
Formalising Adaptation Patterns
for Autonomic Ensembles?

Luca Cesari1,4, Rocco De Nicola2, Rosario Pugliese1, Mariachiara Puviani3,
Francesco Tiezzi2, and Franco Zambonelli3

1 Università degli Studi di Firenze, Italy
2 IMT Advanced Studies Lucca, Italy

3 Università degli Studi di Modena e Reggio Emilia, Italy
4 Università di Pisa, Italy

Abstract. Autonomic behavior and self-adaptation in software can be
supported by several architectural design patterns. In this paper we illus-
trate how some of the component- and ensemble-level adaptation patterns
proposed in the literature can be rendered in SCEL, a formalism devised
for modeling autonomic systems. Specifically, we present a compositional
approach: first we show how a single generic component is modelled in
SCEL, then we show that each pattern is rendered as the (parallel) com-
position of the SCEL terms corresponding to the involved components
(and, possibly, to their environment). Notably, the SCEL terms corre-
sponding to the patterns only differ from each other for the definition of
the predicates identifying the targets of attribute-based communication.
This enables autonomic ensembles to dynamically change the pattern in
use by simply updating components’ predicate definitions, as illustrated
by means of a case study from the robotics domain.

1 Introduction

In the era of autonomic computing [1], where computer and software systems must
manage themselves and their components, (self-)adaptation is a key aspect of soft-
ware design. Self-adaptation is defined as the ability of a system to autonomously
adapt its behaviour and/or structure to dynamic operating conditions [2], so
as to preserve its capability of delivering the necessary services with acceptable
quality levels. It is a key feature for ensembles [3], namely open-ended, large-scale
and highly-parallel distributed systems, exhibiting complex interactions and
behaviours. In fact, research on self-adaptive systems is attracting more and more
attention among those interested in complex distributed systems [4].

Developers of autonomic ensembles have to understand and model not only
the functional needs of their systems but also their adaptation needs. In particular,
they have to check whether the provided models do offer the expected behaviour
or attentively whether they are correct with respect to given specifications.
At the same time, they have to identify the appropriate architectural schemes
? This work has been partially sponsored by the EU project ASCENS (257414).



2

for modelling individual components and the whole system as an ensemble of
components. The goal of such choice being the guarantee that the adopted
architectural scheme is instrumental for attesting that systems do self-adapt
without severely undermining their intended functional behaviours.

Building on the large body of work in the area and on our own experience
in the engineering of self-adaptive systems [5,6], we have previously identified
and framed a few adaptation patterns, i.e. key architectural patterns that could
be adopted to enforce self-adaptation at the level of individual components and
ensembles. Software adaptation can indeed benefit from reuse in a similar way that
designing software architectures has benefited from the reuse of software design
patterns [7]. We identified context-aware and controllable service components
(SCs) as the primitive entities to specify self-adaptive systems. In our view, a
SC is a well-delimited piece of software (component) that provides a well-defined
set of functionalities (services). This approach fits properly with all the software
engineering features, namely modularity and reusability, other than simplicity.

Relying on this primitive entities, we have framed the many schemes by
which feedback loops can be closed around individual SCs or ensembles of SCs,
in order to achieve autonomic self-adaptive behaviours [8]. It is, indeed, widely
recognized [9,10,11], especially in the MAPE-K architecture, that the capability
of self-adaptation in a system necessarily requires the existence of feedback loops.
This implies that, somehow, there exist means to inspect and analyse what is
happening in the system (at the level of SCs, SC ensembles or the environment in
which they are situated) and have components of the systems react accordingly.
Therefore, looking at how these feedback loops appear implicitly or explicitly
into SCs or into their ensembles, some categories of patterns can be identified.

Such analysis (extensively described in [12,13]) is still affected by two key
limitations. Firstly, the patterns are modelled only in a semi-formal way, via
UML diagrams and via a general description of the classes of self-adaptive goals
that each pattern can satisfy (as from the SOTA goal-oriented requirements
engineering approach [6]). It is then difficult to reason about the exact behaviour
and properties of such patterns [14]. Secondly, the issue of rendering the presented
patterns in some programming language is simply not considered at the moment.

In this paper, we address the above limitations by using SCEL [15], a for-
malism devised for modelling autonomic systems, to formalise both SCs of
an autonomic ensemble and the adaptation patterns they use. By exploiting
attributes associated to a component’s interface, we can build patterns of com-
munication that allow SCs to dynamically organise themselves into ensembles
and implement specific adaptation patterns. Predicates over such attributes are
used to specify the targets of communication actions, thus enabling a sort of
attribute-based communication. In this way, an ensemble is not a rigid fixed
network but rather a highly flexible structure where components linkages are
dynamically established according to the chosen adaptation pattern.

Our aim is thus twofold. On the one hand, we show how SCs can enact adapta-
tion by exploiting interfaces and attributes associated to them. On the other hand,
we formalise the adaptation patterns via a language with an operational semantics



3

that paves the way to reasoning about them. Our ultimate goal is to provide a
sound and uniform set of conceptual and practical guidelines and tools to drive
developers of SC ensembles in the engineered exploitation of such mechanisms at
the level of abstract system modelling, verification, and implementation.

Moreover, in this work we focus on system components’ linkage. These connec-
tions can change at run-time, thus e.g. enabling the dynamic transition from one
adaptation pattern to another, and we take advantage from the SCEL language
for modelling these modifications (as shown in Section 6). The components’ inter-
nal logic, comprehensive of their behaviour and feedback loops, is not specified
in this work because it plays no role in the modelling of adaptation patterns.

The rest of the paper is organised as follows. In Section 2, we introduce some
basic notions about service component interfaces and adaptation patterns, while
in Section 3 we review the main ingredients of SCEL. In Section 4, we show
how SCs and their environment are rendered in SCEL. These are then exploited
in Section 5 to express in SCEL the patterns introduced in Section 2, and in
Section 6 to model a robotics case study. Finally, in Section 7 we review some
strictly related work and in Section 8 we hint at directions for future work.

2 Service Components and Adaptation Patterns

We base our categorization of adaptation patterns on a very general model for
the interface of the primitive Service Component (SC). Therefore, we begin by
introducing some basic notions about SC interfaces and adaptation patterns.

SC interfaces help to better understand how SCs interact and propagate
adaptation. A generic SC interface has six ports:

– I - Input: for receiving service requests and responses;
– O - Output: for invoking services or replying to service requests;
– S - Sensor: for sensing the status of other components and of the environment;
– F - Effector: for adapting the behaviour of other components, thus acting as an

Autonomic Manager (AM), or for propagating adaptation in the environment;
– E - Emitter: for issuing status information to an AM;
– C - Control: for receiving adaptation orders from an AM.

Notably, the same port may be connected to more than one SC and some
ports of a given SC can be omitted whenever they do not play any role. In this
way, we can characterise families of typical components as exemplified in Figure 1.

Depending on the SC ports that are enabled and how they are interconnected,
different kinds of adaptation patterns can be obtained.

At the level of individual SCs, the categories of adaptation patterns are:

– Reactive SC : components able to react to environment’s changes and not
coupled with an explicit feedback loop; instead, such feedback loops exist
only implicitly in the interactions of the components with the environment
(as in reactive agent and component systems [16]).



4

Fig. 1. Examples of SC interfaces of self-adaptive service components, adaptable service
components, manager components, and adaptable manager components

– Autonomic SC : components explicitly coupled with an external feedback loop
that monitors and directs their behaviour (as in most autonomic computing
architectures [8,17]). This pattern is shown in Figure 2 (left), where the
autonomic manager AM and the service component SC are such that:
• SC has an interface appropriate for an adaptable service component;
• AM has an interface appropriate for an adaptable manager component;
• AM senses (along port S) whatever is emitted by SC (along port E);
• SC obeys (along port C) AM ’s control (along port F).

– Proactive SC : components that have an internal feedback loop to direct their
goal/utility-oriented behaviour (as in intelligent and goal-oriented agents [16]).
This pattern is shown in Figure 2 (right) and differs from the previous one
for the following points:
• the interfaces between SC and AM are encapsulated;
• AM also monitors SC’s input (along port I).

Instead, at the level of SC ensembles, the categories of patterns are:

– Centralised AM SCs Ensemble: ensembles in which the overall adaptive
behaviour is explicitly designed by means of specifically conceived interaction
patterns between components (e.g., choreographies or negotiations [18,19]),
and in which mutual interactions implies the existence of feedback loops.
This pattern is shown in Figure 3;

– P2P AMs SCs Ensemble: ensembles in which there exists a set of components
or “coded behaviours” that have the explicit goals of enforcing a global
feedback loop over the ensembles, i.e., of controlling and directing their
overall behavior (as in coordinated systems and electronic institutions [20]);

– Reactive Stigmergy SCs Ensemble: ensembles whose overall adaptive activities
are not explicitly engineered by design, but for which adaptiveness (and
feedback loops) emerges from the interaction of the components with a shared
environment (as in pheromone-based [16,21] and field-based [22] approaches).
This pattern is shown in Figure 4.

3 SCEL: Software Component Ensemble Language

SCEL (Software Component Ensemble Language) [15,23] is a language for pro-
gramming service computing systems in terms of service components aggregated



5

Fig. 2. Autonomic SC Pattern and Proactive SC Pattern

according to their knowledge and behavioural policies. The basic ingredient of
SCEL is the notion of (service) component I[K, Π, P ] that consists of:

1. An interface I publishing and making available structural and behavioural
information about the component itself in the form of attributes, i.e. names
acting as references to information stored the component’s repository. Among
them, attribute id is mandatory and is bound to the name of the component.

2. A knowledge repository K managing both application data and awareness data,
together with the specific handling mechanism. The knowledge repository of
a component stores also the information associated to its interface, which
therefore can be dynamically manipulated by means of the operations provided
by the knowledge repositories’ handling mechanisms.

3. policies Π regulating the interaction between the different internal parts of
the component and the interaction of the component with the others.

4. A process P , together with a set of process definitions that can be dynamically
activated. Processes in P execute local computations, coordinate interaction
with the knowledge repository or perform adaptation and reconfiguration.

The syntax of SCEL is presented in Table 1. Systems aggregate components
through the composition operator _ ‖ _ . It is also possible to restrict the scope
of a name, say n, by using the name restriction operator (νn)_ .

Processes are the active computational units. Each process is built up
from the inert process nil via action prefixing (a.P ), nondeterministic choice
(P1 +P2), controlled composition (P1[P2 ]), process variable (X), and parametrized
process invocation (A(p̄)). The construct P1[P2 ] abstracts the various forms of
parallel composition commonly used in process calculi (see [15] for further details).
Anyway, in this work, controlled composition will be interpreted as a standard
interleaving, which means that in case of parallel processes only one process at a



6

Systems S ::= I[K, Π, P ]
∣∣ S1 ‖ S2

∣∣ (νn)S

Processes P ::= nil
∣∣ a.P ∣∣ P1 + P2

∣∣ P1[P2 ]
∣∣ X ∣∣ A(p̄)

Actions a ::= get(T )@c
∣∣ qry(T )@c

∣∣ put(t)@c
∣∣ fresh(n)

∣∣ new(I,K, Π, P )

Targets c ::= n
∣∣ x ∣∣ self

∣∣ P
∣∣ p

Table 1. SCEL syntax (Knowledge K, Policies Π, Templates T , and Items t are
parameters of the language)

time can perform an action (the others stay still). Process variables can support
higher-order communication and enable a straightforward implementation of
adaptive behaviors [24]. Indeed, they permit to exchange (the code of) a process,
and possibly execute it, by first adding an item containing the process to a
knowledge repository and then retrieving/withdrawing this item while binding
the process to a process variable. We let A to range over a set of parametrized
process identifiers that are used in recursive process definitions. We assume that
each process identifier A has a single definition of the form A(f̄) , P , with p̄
and f̄ denoting lists of actual and formal parameters, respectively.

Processes can perform five different kinds of actions. Actions get(T )@c,
qry(T )@c and put(t)@c are used to manage shared knowledge repositories
by withdrawing/retrieving/adding information items from/to the knowledge
repository identified by c. These actions exploit templates T to select knowledge
items t in the repositories. They heavily rely on the used knowledge repository
and are implemented by invoking the handling operations it provides. Action
fresh(n) introduces a scope restriction for the name n so that this name is
guaranteed to be fresh, i.e. different from any other name previously used. Action
new(I,K, Π, P ) creates a new component I[K, Π, P ]. Actions get and qry may
cause the process executing them to wait for the wanted element if it is not (yet)
available in the knowledge repository. The two actions differ for the fact that get
removes the found item from the target repository while qry leaves the repository
unchanged. Actions put, fresh and new are instead immediately executed.

Different entities may be used as the target c of an action. As a matter of
notation, n ranges over component names, while x ranges over variables for
names. The distinguished variable self can be used by processes to refer to the
name of the component hosting them. The target can also be a predicate P or
the name p, exposed as an attribute in the interface of the component, of a
predicate that may dynamically change. A predicate is a standard boolean-valued
expression obtained by applying to the results returned by the evaluation of
relations between components’ attributes and expressions. We adopt the following
conventions about attribute names within predicates. If an attribute name occurs
in a predicate without specifying (via prefix notation) the corresponding interface,
it is assumed that this name refers to an attribute within the interface of the
object component (i.e., a component that is a target of the communication action).
Instead, if an attribute name occurring in a predicate is prefixed by the keyword
this, then it is assumed that this name refers to an attribute within the interface
of the subject component (i.e., the component hosting the process performing the



7

communication action). E.g., the predicate this.status = “sending” ∧ status =
“receiving” is satisfied when the status of the subject component is sending and
that of the object is receiving.

In actions using a predicate P to indicate the target (directly or via p),
predicates act as ‘guards’ specifying all components that may be affected by the
execution of the action, i.e. a component must satisfy P to be the target of the
action. Thus, actions put(t)@n and put(t)@P give rise to two different primitive
forms of communication: the former is a point-to-point communication, while
the latter is a sort of group-oriented communication. The set of components
satisfying a given predicate P used as the target of a communication action can be
considered as the ensemble with which the process performing the action intends
to interact. For example, the names of the components that can be members of
an ensemble can be fixed via the predicate id ∈ {n,m, o}. When an action has
this predicate as target, it will act on all components named n, m or o, if any.
Instead, to dynamically characterize the members of an ensemble that are active
and have a battery whose level is higher than low, by assuming that attributes
active and batteryLevel belong to the interface of any component willing to be
part of the ensemble, one can write active = “yes” ∧ batteryLevel > low.

4 Service Components and their Environment in SCEL

We now show how a generic SC is rendered in SCEL. Moreover, since most
scenarios and patterns involve the environment, we also point out how it can be
modelled in SCEL. Notably, the parallel composition between a generic SC and
the environment gives rise to the Reactive SC pattern introduced in Section 2.

Service Components. A generic SC is rendered in SCEL as a component
ISC [KSC , ΠSC , SC] with

ISC , {(id, sc), (role, “component”/“manager”/“environment”),
(controlFlag , “on”/“off ”), (emitterFlag , “on”/“off ”),
(inputFlag , “on”/“off ”), (outputFlag , “on”/“off ”),
(effectorFlag , “on”/“off ”), (sensorFlag , “on”/“off ”),
(pinput ,Pinput), (poutput ,Poutput), (pemitter ,Pemitter ),
(peffector ,Peffector ), . . .}

SC , Control [Sensor [Input [Emitter [Effector [Output [InternalLogic]]]]]]

The component exposes in its interface at least twelve attributes. The attribute
id indicates the name of the component, while role is used to define the role
of the SC in a pattern (it can take one of the values component, manager or
environment). Moreover, for each port, the interface contains a flag attribute
used to enable (value on) or disable (value off ) the port. Finally, four attributes,
i.e. pinput , poutput , pemitter , and peffector , are used to refer the predicates Pinput ,
Poutput , Pemitter and Peffector , respectively. These predicates can identify single
components or ensembles. Specifically, Pinput and Pemitter identify the compo-
nent(s) managing the considered SC, Poutput identifies the addressee(s) of the



8

output messages, and Peffector identifies the target of management actions (e.g.,
to enact adaptation), which can be either components or the environment.

The definition of action targets by means of attributes referring to predicates
permits dynamically changing the predicates regulating the communication among
SCEL components, which enables the dynamic transition from one adaptation
pattern to another. We will come back to this point in Section 6.

Each port of the SC is then represented in SCEL as a process PortName
that manages the data received or sent through the port and acts as a mediator
between the external world and the knowledge repository of the component. These
processes are executed in parallel with the process InternalLogic implementing
the internal logic. This latter process, as well as the knowledge KSC and the policy
ΠSC , are left unspecified because they do not play any role in the modelling of
adaptation patterns. The processes associated to the component’s ports follow.

Input. The input data port can receive requests from other components. Its
behaviour is expressed in SCEL as follows:

Input , qry(inputF lag, “on”)@self. get(“inputPort”, ?data, ?replyTo)@self.
put(“input”, data, replyTo)@self.
put(“inputPort”, data, replyTo)@pinput . Input

This process performs recursively the following behaviour. First, it checks the cor-
responding flag. If the port is enabled, it retrieves from the knowledge repository
of the component an item (tagged with “inputPort”) containing the input data
and a predicate and sends one copy of such informations (tagged with “input”)
to the component’s internal logic and one copy (tagged with “inputPort”) to
the input port of each component acting as a manager. Indeed, if the SC is
self-adaptive (see Figure 2, right-hand side), its manager(s) must access the
information received in input by the SC and, hence, the data received along
the input port must be replicated to the manager(s) input port; otherwise, the
forwarding of input messages is deactivated by simply setting the predicate
referred by pinput to false. The provided predicate, bound to variable replyTo,
will be used to respond to the requester(s).

Output. The output port is represented in SCEL as a process that fetches
messages (e.g., responses to service requests) and a predicate (identifying, e.g.,
service requesters) generated by the internal logic, sets this predicate as poutput

and sends the messages.

Output , qry(outputF lag, “on”)@self. get(“output”, ?data, ?recipients)@self.
get(poutput , ?oldOut)@self.put(poutput , recipients)@self.
put(“inputPort”, data)@poutput . Output

To guarantee a correct identification of the addressee(s), Output processes an
outgoing response message at a time and we assume that the predicate referred
by poutput can be modified only by this process. Notably, such assumption
only involves processes of the components’ internal logic, because the processes



9

associated to the other ports do not modify the predicate, and no adaptation
pattern prescribes a specific configuration for it. It is also worth noticing that,
in case the same requester sends more than one request simultaneously to the
component, the requester has to specify in the request data a correlation identifier
that will be then inserted into the response data in order to allow the requester
to properly correlate each response to the corresponding request.

Emitter. The emitter port is used to send awareness data to manager(s). The
corresponding process is similar to the previous one, except for the item tags and
the put’s predicate.

Emitter , qry(emitterF lag, “on”)@self. get(“emitter”, ?data)@self.
put(“sensorPort”, data)@pemitter . Emitter

Effector. The effector port is used to enact adaptation on the managed element
or to interact with the environment. The corresponding process is similar to the
emitter one, except for the item tags and the put’s predicate.

Effector , qry(effectorFlag , “on”)@self. get(“effector”, ?data)@self.
put(“controlPort”, data)@peffector . Effector

Sensor. The sensor port is used to sense the status of the component(s) managed
by the considered SC or to retrieve information from the environment. The
corresponding process gets the data coming from the sensor port and sends it to
the component’s internal logic:

Sensor , qry(sensorF lag, “on”)@self. get(“sensorPort”, ?data)@self.
put(“sensor”, data)@self. Sensor

Control. The control port is used to receive adaptation orders from manager(s).
The corresponding process is similar to the sensor one, except for the item tags.

Control , qry(controlFlag , “on”)@self. get(“controlPort”, ?data)@self.
put(“control”, data)@self. Control

Environment. Since many adaptation patterns involve the environment where
SCs are deployed, the environment must be modelled as well in SCEL in order to
get a complete specification of patterns. It can be rendered as one or more compo-
nents, whose precise definition may vary from one scenario to another. A generic
environment could be expressed, e.g., as a component IEnv[KEnv, ΠEnv, Env]
where its interface is defined as

IEnv , {(id, env), (role, “environment”), . . .}

and a possible sketch of the hosted process is

Env , . . . get(“controlPort”, ?data)@self . . .
. . . put(“sensorPort”,newData)@pemitter . . .



10

The environment component receives awareness data from components of the
system. Such components should be connected to the environment via their
effector and sensor ports, and have to use a predicate definition in their interface
such as (peffector , id = env). Moreover, the environment process provides data
to components through their sensor ports by means of the predicate referred
by pemitter , which dynamically selects the partner(s) of the communication.
E.g., if the environment has to communicate with only one component sc, the
predicate could be defined as (pemitter , id = sc). Instead, if the environment needs
to communicate data to all components of the considered system, it could be
used the predicate (pemitter , role = “component”). As another example, if the
environment must interact with a subset of the available components (e.g., those
that are currently active), the predicate becomes:

(pemitter , role = “component” ∧ status = “active”)

Finally, the environment could comprise multiple SCEL components, such as a
room containing various devices (wifi access points, temperature sensors, motion
sensors, etc.). In this scenario, each device is an environment component, thus an
SC interacting with this ‘smart ambient’ accesses the environment components
appropriate for each specific interaction. For example, the effector predicate is

(peffector , role = “environment” ∧ distance(this.x, this.y, x, y) <= range)

where (this.x, this.y) identifies the coordinates of the emitting SC, while (x, y)
identifies the coordinates of each environment component within a given range.

5 Adaptation Patterns in SCEL

We show now how the previous concepts can be used to express in SCEL some
of the patterns introduced in Section 2, that will be exploited in the case study
of Section 6. We refer to [25] for the SCEL models of the remaining patterns.

In SCEL every pattern results from the composition of the SCEL components
corresponding to the involved SCs, AMs and environment5, and by appropriately
tuning the predicate definitions and the interface’s attributes. We leave the
predicate referred by poutput unspecified because it is context-dependent. Notably,
for any pattern, processes SC and AM running in the SCEL components
corresponding to SCs and AMs, respectively, have always the following form:

Control [Sensor [Input [Emitter [Effector [Output [InternalLogic]]]]]]

Centralized AM SCs Ensemble.
Intent. Any SC needs an external feedback loop to adapt. All SCs need to share
knowledge and adaptation logic, so they are managed by the same AM.
Context. This pattern can be adopted when:
5 For the sake of presentation, here we model the environment as a single SCEL
component IEnv[KEnv, ΠEnv, Env] (see Section 4).



11

!"#$

%&'((%)$

"*+()*,$

%--%"(*)$ !%+!*)$

.&$

!"/$

%&'((%)$"*+()*,$

!%+!*)$%--%"(*)$

%--%"(*)$ !%+!*)$

!"0$

%&'((%)$

"*+()*,$

%--%"(*)$ !%+!*)$

%+1')*+&%+($

Fig. 3. Centralized AM SCs Ensemble

– an AM is necessary to manage adaptation;
– direct communication between SCs is allowed;
– a centralised feedback loop is more suitable because a single AM has a global

vision on the system;
– the ensemble only includes a few, simple components.

Behaviour. This pattern, shown in Figure 3, is designed around one feedback
loop. All components are managed by a single AM that “controls” their behaviour
and, by sharing knowledge about them, is able to propagate adaptation.
Consequences. To manage adaptation over the entire system, a single AM is more
efficient than multiple ones because it has a global view and knowledge of the
system, but it can become a single point of failure.
SCEL description. The pattern is rendered in SCEL as the parallel composition
of the components representing the centralized AM, the environment and the SCs:

IAM [KAM , ΠAM , AM ] ‖ IEnv[KEnv, ΠEnv, Env]
‖ ISC1 [KSC1 , ΠSC1 , SC1] ‖ ISC2 [KSC2 , ΠSC2 , SC2] ‖ ISC3 [KSC3 , ΠSC3 , SC3]

where the interfaces of manger and SCs (with i ∈ {1, 2, 3}) are as follows:

– IAM , {(id, am), (role, “manager”),
(controlFlag , “off ”), (emitterFlag , “off ”),
(inputFlag , “‘on”), (outputFlag , “off ”),
(effectorFlag , “on”), (sensorFlag , “on”),
(pinput , false), (poutput ,Poutput), (pemitter ,Pemitter ),
(peffector , id ∈ {sc1, sc2, sc3})), . . .}

The AM description, in order to work as desired, needs to:
• activate only the sensor, input and effector ports;
• deactivate the forwarding of input messages to other components, by

setting the predicate referred by pinput to false;
• configure the predicate referred by peffector accordingly to communi-
cate only with the three managed SCs (i.e., only by components whose
identifier belongs to the set {sc1, sc2, sc3}).



12

!"#$%&"'!"()

*+,) *+-) *+.)

Fig. 4. Reactive Stigmergy SC

– ISCi , {(id, sci), (role, “component”),
(controlFlag , “on”), (emitterFlag , “on”),
(inputFlag , “‘on”), (outputFlag , “on”),
(effectorFlag , “on”), (sensorFlag , “on”),
(pinput , id = am), (poutput ,Poutput), (pemitter , id = am),
(peffector , role = “environment”), . . .}

The SC description, to be properly controlled by the AM, needs to:
• activate all communication ports;
• configure the predicate referred by pinput in order to properly react to

the received service requests by forwarding them to the manager am;
• configure the predicate referred by pemitter suitably to send the control

data to the manager am;
• configure the predicate referred by peffector so to enable the interaction
with the environment (i.e., all components playing the environment role).

Reactive Stigmergy SCs Ensemble.
Intent. There are several SCs that cannot directly interact with each other. The
SCs simply react to the environment and sense the environment changes.
Context. This pattern has to be adopted when:

– the ensemble includes several components;
– the components are very simple, without having a lot of knowledge;
– the environment is frequently changing;
– direct communication between components is disallowed.

Behaviour. This pattern, shown in Figure 4, has not a direct feedback loop. Each
single component acts like a bioinspired component. To satisfy its goal, the SC
acts in the environment that senses with its “sensors” and reacts to the changes
in it with its “effectors”. The different components are not able to communicate
one with another, but are able to propagate information (and their actions) in
the environment. Hence, they are able to sense the environment changes (e.g.,
other components reactions) and adapt their behaviour due to these changes.
Consequences. If the component is a proactive one, its behaviour is defined
inside it with its internal goal. The behaviour of the whole system cannot be
a priori defined. It emerges from the collective behaviour of the ensemble. The



13

components do not require a large amount of knowledge. The reaction of each
component is quick and does not need managers since adaptation is propagated
via the environment. The interaction model is an entirely indirect one.
SCEL description. The pattern is rendered in SCEL as the parallel composition
of the components representing the SCs and their environment:

ISC1 [KSC1 , ΠSC1 , SC1] ‖ ISC2 [KSC2 , ΠSC2 , SC2] ‖ ISC3 [KSC3 , ΠSC3 , SC3]
‖ IEnv[KEnv, ΠEnv, Env]

where the SCs’ interfaces, with i ∈ {1, 2, 3}, are as follows:

ISCi
, {(id, sci), (role, “component”),

(controlFlag , “off ”), (effectorFlag , “on”),
(inputFlag , “‘on”), (outputFlag , “on”),
(emitterFlag , “off ”), (sensorFlag , “on”),
(pinput , false), (poutput ,Poutput), (pemitter ,Pemitter ),
(peffector , role = “environment”), . . .}

The differences w.r.t. the SC description of the previous pattern are as follows:

– control and emitter ports are deactivated (hence, the predicate referred by
pemitter is left unspecified because it does not play any role);

– the forwarding of input messages is deactivated by setting the predicate
referred by pinput to false.

6 Adaptation Patterns at Work

A key point about self-adaptation and self-adaptive patterns is the ability of
dynamically changing the adaptation pattern in use if some circumstances occur
during system lifetime. We illustrate this feature by means of a robotic case study
concerning object transportation. For this task, robots need to find out objects
(e.g., people to assist and rescue in case of disaster) and carry them back to a
specific place (e.g., the external of a blazing building). A large number of robots
can be used in the unknown environment in order to rapidly satisfy the system’s
goal. Thus, the most appropriate pattern to be used is the Reactive Stigmergy
SCs Ensemble one red: the number of robots is large with respect to the size of
the area to be explored; danger makes real the necessity to have simple and not
too expensive components; the environment is unknown and frequently changing
due to the disaster. The suitability of this pattern with respect to other ones,
while considering different environment configurations, has been validated in [26]
through some simulations carried out using a multi-robot simulator. It has been
shown that a fully centralised approach (using the Centralized AM SCs Ensemble
pattern) is not effective unless the position of all objects is known in advance.

Anyway, in realistic situations a single robot could not be able to carry a
victim alone. So, since no pattern can be conveniently adopted for the whole
lifetime of the system, in cases a robot collaboration is needed to manage a



14

specific task, a new pattern can be temporary applied for the necessary time.
When the satisfaction of the object transportation task must be very short (e.g.,
in case of victims), the Centralized AM SCs Ensemble pattern is the best one.
This is because the time for coordinating a single AM and all the other robots is
shorter than the time for the coordination and negotiation among all robots (as,
e.g., in the P2P AMs SCs Ensemble pattern). Thus, when a robot reaches an
object that is too heavy, it changes its adaptation pattern becoming an AM. It
also contacts other robots (the number that is needed to carry the object) that
will change their pattern in order to behave as managed components. The AM
then shares information about where the object is and how to carry it to the safe
area. Finally, when the task is satisfied, all involved robots change again their
pattern for coming back to the Reactive Stigmergy SCs Ensemble pattern.

This case study can be modelled in SCEL as follows. During the exploring
phase all robots follow the Reactive Stigmergy SCs Ensemble pattern, thus each of
them is rendered as a SCEL component with the following (excerpt of) interface:

{(id, sci), (role, “component”), (pinput , false),
(peffector , role = “environment”), . . .}

According to the separation of concerns design principle, the internal logic of
components here is structured as follows:

InternalLogic , PatternHandler [ApplicationLogic]

where PatternHandler , that is in charge of changing the pattern when an object
is found, is

PatternHandler ,
get(“sensor”, “objectFound”, ?objectData)@self.BecomeManager(objectData)
+ get(“input”, “changePattern”, ?manager)@self.BecomeManaged(manager)

while ApplicationLogic, that implements the logic for the progress of the compu-
tation, is left unspecified as here we are not interested in this part of the internal
behaviour of components. Intuitively, if the robot’s sensors detect an object in
the environment, the event is registered in the component’s knowledge and, when
the process above consumes it by means of the first get action, the execution
of process BecomeManager is triggered. Similarly, the second get action is used
to trigger the process BecomeManaged to react to a ‘change pattern’ request
coming from another robot that has found an object.

The process BecomeManager(data) is defined as follows:

get(role, “component”)@self. put(role, “manager”)@self.
get(outputFlag , ?f)@self. put(outputFlag , “off ”)@self.
get(peffector , ?oldEff )@self. put(peffector , id ∈ Sdata)@self.
put(“inputPort”, “changePattern”, self)@peffector .
get(“sensor”, “taskCompleted”)@self.RestoreReactiveStigmergy

where the set Sdata of managed components, which are identified by peffector ,
depends on some elaborations on the object data. Thus, to become a manager,



15

first the component changes its role, the output port flag6 and the effector
predicate (as defined in Section 5). Then, it uses the new definition of this
predicate to contact (via a put action) the appropriate number of robots that
will be managed by it. When the object transportation task is completed, the
process RestoreReactiveStigmergy is executed to reset the initial pattern.

The process BecomeManaged(am), instead, is defined as follows:

get(controlFlag , ?cf)@self. put(controlFlag , “on”)@self.
get(emitterFlag , ?ef)@self. put(emitterFlag , “on”)@self.
get(pinput , ?oldInp)@self. put(pinput , id = am)@self.
get(pemitter , ?oldEmit)@self. put(pemitter , id = am)@self.
get(“sensor”, “taskCompleted”)@self.RestoreReactiveStigmergy

This process enables the control and emitter ports, and modifies the predicates
associated to the input and emitter ports as required by the Centralized AM
SCs Ensemble pattern, by using the manger’s identifier specified in the ‘change
pattern’ request. Then, when the task is completed, it resets the initial pattern.

Finally, the process RestoreReactiveStigmergy , that restores the setting of the
initial pattern and reinstalls the pattern handler process, is as follows:

get(role, ?oldRole)@self. put(role, “component”)@self.
get(outputFlag , ?of)@self. put(outputFlag , “on”)@self.
get(controlFlag , ?cf)@self. put(controlFlag , “off ”)@self.
get(emitterFlag , ?ef)@self. put(emitterFlag , “off ”)@self.
get(pinput , ?oldInp)@self. put(pinput , false)@self.
get(pemitter , ?oldEmit)@self. put(pemitter , false)@self.
get(peffector , ?oldEff )@self. put(peffector , role = “environment”)@self.
PatternHandler

7 Related Works

The interest in engineering self-adaptive systems is growing, as shown by the
number of recent surveys and overviews on the topic [10,4,27]. However, a
comprehensive and rationally-organized analysis of architectural patterns for
self-adaptation is still missing, despite the potential advantages of their use. For
example, [28] proposes a classification of modelling dimensions for self-adaptive
systems to provide the engineers with a common vocabulary for specifying the self-
adaptation properties under consideration and select suitable solutions. However,
although this work emphasizes the importance of feedback loops, it does not
consider the patterns by which such feedback loops can be organized to promote
self-adaptation. [29,7] focus on the mechanisms to perform adaptation actions,
and on the various schemes that should be adopted to perform such adaptation
actions at run-time and in a safe way. However they overlook the architectural
patterns for the feedback loops that can identify and enact adaptation actions.
6 Indeed, the only difference about ports in the two patterns concerns the output one.



16

Also [30] introduces the concept of patterns for self-adaptive systems based on
control loops. It however focuses on how control loops can enforce adaptivity in
a system and does not present a complete set of patterns.

Taking inspiration from control engineering, natural systems and software
engineering, [9] presents some self-adaptive architectures that exhibit feedback
loops. It also identifies the critical challenges that must be addressed to enable
systematic and well-organized engineering of self-adaptive and self-managing soft-
ware systems. In our work we aim at going further on and describing our patterns
using a formalism, namely SCEL. Grounded on earlier works on architectural self-
adaptation approaches [2], the FORMS model [31] enables engineers to describe,
study and evaluate alternative design choices for self-adaptive systems. FORMS
defines a shared vocabulary of adaptive primitives that – while simple and concise
– can be used to precisely define arbitrary complex self-adaptive systems and can
support engineers in expressing their design choices. This vocabulary is close to
our choice of using SCEL to describe patterns, but it is not a formalism and
rather has to be considered as a potentially useful complement to our work.

To the best of our knowledge, ours is the first work that addresses the
formalisation of adaptation patterns. Rather, a bunch of works in the literature
proposes formalisations of design patterns that, more in general, are devised to
support component-based or object-oriented programming and are not specific
for autonomic computing. We took inspiration from [32] and [33] to describe
the patterns’ template. Two main approaches have been considered: a group
of works uses logics as target formalism (e.g., [34] relies on a temporal logic,
while [35] on a predicate logic), whereas another group relies on new formalisms
specifically devised for modelling design patterns (e.g., [36] uses the design
model Abstract Data Views, while [37] proposes the use of Balanced Pattern
Specification Language that, anyway, is still based on logics). Other works, as e.g.
[38], formalise patterns in terms of graphs. Besides the fact that the above works
do not deal with adaptation patterns, they differ from our work also because
none of them uses a formalism based on process calculi, like SCEL. An approach
using process calculi-like languages, namely CASPIS and COWS, is presented
in [39], but it considers methodological, rather than architectural patterns.

8 Concluding Remarks

This paper reports on the way adaptation patterns for designing autonomic
ensembles of SCs can be formalised by using the SCEL language. An application
to a robotic case study is also presented, with the twofold aim of demonstrating
the practical usage of the formalised adaptation patterns and of showing how
dynamic change of adaptation patterns takes place.

From a technical point of view, the main challenge is in providing a composi-
tional formalisation, where each pattern is rendered as the (parallel) composition
of the models of the involved primitive components and where the dynamic
change of pattern is still dealt with in a compositional way. Compositionality is
also the key for allowing heterogeneous patterns to integrate well within the same



17

system. This motivates our choice of using SCEL for defining such formalisation,
as it features a form of attribute-based communication that easily permits to
express component linkages according to the chosen adaptation pattern and to
dynamically adapt them according to a given pattern change.

The objective of the proposed formalisation is to provide an operational
semantics for adaptation patterns that paves the way to reasoning about them.
This can lead to verifiable development of autonomic SC ensembles from abstract
architectural patterns.

In the near future, in order to provide a more concrete evidence of the benefits
brought by the proposed formalisation, we plan to implement the formalised
adaptation patterns considered in this work in jRESP [15], a Java runtime
environment for developing autonomic and adaptive systems according to the
SCEL paradigm. A long-term goal, instead, is to integrate in this pattern-based
development approach the formal reasoning tools for SCEL programs that are
currently under construction. Once also the internal logic of the components (e.g.,
behaviour, feedback loops) is modelled, this integration will permit to establish
qualitative and quantitative properties of individual SCs and their ensembles.

References

1. Kephart, J.O., Chess, D.M.: The Vision of Autonomic Computing. Computer 36
(2003) 41–50

2. Weyns, D., Holvoet, T.: An Architectural Strategy for Self-Adapting Systems. In:
SEAMS, IEEE (2007) 3

3. Project InterLink: http://interlink.ics.forth.gr (2007)
4. Salehie, M., Tahvildari, L.: Self-adaptive software: Landscape and research chal-

lenges. ACM Trans. on Autonomous and Adaptive Systems 4(2) (2009) 14
5. Zambonelli, F., Viroli, M.: A survey on nature-inspired metaphors for pervasive

service ecosystems. J. of Pervasive Comp. and Comm. 7 (2011) 186–204
6. Abeywickrama, D.B., Bicocchi, N., Zambonelli, F.: SOTA: Towards a General

Model for Self-Adaptive Systems. In: WETICE, IEEE (2012) 48–53
7. Gomaa, H., Hashimoto, K.: Dynamic Self-Adaptation for Distributed Service-

Oriented Transactions. In: SEAMS, IEEE (2012) 11–20
8. Kephart, J., Chess, D.: The vision of autonomic computing. Computer 36(1) (2003)

41–50
9. Brun, Y., et al.: Engineering self-adaptive systems through feedback loops. In:

Softw. Eng. for Self-Adaptive Systems. LNCS 5525. Springer (2009) 48–70
10. Cheng, B., et al.: Software engineering for self-adaptive systems: A research roadmap.

In: Softw. Eng. for Self-Adaptive Systems. LNCS 5525. Springer (2009) 1–26
11. Pieter, V., et al.: On interacting control loops in self-adaptive systems. In: SEAMS,

ACM (2011)
12. Cabri, G., Puviani, M., Zambonelli, F.: Towards a taxonomy of adaptive agent-

based collaboration patterns for autonomic service ensembles. In: CTS, IEEE (2011)
508–515

13. Puviani, M., Cabri, G., Zambonelli, F.: A Taxonomy of Architectural Patterns for
Self-Adaptive Systems. In: C3S2E, ACM (2013)

14. Clarke, E.M., Wing, J.M.: Formal Methods: State of the Art and Future Directions.
ACM Comput. Surv. 28(4) (1996) 626–643

http://interlink.ics.forth.gr


18

15. De Nicola, R., et al.: SCEL: a language for autonomic computing. Technical Report
(January 2013) http://rap.dsi.unifi.it/scel/pdf/SCEL-TR.pdf.

16. Bordini, R.H., et al.: A Survey of Programming Languages and Platforms for
Multi-Agent Systems. Informatica (Slovenia) 30(1) (2006) 33–44

17. Hariri, S., et al.: The autonomic computing paradigm. Cluster Computing 9(1)
(2006) 5–17

18. Beam, C., Segev, A.: Automated negotiations: A survey of the state of the art.
Wirtschaftsinformatik 39(3) (1997) 263–268

19. Jennings, N., et al.: Automated negotiation: prospects, methods and challenges.
Group Decision and Negotiation 10(2) (2001) 199–215

20. Esteva, M., et al.: On the Formal Specifications of Electronic Institutions. In:
AgentLink. LNCS 1991, Springer (2001) 126–147

21. Kesäniemi, J., Terziyan, V.: Agent-environment interaction in mas-introduction
and survey. In: Multi-Agent Systems: Modeling, Interactions, Simulations and Case
Studies. InTech (2011) 203–226

22. Mamei, M., Zambonelli, F.: Programming pervasive and mobile computing applica-
tions: The TOTA approach. ACM Trans. Sw. Eng. and Meth. 18(4) (2009)

23. De Nicola, R., et al.: A Language-based Approach to Autonomic Computing. In:
FMCO 2011. LNCS 7542, Springer (2012) 25–48 http://rap.dsi.unifi.it/scel/.

24. Gjondrekaj, E., Loreti, M., Pugliese, R., Tiezzi, F.: Modeling adaptation with a
tuple-based coordination language. In: SAC, ACM (2012) 1522–1527

25. Cesari, L., et al.: Formalising adaptation patterns for autonomic ensembles. Techni-
cal Report (2013) http://rap.dsi.unifi.it/scel/pdf/patternsInSCEL-TR.pdf.

26. Puviani, M., et al.: Is self-expression useful? evaluation by a case study. In:
WETICE. (2013)

27. Weyns, D., et al.: Claims and supporting evidence for self-adaptive systems: A
literature study. In: SEAMS, IEEE (2012) 89 –98

28. Andersson, J., et al.: Modeling dimensions of self-adaptive software systems. In:
Softw. Eng. for Self-Adaptive Systems. LNCS 5525. Springer (2009) 27–47

29. Gomaa, H., et al.: Software adaptation patterns for service-oriented architectures.
In: SAC, ACM (2010) 462–469

30. Weyns, D., et al.: On Patterns for Decentralized Control in Self-Adaptive Systems.
In: Softw. Eng. for Self-Adaptive Systems. LNCS 7475. Springer (2013) 76–107

31. Weyns, D., Malek, S., Andersson, J.: Forms: Unifying reference model for formal
specification of distributed self-adaptive systems. ACM TAAS 7(1) (2012) 8

32. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns. Addison Wesley,
Reading (MA) (1995)

33. Ramirez, A., Cheng, B.: Design patterns for developing dynamically adaptive
systems. In: SEAMS, ACM (2010) 49–58

34. Mikkonen, T.: Formalizing design patterns. In: ICSE, IEEE (1998) 115–124
35. Bayley, I.: Formalising design patterns in predicate logic. In: SEFM, IEEE (2007)

25–36
36. Alencar, P.S.C., Cowan, D.D., de Lucena, C.J.P.: A Formal Approach to Architec-

tural Design Patterns. In: FME. LNCS 1051, Springer (1996) 576–594
37. Taibi, T., Ling, D.N.C.: Formal Specification of Design Patterns - A Balanced

Approach. Journal of Object Technology 2(4) (2003) 127–140
38. Bottoni, P., Guerra, E., de Lara, J.: Formal foundation for pattern-based modelling.

In: FASE. LNCS 5503, Springer (2009) 278–293
39. Wirsing et al., M.: SensoriaPatterns: Augmenting Service Engineering with Formal

Analysis, Transformation and Dynamicity. In: ISoLA. CCIS 17, Springer (2008)
170–190

http://rap.dsi.unifi.it/scel/pdf/SCEL-TR.pdf
http://rap.dsi.unifi.it/scel/
http://rap.dsi.unifi.it/scel/pdf/patternsInSCEL-TR.pdf

	Formalising Adaptation Patterns for Autonomic Ensembles 

