
Linguistic Abstractions for Programming and
Policing Autonomic Computing Systems

Andrea Margheri
Università degli Studi di Firenze, Università di Pisa

andrea.margheri@unifi.it, margheri@di.unipi.it

Rosario Pugliese
Università degli Studi di Firenze

rosario.pugliese@unifi.it

Francesco Tiezzi
IMT Advanced Studies Lucca
francesco.tiezzi@imtlucca.it

Abstract—We introduce PSCEL, a new language for de-
veloping autonomic software components capable of adapting
their behaviour to react to external stimuli and environment
changes. The application logic generating the computational
behaviour of systems components is defined in a procedural
style, by the programming constructs, while the adaptation logic
is defined in a declarative style, by the policing constructs.
The interplay between these two kinds of constructs permits to
dynamically produce and enforce adaptation actions. To show
PSCEL practical applicability and effectiveness, we employ it in
a Cloud Computing case study.

I. INTRODUCTION

Nowadays, many computing systems include massive num-
bers of components, featuring complex interactions in open
and non-deterministic environments. Moreover, they are more
and more integrated with a variety of other heterogeneous
and interactive systems, also connected to humans and to the
external environment. To address the challenges of developing,
integrating, and deploying these large-scale, complex software-
intensive systems, self-adaptation has been advocated as a
key feature. This is the ability of a system to autonomously
adapt its behaviour and/or structure to dynamic operating
conditions [1]. It is at the basis of self-management capa-
bilities like self-configuration, self-healing, self-optimization
and self-protection (also known as self-* properties) typical of
autonomic computing systems [2].

To enable the systematic and principled development of
self-adaptive systems, a high level, linguistic description of
how the different components are brought together to form the
overall system architecture, together with a clear identification
of the adaptation logic is worthwhile. Therefore, different
linguistic abstractions have been proposed in the literature (see
e.g. [3], [4], [5], [6], [7]). Here we rely on SCEL (Software
Component Ensemble Language) [8], [9], a language expressly
designed for programming autonomic computing systems in
terms of the constituent components and their reciprocal in-
teractions. In SCEL, systems and components result from the
aggregation of knowledge and behaviours, according to some
policies. Self-adaptation is enabled by knowledge acquisition
and behaviour manipulation, and can be implemented through
appropriate regulating policies. Ensembles of components are
dynamically formed and referred to in communication ac-
tions by means of predicates over components’ attributes.
These describe components’ public features such as identity,
functionalities, spatial coordinates, trust level, etc. that may
dynamically change. By using these abstractions, the behaviour
of a whole system, that emerges from the behaviour of its

individual components, adapts itself to new requirements or
environment conditions.

SCEL main aim is to identify linguistic constructs for
uniformly modeling the architecture of autonomic systems, the
control of computation, and the interaction among possibly
heterogeneous components. Therefore, to enhance flexibility
and better support self-adaptation in different application do-
mains, SCEL is parametric with respect to the policy language
although its semantics is defined so as to take policies into
account and to be compatible with many different ways to
define them.

Recently, policy languages (see e.g. [10], [5], [11]) are
receiving much attention in different research fields. In fact,
their declarative nature makes policy specifications intuitive
and easy to maintain. Here we consider FACPL (Formal
Access Control Policy Language) [12], a simple, yet expres-
sive, language for defining access control, resource usage and
adaptation policies, which is inspired to the XACML [13]
standard for access control. In FACPL, policies are sets of rules
specifying strategies, requirements, constraints, guidelines, etc.
about the behaviour of systems and their components.

By integrating SCEL and FACPL we have designed a new
language for programming and policing autonomic software
components capable of adapting their behaviour to react to
external stimuli and environment changes. This language,
that we call PSCEL (Policed SCEL), takes advantage of
the features of the two inspiring languages and appropriately
integrates their linguistic abstractions. In PSCEL, it is for
example possible to define policies implementing adaptation
strategies by exploiting actions that are produced at run-time
as an effect of policy evaluation and are used to modify
the behaviour of systems components. Furthermore, policies
can depend on the values of components attributes (reflecting
the status of components and their environment) and can be
dynamically replaced for better reacting to system changes.

According to the separation of concerns principle, PSCEL
design decouples the functional aspects from the adaptation
ones. In fact, the application logic generating the computa-
tional behaviour of components is defined in a procedural style,
by the programming constructs, while the adaptation logic is
defined in a declarative style, by the policing constructs. At
run-time, as clarified by the language operational semantics,
the adaptation actions generated by policy evaluation will be
executed as part of components’ behaviour.

The rest of the paper is organised as follows. In Section II
we review the related work and highlight the main differences

with respect to PSCEL. Syntax and informal semantics of our
linguistic abstractions are presented in Sections III. In Sec-
tion IV we use a Cloud Computing case study for illustrating
the effectiveness of our approach. Finally, Section V concludes
the paper by touching upon directions for future work.

II. RELATED WORK

Autonomic computing systems are currently studied within
many research communities. To deal with such systems differ-
ent approaches are used, like multi-agent systems, component-
based design and context-oriented programming. Below, we
mention some of the most closely related works. These
proposals however usually concern programming, rather than
regulating, the behavior of such systems.

Multi-agent systems (as e.g. [14], [15], [3]) pursue the
importance of the knowledge representation and how it is han-
dled for choosing adaptive actions. PSCEL, instead, bases the
knowledge repository implementation on tuple-spaces, which
is a more flexible and lightweight mechanism to, e.g., sup-
port adaptive context-aware activities in pervasive computing
scenarios.

Component-based design has been indicated as a key
approach for adaptive software design [16]. A relevant example
in this field is FRACTAL [17], a hierarchical component model
that, in addition to standard component-based systems, permits
defining systems with a less rigid structure by means of
components without completely fixed boundaries. However,
communication among components is still defined via connec-
tors and system adaptation is obtained by adding, removing or
modifying components and/or connectors. Communication and
adaptation in PSCEL, instead, are more flexible, and, hence,
more adequate to deal with highly dynamic ensembles.

Another paradigm advocated to program autonomic sys-
tems [18] is Context-Oriented Programming (COP) [19]. It ex-
ploits ad-hoc linguistic constructs to express context-dependent
behavioral variations and their run-time activation. The most
of the literature on COP is devoted to the design and imple-
mentation of concrete programming languages (a comparison
can be found in [20]). Only few works provide a founda-
tional account, like e.g. [21], focussing on an object-oriented
language extended with COP facilities, and [22], focussing
on a functional one. All these approaches are however quite
different from ours, that instead focusses on distribution and
attribute-based aggregations and supports a highly dynamic
notion of adaptation regulated by policies.

As concerns policy languages, many such languages have
been recently developed for managing different aspects of
programs’ behaviour as, e.g., adaptation and autonomic com-
puting. For example, a policy-based approach to autonomic
computing issues has also been proposed by IBM through a
simplified policy language [11], which, however, comes with-
out a precise syntax and semantics. [5] introduces PobSAM, a
policy-based formalism that combines an actor-based model,
for specifying the computational aspects of system elements,
and a configuration algebra, for expressing autonomic man-
agers that, in response to changes, lead the adaptation of the
system configuration according to given adaptation policies.
This formalism relies on a predefined notion of policies
expressed as Event-Condition-Action (ECA) rules. Adaptation

SYSTEMS: S ::= I[K,Π, P] | S1 ‖ S2 | (νn)S

PROCESSES: P ::= nil | a.P | P1 + P2 | P1 | P2 | X | A(p̄)

ACTIONS: a ::= get(T)@c | qry(T)@c | put(t)@c | fresh(n)

| new(I,K,Π, P)

DESTINATIONS: c ::= n | x | self | P | p

KNOWLEDGE: K ::= ∅ | 〈t〉 | K1 ‖ K2

ITEMS: t ::= e | c | P | t1, t2

TEMPLATES: T ::= e | c | ? x | ?X | T1, T2

TABLE I. PROGRAMMING CONSTRUCTS (POLICIES Π ARE IN TABLE II)

policies are specific ECA rules that change the manager con-
figurations. PSCEL constructs for expressing policies, being
strictly integrated with an expressive autonomic programming
language, is more flexible and expressive permitting not only
to produce adaptation actions, but also authorisation controls
and resource assignments. Moreover, the full integration of
obligation actions with the programming constructs permits
a run-time code generation and, hence, enables more flexible
adaptation strategies. A policy language for which a number
of toolkits have been developed and applied to various au-
tonomous and pervasive systems is Ponder [10]. The language
borrows the idea introduced in [23] of using two separate
types of policies for authorisation and obligation. Policies of
the former type have the aim of establishing if an operation
can be performed, while those of the latter type basically are
ECA rules. Differently from Ponder, and similarly to more
recent languages (e.g. XACML), in PSCEL obligations are
expressed as part of authorisation policies, thus providing a
more uniform specification approach.

Finally, the international standard XACML, which FACPL
is inspired to, defines policy specifications in XML format
without a formal description of the evaluation process. FACPL
instead has a compact and intuitive syntax and is endowed with
a formal semantics based on solid mathematical foundations.
These features, as well as its supporting software tools, make
FACPL easy to learn and use. This motivates our choice of
FACPL as policy language to be integrated with the program-
ming constructs provided by SCEL.

III. PSCEL: PROGRAMMING AND POLICING AUTONOMIC
COMPUTING SYSTEMS

We present PSCEL in two steps: we first introduce the
constructs for programming autonomic computing systems and
then those for policing their behaviour. We refer the interested
reader to [24] for a full account of the formal semantics.

A. Constructs for programming autonomic computing systems

The constructs are presented in Table I. The key notion is
that of component I[K,Π, P] that consists of:

• An interface I publishing and making available struc-
tural and behavioural information about the compo-
nent itself in the form of attributes, i.e. names acting
as references to information stored in the component’s
repository. Among them, attribute id is mandatory and
is bound to the component’s name.

• A knowledge repository K managing application data,
internal status data (supporting self-awareness) and
environmental data (supporting context awareness).
The knowledge repository of a component stores also
the information associated to its interface, which there-
fore can be dynamically manipulated by means of the
operations provided by the knowledge repositories’
handling mechanisms.

• A set of policies Π regulating the interaction among
the component and the others. By exploiting policies,
on the one hand, components can protect themselves
against unauthorised access, hence behaving in a self-
protecting way. On the other hand, they can detect
specific conditions regarding themselves and their
(execution) context, and trigger appropriate adaptation
actions, hence behaving in a (self-)adaptive way.

• A process P , together with a set of process defini-
tions that can be dynamically activated. Processes in
P execute local computations, coordinate interaction
with the knowledge repository and with the other
components.

It is worth noticing that the normal computational be-
haviour of a component is defined in P , while the adaptation
logic is defined in Π. At run-time adaptation actions will
be generated by policy evaluation and become part of the
process run by the component. We describe below the syntactic
categories of the programming constructs.

SYSTEMS aggregate components through the composition
operator, as in S1 ‖ S2 . It is possible to restrict the scope of
a name, say n, by using the name restriction operator (νn)S .

PROCESSES are the active computational units. Each pro-
cess is built up from the inert process nil via action prefix-
ing (a.P), nondeterministic choice (P1 + P2), (interleaved)
parallel composition (P1 | P2), process variable (X), and
parametrized process invocation (A(p̄)). Process variables can
support higher-order communication, namely the capability to
exchange (the code of) a process, and possibly execute it, by
first adding an item containing the process to a knowledge
repository and then retrieving/withdrawing this item while
binding the process to a process variable. We let A to range
over a set of parametrized process identifiers that are used in
recursive process definitions. We also assume that each process
identifier A has a single definition of the form A(f̄) , P ,
with p̄ and f̄ denoting lists of actual and formal parameters,
respectively.

Processes can perform five different types of ACTIONS.
Actions get(T)@c, qry(T)@c and put(t)@c are used
to manage shared knowledge repositories by withdraw-
ing/retrieving/adding information items from/to the knowledge
repository identified by c. These actions exploit templates T to
select knowledge items t in the repositories. Action fresh(n)
introduces a scope restriction for the name n thus this name
is guaranteed to be fresh, i.e. different from any other name
previously used. Action new(I,K,Π, P) creates a new com-
ponent I[K,Π, P]. Actions get and qry may cause the process
executing them to wait for the wanted item if it is not (yet)
available in the knowledge repository. The two actions differ
for the fact that get removes the found item from the target

repository while qry leaves the repository unchanged. Actions
put, fresh and new can be instead immediately executed.

In PSCEL, knowledge ITEMS are tuples, i.e. sequences
of values, while TEMPLATES are sequences of values and
variables. KNOWLEDGE repositories are then tuple spaces, i.e.
(possibly empty) multisets of tuples. Values within tuples can
either be destinations c, or processes P or, more generally,
can result from the evaluation of some given expression e. We
assume that expressions may contain attribute names, boolean,
integer, float and string values and variables, together with the
corresponding standard operators. To pick a tuple out from a
tuple space by means of a given template, the pattern-matching
mechanism is used: a tuple matches a template if they have
the same number of elements and corresponding elements have
matching values or variables; variables match any value of the
same type (?x and ?X are used to bind variables to values
and processes, respectively), and two values match only if they
are identical. If more tuples match a given template, one of
them is arbitrarily chosen.

Different entities may be used as the DESTINATION c of an
action. Notationally, n ranges over component names, while x
ranges over variables for names. The distinguished variable self
can be used by processes to refer to the name of the component
hosting them. The destination can also be a predicate P or
the name p, exposed as an attribute in the interface of the
component, of a predicate that may dynamically change. A
predicate is a boolean-valued expression obtained by applying
standard operators to the results returned by the evaluation of
relations between components’ attributes and expressions.

In actions using a predicate P to indicate the destination
(directly or via p), predicates act as ‘guards’ specifying all
components that may be affected by the execution of the
action, i.e. a component must satisfy P to be the target of
the action. Thus, actions put(t)@n and put(t)@P give rise
to two different primitive forms of communication: the former
is a point-to-point communication, while the latter is a sort
of group-oriented communication. The set of components
satisfying a given predicate P used as the destination of a
communication action can be considered as the ensemble with
which the process performing the action intends to interact.
For example, to dynamically characterise the members of an
ensemble that are located in the same area, say IMT , by
assuming that attribute location belong to the interface of any
component willing to be part of the ensemble, one can write
location = IMT .

In PSCEL, when an action is considered for execution,
a corresponding authorisation request is generated. This re-
quest is evaluated with respect to the policies in force at
the component willing to perform the action and at the
destination component(s). In particular, when the destination
of an action put denotes multiple repositories satisfying the
action predicate, each insertion in these repositories must be
authorised separately by each component; such evaluation,
however, does not affect the authorisation of the insertions in
the other destination repositories. Instead, in case of actions get
or qry, only one authorisation is required from the destination
side, since only one repository is selected for the interaction.
Thus, PSCEL policies regulate (intra- or inter-components)
interactions by simply enabling or disabling behaviours and by

POLICY AUTOMATA: Π ::= 〈A, π 〉

POLICIES: π ::= 〈α target : τ? rules : r+ obl : o∗ 〉
| {α target : τ? policies :π+ obl : o∗ }

COMBINING ALGORITHMS: α ::= deny-overrides | permit-overrides
| deny-unless-permit | permit-unless-deny
| first-applicable | only-one-applicable

RULES: r ::= (d target : τ? condition : be? obl : o∗)

DECISIONS: d ::= permit | deny

TARGETS: τ ::= f(pv ,sn) | τ ∧ τ | τ ∨ τ

MATCHING FUNCTIONS: f ::= equal | not-equal | greater-than
| less-than | greater-than-or-equal
| less-than-or-equal | pattern-match

OBLIGATIONS: o ::= [d s]

OBLIGATION ACTIONS: s ::= ε | a.s

TABLE II. POLICING CONSTRUCTS

dynamically adding new actions to components’ behaviours as
result of policies evaluation.

B. Constructs for policing autonomic computing systems

The policing constructs are presented in Table II. As a mat-
ter of notation, ? stands for optional elements, ∗ for (possibly
empty) sequences, and + for non-empty sequences. For the
sake of readability, whenever an element is missing, we also
omit the possibly related keyword; thus, e.g., we simply write
(d target : τ) in place of rule (d target : τ condition : obl :).

To explicitly represent the fact that the policies in force
at any given component can dynamically change while the
component evolves, we use a sort of automata somehow
reminiscent of the security automata [25]. Thus, a POLICY
AUTOMATON Π is a pair 〈A, π 〉, where:

• A is an automaton of the form 〈Policies,Targets, T 〉
where the set of states Policies contains all the
POLICIES that can be in force at different times, the set
of labels Targets contains the security relevant events
(expressed as TARGETS) that can trigger policy mod-
ification and the set of transitions T ⊆ (Policies ×
Targets × Policies) represents policy replacement.

• π ∈ Policies is the current state of A.

A POLICY is either an atomic policy 〈. . .〉 or a set of
policies {. . .}. An atomic policy (resp. policy set) is made of a
target, a set of rules (resp. policy/policy sets) combined through
one of the combining algorithms, and a set of obligations.

A TARGET indicates the authorisation requests to which a
policy/rule applies. It is either an atomic target or a pair of
simpler targets combined using the standard logic operators ∧
and ∨. An atomic target f(pv ,sn) is a triple denoting the appli-
cation of a matching function f to the policy value1 pv from
the policy and to policy values from the evaluation context
identified by the attribute (structured) name2 sn . In fact, an at-
tribute name refers to a specific attribute of the request or of the

1The set of policy values, besides the values that can be used within
evaluated knowledge items, also contains action identifiers (i.e., get, qry, put,
fresh and new), items and templates.

2A structured name has the form name/name, where the first name stands
for a category name and the second for an attribute name.

environment, which is available through the evaluation context.
In this way, an authorisation decision can be based on some
characteristics of the request, e.g. subjects’ or objects’ identity,
or of the environment, e.g. CPU load. For example, the target
greater-than(90%,subject/CPUload) matches whenever the
CPU load of the subject component is greater than 90%.
Similarly, the structured name action/action-id refers to the
identifier of the action to be performed (such as get, qry,
put, etc.) and, thus, the target equal(get,action/action-id)
matches whenever such action is the withdrawing one. In-
stead, for checking the content of the exchanged data in a
communication action, via a template T , we can use the target
pattern-match(T ,action/item).

Rules (. . .) are the basic elements for request evaluation.
A RULE defines the tests that must be successfully passed by
attributes for returning a positive or negative DECISION —
i.e. permit or deny — to the enclosing policy. This decision
is returned only if the target is ‘applicable’, i.e. the request
matches the target; otherwise the evaluation of the rule returns
not-applicable. Rule applicability can be further refined by
the CONDITION expression be, which permits more complex
calculations than those permitted in target expressions. be is
a boolean term of the expression language used for defining
item or template fields in Table I, extended with policy values
and structured names.

A COMBINING ALGORITHM computes the authorisation
decision corresponding to a given request by combining a
set of rules/policies’ evaluation results. PSCEL provides six
algorithms but, due to lack of space, here we only present
permit-unless-deny, which is used in the case study in Sec-
tion IV (and relegate the descriptions of the other algorithms
to [24]). If any rule/policy in the considered set evaluates
to deny, then the result of the combination returned by
permit-unless-deny is deny. Otherwise, the result of the com-
bination is permit (i.e., not-applicable is never returned).

An OBLIGATION is a sequence (ε denotes the empty one)
of actions that should be performed in conjunction with the
enforcement of an authorisation decision. It is returned when
the authorisation decision for the enclosing element, i.e. rule,
policy or policy set, is the same as the one attached to
the obligation. These actions correspond to, e.g., updating a
log file, sending a message, generating an event, setting an
attribute. For example, if an execution path is forbidden due to
unavailable resources, it can be needed to execute some other
actions to reconfigure systems resources. An OBLIGATION
ACTION is a process action which (with abuse of notation) may
also contain structured names that are fulfilled during request
evaluation. Thus, fulfilled obligation actions coincide with the
(process) actions of Table I. E.g., the obligation action

put(“taskEnd”, self, env/time)@(role = gateway)

could be fullfilled, w.r.t. a given request, as follows
put(“taskEnd”, self,Aug 26 14 : 42 : 28)@(role = gateway)

It can be used to notify the completion time of a task to all
components playing the gateway role.

To sum up, policies, and their evaluation, are hierarchically
structured as trees: the evaluation of leaf nodes, i.e. rules, re-
turn a ‘starting’ decision, permit, deny or not-applicable, while
the intermediate nodes, i.e. policy or policy sets, combine the
decisions and obligations returned by the evaluation of their

child nodes through the chosen combining algorithm. Policy
evaluation terminates when the root is reached producing a
decision and a sequence of obligations. This sequence consists
of fulfilled actions that will enforce the consequences resulting
from the authorisation process.

IV. PSCEL AT WORK ON A CLOUD CASE STUDY

We consider the High Load scenario from the Science
Cloud case study [26] defined in the ASCENS project [27].
The Science Cloud is a collection of notebooks, desktops,
servers, or virtual machines running the Science Cloud Plat-
form. Each (virtual) machine is running (usually) one Science
Cloud Platform instance (SCPi). Each SCPi is considered to
be a service component. Multiple SCPis communicate over the
Internet, thus forming a Cloud. We consider a small-size setup
of the Science Cloud where a group of SCPis is located at
IMT Lucca, another group at LMU Munich, and another one
(running on top of a mobile device) at the English Garden in
Munich. For each group, one stable member plays the role of
gateway, consisting in collecting information about the whole
Cloud and, if necessary, notifying the other members.

In the High Load scenario, a singleton application currently
runs on one of the SCPis at IMT Lucca, so no additional
instances of the application can be spawned in the Cloud. This
application runs alone on its node and experiences consistently
high CPU load. When the processing power is not enough to
fulfil the application requirements, an adaptivity decision is
made to instantiate a new Virtual Machine (VM) running a
SCPi. Once this VM is up and the enclosed SCPi has joined
the Science Cloud, the singleton application is moved there.

To illustrate the main features of PSCEL, we assume that
the considered singleton application behaves as follows: it
cyclically retrieves a task from the ensemble of SCPis located
in the same area, say IMT Lucca, executes it and sends the
result back to the task’s owner. Moreover, when it is moved
to the new VM, it sends a message to the ensemble made of
all those SCPis having a gateway role for communicating its
new locality to every nodes.

The whole scenario can be rendered as the following
PSCEL system

I1[K1,Π1, P1] ‖ . . . ‖ In[Kn,Πn, Pn]

where each component represents an SCPi of the Cloud. Let us
consider the component I1[K1,Π1, P1] corresponding to the
SCPi where the considered singleton application is running.
The application is modelled as the following process3:

P1 , get(“task”, ?taskId, ?owner, ?X)@(location=IMT).
(X | get(“result”, ?res)@self.

put(“result”, taskId, res)@owner. P1)

The process performs a group-oriented get to (non-
deterministically) retrieve a task from a member of the en-
semble of SCPis within the IMT area. This ensemble is
dynamically determined when the action is executed and
consists of all components that expose in their interface the
location attribute with value IMT . A task is any process Q,
stored in a tuple of the form 〈“task”, taskId, owner,Q〉, that

3For the sake of simplicity, the first component is running only the consid-
ered singleton application, while the others may run different applications.

terminates its execution by locally producing a tuple of the
form 〈“result”, res〉 storing the task result. Then, the process
P1 sends the retrieved task process (bound to the process
variable X) for execution and waits until it terminates. The
result is retrieved via a local get action and sent to the task’s
owner via a point-to-point put action, before restarting.

We assume that, other than id and location, the compo-
nents interface exposes the attribute CPUload . Its value is
considered to be high when it is greater than a given threshold,
i.e. 90%. CPUload stores a context information, updated by
the underlying infrastructure and ‘sensed’ by the component,
whose modification can trigger a self-adaptive behaviour.

The policy Π1 in force at the component is the pair 〈A, π〉,
where π is defined as follows:
〈 permit-unless-deny

rules : (deny target : equal(get,action/action-id)
∧ pattern-match((“task”, , ,),action/item)
∧ greater-than(90%,subject/CPUload)

obl : [deny fresh(n′).new(J ,K1,Π1, P1)])
obl : [deny put(“newVM”, self, n′)@(role = gateway)] 〉

where interface J is like I1 but for J .id = n′. Basically,
π says that a new task can be retrieved (via the first get
action) until subject/CPUload is less than, or equal to,
the threshold 90%. All other actions, including those per-
formed by the retrieved tasks, are always allowed (algorithm
permit-unless-deny). Note that choosing another algorithm
means that a different combining strategy is enforced, thus the
choice is application-dependent. Moreover, when a get action
attempts to retrieve a new task and the threshold is exceeded,
i.e. the policy evaluates to deny, three obligation actions are
returned by the policy evaluation. The first one is a fresh action
that generates a new identifier. This is used by the second
action, a new, that creates a new component J (corresponding
to the new VM) storing the same knowledge as I1, enforcing
the same policies and running the same singleton application.
The third one is a put action that notifies all SCPi having a
gateway role that a new VM machine has been created (the
identifiers of the old and new components are also specified).

Notably, π depends on the run-time value of attribute
CPUload . This means that PSCEL can express policies that
may depend on the value of some parameters and can thus
dynamically change according to the context. This is already
a form of dynamism; a more expressive form is obtained by
exploiting the fact that π is a state of the policy automaton A.
Indeed, A has two states: the initial ‘active’ state π, and the
‘passive’ state πoff defined as

〈 permit-unless-deny
rules : (deny target : equal(get,action/action-id)

∧ pattern-match((“task”, , ,),action/item)) 〉

and only one transition

π

equal(get,action/action-id)
∧ pattern-match((“task”, , ,),action/item)
∧ greater-than(90%,subject/CPUload) - πoff

The policy automaton ensures that whenever a new component
is created and the application is moved there, if the run-time
value of attribute CPUload of the ‘old’ component decreases
and becomes less than 90%, the application instance running
there cannot resume its execution (this is necessary because the
considered application is required to behave as a singleton).

More specifically, when the target of the rule specified within
π is matched, i.e. when the get action is blocked and the new
VM is created, the state of the automaton evolves to πoff ,
which always disallows the old component to retrieve new
tasks, regardless the value of attribute CPUload .

To sum up, when a task is retrieved and the threshold is
exceeded, the system performs a computation step according
to the obligations produced; thus the component I1 evolves to:

I1[K1, 〈A, πoff 〉,
(fresh(n′).new(J ,K1,Π1, P1).
put(“newVM ”, self, n′)@(role = gateway). P1)]

The three process actions produced as obligations by the
evaluation are prefixed to the continuation P1 of the process
running at the component. This ensures that the actions will
be executed before the execution of the process may resume
(in our case, this latter event is prevented by the new enforced
policy πoff). We refer to [24] for the PSCEL specification of
a variant of this scenario.

V. CONCLUDING REMARKS AND FUTURE DIRECTIONS

We have presented PSCEL, a novel language for program-
ming and policing autonomic computing systems, that relies
not only on programming constructs but also on declarative
policies to easily express adaptation strategies. In PSCEL
the policy-based concepts, emerged from different research
fields, are integrated with the notion of ensemble à la SCEL.
PSCEL with respect to SCEL specifies a particular policy
language and introduces the concept of obligations for enforc-
ing adaptation. One advantage of the proposed approach is the
‘separation of concerns’: components functionalities are taken
apart from adaptation rules, thus providing flexible system
abstractions and various modelling strategies. Moreover, the
formal semantics lays the basis for developing logics, tools
and methodologies to formally reason, on the one hand, on
systems behaviour for establishing qualitative and quantitative
properties and, on the other hand, on adaptation policies for
predicting and validating adaptation actions to perform.

As future work, we plan to improve the practical applicabil-
ity of PSCEL by introducing an UML-profile for developing
policies and interactions among autonomic components. To
assess the potentialities of PSCEL we also plan to consider
other application domains and case studies among those de-
veloped within the ASCENS project, concerning cooperative
e-vehicles and robot swarms. We also want to develop a
run-time environment for PSCEL, by relying on the jRESP
framework [28] that already provides a SCEL implementation.

ACKNOWLEDGEMENTS

This work has been partially sponsored by the EU project ASCENS
(257414) and by the MIUR PRIN project CINA (2010LHT4KM).

REFERENCES

[1] D. Weyns and T. Holvoet, “An Architectural Strategy for Self-Adapting
Systems,” in SEAMS. IEEE, 2007, p. 3.

[2] J. O. Kephart and D. M. Chess, “The Vision of Autonomic Computing,”
Computer, vol. 36, pp. 41–50, 2003.

[3] M. Dastani, “2APL: a practical agent programming language,” Au-
tonomous Agents and Multi-Agent Systems, vol. 16, no. 3, pp. 214–248,
2008.

[4] M. P. Ashley-Rollman, S. C. Goldstein, P. Lee, T. C. Mowry, and
P. Pillai, “Meld: A declarative approach to programming ensembles,”
in IROS. IEEE, 2007, pp. 2794–2800.

[5] N. Khakpour, S. Jalili, C. L. Talcott, M. Sirjani, and M. R. Mousavi,
“Formal modeling of evolving self-adaptive systems,” Sci. Comput.
Program., vol. 78, no. 1, pp. 3–26, 2012.

[6] I. Lanese, A. Bucchiarone, and F. Montesi, “A framework for rule-based
dynamic adaptation,” in TGC, ser. LNCS 6084. Springer, 2010, pp.
284–300.

[7] J.-P. Banâtre, Y. Radenac, and P. Fradet, “Chemical Specification of
Autonomic Systems,” in IASSE. ISCA, 2004, pp. 72–79.

[8] R. De Nicola, M. Loreti, R. Pugliese, and F. Tiezzi, “SCEL: a language
for autonomic computing,” Univ. Firenze, Tech. Rep., 2013, http://rap.
dsi.unifi.it/scel/pdf/SCEL-TR.pdf.

[9] R. De Nicola, G. Ferrari, M. Loreti, and R. Pugliese, “A Language-
based Approach to Autonomic Computing,” in FMCO 2011, ser. LNCS
7542. Springer, 2012, pp. 25–48.

[10] N. Damianou, N. Dulay, E. Lupu, and M. Sloman, “The Ponder Policy
Specification Language,” in POLICY, ser. LNCS 1995. Springer, 2001,
pp. 18–38.

[11] IBM, “Autonomic Computing Policy Language - ACPL,” http://www.
ibm.com/developerworks/tivoli/tutorials/ac-spl/.

[12] A. Margheri, M. Masi, R. Pugliese, and F. Tiezzi, “A Formal Software
Engineering Approach to Policy-based Access Control,” Univ. Firenze,
Tech. Rep., 2013, http://rap.dsi.unifi.it/facpl/research/Facpl-TR.pdf.

[13] OASIS XACML TC, “eXtensible Access Control Markup Language
(XACML) version 3.0,” September 2012.

[14] M. Winikoff, “Jacktm intelligent agents: An industrial strength plat-
form,” in Multi-Agent Programming, ser. Multiagent Systems, Artificial
Societies, and Simulated Organizations 15. Springer, 2005, pp. 175–
193.

[15] F. L. Bellifemine, G. Caire, and D. Greenwood, Developing Multi-Agent
Systems with JADE, ser. Wiley Series in Agent Technology. John Wiley
& Sons, 2007.

[16] P. McKinley, S. Sadjadi, E. Kasten, and B. H. C. Cheng, “Composing
adaptive software,” Computer, vol. 37, no. 7, pp. 56–64, 2004.

[17] E. Bruneton, T. Coupaye, M. Leclercq, V. Quéma, and J.-B. Stefani,
“The FRACTAL component model and its support in Java,” Softw.,
Pract. Exper., vol. 36, no. 11-12, pp. 1257–1284, 2006.

[18] G. Salvaneschi, C. Ghezzi, and C. Pradella, “Context-Oriented Program-
ming: A Programming Paradigm for Autonomic Systems,” CoRR, vol.
abs/1105.0069, 2011.

[19] R. Hirschfeld, P. Costanza, and O. Nierstrasz, “Context-oriented pro-
gramming,” Journal of Object Technology, vol. 7, no. 3, pp. 125–151,
2008.

[20] M. Appeltauer, R. Hirschfeld, M. Haupt, J. Lincke, and M. Perscheid,
“A comparison of context-oriented programming languages,” in COP.
ACM, 2009, pp. 6:1–6:6.

[21] R. Hirschfeld, A. Igarashi, and H. Masuhara, “ContextFJ: a minimal
core calculus for context-oriented programming,” in FOAL. ACM,
2011, pp. 19–23.

[22] P. Degano, G. Ferrari, L. Galletta, and G. Mezzetti, “Types for coordi-
nating secure behavioural variations,” in COORDINATION, ser. LNCS
7274. Springer, 2012, pp. 261–276.

[23] M. Sloman, “Policy driven management for distributed systems,” J.
Network Syst. Manage., vol. 2, no. 4, pp. 333–360, 1994.

[24] A. Margheri, R. Pugliese, and F. Tiezzi, “Linguistic abstractions for pro-
gramming and policing autonomic computing systems,” Univ. Firenze,
Tech. Rep., 2013, http://rap.dsi.unifi.it/scel/pdf/PSCEL-TR.pdf.

[25] F. B. Schneider, “Enforceable security policies,” ACM Trans. Inf. Syst.
Secur., vol. 3, no. 1, pp. 30–50, 2000.

[26] P. Mayer, C. Kroiss, and J. Velasco, “Specification: The Science Cloud
Case Study,” ASCENS Tech. Rep., 2012, http://svn.pst.ifi.lmu.de/trac/
scp/raw-attachment/wiki/WikiStart/CloudCaseStudySpecV1.pdf.

[27] EU project ASCENS, “Autonomic service-component ensembles,” http:
//www.ascens-ist.eu/.

[28] M. Loreti, “jRESP,” http://jresp.sourceforge.net.

