
Alastair F. Donaldson, Vasco Vasconcelos (Eds.): Proceedings
of the 7th Workshop on Programming Language Approaches
to Concurrency and Communication-cEntric Software (PLACES 2014)
EPTCS ??, 2014, pp. 1–8, doi:10.4204/EPTCS.??.??

c© Tiezzi F. and Yoshida N.
This work is licensed under the
Creative Commons Attribution License.

Towards Reversible Sessions∗

Francesco Tiezzi
IMT Institute for Advanced Studies, Lucca, Italy

francesco.tiezzi@imtlucca.it

Nobuko Yoshida
Imperial College, London, U.K.

n.yoshida@imperial.ac.uk

In this work, we incorporate reversibility into structured communication-based programming, to al-
low parties of a session to automatically undo, in a rollback fashion, the effect of previously executed
interactions. This permits taking different computation paths along the same session, as well as
reverting the whole session and starting a new one. Our aim is to define a theoretical basis for
examining the interplay in concurrent systems between reversible computation and session-based
interaction. We thus enrich a session-based variant of π-calculus with memory devices, dedicated
to keep track of the computation history of sessions in order to reverse it. We discuss our initial
investigation concerning the definition of a session type discipline for the proposed reversible calcu-
lus, and its practical advantages for static verification of safe composition in communication-centric
distributed software performing reversible computations.

1 Introduction

Reversible computing aims at providing a computational model that, besides the standard (forward) ex-
ecutions, also permits backward execution steps in order to undo the effect of previously performed
forward computations. Reversibility is a key ingredient in different application domains since many
years and, recently, also in the design of reliable concurrent systems, as it permits understanding exist-
ing patterns for programming reliable systems (e.g., compensations, checkpointing, transactions) and,
possibly, improving them or developing new ones.

A promising line of research on this topic advocates reversible variants of well-established process
calculi, such as CCS and π-calculus, as formalisms for studying reversibility mechanisms in concurrent
systems. Our work incorporates reversibility into a variant of π-calculus equipped with session primi-
tives supporting structured communication-based programming. A (binary) session consists in a series
of reciprocal interactions between two parties, possibly with branching and recursion. Interactions on
a session are performed via a dedicated private channel, which is generated when initiating the session.
Session primitives come together with a session type discipline offering a simple static checking frame-
work to guarantee the correctness of communication patterns.

Practically, combining reversibility and sessions paves the way for the development of session-based
communication-centric distributed software intrinsically capable of performing reversible computations.
In this way, without further coding effort by the application programmer, the interaction among session
parties is relaxed so that, e.g., the computation can automatically go back, thus allowing to take different
paths when the current one is not satisfactory. As an application example, used in this paper for illustrat-
ing our approach, we consider a simple scenario involving a client and multiple providers offering the
same service (e.g., on-demand video streaming). The client connects to a provider to request a given ser-
vice (specifying, e.g., title of a movie, video quality, etc.). The provider replies with a quote determined
according to the requested quality of service and to the servers status (current load, available bandwidth,
∗This work has been partially supported by the COST Action BETTY (IC1201), by the EU project ASCENS (257414), and

by the Italian MIUR PRIN project CINA (2010LHT4KM).

http://dx.doi.org/10.4204/EPTCS.??.??
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

2 Towards Reversible Sessions

etc.). Then, the client can either accept, negotiate or reject the quote. If a problem occurs during the
interaction between the client and the provider, the computation can be reverted, in order to allow the
client to automatically start a new session with (possibly) another provider.

The proposed reversible session-based calculus relies on memories to store information about inter-
actions and their effects on the system, which otherwise would be lost during forward computations.
This data is used to enable backward computations that revert the effects of the corresponding forward
ones. Each memory is devoted to record data concerning a single event, which can correspond to the
taking place of a communication action, a choice or a thread forking. Memories are connected each
other, in order to keep track of the computation history, by using unique thread identifiers as links. Like
all other formalisms for reversible computing in concurrent settings, forward computations are undone
in a causal-consistent fashion, i.e. backtracking does not have to necessarily follow the exact order of
forward computations in reverse, because independent actions can be undone in a different order.

The resulting formalism offers a theoretical basis for examining the interplay between reversible
computations and session-based structured interactions. We notice that reversibility enables session
parties not only to partially undo the interactions performed along the current session, but also to au-
tomatically undo the whole session and restart it, possibly involving different parties. The advantage
of the reversible approach is that this behaviour is realised without explicitly implementing loops. On
the other hand, the session type discipline affects reversibility as it forces concurrent interactions to fol-
low structured communication patterns. In fact, linearizing behaviours on sessions reduces the effect of
causal consistency, because concurrent interactions along the same session are forbidden and, hence, the
rollback along a session follows a single path. However, interactions along different sessions are still
concurrent and, therefore, they can be reverted as usual in a causal-consistent fashion. Notably, interest-
ing issues concerning reversibility and session types are still open questions, especially for what concerns
the validity in the reversible setting of standard properties (e.g., progress enforcement) and possibly new
properties (e.g., reversibility of ongoing session history, irreversible closure of sessions).

2 Related work

We review here the most closely related works, which concern the definition of reversible process calculi;
we refer to [9] for a more detailed review of reversible calculi.

Reversible CCS (RCCS) [3] is the first proposal of reversible calculus, from which all subsequent
works drew inspiration. To each currently running thread is associated an individual memory stack
keeping track of past actions, as well as forks and synchronisations. Information pushed on the memory
stacks, upon doing a forward transition, can be then used for a roll-back. The memories also serve as
a naming scheme and yield unique identifiers for threads. When a process divides in two sub-threads,
each sub-thread inherits the father memory together with a fork number indicating which of the two sons
the thread is. A drawback of this approach is that the parallel operator does not satisfy usual structural
congruence rules as commutativity, associativity and nil process as neutral element.

CCS-R [4] is another reversible variant of CCS, which mainly aims at formalising biological systems.
Like RCCS, it relies on memory stacks for storing data needed for backtracking, which now also includes
events corresponding to unfolding of process definitions. Differently from RCCS, specific identifiers are
used to label threads, and a different approach is used for dealing with forking.

CCS with communication Keys (CCSK) [8] is a reversible process calculus obtained by applying a
general procedure to produce reversible calculi. A relevant aspect of this approach is that it does not
rely on memories for supporting backtracking. The idea is to maintain the structure of processes fixed

Tiezzi F. and Yoshida N. 3

throughout computations, thus avoiding to consume guards and alternative choices. To properly revert
synchronisations, the two threads have to agree on a key, uniquely identifying that communication.

ρπ [7] is a reversible variant of the higher-order π-calculus. It borrows from RCCS the use of
memories for keeping track of past actions, although in ρπ they are not stacks syntactically associated
to threads, but parallel terms each one dedicated to a single communication. The connection between
memories and threads is kept by resorting to identifiers, which resemble CCSK keys. Fork handling is
based on structured tags, used to connect the identifier of a thread with the identifiers of its sub-threads.
This approach to reversibility has been applied in [5] to a distributed tuple-based language.

Another reversible variant of π-calculus is Rπ [2]. Similarly to RCCS, this calculus relies on memory
stacks, now recording communication events and forking. Differently from ρπ , it considers standard π-
calculus (without choice and replication) as a host calculus and its semantics is defined in terms of a
labelled transition relation.

Finally, reversible structures [1] is a simple computational calculus for modelling chemical systems.
Reversible structures does not exploit memories, but maintains the structure of terms and uses a special
symbol to indicate the next forward and backward operations that a term can perform.

In our work, we mainly take inspiration from the ρπ approach. In fact, all other approaches are based
on CCS and cannot be directly applied to a calculus with name-passing. Moreover, the ρπ approach is
preferable to the Rπ one because the former proposes a reduction semantics, which we are interested
in, while the latter proposes a labelled semantics, which would complicate our theoretical framework in
order to properly deal with scope extrusion.

3 Reversible Session-based π-calculus

In this section, we introduce a reversible extension of a π-calculus enriched with primitives for managing
binary sessions, i.e. structured interactions between two parties. We call ReSπ (Reversible Session-based
π-calculus) this formalism. Due to lack of space, some technical details about semantics and results have
been omitted; we refer the interested reader to [9] for a more complete account.

From π-calculus to ReSπ . Our approach to keep track of computation history in ReSπ is as follows: we
tag processes with unique identifiers (tagged processes are called threads) and use memories to store the
information needed to reverse each single forward reduction. Thus, the history of a reduction sequence
is stored in a number of small memories connected each other by using tags as links. In this way, ReSπ

terms can perform, besides forward computations (denoted by�), also backward computations (denoted
by) that undo the effect of the former ones in a causal-consistent fashion.

π-calculus processes and expressions are given by the grammars in Figure 1. The synchronisation on
a shared channel a of processes ā(x).P and a(y).Q initiates a session along a fresh session channel s. This
channel consists in a pair of (dual) endpoints, denoted by s and s̄ (such that ¯̄s = s), each one dedicated
to one party to exchange values with the other. These endpoints replace variables x and y, by means
of a substitution application, in order to be used by P and Q, respectively, for later communications.
Primitives k!〈e〉.P and k′?(x).Q denote output and input via session endpoints identified by k and k′,
respectively. These communication primitives realise the standard synchronous message passing, where
messages result from expressions evaluation and may contain endpoints (delegation). Constructs k / l.P
and k′ . {l1 : P1, . . . , ln : Pn} denote label selection and branching (with l1, . . . , ln pairwise distinct) via
k and k′, respectively. The above interaction primitives are combined by conditional choice, parallel
composition, restriction, recursion and inaction.

4 Towards Reversible Sessions

Shared channels a, b, . . . Session channels s, s′, . . . Session endpoints s, s̄, s′, s̄′, . . . Variables x, y, . . .
Labels l, l′, . . . Process variables X , Y , . . . Tags t, t ′, . . . Shared ids u ::= a | x
Channels c ::= a | s Names h ::= c | t Session ids k ::= s | s̄ | x

Processes P ::= ū(x).P | u(x).P | k!〈e〉.P | k?(x).P | k / l.P | k .{l1 : P1, . . . , ln : Pn}
| if e then P else Q | P | Q | (νc)P | X | µX .P | 0

Expressions e ::= v | x | op(e1, . . . ,en)

Values v ::= true | false | 0,1, . . . | a | s | s̄

ReSπ processes M ::= t : P | (νh)M | M | N | m | nil

Memories m ::= 〈t1−A→ t2, t ′1, t
′
2〉 | 〈t,e?P :Q, t ′〉 | 〈t⇒ (t1, t2)〉

A ::= a(x)(y)(νs)PQ | k〈e〉(x)PQ | k / li P{l1 : P1, . . . , ln : Pn}

Figure 1: ReSπ syntax

ReSπ processes are built upon π-calculus processes by labelling them with tags to uniquely identify
threads t : P. Uniqueness of tags is ensured by using the restriction operator and by only considering
reachable terms (Def. 1). Moreover, ReSπ extends π-calculus with three kinds of memories m. An action
memory 〈t1−A→ t2, t ′1, t

′
2〉 stores an action event A together with the tag t1 of the active party of the action,

the tag t2 of the passive party, and the tags t ′1 and t ′2 of the new threads activated by the corresponding
reduction. An action event records information necessary to revert each kind of interactions, which can
be either a session initiation a(x)(y)(νs)PQ, a communication along an established session k〈e〉(x)PQ,
or a branch selection k / li P{l1 : P1, . . . , ln : Pn}. A choice memory 〈t,e?P : Q, t ′〉 stores a choice event
together with the tag t of the conditional choice and t ′ of the new activated thread. The event e?P : Q
records the evaluated expression e, and processes P and Q of the then- and else-branch, respectively. A
fork memory 〈t ⇒ (t1, t2)〉 stores the tag t of a splitting thread, of the form t : (P | Q), and the tags t1
and t2 of the new activated threads t1 : P and t2 : Q; these memories are analogous to connectors in [5].
Threads and memories are composed by parallel composition and restriction operators.

Not all processes allowed by the syntax are semantically meaningful. In a general term, the history
stored in the memories may not be consistent, due to the use of non-unique tags or broken connections
between continuation tags within memories and corresponding threads. For example, given the choice
memory 〈t,e?P : Q, t ′〉, we have a broken connection when no thread tagged by t ′ exists in the ReSπ

process and no memory of the form 〈t ′−A→ t2, t ′1, t
′
2〉, 〈t1−A→ t ′, t ′1, t

′
2〉, 〈t ′,e?P1 :P2, t1〉, and 〈t ′⇒ (t1, t2)〉

exists. Thus, as in [2], to ensure history consistency we only consider reachable processes, i.e. processes
obtained by means of forward and backward reductions from processes with unique tags and no memory.

Def. 1 (Reachable processes) The set of reachable ReSπ processes is the closure under� (see below)
of the set of terms, whose threads have distinct tags, generated by M ::= t : P | (νc)M | M |N | nil.

ReSπ semantics. The ReSπ operational semantics is given in terms of a reduction relation�, given
as the union of the forward and backward reduction relations. We report here, by way of examples, the
forward and backward rules for session initiation (we require s, s̄ fresh in P1 and P2 in the forward rule):

t1 : ā(x).P1 | t2 : a(y).P2 � (νs, t ′1, t
′
2)(t

′
1 : P1[s̄/x] | t ′2 : P2[s/y] | 〈t1−a(x)(y)(νs)P1P2→ t2, t ′1, t

′
2〉)

(νs, t ′1, t
′
2)(t

′
1 : P | t ′2 : Q | 〈t1−a(x)(y)(νs)P1P2→ t2, t ′1, t

′
2〉) t1 : ā(x).P1 | t2 : a(y).P2

Tiezzi F. and Yoshida N. 5

When two parallel threads synchronise to establish a new session, two fresh tags are created to uniquely
identify the continuations. Moreover, all relevant information is stored in the action memory: the tag t1
of the initiator (i.e., the thread executing a prefix of the form ā(·)), the tag t2 of the thread executing the
dual action, the tags t ′1 and t ′2 of their continuations, the shared channel a used for the synchronisation,
the replaced variables x and y, the generated session channel s, and the processes P1 and P2 to which
substitutions are applied. All such information is exploited in the backward rule to revert this reduction.
In particular, the corresponding backward reduction is triggered by the coexistence of the memory de-
scribed above with two threads tagged t ′1 and t ′2, all of them within the scope of the session channel s
and tags t ′1 and t ′2 generated by the forward reduction (which, in fact, are removed by the backward one).
When considering reachable processes, due to tag uniqueness, processes P and Q coincide with P1[s̄/x]
and P2[s/y]; indeed, as registered in the memory, these latter processes have been tagged with t ′1 and t ′2
by the forward reduction. Therefore, the fact that two threads tagged with t ′1 and t ′2 are in parallel with
the memory ensures that all actions possibly executed by the two continuations activated by the forward
computation have been undone and, hence, we can safely undone the forward computation itself.

Multiple providers scenario. The scenario involving a client and two providers informally introduced
in Section 1 is rendered in ReSπ as (t1 : Pclient | t2 : Pprovider1 | t3 : Pprovider2), where the client process
Pclient is

alogin(x).x!〈srv req〉.x?(yquote).if accept(yquote) then x/ lacc.Pacc

else (if negotiate(yquote) then x/ lneg.Pneg else x/ lre j.0)
while Pprovider i is

alogin(y).y?(zreq).y!〈quotei(zreq)〉.y.{lacc : Qacc , lneg : Qneg , lre j : 0}

If the client contacts the first provider and accepts the proposed quote, the system evolves to

M = (νs, . . . , t ′1, t
′
2)(t ′1 : Pacc[s̄/x,quote/yquote] | t ′2 : Qacc[s/y,srv req/zreq] | m1 | . . . | m5) | Pprovider2

where memories mi keep track of the computation history. Now, if a problem occurs during the sub-
sequent interactions, the computation can be reverted to allow the client to start a new session with
(possibly) another provider:

M ∗ t1 : Pclient | t2 : Pprovider1 | t3 : Pprovider2

Properties of ReSπ . We show here that ReSπ enjoys standard properties of reversible calculi.
First, we demonstrate that ReSπ is a conservative extension of the (session-based) π-calculus. In fact,

as most reversible calculi, ReSπ is only a decoration of its host calculus. This decoration can be erased
by means of the forgetful map φ , mapping ReSπ terms into π-calculus ones by removing memories, tag
annotations and tag restrictions. The following lemmas show that each forward reduction of a ReSπ

process corresponds to a reduction of the corresponding π-calculus process and vice versa.

Lemma 1 Let M and N be two ReSπ processes. If M� N then φ(M)→ φ(N).

Lemma 2 Let P and Q be two π-calculus processes. If P→ Q then for any ReSπ process M such that
φ(M) = P there exists a ReSπ process N such that φ(N) = Q and M� N.

Then, we show that ReSπ backward reductions are the inverse of the forward ones and vice versa.

6 Towards Reversible Sessions

Lemma 3 (Loop lemma) Let M and N be two reachable ReSπ processes. M�N if and only if N M.

We conclude with the causal consistency result stating that two sequences of reductions (called traces
and ranged over by σ), with the same initial state (coinitial) and equivalent w.r.t. the standard notion of
causal equivalence (�), lead to the same final state (cofinal). Thus, in this case, we can rollback to the
initial state by reversing any of the two traces.

Theorem 1 Let σ1 and σ2 be coinitial traces. Then, σ1 � σ2 if and only if σ1 and σ2 are cofinal.

4 Discussion on a type discipline

A question that should be answered before defining a static type discipline for a reversible calculus is
“Should we type check the processes stored in the memories?”. The question arises from the fact that
we should be able to determine if any ReSπ process is well-typed or not. In our case the answer is
“Yes”, otherwise typability would not be preserved under reduction (i.e., Subject Reduction would not
be satisfied). It is indeed easy to define a ReSπ process (see [9]) containing a memory that, even if
consistent, triggers a backward reduction leading to an untypable term (by the type system defined in
[10] for the host calculus).

One could wonder now if it is possible to type ReSπ processes in a naı̈ve way by separately type
checking the term resulting from the application of φ and each single memory, by using the type system
in [10]. For each memory we would check the term that has triggered the forward reduction generating
the memory. In general, this approach does not work, because the term stored in a memory cannot
be type checked in isolation without taking into account its context. For example, consider a memory
corresponding to a communication along a session s typable under typing ∆ = s̄ :![int].end · s :?[int].end
and in parallel with (t1 : s̄!〈1〉 | t2 : s?(x)). The term resulting from the corresponding backward reduction
is not typable, because the typings of its sub-terms are not composable (indeed, ∆ ·∆ is not defined).

Memory context can be considered by extending the type system in [10] with rules that permits
typing (processes stored in) memories and ignoring tag annotations and tag restrictions (see [9] for the
definition of this type system). In this way, during type checking, typings of memories and threads must
be composed by means of the rule for parallel composition. Thus, e.g., the ReSπ process mentioned
above is, rightly, untypable. This type system properly works only on a simplified setting, which per-
mits avoiding to deal with dependencies among memories and the threads outside memories, that could
cause unwanted conflicts during type checking. Specifically, we consider the class of ReSπ processes
that, extending Def. 1, are obtained by means of forward and backward reductions from processes with
unique tags, no memory, no session initialised, no conditional choices and recursions at top-level, and no
delegation. The characteristic of these processes is that, for each memory inside a process, there exists
within the process an ancestor memory corresponding to the initialisation of the considered session. The
type system checks only this latter kind of memories, which significantly simplifies the theory.

Coming back now to the multiple providers scenario, we can verify that the initial process is well-
typed. In particular, the channel alogin can be typed by the shared channel type

〈?[Request]. ![Quote].&[lacc :αacc , lneg :αneg , lre j :end]〉

where sorts Request and Quote are used to type requests and quotes, respectively. Let us consider now a
scenario where the client wills to concurrently submit two different requests to the same provider, which
would concurrently serve them. Consider in particular the following specification of the client

alogin(x).(x!〈srv req 1〉.P1 | x!〈srv req 2〉.P2)

Tiezzi F. and Yoshida N. 7

The new specification is clearly not well-typed, due to the use of parallel threads within the same session.
This permits avoiding mixing up messages related to different requests and wrongly delivering them. In
order to properly concurrently submit separate requests, the client must instantiate separate sessions with
the provider, one for each request.

5 Concluding remarks

To bring the benefits of reversible computing to structured communication-based programming, we have
defined a theoretical framework based on π-calculus that can be used as formal basis for studying the
interplay between (causal-consistent) reversibility and session-based structured interaction.

The type discipline for ReSπ is still subject of study. In fact, the type system mentioned in Sec-
tion 4 is not completely satisfactory, because its use is limited to a restricted class of processes. To
consider a broader class, an appropriate static type checking approach for memories has to be devised.
For each memory, we would check a term composed of the threads stored in the memory and of a context
composed of threads that have not been generated by the execution of the memory threads.

Concerning the reversible calculus, we plan to investigate the definition of a syntactic characteri-
sation of consistent terms, which statically enforces history consistency in memories (as in [7]). It is
worth noticing that the calculus is fully reversible, i.e. backward computations are always enabled. Full
reversibility provides theoretical foundations for studying reversibility in session-based π-calculus, but
it is not suitable for a practical use. In line with [6], we plan to enrich the language with mechanisms to
control reversibility. Moreover, we intend to enrich the framework with an irreversible action for com-
mitting the closure of sessions. In this way, computation would go backward and forward, allowing the
parties to try different interactions, until the session is successfully completed. For instance, the process
Pacc in our example could terminate by performing the irreversible action commit(x), which has to syn-
chronise with action commit(y) in Qacc. Differently from sessions terminated by 0, a session terminated
by a commit synchronisation is unbacktrackable. The irreversibility is due to the fact that no backward
rule is defined to revert this interaction. The type theory should be tailored to properly deal with this kind
of session closure.

As longer-term goals, we intend to apply the proposed approach to other session-based formalisms,
which consider, e.g., asynchronous sessions and multiparty sessions. Moreover, we plan to investigate
implementation issues that may arise when incorporating the approach into standard programming lan-
guages, in particular in case of a distributed setting.

References

[1] Luca Cardelli & Cosimo Laneve (2011): Reversible structures. In: CMSB, ACM, pp. 131–140,
doi:10.1145/2037509.2037529.

[2] I. Cristescu, J. Krivine & D. Varacca (2013): A Compositional Semantics for the Reversible p-Calculus. In:
LICS, IEEE, pp. 388–397, doi:10.1109/LICS.2013.45.

[3] Vincent Danos & Jean Krivine (2004): Reversible Communicating Systems. In: CONCUR, LNCS 3170,
Springer, pp. 292–307, doi:10.1007/978-3-540-28644-8 19.

[4] Vincent Danos & Jean Krivine (2007): Formal Molecular Biology Done in CCS-R. Electr. Notes Theor.
Comput. Sci. 180(3), pp. 31–49, doi:10.1016/j.entcs.2004.01.040.

[5] E. Giachino, I. Lanese, C.A. Mezzina & F. Tiezzi (2013): Causal-Consistent Reversibility in a Tuple-Based
Language. Technical Report. http://www.cs.unibo.it/~lanese/work/klaimrev-TR.pdf.

http://dx.doi.org/10.1145/2037509.2037529
http://dx.doi.org/10.1109/LICS.2013.45
http://dx.doi.org/10.1007/978-3-540-28644-8_19
http://dx.doi.org/10.1016/j.entcs.2004.01.040
http://www.cs.unibo.it/~lanese/work/klaimrev-TR.pdf

8 Towards Reversible Sessions

[6] I. Lanese, C.A. Mezzina, A. Schmitt & J. Stefani (2011): Controlling Reversibility in Higher-Order Pi. In:
CONCUR, LNCS 6901, Springer, pp. 297–311, doi:10.1007/978-3-642-23217-6 20.

[7] I. Lanese, C.A. Mezzina & J. Stefani (2010): Reversing Higher-Order Pi. In: CONCUR, LNCS 6269,
Springer, pp. 478–493, doi:10.1007/978-3-642-15375-4 33.

[8] Iain C. C. Phillips & Irek Ulidowski (2007): Reversing algebraic process calculi. J. Log. Algebr. Program.
73(1-2), pp. 70–96, doi:10.1016/j.jlap.2006.11.002.

[9] Francesco Tiezzi & Nobuko Yoshida (2014): Towards Reversible Sessions. Technical Report. http://cse.
lab.imtlucca.it/~tiezzi/papers/places2014_full.pdf.

[10] N. Yoshida & V.T. Vasconcelos (2007): Language Primitives and Type Discipline for Structured
Communication-Based Programming Revisited: Two Systems for Higher-Order Session Communication.
Electr. Notes Theor. Comput. Sci. 171(4), pp. 73–93, doi:10.1016/j.entcs.2007.02.056.

http://dx.doi.org/10.1007/978-3-642-23217-6_20
http://dx.doi.org/10.1007/978-3-642-15375-4_33
http://dx.doi.org/10.1016/j.jlap.2006.11.002
http://cse.lab.imtlucca.it/~tiezzi/papers/places2014_full.pdf
http://cse.lab.imtlucca.it/~tiezzi/papers/places2014_full.pdf
http://dx.doi.org/10.1016/j.entcs.2007.02.056

	Introduction
	Related work
	Reversible Session-based -calculus
	Discussion on a type discipline
	Concluding remarks

