
On Programming and Policing
Autonomic Computing Systems ?

M. Loreti1, A. Margheri1,2, R. Pugliese1, and F. Tiezzi3

1 Università degli Studi di Firenze, Viale Morgagni, 65 - 50134 Firenze, Italy
2 Università di Pisa, Largo Bruno Pontecorvo, 3 - 56127 Pisa, Italy

3 IMT Advanced Studies Lucca, Piazza S. Francesco, 19 - 55100, Lucca, Italy

Abstract. To tackle the complexity of autonomic computing systems
it is crucial to provide methods supporting their systematic and princi-
pled development. Using the PSCEL language, autonomic systems can
be described in terms of the constituent components and their reciprocal
interactions. The computational behaviour of components is defined in a
procedural style, by the programming constructs, while the adaptation
logic is defined in a declarative style, by the policing constructs. In this
paper we introduce a suite of practical software tools for programming
and policing autonomic computing systems in PSCEL. Specifically, we
integrate a Java-based runtime environment, supporting the execution
of programming constructs, with the code corresponding to the policing
ones. The integrated, semantic-driven framework also permits simulat-
ing and analysing PSCEL programs. Usability and potentialities of the
approach are illustrated by means of a robot swarm case study.

Keywords: Autonomic systems, Semantic-driven development tools,
Robot swarms

1 Introduction

Autonomic computing systems [1] are self-managing computing systems, capable
of autonomously adapting to unpredictable changes in order to achieve desired
behaviours, while hiding at the same time intrinsic complexity to users. Since
their first appearance they are becoming more common and integrated with a
variety of other heterogeneous and interactive systems. The resulting systems
usually include massive numbers of components, featuring complex interactions
in open and non-deterministic environments. To enable systematic and principled
development of autonomic computing systems it is then crucial to provide high
level, linguistic abstractions – capable of describing how the different components
are brought together to form the overall system architecture – together with a
clear identification of the adaptation logic and an unambiguous account of the
semantics.

? This work has been partially sponsored by the EU project ASCENS (257414) and
by the Italian MIUR PRIN project CINA (2010LHT4KM).

In this paper we introduce some software tools for programming and policing
autonomic computing systems in PSCEL (Policed SCEL) [2]. This is a language
with a formally defined semantics which results from the integration of SCEL
and FACPL. SCEL [3] is one of the many languages for programming autonomic
computing systems that have been proposed in the literature (see e.g. [4,5,6,7,8]).
In SCEL, autonomic systems are programmed in terms of the constituent com-
ponents and their reciprocal interactions. Components result from the aggrega-
tion of knowledge and behaviours, according to some policies. Knowledge acqui-
sition and behaviour manipulation allow components to self-adapt. Ensembles of
components are dynamically formed and referred to in communication actions
by means of predicates over component attributes. These latter ones describe
components’ public features such as identity, functionalities, spatial coordinates,
trust level, etc. that may dynamically change. FACPL [9,10] is a simple, yet
expressive, language for defining access control, resource usage and adaptation
policies. Policy specifications are intuitive and easy to maintain because of their
declarative nature, therefore policy languages (see e.g. [11,6,12]) are receiving
much attention in many research fields. In FACPL, policies are sets of rules spec-
ifying strategies, requirements, constraints, guidelines, etc. about the behaviour
of systems and their components.

PSCEL appropriately integrates the linguistic abstractions of the two lan-
guages on which it is based. It is thus possible to develop autonomic computing
systems in terms of software components capable of adapting their behaviour for
reacting to new requirements or environment changes. For example, it is possible
to define policies implementing adaptation strategies by exploiting specific ac-
tions that are produced at runtime as an effect of policy evaluation and are used
to modify the behaviour of components. Moreover, policies can depend on the
values of components’ attributes (reflecting the status of components and their
environment) and can be dynamically replaced as a reaction to system changes.
Dynamically changing policies are indeed a powerful means for controlling, in a
natural and clear way, the evolution of autonomic systems having a very high
degree of dynamism, which in principle would be quite difficult to manage.

According to the separation of concerns principle, PSCEL design decouples
the functional aspects from the adaptation ones. In fact, the application logic
generating the computational behaviour of components is defined in a procedural
style, by the programming constructs, while the adaptation logic is defined in
a declarative style, by the policing constructs. At run-time, as clarified by the
language operational semantics [13] and by the description of the supporting
Java runtime environment (see Section 4), the adaptation actions generated by
policy evaluation will be executed as part of components’ behaviour.

The two languages at the basis of PSCEL come equipped with specific soft-
ware tools providing development and run-time support to SCEL systems and
FACPL policies, separately. In particular, SCEL programs can be executed and
simulated in the jRESP environment. This environment provides an API allow-
ing Java programs to use the SCEL linguistic constructs for controlling the
computation and interaction of autonomic components, and for defining the ar-

2

Systems: S ::= I[K, Π, P] | S1 ‖ S2 | (νn)S

Processes: P ::= nil | a.P | P1 + P2 | P1 | P2 | X | A(p̄)

Actions: a ::= get(T)@c | qry(T)@c | put(t)@c | fresh(n)

| new(I,K, Π, P)

Destinations: c ::= n | x | self | P | p

Knowledge: K ::= ∅ | 〈t〉 | K1 ‖ K2

Items: t ::= e | c | P | t1, t2
Templates: T ::= e | c | ?x | ?X | T1, T2

Table 1.Programming constructs (Policies Π are in Table 2)

chitecture of systems and ensembles. jRESP API serves as a guidance to assist
programmers in the implementation of autonomic systems, which turns out to
be simplified with respect to using ‘pure’ Java. Finally, jRESP provides specific
components that can be used to simulate and analyze SCEL programs. The de-
velopment and the enforcement of FACPL policies, instead, are supported by an
Eclipse IDE and a Java library for the policy evaluation process. Once the desired
policies have been written with the IDE, they can be automatically transformed
in Java classes according to the rules defining the FACPL’s semantics.

The main contribution of this work is the definition of a practical tool suite
supporting the development, execution, simulation and analysis of PSCEL pro-
grams. This is based on the integration of the Java code resulting from FACPL
policies with the jRESP code corresponding to a SCEL system. In the integrated
code, FACPL classes are invoked for authorizing interactions among components,
while jRESP code is able to modify its workflow for executing the adaptation ac-
tions returned by policies evaluation. Usability and potentialities of this approach
are illustrated by means of a simple, yet illustrative, case study of autonomic
computing borrowed from the robotics domain. We show a complete specification
of the case study, together with its simulation and analysis through jRESP.

The rest of the paper is organized as follows. Section 2 briefly reports the
syntax of PSCEL. Section 3 presents the PSCEL specification of two scenarios
of the robotics case study. Section 4 presents the development tools; it also
describes the main features of jRESP and shows how it can be used to execute,
as Java code, the PSCEL specification of the scenarios. Section 5 reviews more
strictly related work. Finally, Section 6 concludes the paper by touching upon
directions for future work.

2 PSCEL Syntax

In this section we review the syntax of PSCEL in two steps, by introducing
first the constructs for programming autonomic computing systems and then the
constructs for policing their behaviour. We also informally present the semantics
of the different constructs (the interested reader is referred to [13] for a formal
account of the semantics).

The constructs for programming autonomic computing systems are presented
in Table 1. The key notion is that of component I[K, Π, P] that consists of:

3

– An interface I publishing and making available structural and behavioural
information about the component itself in the form of attributes, i.e. names
acting as references to information stored in the component’s repository.

– A knowledge repository K managing component’s data.
– A set of policies Π regulating the interaction with other components.
– A process P , together with a set of process definitions.

It is worth noticing that there is a clear separation of concerns: the normal
computational behaviour of a component is defined in the process P , while the
adaptation logic is defined in the policies Π. At runtime, the adaptation actions
generated by the policy evaluation will be executed, of course, as part of the
component’s process.

We describe below the syntactic categories of the language.
Systems aggregate components through the composition operator, as in S1 ‖

S2 . It is also possible to restrict the scope of a name, say n, by using the name
restriction operator (νn)S .

Processes are the active computational units. Each process is built up
from the inert process nil via action prefixing (a.P), nondeterministic choice
(P1 + P2), (interleaved) parallel composition (P1 | P2), process variable (X), and
parametrized process invocation (A(p̄)). Process variables can support higher-
order communication, namely the capability to exchange (the code of) a pro-
cess, and possibly execute it, by first adding an item containing the process to a
knowledge repository and then retrieving/withdrawing this item while binding
the process to a process variable. We let A to range over a set of parametrized
process identifiers that are used in recursive process definitions. We also assume
that each process identifier A has a single definition of the form A(f̄) , P , with
p̄ and f̄ denoting lists of actual and formal parameters, respectively.

Processes can perform five different types of actions. Actions get(T)@c,
qry(T)@c and put(t)@c are used to manage shared knowledge repositories by
withdrawing/retrieving/adding information items from/to the knowledge repos-
itory identified by c. These actions exploit templates T to select knowledge items
t in the repositories. Action fresh(n) introduces a scope restriction for the name
n thus this name is guaranteed to be fresh, i.e. different from any other name
previously used. Action new(I,K, Π, P) creates a new component I[K, Π, P].
Actions get and qry may cause the process executing them to wait for the
wanted item if it is not (yet) available in the knowledge repository. The two
actions differ for the fact that get removes the found item from the target
repository while qry leaves the repository unchanged. Actions put, fresh and
new can be instead immediately executed.

Knowledge items are tuples, i.e. sequences of values, while templates are se-
quences of values and variables. Knowledge repositories are then tuple spaces,
i.e. (possibly empty) multisets of tuples. Values within tuples can either be des-
tinations c, or processes P or, more generally, can result from the evaluation
of some given expression e. We assume that expressions may contain attribute
names, boolean, integer, float and string values and variables, together with the
corresponding standard operators. To pick a tuple out from a tuple space by

4

means of a given template, the pattern-matching mechanism is used: a tuple
matches a template if they have the same number of elements and correspond-
ing elements have matching values or variables; variables match any value of
the same type (?x and ?X are used to bind variables to values and processes,
respectively), and two values match only if they are identical. If more tuples
match a given template, one of them is arbitrarily chosen.

Different entities may be used as the destination c of an action. As a matter
of notation, n ranges over component names, while x ranges over variables for
names. The distinguished variable self can be used by processes to refer to the
name of the component hosting them. The destination can also be a predicate P
or the name p, exposed as an attribute in the interface of the component, of a
predicate that may dynamically change. A predicate is a boolean-valued expres-
sion obtained by applying standard operators to relations between components
attributes and expressions.

In actions using a predicate P to indicate the destination (directly or via
a name p), predicates act as ‘guards’ specifying all components that may be
affected by the execution of the action, i.e. a component must satisfy P to be
the target of the action. Thus, actions put(t)@n and put(t)@P give rise to two
different primitive forms of communication: the former is a point-to-point com-
munication, while the latter is a sort of group-oriented communication. The set
of components satisfying a given predicate P used as the destination of a com-
munication action can be considered as the ensemble with which the process
performing the action intends to interact. For example, to dynamically charac-
terize the members of an ensemble that have the same role, say landmark , by
assuming that attribute role belongs to the interface of any component willing
to be part of the ensemble, one can write role=“landmark”.

Each action is executed only if it is authorized by the policies in force at
the component willing to perform the action. The policies define authorization
predicates, to grant or forbid actions, and obligations, i.e. actions that should
be performed in conjunction with the enforcement of an authorization decision.
They correspond to, e.g., updating a log file, sending a message, generating an
event, setting an attribute. For example, if an action is forbidden due to unavail-
able resources, it can be needed to execute some other actions to reconfigure
system’s resources.

The constructs for policing autonomic computing systems are presented in
Table 2. Notationally, symbol ? stands for optional elements, ∗ for (possibly
empty) sequences, and + for non-empty sequences. For the sake of readability,
whenever an element is missing, we also omit the possibly related keyword; thus,
e.g., we simply write (d target : τ) in place of rule (d target : τ condition : obl :).

A policy automaton Π explicitly represents the fact that the policies
in force at any given component can dynamically change while the component
evolves. It is a pair 〈A, π 〉, where

– A is an automaton of the form 〈Policies,Targets, T 〉 where the set of states
Policies contains all the policies that can be in force at different times,
the set of labels Targets contains the security relevant events (expressed as

5

Policy automata: Π ::= 〈A, π 〉
Policies: π ::= 〈α target : τ? rules : r+ obl : o∗ 〉

| {α target : τ? policies :π+ obl : o∗ }
Combining algorithms: α ::= deny-overrides | permit-overrides

| deny-unless-permit | permit-unless-deny
| first-applicable | only-one-applicable

Rules: r ::= (d target : τ? condition : be? obl : o∗)

Decisions: d ::= permit | deny

Targets: τ ::= f(pv ,sn) | τ ∧ τ | τ ∨ τ
Matching functions: f ::= equal | not-equal | greater-than

| less-than | greater-than-or-equal
| less-than-or-equal | pattern-match

Obligations: o ::= [d s]

Obligation actions: s ::= ε | a.s

Table 2. Policing constructs

targets) that can trigger policy modification and the set of transitions
T ⊆ (Policies × Targets × Policies) represents policy replacement.

– π ∈ Policies is the current state of A.

A Policy is either an atomic policy 〈. . .〉 or a set of policies {. . .}. An atomic
policy (resp. policy set) is made of a target, a set of rules (resp. policy/policy
sets) combined through one of the combining algorithms, and a set of obligations.

A target indicates the authorization requests to which a policy/rule applies.
It is either an atomic target or a pair of simpler targets combined using the stan-
dard logic operators ∧ and ∨. An atomic target f(pv ,sn) is a triple denoting the
application of a matching function f to policy values pv from the policy and
to policy values from the evaluation context identified by attribute (structured)
names4 sn. In fact, an attribute name refers to a specific attribute of the request
or of the environment, which is available through the evaluation context. In this
way, an authorization decision can be based on some characteristics of the re-
quest, e.g. subjects’ or objects’ identity, or of the environment, e.g. presence of
charging stations. For example, the target less-than(10%,subject/batteryLevel)
matches whenever the battery level of the subject component is less than 10%.
Similarly, the structured name action/action-id refers to the identifier of the
action to be performed (such as get, qry, put, etc.) and, thus, the target
equal(qry,action/action-id) matches whenever such an action is the retrieving
one. Instead, for checking the content of the exchanged data in a communication
action, via a template T , we can use the target pattern-match(T ,action/item).

Rules (. . .) are the basic elements for request evaluation. A rule defines the
tests that must be successfully passed by attributes for returning a positive or
negative decision — i.e. permit or deny — to the enclosing policy. This decision
is returned only if the target is ‘applicable’, i.e. the request matches the target;
otherwise the evaluation of the rule returns not-applicable. Rule applicability can

4 A structured name has the form name/name, where the first name stands for a
category name and the second for an attribute name.

6

be further refined by the condition expression be, which permits more complex
calculations than those permitted in target expressions. be is a boolean term
of the expression language used for defining item or template fields in Table 1,
extended with policy values and structured names.

A combining algorithm computes the authorization decision correspond-
ing to a given request by combining a set of rules/policies’ evaluation results.
PSCEL provides six algorithms but, due to lack of space, here we only present
permit-unless-deny, which is used in the case study in Section 3 (the descrip-
tions of the other algorithms is reported in [13]): if any rule/policy in the con-
sidered set evaluates to deny, then the result of the combination returned by
permit-unless-deny is deny; otherwise, the result of the combination is permit
(i.e., not-applicable is never returned).

An obligation is a sequence (ε denotes the empty one) of actions that should
be performed in conjunction with the enforcement of an authorization decision.
It is returned when the authorization decision for the enclosing element, i.e. rule,
policy or policy set, is the same as the one attached to the obligation. An obliga-
tion action is a process action which (with abuse of notation) may also contain
structured names that are fulfilled during request evaluation. Thus, fulfilled obli-
gation actions coincide with the (process) actions defined in Table 1. For exam-
ple, the obligation [deny put(“direction”, env/station.x, env/station.y)@self]
could be fulfilled, w.r.t. a given request, as follows put(“direction”, 10, 13)@self.
It is used to set the robot’s direction towards the position (10, 13) corresponding
to the location of a charging station perceived in the robot’s environment.

3 PSCEL at Work on a Robot Swarm Case Study

In this section, we show the effectiveness of the PSCEL approach by modelling
a robot swarm case study [14] defined in the EU project ASCENS [15]. We
consider a scenario where a swarm of robots spreads throughout a given area
where some kind of disaster has happened. The goal of the robots is to locate
and rescue possible victims. As common in swarm robotics, all robots playing
the same role execute the same code. According to the separation of concerns
principle fostered by PSCEL, this code consists of two parts: (i) a process,
defining the functional behaviour; and (ii) a collection of policies, regulating the
interactions among robots and with their environment and generating the (adap-
tation) actions to react to specific (internal or environmental) conditions. This
combination permits conveniently designing and enacting a collaborative swarm
behaviour aiming at achieving the goal of rescuing the victims. We propose two
different scenarios of the disaster case study that differ for the capabilities of the
robots, mainly due to the availability of the GPS tracking system.

3.1 Scenario 1: different types of robot for different roles

The first scenario includes two different kinds of robots: landmarks and workers.
Landmarks randomly explore the area of the disaster looking for victims. When

7

WORKERS

LANDMARKS

VICTIM

robot
perception range

2

01

1

2

3

3

(a) (b) (c)

Fig. 1. Scenario 1: (a) scenario setting, (b) computational field creation, (c) computa-
tional field usage

a victim is found, its position is spread among landmarks, which stop to move.
In this way, on the basis of the landmarks’ positions and the information they
receive, it is generated a sort of computational field [16] leading workers to the
victim. Workers are the robots devoted to perform the actual rescuing task. They
are initially motionless and are activated by informed landmarks. A graphical
representation of the scenario, the creation of the computation filed and its use
are depicted in Figure 1. For the sake of simplicity, we consider here just one
victim and all workers go to rescue him when it is found. The scenario could be
accommodated to deal with more victims by organizing landmarks and workers
in different teams. We will deal with multiple victims in the next scenario.

This scenario can be modelled in PSCEL as

Landmark1 ‖ . . . ‖ Landmarkn ‖Worker1 ‖ . . . ‖Workerm

where Landmarki and Workerj are PSCEL components of the form
ILi [KLi , ΠL, PL] and IWj [KWj , ΠW , PW] modelling the two kinds of robots, re-
spectively. Notably, all landmarks (resp. workers) enforce the same policy ΠL

(resp. ΠW) and execute the same process PL (resp. PW).
In particular, the process run by a landmark is as follows

PL , (qry(“victimPerceived”, true)@self.
put(“victim”, self, 0)@self

+ qry(“victim”, ?id, ?d)@(role=“landmark”).
put(“victim”, self, d+ 1”)@self)

| RandomWalk | IsMoving

The landmark follows a random walk to explore the disaster area. To this aim,
the process RandomWalk randomly selects a direction that is followed until ei-
ther a wall is hit or a stop signal is sent to the wheels actuator. A landmark

8

stops when one of the following cases holds: (i) a victim is found (i.e., a tu-
ple victimPerceived with value true is retrieved via a qry action from the local
repository), or (ii) a message with the victim’s position is published by a robot
of the landmark ensemble. In the former case, the landmark starts the genera-
tion of the computational field, i.e. it publishes in its repository a victim tuple
indicating that it is at distance 0 (measured in terms of ‘number of hops’) from
the victim. In the latter case, instead, the robot non-deterministically retrieves
a victim tuple from one robot of the landmark ensemble (i.e., the group of robots
satisfying the predicate role=“landmark”) and locally publishes a victim tuple
with the distance increased by one. It is worth noticing that the robots’ range of
communication is limited and, hence, the accessed ensemble may not contain all
landmarks, but just the reachable ones. However, the range of communication is
not explicitly specified in the PSCEL code, as well as in the jRESP one. Indeed,
this is a physical constraint that will be only defined in the model of the physical
scenario used by the jRESP simulation environment (see Section 4.2).

To stop a landmark immediately after the execution of one of the two qry
actions, we define the following policy

〈 permit-unless-deny
rules : (permit target : equal(qry,action/action-id)

∧ (pattern-match((“victim”, ,),action/item)
∨ pattern-match((“victimPerceived”, true),action/item))

obl : [permit put(“stop”)@self]) 〉

The policy contains a positive rule, whose only purpose is to return the obligation
put(“stop”)@self when one of the qry actions is executed. This action requests
the wheels actuator to stop the movement.

The RandomWalk process calculates the random direction followed by the
landmark for exploring the arena. When the proximity sensor signals a possible
collision, by means of the tuple 〈“collision”, true〉, a new random direction is
calculated. This behaviour corresponds to the following PSCEL process

RandomWalk , put(“direction”, 2πrand())@self.
qry(“collision”, true)@self.RandomWalk

The process defines only the direction of the motion not the will of moving.
During the movement, in order to check the level of charge of the battery

and possibly halting the robot when the battery is low, we need to capture the
movement status. This information is represented by the tuple 〈“isMoving”〉,
produced by the wheels sensor, and monitored by the following process

IsMoving , qry(“isMoving”)@self.IsMoving

The reading of this datum is exploited by the following authorization rule (which
must be added to the landmark’s policy above)

(deny target : equal(qry,action/action-id)
∧ pattern-match((“isMoving”),action/item)
∧ less-than(10%,subject/batteryLevel)

obl : [deny put(“stop”)@self])

9

to generate a stop action when the battery level is lower than 10%. In such a case,
the robot will wait for new batteries and, eventually, restart the exploration.

Finally, the process for the worker is as follows

PW , qry(“victim”, ?id, ?d)@(role=“landmark”).
put(“start”)@self.
put(“direction”, towards(id))@self.
while(d > 0){d := d− 1.

qry(“victim”, ?id, d)@(role=“landmark”).
put(“direction”, towards(id))@self)}.

qry(“victimPerceived”, true)@self.
put(“rescue”)@self

When the information about the discovery of a victim is retrieved by a worker
(i.e., a victim tuple is read), the robot starts moving by following the direction
indicated by the computational field defined by the landmarks. When the victim
is reached, i.e. the tuple with distance 0 is read, the sensor perceives the victim
and the worker starts the rescuing procedure.

For the worker process we do not report here any policy. Such policies could
add additional actions when the worker is activated under specific conditions,
e.g. a camera could be turned on in case there is enough daylight.

3.2 Scenario 2: the same type of robot for two different roles

In the second scenario of the case study, we consider robots with the same
characteristics (in particular, all of them are equipped with a GPS tracking
system) and capable of playing both the explorer and rescuer role. Thus, using
its GPS, each robot can directly reach a given position (specified by coordinates
(x, y)) and avoid the use of the computational field as in the previous scenario.
A robot plays the explorer role during the exploration of the environment to
locate the victim position, and the rescuer role when it is moving to reach a
victim. Notably, the role changes according to the sensors and data values, e.g.
this happens when the robot is close to a victim that needs help.

Therefore, this second scenario is modelled as a set of components (Robot1 ‖
. . . ‖ Robotn), where Roboti has the form IRi

[KRi
, ΠR, PR]. Each robot ini-

tially plays the explorer role and possibly change it when victims are found. The
behaviour of a single robot corresponds to the following PSCEL process

PR , (qry(“victimPerceived”, true)@self.
put(“victim”, x, y, 3)@self.put(“rescue”)@self

+ get(“victim”, ?xv, ?yv, ?count)@(role=“rescuer”).HelpRescuer)
| RandomWalk | IsMoving

Besides the processes RandomWalk and IsMoving still present for managing the
movement, the robot recognises the presence of a victim by means of the qry
action, while it helps other robots for rescuing a victim by means of the get
action and according to the HelpRescuer process definition. When a victim is

10

found, an information about his position (retrieved by the attributes x and y
of the robot’s interface) and the number of other robots needed for rescuing
him (3 robots in our case, but a solution with a varying number can be easily
accommodated) is locally published.

The HelpRescuer process is defined as follows

HelpRescuer , if (count > 1) then { put(“victim”, xv, yv, count-1)@self }.
put(“direction”, xv, yv)@self.
qry(“position”, xv, yv)@self. put(“rescue”)@self

This process is triggered by a victim tuple retrieved from the rescuers ensemble
(see PR). The tuple indicates that additional robots (whose number is stored
in count) are needed at position (xv, yv) to rescue a victim. If more than one
robot is needed, a new victim tuple is published (with decremented counter).
Then, the robot, which became a rescuer, goes towards the victim position and,
once reaches him (i.e., the current position coincides with the victim’s one), it
starts the rescuing procedure. It is worth noticing that, if more victims are in the
scenario, different groups of rescuers will be spontaneously organised to rescue
them. To avoid that more than one group is formed for the same victim, we
assume that the sensor of an explorer used to perceive the victim is configured
so that a victim that is already receiving assistance by some rescuers is not
detected as a victim.

An explorer changes its role to rescuer when it finds a victim or helps other
rescuers. Each role corresponds to a different enforced policy, and the transition
triggering the policy change is defined as follows

Explorer

(equal(qry,action/action-id)
∧ pattern-match((“victimPerceived”, true),action/item))

∨ (equal(get,action/action-id)
∧ pattern-match((“victim”, , ,),action/item))

- Rescuer

Thus, the explorer policy change to the rescuer one either when a victimPerceived
tuple is read or when a victim tuple is consumed.

The policy enforced in the explorer state is as follows

〈 permit-unless-deny
rules : (permit target : equal(qry,action/action-id)

∧ pattern-match((“victimPerceived”, true),action/item))
obl : [permit put(“stop”)@self.put(role, “rescuer”)@self])

(deny target : equal(qry,action/action-id)
∧ pattern-match((“isMoving”),action/item)
∧ less-than(20%,subject/batteryLevel)

obl : [deny put(“direction”, env/station.x, env/station.y)@self])〉

The first rule stops the robot when a victim is found and changes the interface
attribute role to rescuer by means of the action put(role, “rescuer”)@self. The
second rule monitors the battery level and redirects the robot to the recharging
station when the level is low. Notably, with respect to the previous scenario, the

11

battery level is considered low when it is less than 20%, which should ensure
enough battery power to allow the explorer to reach the recharging station or to
rescue the victim, if he would be found in the meanwhile. We assume that each
robot can obtain the position of the charging station, which is retrieved here by
means of the interface attributes env/station.x and env/station.y.

The policy enforced in the rescuer status is instead as follows

〈 permit-unless-deny
rules : (permit target : equal(qry,action/action-id)

∧ pattern-match((“position”, ,),action/item))
obl : [permit put(“stop”)@self]) 〉

The policy, as previously, stops the robot when the victim is reached.

4 Deployment and simulation of PSCEL programs

jRESP5 is a Java runtime environment providing a framework for developing
autonomic and adaptive systems according to the SCEL paradigm. Specifically,
jRESP provides an API that permits using in Java programs the SCEL’s lin-
guistic constructs for controlling the computation and interaction of autonomic
components, and for defining the architecture of systems and ensembles.

Like SCEL, jRESP has been designed to accommodate alternative instanti-
ations of specific knowledge and policy managers that may change for tailoring
to different application domains.

A detailed description of the jRESP architecture and its basic features can be
found in [3]. In this section we will briefly present jRESP and its basic elements
and the specific classes we have implemented to integrate FACPL in jRESP. The
new classes, which specialize the jRESP architecture, have been included in a
specific package enabling the execution of PSCEL programs.

Components. PSCEL components are implemented via the class PscelNode.
Nodes are executed over virtual machines or physical devices providing access
to input/output devices and network connections. A node aggregates a tuple
space, a set of running processes, and a set of FACPL policies. Structural and
behavioural information about a node are collected into an interface via attribute
collectors. Nodes interact via ports supporting both point-to-point and group-
oriented communications.

Knowledge repository. Since PSCEL specializes the knowledge repositories
of SCEL’s components as tuple spaces, the version of jRESP considered here
provides an implementation of the interface Knowledge of PscelNodes. This is
the class TupleSpace that defines the methods for withdrawing/retrieving/adding
pieces of knowledge from/to repositories. Knowledge items are defined as tuples,
i.e. sequences of Objects, that can be collected into a knowledge repository. They
can be retrieved/withdrawn via pattern-matching through Templates, consisting
of a sequence of actual and formal TemplateFields.

5 jRESP website: http://jresp.sourceforge.net/.

12

External data can be collected into a knowledge repository via sensors. Each
sensor can be associated to a logical or physical device providing data that can
be retrieved by processes and that can be the subject of adaptation. Similarly,
actuators can be used to send data to an external device or service attached to a
node. This approach allows processes to control exogenous devices that identify
logical/physical actuators.

The interface associated to a node is computed by exploiting attribute collec-
tors. Each such collector is able to inspect the local knowledge and to compute
the value of the attributes. This mechanism equips a node with reflective ca-
pabilities allowing a component to self-project the image of its state on the
interface. Indeed, when the local knowledge is updated the involved collectors
are automatically activated and the node interface is modified accordingly.

Network Infrastructure. Each PscelNode is equipped with a set of ports for
interacting with other components. A port is identified by an address that can
be used to refer to other jRESP components. Indeed, each jRESP node can be
addressed via a pair composed of the node name and the address of one of its
ports. The abstract class AbstractPort implements the generic behaviour of a
port. It implements the communication protocol used by jRESP components to
interact with each other. The class AbstractPort also provides the instruments to
dispatch messages to components. However, in AbstractPort the methods used
for sending messages via a specific communication network/media are abstract.
Also the method used to retrieve the address associated to a port is abstract
in AbstractPort. The concrete classes defining specific kinds of ports extend Ab-
stractPort to provide concrete implementations of the above outlined abstract
methods, so to use different underlying network infrastructures (e.g., Internet,
Ad-hoc networks, . . .). An additional instance, named VitualPort, is used to
simulate nodes interaction within a single application without using a specific
network infrastructure. Indeed, VirtualPort implements a port where interactions
take place through a memory buffer.

Behaviours. Processes are implemented as threads via the abstract class Agent,
which provides the methods implementing the PSCEL actions. In fact, they
can be used for generating fresh names, for instantiating new components and
for withdrawing/retrieving/adding items from/to shared knowledge repositories.
The latter methods extend those considered in Knowledge with another param-
eter identifying either the (possibly remote) node where the target repository
is located or the group of nodes whose repositories have to be accessed. As
previously mentioned, group-oriented interactions are supported by the commu-
nication protocols defined in the node ports and by attribute collectors.

4.1 Integration of FACPL in jRESP

In jRESP policies are used to regulate the interaction between the different inter-
nal parts of components and their mutual interactions. Indeed, when a method of
an instance of the class Agent is invoked, its execution is delegated to the policy
associated to the node where the agent is running. The policy can then control

13

the execution of the action (for instance, by suspending a behaviour when some
access rights are missing) and, possibly, define additional behaviours. Different
kinds of policies can be easily integrated in jRESP by implementing the interface
IPolicy. Currently, two implementations of this latter interface are included in
jRESP: NodePolicy and PolicyAutomaton. NodePolicy is the policy enforced by
default in each node. It always allows any operations, thus directly delegating
the execution of each action to the associated node. PolicyAutomaton implements
instead a generic policy automaton Π (like those presented in Section 2). In
this way, transitions caused by the execution of agent actions can trigger changes
of the policies. In particular, a PolicyAutomaton consists of a set of PolicyStates,
each of which identifies the possible policies enforced in the node, and of a refer-
ence to the current state, which is used to evaluate agent actions with respect to
the current policies. This automaton can be easily integrated with various policy
languages, although here we focus on its integration with FACPL policies.

The full integration of FACPL in jRESP can be now achieved by consider-
ing the class FacplPolicyState that, by extending PolicyState, relies on the Java-
translated FACPL policies. This Java code is automatically obtained by using
the FACPL IDE available for the Eclipse platform from the FACPL website [17].

When a PolicyAutomaton receives a request for the execution of a given ac-
tion, first of all an AutorisationRequest is created. This is the object identifying
the PSCEL action the node wants to perform, thus it provides information
about the kind of action performed, its argument, its target and the list of at-
tributes currently published in the node interface. The created AuthorizationRe-
quest is then evaluated with respect to the current policy state via the (abstract)
method evaluate(AutorisationRequest r) defined in the class PolicyState. In the
class FacplPolicyState this method delegates the authorization to the referred
FACPL policy. The method returns an instance of the class AuthorisationRe-
sponse, which contains a decision, i.e. permit or deny, and a set of obligations.
The latter ones are rendered as a sequence of Actions that must be performed
just after the completion of the requested action. Hence, if the decision is per-
mit, the requested action is completed as soon as the obligations are executed.
Instead, if the decision is deny, the requested action cannot be performed. In
this case, first the obligations possibly returned along with the decision must be
executed, then a new AutorisationRequest is created and evaluated in order to
establish executability of the requested action.

Finally, the evaluation of a request by a PolicyAutomaton can trigger an
update of its current state. Indeed, for each state, a sequence of transitions
are stored in the automaton. These are instances of the class PolicyAutomaton-
Transition that provides two methods: apply(AutorisationRequest r): boolean and
nextState(): PolicyState. A transition is enabled if the first method returns true.
The next state is then obtained by invoking nextState() on the first enabled
transition. If no transition is enabled, the current state is not changed.

In the first scenario of Section 3 the PolicyAutomaton associated to each
PscelNode contains only a single state; this is the FacplPolicyState that inter-
acts with the considered Java-translated FACPL policies. Instead, in the second

14

scenario, the PolicyAutomaton consists of two states that enforce explorer and
rescuer behaviour, respectively. The PolicyAutomatonTransition associated in the
automaton to the explorer state is the following:

public class ExplorerToRescuer implements PolicyAutomatonTransition {
public boolean apply(AutorisationRequest req) {

return ((req.getActionId() == ActionID.QUERY)
&& (new Template(

new ActualTemplateField("VICTIM_PERCEIVED") ,
new ActualTemplateField(true)).match(req.getItem())))

||((req.getActionId() == ActionID.GET)
&& (new Template(

new ActualTemplateField("VICTIM") ,
new FormalTemplateField(Object.class) ,
new FormalTemplateField(Object.class) ,
new FormalTemplateField(Object.class)).match(req.getItem())));

}
public PolicyState nextState() { return new FacplPolicyState(new Policy Rescuer()); }

}

In the code above, Policy Rescuer is the Java-translated FACPL policy associated
to the policy presented at the end of Section 3.

4.2 Simulating robots in jRESP

To support analysis of adaptive systems specified in PSCEL, the jRESP envi-
ronment provides a set of classes that permits simulating jRESP programs. These
classes enable the execution of virtual components over a simulation environment
that can control component interactions and collect relevant simulation data. In
fact, although in principle jRESP code could be directly executed in real robots
(provided that a Java Virtual Machine is running on them and that jRESP’s
sensors and actuators invoke the API of the corresponding robots’ devices), this
may not be always possible. Therefore, jRESP also provides simulation facilities.

To set-up the simulation environment in jRESP one has first of all to define
a class that provides the machinery to manage the physical data of the scenario.
These data include, e.g., robots position, direction and speed. In our case, we
consider the class ScenarioArena that, in addition to the above mentioned data,
also provides the methods for updating robots position and computing collisions.
These methods are periodically executed by the jRESP simulation environment.
For the sake of simplicity, in the simulation, only collisions with the borders of
the arena are considered, while collisions among robots are ignored.

For both scenarios, in jRESP we consider a network of PscelNodes each of
which identifies a single robot. We assume that each robot/node is equipped with
sensors, like collision and victim detection sensors, which are used to retrieve
information about the state of the robot and of its working environment. All
the above mentioned sensors are built via the class ScenarioArena and permit to
directly access the data associated to the state of the simulated physical environ-
ment. Similarly, each instance of PscelNode modelling a robot is equipped with
actuators used to control robots movement, like direction and stop actuators.
Also these actuators are built via the class ScenarioArena and permit to update
the parameters of the simulated physical environment when the corresponding
data are received. For instance, when the RandomWalk process running at the

15

0 1000 2000 3000 4000 5000
Time steps (t)

0

0.2

0.4

0.6

0.8

1

Pr
ob

ab
ilit

y
(p

)

10 Landmarks
20 Landmarks
50 Landmarks
100 Landmarks

Fig. 2. Simulation and analysis of the first robot swarm scenario in jRESP

node corresponding to robot i produces a tuple of the form 〈“direction”, dir〉,
the local direction actuator sets to dir the direction of the robot i in the Scenar-
ioArena. This behaviour mimics the fact that in a real robot the actuator directly
interacts with the wheels controller.

Each PscelNode also executes the agents presented in the previous sections.
For instance, the RandomWalk process is rendered in jRESP as reported below:

public class RandomWalk extends Agent {
Random r = new Random();
public RandomWalk() { super("RandomWalk"); }
@Override
protected void doRun() throws IOException, InterruptedException{

while (true) {
double dir = r.nextDouble()∗2∗Math.PI;
put(new Tuple("direction" , dir) , Self.SELF);
query(new Template(new ActualTemplateField("COLLISION") ,

new ActualTemplateField(true)), Self.SELF);
}

}
}

By relying on the jRESP simulation environment, a prototype framework for
statistical model-checking has been also developed. A randomized algorithm is
used to verify whether the implementation of a system satisfies a specific prop-
erty with a certain degree of confidence. Indeed, the statistical model-checker is
parameterized with respect to a given tolerance ε and error probability p. The
used algorithm guarantees that the difference between the computed value and
the exact one is greater than ε with a probability that is less than p.

The model-checker included in jRESP can be used to verify reachability prop-
erties. These permit evaluating the probability to reach, within a given deadline,
a configuration where a given predicate on collected data is satisfied. In our first
scenario, this analysis technique is used to study how the number of landmark
robots affects the probability to reach the victim within a given deadline.

In Figure 2, we report a screenshot of the robots simulation (left-hand side)
and the results of the analysis (right-hand side). In the screenshot, a red semi-
circle represents the locations of the victim, while blue (dark grey in b/w print)
and green (light grey in b/w print) squares represent landmark and worker

16

robots, respectively. The analysis results are represented as a chart showing
the probability of rescuing the victim within a given time according to different
numbers of landmark robots (i.e., 10, 20, 50 and 100). Notably, the victim can
be rescued only after 2000 time steps and, beyond a certain threshold, increasing
the number of robots is not worthy (in fact, the difference in terms of rescuing
time between 100 and 50 robots is marginal with respect to the cost of deploying
a double number of robots).

5 Related work

Autonomic computing systems are currently studied within many research com-
munities. To deal with such systems different approaches have been advocated
both for programming them, like multi-agent systems, component-based design
and context-oriented programming, and for regulating their behavior, mainly
through policy languages. Below, we mention the most closely related works.

Multi-agent systems (as e.g. [18,19,4]) pursue the importance of the knowl-
edge representation and how it is handled for choosing adaptive actions. PSCEL,
instead, bases the knowledge repository implementation on tuple-spaces, which
is a more flexible and lightweight mechanism to, e.g., support adaptive context-
aware activities in pervasive computing scenarios.

Component-based design has been indicated as a key approach for adap-
tive software design [20]. A relevant example in this field is Fractal [21], a
hierarchical component model that, in addition to standard component-based
systems, permits defining systems with a less rigid structure by means of com-
ponents without completely fixed boundaries. However, communication among
components is still defined via connectors and system adaptation is obtained by
adding, removing or modifying components and/or connectors. Communication
and adaptation in PSCEL, instead, are more flexible, and, hence, more adequate
to deal with highly dynamic ensembles.

Another paradigm advocated to program autonomic systems [22] is Context-
Oriented Programming (COP) [23]. It exploits ad-hoc linguistic constructs to
define context-dependent behavioral variations and their run-time activation.
The most of the literature on COP is devoted to the design and implementa-
tion of concrete programming languages (a comparison can be found in [24]).
Only few works provide a foundational account, like e.g. [25], focussing on an
object-oriented language extended with COP facilities. All these approaches are
however quite different from ours, that instead focusses on distribution and
attribute-based aggregations and supports a highly dynamic notion of adap-
tation regulated by policies.

As concerns policy languages, many such languages have been recently devel-
oped for managing different aspects of programs’ behaviour as, e.g., adaptation
and autonomic computing. For example, a policy-based approach to autonomic
computing issues has also been proposed by IBM through a simplified policy
language [12], which, however, comes without a precise syntax and semantics.
[6] introduces PobSAM, a policy-based formalism that combines an actor-based

17

model, for specifying the computational aspects of system elements, and a con-
figuration algebra, for defining autonomic managers that, in response to changes,
lead the adaptation of the system configuration according to given adaptation
policies. This formalism relies on a predefined notion of policies expressed as
Event-Condition-Action (ECA) rules. Adaptation policies are specific ECA rules
that change the manager configurations. PSCEL constructs for defining policies,
being strictly integrated with a powerful autonomic programming language, is
more flexible and expressive permitting not only to produce adaptation actions,
but also authorisation controls and resource assignments. Moreover, the full in-
tegration of obligation actions with the programming constructs permits a run-
time code generation and, hence, enables more flexible adaptation strategies. A
policy language for which a number of toolkits have been developed and ap-
plied to various autonomous and pervasive systems is Ponder [11]. The language
uses two separate types of policies for authorisation and obligation. Policies of
the former type have the aim of establishing if an operation can be performed,
while those of the latter type basically are ECA rules. Differently from Ponder,
and similarly to more recent languages (e.g. XACML), in PSCEL obligations
are expressed as part of authorisation policies, thus providing a more uniform
specification approach.

Finally, the international standard XACML, which FACPL is inspired to,
defines policy specifications in XML format without a formal description of the
evaluation process. FACPL instead has a compact and intuitive syntax and is en-
dowed with a formal semantics based on solid mathematical foundations. These
features, as well as its supporting software tools, make FACPL easy to learn and
use. This motivates our choice of FACPL as policy language to be integrated
with the programming constructs provided by SCEL.

6 Conclusion

In this paper we tackled the issue of practically programming and policing auto-
nomic computing systems. To this aim, we propose the use of the formal language
PSCEL, which fosters an approach based on the ‘separation of concerns’ princi-
ple. Indeed, on the one hand, the behaviour of autonomic components and their
ensembles are programmed through the SCEL constructs. On the other hand,
the interactions between components and the adaptation actions to be performed
in reaction to changes in their working environment are regulated by means of
FACPL policies. From a practical perspective, SCEL specifications can be im-
plemented in Java by relying on the jRESP runtime environment, while FACPL
policies can be developed and automatically translated in Java by using a spe-
cific tool suite. The main contribution of this paper is the integration of these
Java-based tools in order to provide a uniform software framework for the de-
velopment and execution of PSCEL programs. In order to illustrate how jRESP
supports simulation and analysis of autonomic systems specified in PSCEL, we
have exploited a simple case study from the robotics domain.

18

As a future work, we plan to improve the practical applicability of the PS-
CEL approach by extending the Eclipse-based IDE for FACPL policies with the
possibility of defining SCEL specifications. In this way, an autonomic system will
be completely specified at high-level of abstraction using PSCEL’s constructs
and then automatically transformed in a Java application integrating the code
corresponding to SCEL behaviours and FACPL policies. Moreover, to assess
the potentialities of PSCEL tools, we also plan to consider other application
domains and case studies among those developed within the ASCENS project,
concerning cooperative e-vehicles and cloud systems.

References

1. Kephart, J.O., Chess, D.M.: The Vision of Autonomic Computing. Computer 36
(2003) 41–50

2. Margheri, A., Pugliese, R., Tiezzi, F.: Linguistic Abstractions for Programming
and Policing Autonomic Computing Systems. In: UIC/ATC, IEEE (2013) 404–409

3. De Nicola, R., Loreti, M., Pugliese, R., Tiezzi, F.: A formal approach to autonomic
systems programming: The SCEL language. ACM TAAS (2014) To appear.

4. Dastani, M.: 2APL: a practical agent programming language. Autonomous Agents
and Multi-Agent Systems 16(3) (2008) 214–248

5. Ashley-Rollman, M.P., Goldstein, S.C., Lee, P., Mowry, T.C., Pillai, P.: Meld: A
declarative approach to programming ensembles. In: IROS, IEEE (2007) 2794–2800

6. Khakpour, N., Jalili, S., Talcott, C.L., Sirjani, M., Mousavi, M.R.: Formal modeling
of evolving self-adaptive systems. Sci. Comput. Program. 78(1) (2012) 3–26

7. Lanese, I., Bucchiarone, A., Montesi, F.: A framework for rule-based dynamic
adaptation. In: TGC. LNCS 6084, Springer (2010) 284–300

8. Banâtre, J.P., Radenac, Y., Fradet, P.: Chemical Specification of Autonomic Sys-
tems. In: IASSE, ISCA (2004) 72–79

9. Margheri, A., Masi, M., Pugliese, R., Tiezzi, F.: A Formal Software Engineering
Approach to Policy-based Access Control. Technical report, Univ. Firenze (2013)
http://rap.dsi.unifi.it/facpl/research/Facpl-TR.pdf.

10. Masi, M., Pugliese, R., Tiezzi, F.: Formalisation and implementation of the
XACML access control mechanism. In: ESSoS. LNCS 7159, Springer (2012) 60–74

11. Damianou, N., Dulay, N., Lupu, E., Sloman, M.: The Ponder Policy Specification
Language. In: POLICY. LNCS 1995, Springer (2001) 18–38

12. IBM: Autonomic Computing Policy Language - ACPL http://www.ibm.com/

developerworks/tivoli/tutorials/ac-spl/.
13. Margheri, A., Pugliese, R., Tiezzi, F.: Linguistic Abstractions for Programming and

Policing Autonomic Computing Systems. Technical report, Univ. Firenze (2013)
http://rap.dsi.unifi.it/scel/pdf/PSCEL-TR.pdf.

14. N. Serbedzija et al.: Integration and simulation report for the Ascens case studies.
D7.3 (2013) http://www.pst.ifi.lmu.de/~mayer/papers/2013-11-30_D73.pdf.

15. EU project ASCENS: http://www.ascens-ist.eu/.
16. Mamei, M., Zambonelli, F., Leonardi, L.: Co-fields: A physically inspired approach

to motion coordination. IEEE Pervasive Computing 3(2) (2004) 52–61
17. FACPL website: http://rap.dsi.unifi.it/facpl

18. Winikoff, M.: Jacktm intelligent agents: An industrial strength platform. In:
Multi-Agent Programming. Volume 15. Springer (2005) 175–193

19

19. Bellifemine, F.L., Caire, G., Greenwood, D.: Developing Multi-Agent Systems with
JADE. Wiley Series in Agent Technology. John Wiley & Sons (2007)

20. McKinley, P., Sadjadi, S., Kasten, E., Cheng, B.H.C.: Composing adaptive soft-
ware. Computer 37(7) (2004) 56–64

21. Bruneton, E., Coupaye, T., Leclercq, M., Quéma, V., Stefani, J.B.: The FRACTAL
component model and its support in Java. Softw., Pract. Exper. 36(11-12) (2006)
1257–1284

22. Salvaneschi, G., Ghezzi, C., Pradella, C.: Context-Oriented Programming: A Pro-
gramming Paradigm for Autonomic Systems. CoRR abs/1105.0069 (2011)

23. Hirschfeld, R., Costanza, P., Nierstrasz, O.: Context-oriented programming. Jour-
nal of Object Technology 7(3) (2008) 125–151

24. Appeltauer, M., Hirschfeld, R., Haupt, M., Lincke, J., Perscheid, M.: A comparison
of context-oriented programming languages. In: COP, ACM (2009) 6:1–6:6

25. Hirschfeld, R., Igarashi, A., Masuhara, H.: ContextFJ: a minimal core calculus for
context-oriented programming. In: FOAL, ACM (2011) 19–23

20

