Control Laboratory, ETH Zurich, Switzerland,
where he collaborated as a Senior Researcher until 2002. In 1999-2009 he was with the
Department of Information Engineering of the University of Siena, Italy, becoming an
Associate Professor in 2005. In 2010-2011 he was with the Department of Mechanical
and Structural Engineering of the University of Trento, Italy. Since 2011 he has been a
Full Professor at the IMT School for Advanced Studies Lucca, Italy, where he served as
the Director of the institute from 2012 to 2015. He spent visiting periods at Stanford
University, the University of Michigan, and Zhejiang University. In 2011 he co-founded
ODYS S.r.l., a company specialized in developing model predictive control systems for
industrial production. He has published more than 400 papers in the areas of model
predictive control, hybrid systems, optimization, and automotive control, and is the co-
inventor of 21 patents. He is the author or coauthor of various software packages for model
predictive control design and implementation, including the Model Predictive Control
Toolbox (The Mathworks, Inc.) and the Hybrid Toolbox for MATLAB. He was an Associate
Editor of the IEEE Transactions on Automatic Control during 2001-2004 and Chair of
the Technical Committee on Hybrid Systems of the IEEE Control Systems Society from
2002 to 2010. He received the IFAC High-Impact Paper Award for the 2011-14 trien-
nial, the IEEE CSS Transition to Practice Award in 2019, the 2021 SAE Environmental
Excellence in Transportation Award, the 2024 Beale-Orchard-Hays Prize for Excellence
in Computational Mathematical Programming, and an ERC Advanced Research Grant in
2024. He has been an IEEE Fellow since 2010.

Mario Zanon received the Master’s degree in Mechatronics from the University of Trento
and the Dipléme d’Ingénieur from the Ecole Centrale Paris, in 2010. After research stays
at the KU Leuven, University of Bayreuth, Chalmers University, and the University of
Freiburg he received the Ph.D. degree in Electrical Engineering from the KU Leuven in
November 2015. He held a Post-Doc researcher position at Chalmers University until
the end of 2017. In 2018 he became Assistant Professor at the IMT School for Advanced
Studies Lucca where he became Associate Professor in 2021. His research interests include
numerical methods for optimization, economic MPC, reinforcement learning, and the opti-
mal control and estimation of nonlinear dynamic systems, in particular for aerospace and
automotive applications.

https://doi.org/10.24432/C53P47
https://ggplot2.tidyverse.org
http://www.aclweb.org/anthology/P11-1015
http://www.aclweb.org/anthology/P11-1015
http://arxiv.org/abs/1312.5602
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0375
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0375
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0375
http://arxiv.org/abs/2211.09619
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0390
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0390
http://arxiv.org/abs/2111.08819
http://arxiv.org/abs/1903.03176
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0415
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0415
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0420
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0420
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0425
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0425
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0425
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0425
https://aclanthology.org/2021.emnlp-demo.21
https://www.tensorflow.org/datasets
https://www.tensorflow.org/datasets
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0445
http://refhub.elsevier.com/S0925-2312(25)02410-5/sbr0445

	Exact Gauss-Newton optimization for training deep neural networks
	1 Introduction
	2 Related work
	3 Preliminaries
	3.1 Gradient-based optimization
	3.2 Generalized gauss-newton hessian approximation
	Regression
	Multi-class classification

	4 Algorithm
	4.1 Comparison to existing methods
	4.2 Additional improvements
	Momentum
	Line search
	Adaptive regularization

	5 Convergence analysis
	6 Experiments
	6.1 Supervised learning
	6.2 Reinforcement learning
	Learning LQR controllers
	Reinforcement learning with DQN

	6.3 Limitations
	Explicit gradients
	Large batch sizes
	Large number of classes for multi-class classification

	7 Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	Appendix A Proofs and derivations
	A.1 Generalized gauss-newton hessian approximation
	Claim

	A.2 Gauss-newton hessian of the MSE loss function
	Claim
	Claim

	A.3 Gauss-newton hessian of the multi-class cross-entropy loss function
	Claim
	Claim

	Appendix B Algorithms
	Appendix C Experiment details
	C.1 Supervised learning
	C.2 Learning LQR controllers
	BDT
	UAV

	C.3 Reinforcement learning with DQN
	Acrobot
	Freeway

	C.4 Limitations

	Data availability
	References
	Author biography

