
M. Wirsing

Software Engineering and

Service-Oriented Systems

Martin Wirsing
LMU München

in co-operation with Francesco Tiezzi, and

the SENSORIA team, in particular, Nora Koch, Philip Mayer, Rosario Pugliese, Stephen Gilmore and
many other SENSORIA members

Lucca, Italy

September 2013

IMT 2013

M. Wirsing 2

SENSORIA Project

Software Engineering for

Service-Oriented Overlay Computers

 EU project of 6th Framework Programme (FP6)

 Information Society Technologies (IST)

 Global Computing (GC2)

 Future and Emerging Technologies (FET)

M. Wirsing 3

Consortium

 LMU Munich (Coordination)

 Universitá di Trento

 University of Leicester

 Warsaw University

 Technical University of Denmark at Lingby

 Universitá di Pisa

 Universitá di Firenze

 Universitá di Bologna

 Istituto di Scienza e Tecnologie della Informazione

 University of Lisbon

 University of Edinburgh

 ATX Software SA

 Telecom Italia S.p.A.

 Imperial College London

 University College London

 Cirquent GmbH

 Budapest University of Technology and Economics

 S&N AG

 School of Management of Politecnico di Milano

 19 partners

 7 countries

 2005 – 2010

 Coordination: LMU

M. Wirsing 4

Contents

1. SENSORIA Project Overview and Results

2. Model-Driven Development of Service-Oriented Systems

3. Modal I/O Transition Systems as Semantics of UML4SOA

4. Summary: SENSORIA: Software Engineering and Service-

Oriented Systems

5. Introduction to Modeling and Developing “Ensembles” with

ASCENS

M. Wirsing 5

Contents

 Part 1: Project Overview and Results

 Part 2: Model-Driven Development of Service-Oriented Systems

1. Project Overview and Results

 Service-oriented computing

 The SENSORIA project

 Technical results

 Further results

 SENSORIA in numbers

M. Wirsing 6

Service-oriented computing

 Service-Oriented Computing (SOC)

 the compute paradigm behind service-oriented systems, i.e. for

organizing and utilizing distributed capabilities that may be under the

control of different ownership domains

 Service-Oriented Architecture (SOA)

 an architectural style to realize SOC

 promise to organize and understand organizations, communities and

systems maximizing agility, scalability and interoperability

 very often built by IT industry in an ad-hoc and undisciplined way

M. Wirsing 7 7

Setting the scene
Service-oriented systems

 Service

 autonomous, platform-independent computational entity that can be

described, published, categorised, discovered

 services can be dynamically assembled for developing

 massively distributed, interoperable, evolvable systems and

applications

 like gas, power, telephone, etc.

 Service-Oriented Systems (SOS)

 use loosely coupled services

 massively distributed, interoperable, evolvable applications

 consist of providing, consuming and publishing services, i.e.
establishing a community or marketplace

 like applications spread over the web, e.g. online banking, hotel
reservation, flight booking, etc.

M. Wirsing 8

Software engineering for SOS
(Service engineering)

 Challenges for service engineering

 specification and querying services

 correctness and consistency

 automated composition of services (orchestration) guaranteeing

availability and reliability

 compensation of long running transactions

 evaluating and implementing sustained performance, security and

safety, adaptive behaviour, …

 deployment and re-engineering

M. Wirsing 9

Stakeholders/Parties in SOAs

 Service providers

 offer services that correspond to ‘market’ demands

 Service consumers/requesters

 are applications, not people

 are decoupled from the providers

 binding to services at run time, not design time

 Service brokers

 manage registries

 binds consumer and provider

 offered as middleware in SOAs

service

consumer

find

bind

service

broker/discovery

service

provider

publish

 SOA triangle

M. Wirsing 10

SENSORIA approach

 Rigorous comprehensive approach to engineering service-

oriented systems

 Integration of

 foundational theories, techniques, and methods

 pragmatic software engineering

M. Wirsing 11

… more details

 Modelling front-end

 Service-oriented applications are designed using high-level visual
formalisms such as the industry standard UML or domain-specific

modelling languages.

 Hidden formal analysis of services

 Back-end mathematical model analysis is used to reveal performance

bottlenecks, or interactions leading to errors or violation of service

contracts.

 Automated model transformations

 Formal representations are generated by automated model

transformations from engineering models.

 Service deployment

 As a result, service models of proven quality serve as the basis for

deployment transformations to generate configurations for standards-

compliant platforms.

M. Wirsing 12

Model of the SENSORIA model-driven

development approach

M. Wirsing 13

SENSORIA results

 Languages

 Techniques

 Methods

 Tools

 to support this development process and the analysis of service-

oriented systems

M. Wirsing 14

Result topics

 3 research themes

 language primitives for global service-oriented computing

 qualitative and quantitative analysis methods for

 sound engineering methods and deployment techniques

 complemented by

 case studies

 dissemination

 demonstration and training

 exploitation

 a few words on the most important results

M. Wirsing 15 15

Language primitives

 SRML

 declarative high-level language for service-oriented systems

 layer static and dynamic service composition

 reasoning about system properties in temporal logic using

 UCTL/UMC, SRMC/PEPA

 well-defined mathem.

 semantics, editor

 UML family of profiles for SOC

 orchestration of services

 service-level agreements

 non-functional properties of services

 implementation of service modes and service deployment

M. Wirsing 16 16

Language primitives (cont.)

 JOLIE

 Process calculus based programming language for designing,

developing and deploying services and orchestrations

 Process calculi for services

 core calculi needed

 to describe, discover and compose systems

 to prove that their behaviour is consistent with the expectation of the

designer

 type inference for session-types, structured patterns of

communication

 extension of local policies mechanisms in order to manage resources

M. Wirsing 17 17

Language primitives (cont. 2)

 Composition of services

 full integration of SLA primitives with transaction primitives

 assessment of theories and techniques for choreography

conformance

 formal comparison of

 long running transactions and

 compensations.

 ADR formalizations of

 SRML, UML4SOA

 software modes

M. Wirsing 18 18

Qualitative analysis methods

 Adaptive and Dynamic Service Compositions

 LTSA WS-Engineer+ Modes tool provides mechanical support for the

analysis of Service Mode models

 to ensure safety and correctness of adaptive and dynamic service

composition specifications

 BPEL Analysis and Back-Annotation.

 end-to-end method which facilitates analysis of several liveness and

safety properties of BPEL orchestrations

 CMC/UMC and Venus

 two prototypical modelcheckers for analysing qualitative properties

 UMC based on UML statecharts

 CMC based on COWS;

 Venus System

M. Wirsing 19 19

Quantitative analysis methods

 Model checking stochastic calculi for services

 model checking MarCaspis vs. SoSL formulae

 model checking sCOWS with sCOWS-LTS and sCOWS-AMC

 SRMC - SENSORIA Reference Markovian Calculus

 stochastic process calculus which captures inherent uncertainty in SOSs

 allows the model to express both kinds of uncertainty and to evaluate this

to give performance predictions which are valid whichever configuration

of service providers is selected

M. Wirsing 20 20

Sound engineering methods

 Engineering

 Eclipse-based SENSORIA development environment (SDE)

 model-driven transformations for deployment, supporting WS-Security &
WS-Reliable Messaging

 WS-Engineer & natural language-based analysis tool VENUS

 Performance modelling with SRMC

 pattern-based approach

M. Wirsing 21 21

Reengineering and deployment techniques

 Deployment techniques
 end-to-end support for dynamic service composition from modelling to

runtime

 deployment and brokering with Dino

 Re-engineering

 prototype for re-engineering legacy applications to SOA

M. Wirsing 22

… concrete results

 Service ontology

 Modelling languages

 UML4SOA, SRML, StPowla

 Process calculi

 COWS, SCC, SOCK, Stock, …

 Languages for programming service-oriented systems

 Jolie

 Transformation tools supporting MDE process

 SRML Use Case Wizard

 UseCases2SRML

 MDD4SOA

 UML2BPEL/WSDL, UML2Jolie, UML2Java

 BPEL/WSDL transformers (ActiveBPEL, Tomcat)

 VIATRA

 SOA2WSDL, UML2Axis

M. Wirsing 23

... concrete results (cont.)

 Languages, tools and techniques for qualitative and quantitative

analysis

 SRMC/PEPA, WS-Engineer, Venus/CMC/UMC, Lysa, StockKlaim,

MoSL

 Service broker

 Dino

 Re-engineering tool

 CareStudio

 CASE tool

 SRML modelling environment

 Tool suite

 SENSORIA Development Environment (SDE)

M. Wirsing 24

Example: From use cases to SRML

Service-oriented

use case diagram

Derived SRML module

for GetLoan

M. Wirsing 25

Example: Quantitative analysis with UML
Accident scenario of automotive case study

M. Wirsing 26

Safety: Design vs. Implementation

Example: Qualitative analysis approach

WS-BPEL MSC

Implementation

does not fulfil

scenario X

1. Mappings

2. Compilation of LTS

3. Properties

4. Reachability Search

M. Wirsing 27

Example: SDE user interface
Graphical orchestration of tools

Orchestration

Defines data flow

between tool functions

See later

M. Wirsing 28

Examples: Security protocol

Verifying and simplifying the PKMv2 Protocol

of the credit request scenario

[Yuksel, Nielson et al. 07]

M. Wirsing 29

Example: Quantitative analysis with BPMN
Credit request scenario of the finance case study

-- CREDIT PORTAL --

E5() = * p_T1E5 .o?<> . p_E5T7 .o!<>

T7() = * [k] [l] [p_T7_done#] (p_E5T7 .o?<> . p_T2T7 .o?<> .

 [p#](p. o!<> |(p .o?<>. (p_T7T2 .o!<> | p_T7T8 .o!<> | p_T7_done .o!<>) + p.o?<>. p_fault_error .o!<>))|

 p_T7_done .o?<> . kill(l) | p_fault_error .o?<> . (kill(k) | { p_T3E8 .o!<> }))

T8() = * p_T7T8 .o?<> . p_T3T8 .o?<> . (p_T8T4 .o!<> | p_T8T9 .o!<>)

T9() = * p_T8T9 .o?<>. p_T5T9 .o?<>. p_T9T10 .o!<> | * p_T12T9 .o?<>. p_T5T9 .o?<>. p_T9T10 .o!<>

T10() = * p_T9T10 .o?<> . p_T10E9 .o!<> | (p_T14T10 .o?<> . p_T10G2 .o!<>)

G2() = * p_T10TG2 .o?<> . [p#] (p .o!<> | (p .o?<> . p_G2T11 .o!<> + p .o?<> . p_G2T12 .o!<>))

T11() = * p_G2T11 .o?<> . (p_T11E2 .o!<> | p_T11E6 .o!<>)

T12() = * p_G2T12 .o?<> . (p_T12E4 .o!<> | p_T12T9 .o!<>)

E6() = * p_T11E6 .o?<>

P = ? [true U[T,T] terminate]

 Which is the probability that

 the system terminates at time T?

M. Wirsing 30

Example: Reengineering

Methodology for transformation-based

reengineering: client-server to 3-tier SOA

M. Wirsing 31

Case studies

 Finance

 Automotive

 Telecommunications

 eUniversity

 Robot bowling
 ICT 2008

 FET 2009

31

 Modelling case studies
 SRML, UML4SOA, COWS, SOCK, (Mar)CaSPiS, lreq, CC

 Analysing case studies

 CMC/UMC, Venus, LySA, WS-Engineer , ChorSLMC

 SoSL, SRMC/PEPA, lreq, sCOWS-lts

 Model-driven development of case studies

 SDE, MDD4SOA, service pattern, modes/Dino

M. Wirsing 32 32

Further results: Spin-off companies

 AGILOGIK

 2009

 monoidal soft constraint solver for optimization problems

 Steingaden, Germany

 Italiana Software

 2007

 design and implementation of SOAs with Jolie

 Imola, Italy

 OptXware

 2005

 model transformations with VIATRA2

 Budapest, Hungary

M. Wirsing 33

SENSORIA website
www.sensoria-ist.eu

M. Wirsing 34

SENSORIA in numbers

 Publications

 book chapters

 articles in journal

 papers in conferences and workshop

 Presentations and tutorials

 PhD Thesis on SENSORIA results

 finished

 ongoing

 Courses on project results

 Organization of conf. and workshops

 Summer schools

 Fairs and exhibitions

 Software

 SDE

 integrated tools

 additional tools

 652
16

139

402

192

29

24

108

126

3

4

1

19

8

M. Wirsing

2. MDD4SOA –

Model-Driven Development of Service-Oriented

Systems

Martin Wirsing
LMU München

Nora Koch

LMU München and Cirquent GbmH

in co-operation with the SENSORIA team

M. Wirsing 36

Aim of Chapter 2.

 to provide you with an overview to a model-driven development

approach for service-oriented systems that we developed in the

SENSORIA project

 methodological aspects of the engineering process

 a modelling language

 a model-driven development environment

M. Wirsing 37

Plan of Chapter 2.

 Models and model-driven development

 Modelling

 Business models

 Design models

 Metamodel and model transformations

 Technical specification

 Model-driven development @ work

 Tool support by SDE

 Pattern language

 Case study

M. Wirsing 38

Models in SENSORIA

 A model is used to describe or specify SOSs for some certain

purpose. A model is often presented as a combination of drawings

and text. [according definition of MDA Guide, 2003]

 Characteristics models should fulfil [Selic,IEEE,2003]

 abstract

 understandable

 accurate

 predictive

 inexpensive

<<send&receive>>

chargeCreditCard

M. Wirsing 39

Use of models in SENSORIA

 To specify SOSs

 structure, behaviour, ...

 separate concepts at different conceptual levels

 communicate with stakeholders

 To understand the SOS

 if existing (legacy applications)

 To validate SOSs

 detect errors and omissions in design ASAP

 prototype the system (execution of the model)

 formal analysis of system properties

 To drive implementation

 code skeleton and templates

 complete programs (if possible)

Excursion:
Model-driven development

 „The Architecture of Choice for a

Changing World“ [OMG, 2001]

 Model Driven Architecture®

 Specify a system independently of

its platform

 Specify and choose a platform for

the system

 Transform the system

specifications into a platform

dependent system

Excursion: MDA Approach

 Choose a domain-specific

language for each layer

 Use meta-models to describe

languages

 Use model transformations to

convert models

Transformation

Rules

Meta-model
Model Model Model

Meta-model Model

Transformer

Transformer

Generated Code

Code

Generation

Templates

Manually

Written

Code

optional

o
p
ti
o
n
a
l,
 c

a
n
 b

e
 r

e
p
e
a
te

d

 Model-to-model transformations

 Transformations may be

between different languages. In

particular, between different

languages defined by MOF

 Model-to-text transformations

 Special kind of model to model

transformations

M. Wirsing 42

SENSORIA Model-driven development

M. Wirsing 43

SENSORIA Model-driven development
Details

M. Wirsing 44

Modelling languages

 Objective is to have a domain specific graphical representation

and clear semantics for service-oriented concepts

 Option 1: Definition of a proprietary language, like SENSORIA

Reference Modelling Language (SRML)

 high cost: requires the definition of all required domain specific concepts

and proprietary tools

 Option 2: Use of a standard, like Unified Modeling Language

(UML
TM

), Business Process Modeling Notation (BPMN
TM

)

 diagrams are more difficult to read and/or not integrated into UML

  Option 3: Define a UML2 profile

 using the extension mechanism that allows to customize the UML for

specific domains and platforms

 defining stereotypes, stereotype attributes (tagged values) and

constraints to restrict and extend the scope of UML

 UML CASE tools can be used

M. Wirsing 45

Option 1:
SENSORIA Reference Modelling Language (SRML)

 Modelling language with a formal semantics

 Offers descriptions of business logic based on conversational

interactions

 Inspired by SCA (standards proposed by IBM, BEA, Oracle, SAP,

Siebel,…)

 Proprietary language needs proprietary CASE tool

www.sensoria-ist.eu

 Teaching material, tutorial, June 2009

http://www.sensoria-ist.eu/
http://www.sensoria-ist.eu/
http://www.sensoria-ist.eu/

M. Wirsing 46

Option 3: UML2 profile

 Main Aim: to have a powerful yet readable graphical modelling

language for SOAs – based on UML

 “minimalist” extension

 use UML constructs wherever possible

 use other extensions if available

 only add new model elements where needed

 reducing efforts of building SOA models

 covering domain specific aspects, such as

 service contracts

 long running transactions and compensation

 loose coupling of services

  UML4SOA

 Secondary Aim: to employ transformers from such models to

common implementation languages (BPEL, Java...)

  MDD4SOA

M. Wirsing 47

 SoaML profile (OMG open source specification)

 Service-oriented architecture Modeling Language

 for structural aspects of services

 UML4SOA profile (developed within the scope of the project)

 for behavioural aspects, e.g. orchestration

 for non-functional aspects

 for reconfiguration

 for policies

 for requirements

 MARTE profile (OMG standardization process beta2 version)

 for performance analysis

UML extensions for SOA modelling

M. Wirsing 48

UML4SOA, SoaML, MARTE

 Defined as UML profiles

 provide a set of elements for modelling SOAs

 use UML extension mechanisms (stereotypes)

 no changes to UML (exception SoaML propose one change)

 Use of the profiles

 to build models at different levels of abstraction

 in combination with UML model elements

 is not a prescriptive approach

M. Wirsing 49

SoaML

 Answer to Request of Proposal of the OMG

 for a UML Profile and Metamodel for Services (UPMS), Sept. 2006

 Submission and supporters

 SINTEF, Norway (co-ordination), European Software Institute (ESI)

 Capgemini, Fujitsu, Hewlett-Packard, IBM, Telelogic AB, Thales

Group, France Telecom R&D, etc

 University of Insbruck, University of Augsburg, University of Athens

 SHAPE project (FP7) is the main contributor

 Meetings SoaML and UML4SOA groups

 EDOC 2008, Munich, Sept. 2008

 SoaML standardized, version 1.0, March 2012

M. Wirsing 50

MARTE profile

 Defined for modelling of real-time and embedded systems

 Concerns also model-based analysis, i.e. provides facilities to

annotate models with information required to perform specific

model analysis

 Focuses on performance and schedulability analysis

M. Wirsing 51

SOA models in the MDA context

Computation

Independent

Model (CIM)

Platform

Independent

Model (PIM)

Platform

Specific

Model (PSM)

Business Model

Design Model

Technical Specification

Enterprise Services
 Roles, Collaborations, Dependencies, Workflows

Services
Components, Interfaces, Messages, Data

Technical Services
WSDL, BPEL, XML Schema, Java, Jolie

Source: Data Access Technologies, Inc

R
e
fin

e
m

e
n
t &

 A
u
to

m
a
tio

n

M. Wirsing 52

SOA modelling by example

 Finance Case Study: Credit Portal Scenario

 Stakeholders (parties) of the service-based scenario are customers,

clerks and supervisors.

 Login is required, if a customer wants to request a credit by using the

credit portal.

 The credit request process requires from the customer credit data,

security data and balance data

 Based on the uploaded information the system calculates a rating that

is used for an automatic decision, a clerk or supervisor decision.

 In case of a positive decision the process informs the customer and

waits for his decision.

 Once the credit offer is accepted, the process stores the credit offer in

an agreement system and the process is finalised.

 In case of a negative decision the customer is informed about this

decision and the process ends, too.

M. Wirsing 53

Constructing the business model

1. Specify the needed service capabilities

 identify the needed services and

 organize them into catalogues

2. Identify the parties involved

 identify the provider and consumers of services

3. Model the service contracts

 specify the agreement between providers and consumers of a service

4. Build service architecture

 describe how participants work together for a purpose by providing

and using services expressed as service contracts

M. Wirsing 54

Specifying service capabilities

 Capabilities are used

 to identify needed services

 to organize them into catalogues or network of capabilities

 prior to allocating those services to particular service providers

and requesters

SoaML

SoaML Specification for the UML Profile and
Metamodel for Services (UPMS), OMG 2008

 A capability is the

specific ability to provide

a service. It is modelled

as UML class.

M. Wirsing 55

Identifying parties involved in SOAs

 A participant represents some

party that provides and/or

consumes services. It is modelled

as UML class.

SoaML

 Provider and consumers of services are represented as

participants

 in the business domain: person, organization or system

 in the systems domain: system, application or component

 Participant can play the role of

 providers in some interactions

 consumers in others

M. Wirsing 56

Modelling service contracts

 A service contract specifies the service without regards for realization or

implementation.

 A UML2 collaboration defines a set of cooperating entities to be played by

instances (its roles), as well as a set of connectors that define

communication paths between the participating instances.

A service contract is the specification

of the agreement between providers

and consumers of a service. It is

modelled as a UML collaboration.

A dependency represents the

binding of the service contract to

the provider or the consumer of the

service.

A participant can play different roles.

SoaML

<<ServiceContract>>
:Approval

<<Participant>>
:Portal

provider
<<Participant>>
:CreditRequest

consumer

M. Wirsing 57

Representing service architecture

A service architecture describes

how participants work together for a

purpose by proving and using

services expressed as service

contracts. It is modelled as a UML

collaboration.

Provider of an orchestrated

service

SoaML

M. Wirsing 58

SOA models in the MDA context

Computation

Independent

Model (CIM)

Platform

Independent

Model (PIM)

Platform

Specific

Model (PSM)

Business Model

Design Model

Technical Specification

Enterprise Services
 Roles, Collaborations, Dependencies, Workflows

Services
Componentes, Interfaces, Messages, Data

Technical Services
WSDL, BPEL, XML Schema, Java, Jolie

Source: Data Access Technologies, Inc

R
e
fin

e
m

e
n
t &

 A
u
to

m
a
tio

n

SoaML

M. Wirsing 59

Constructing the design model

 Refine the specifications of participants with ports

 for provided and consumed services

 Model the service interfaces

 Classify ports into service points (for providing services) and request

points (for consuming services)

 Define the service interfaces

 structurally by inheritance from UML Interfaces

 behaviorally by protocol state machines

 Specify the orchestration of the services

 i.e. combine existing services to build the required new services

 by UML4SOA activity diagrams

 Including partner services, message passing among requester and
provider, and long-running transactions

 Define the quality of service (service level agreements)

 by specifying the required non-functional properties

M. Wirsing 60

Refining specification of participants

with ports

 Add ports for provided and consumed services

 A port has as type a service interface or an interface

 A full specification of a

participant includes ports

for every service contract

in which the participant

participates within the

service architecture. Two

types of ports: service

point and request point

SoaML

M. Wirsing 61

Modelling service interfaces

A request point is a port for

requesting (consuming) a service

A service point is a port for

providing a service.

 A service interface

 “provides” provider interfaces (represented as realisation)

 “requires” consumer interfaces (represented as a «use» dependency)

A service interface allows

for connection between the

service consumer and

provider. It is modelled as

UML class.

SoaML

A UML interface is used to

represent the required and

provided interfaces of the ports.

M. Wirsing 62

Interface behaviour

 UML

 UML4SOA

 proposes protocol state
machines

 Remark

 SoaML proposes activity

diagrams or sequence diagrams

«send»

«send»

«send»

«send» «optional»

M. Wirsing 63

Orchestration of services

 Service orchestration is
the process of
combining existing
services to form a new
service to be used like
any other service.

 partner services

 message passing
among requester and
provider

 long-running
transactions

 compensation

 Key distinguishing
concepts

UML4SOA

M. Wirsing 64

Message passing
Synchronous and asynchronous service invocation

UML4SOA

Reply is used for the

reception of a message

decoupled of the

sending process

Service interaction send

sends a message. Does

not block.
Service interaction receive

blocks until message is

received.

Service interactions

send&receive, receive&send

denotes a sequential order of

these actions.

M. Wirsing 65

Detailing service invocation
Partner services and data handling UML4SOA

Pins containing interaction information

 lnk: partner

snd, rcv: data to be send or received

Use of

variable after

declaration

Implicit declaration of

variable in a snd pin.

M. Wirsing 66

 Declaration of structured types

 extends metaclass data type and class

Data handling

A message type is

used to specify

information exchanged

between service

consumers and

providers (message

passing).

SoaML/UML4SOA

 Use in behavioural diagrams

 support for typed, scoped variables in the orchestration

 data handling support

A data action can be

used to explicitly declare

the type of a variable or

for manipulation of data

(copy, calculation, etc).

M. Wirsing 67

Long running transactions

A compensation Handler

is added using a

compensation activity

edge.

The service activity modelling the

compensation handler will be

triggered by a compensate or

compensateAll.

UML4SOA

 Require compensation mechanisms, e.g. compensation handlers

M. Wirsing 68

Compensation
UML4SOA

A compensateAll triggers

all active compensation

handlers in the reverse

order.

M. Wirsing 69

SOA model elements and diagram types

Business model Design model

Structural
aspects

capabilities

participants

service contract

service architecture

participant architecture

service point

request point

service interface

message type

Behavioural
aspects

scope

send, receive, send&receive

reply, raise

lnk, snd, rcv

compensate, compensateAll

compensation, exception, event

data

Diagram

type

class diagram

composite structure diagram

activity diagram

class diagram

composite structure diagram

activity diagram

sequence diagram

state machine

+ use of plain UML, e.g. SOA's protocols

M. Wirsing 70

Quality of services

 Defined by non-functional properties (NFP)

 Example: Credit Portal Scenario

 The Portal and the CreditRequest should communicate via a secure
and reliable connection

 All requests sent to the CreditRequest should be acknowledged

 As the credit request handles confidential data, all requests should be
encrypted in order to protect the privacy of the customers

 Messages sent by the CreditRequest must be clearly accountable, i.e.
non-repudiation of messages must be guaranteed

M. Wirsing 72

Modelling approach for NFP of services

Template for a service

level agreement

(SLA)

<<nfDimension>>

Throughput

<<nfDimension>>

ResponseTime

M. Wirsing 73

Modelling a concrete configuration

Concrete SLA

M. Wirsing 74

Coming back to MDE

 M

o
d

e
ls

 M
o

d
e
l tra

n
s
fo

rm
a
tio

n
s

M
e
ta

 m
o

d
e
ls

MDE

 MDE approaches

 are based on the constructions of models

 propose transformation of models

 implement model transformations based on the metamodel of the

modelling language

 MDE approaches require languages for

 specification of models

 UML, BPMN, …

 description of metamodels

 UML, MOF, OCL, …

 definition of model transformations

 Java, graph transformations, ATL, QVT…

Martin Wirsing: From Program Transformations to Model Transformations
13.02.

2009

Metamodels

 A metamodel of a domain is a description of the concepts of this

domain and their relationships

 Metamodels formalize the syntax of (Software Engineering) models

 Metamodels are the equivalent of (context free) grammars of

programming languages

 Example UML: a three layer structure

 (M3) Meta-metamodel: Meta-Object Facility (MOF)

 formalizes the syntax of UML (similar to BNF for PL)

 is some kind of “top level ontology”

 (M2) Metamodel

 Defines structure and constraints for a family of

models.

 (M1) Model

 Each of the models is defined in the language of its

unique meta-model.

M. Wirsing 76

Language definition mechanisms

 Options for defining a new modelling languages

 New MOF-based modelling language

 UML extension (profile)

M. Wirsing 77

UML Profile

 Extension of the UML for domain specific model element

 providing a different notation

 enriching model elements with additional semantics (e.g. request

point)

 representation of domain specific patterns (e.g. compensation)

 annotations (marks) facilitating model transformations in a model-

driven approach (e.g. lnk)

 Use of extension mechanisms of the UML

 stereotypes

 tagged values

 constraints

  Risks

 too many stereotypes

 selection of inadequate UML metaclass

 decorative and redefined stereotypes ()

M. Wirsing 78

Creating a UML profile

 Specification of a metamodel for the specific domain

1. identification of the domain specific concepts and their relationships

2. construction of a model capturing concepts and relationships

(metamodel)

3. UML elements for this concepts? (minimalist extension)

 Specification of the profile

1. creation of stereotypes for identified elements

2. identification of appropriate UML metaclasses

3. stereotypes and metamodel elements related by an “extension”

(multiple metaclasses)

4. define semantics of new elements

M. Wirsing 79

UML4SOA metamodel: Orchestration
Conservative extension of the UML

M. Wirsing 80

UML4SOA metamodel: Orchestration (cont.)
Conservative extension of the UML

M. Wirsing 81

SoaML metamodel

M. Wirsing 82

Profile metamodel mapping (excerpt)

M. Wirsing 83

Extension model (excerpt)

UML extension

M. Wirsing 84

SOA models in the MDA context

Computation

Independent

Model (CIM)

Platform

Independent

Model (PIM)

Platform

Specific

Model (PSM)

Business Model

Design Model

Technical Specification

Enterprise Services
 Roles, Collaborations, Dependencies, Workflows

Services
Componentes, Interfaces, Messages, Data

Technical Services
WSDL, BPEL, XML Schema, Java, Jolie

Source: Data Access Technologies, Inc

R
e
fin

e
m

e
n
t &

 A
u
to

m
a
tio

n

M. Wirsing 85

Programming language Jolie

 Service-oriented paradigm

 in Jolie everything is a service

 used to create new services and compose existing ones

 mechanisms for managing data, communication and service

composition services

 Suitable for programming distributed applications

 no distinction between local and remote services

 endpoint locations and communication protocols can be changed

dynamically thus allowing to build a dynamic system, fully

reconfigurable at runtime

main {

 getInfo(request)(response) {
 getTemperature@Forecast(request.city)(response.temperature)

 |

 getData@Traffic(request.city)(response.traffic)

 };

 println@Console("Request served!")()

 }

service concurrently

retrieves information

from a forecast

service and a traffic

service:

M. Wirsing 86

MDD4SOA

 MDD4SOA

 Transformation mechanisms from models to executable

orchestration of services

 source: UML4SOA models

 target platforms: BPEL/WSDL, Java, Jolie

 fully automatic generation of code

 implemented in Java

Mayer et al, EDOC 2008

M. Wirsing 87

Model-Driven Development@Work

M. Wirsing 88

MDD4SOA@work

 Demonstration’s aim

 to show how model-driven development of SOSs can work

 Consists of

1. building an orchestration model with UML4SOA

2. defining a tool chain of transformations in SDE

 Analysis / model2model, model2code, deployment

3. execution of the tool chain

 input: UML4SOA model

 output: application

4. running the deployed application

5. changing the model

6. go to 3

M. Wirsing 89

SENSORIA Development Environment
(SDE)

Tools as services

 Formal Analysis

 Transformation/Feedback

 Modelling

 Code Generation

 Runtime

Tool

Categories

M. Wirsing 90

SENSORIA Development Environment
(SDE)

Tools as services

 Formal Analysis

 WS-Engineer

 LTSA

 PEPA

 SRMC

 CMC

 UMC

 LySA

 …

 Transformation/Feedback

 Modelling

 Code Generation

 Runtime

Tools

M. Wirsing 91

SENSORIA Development Environment
(SDE)

Tools as services

SENSORIA:

Over 20

tools
in the SDE

NeSSoS:

Over 20

further tools
in the SDE

M. Wirsing 92

SENSORIA Development Environment
(SDE)

Tools as services

M. Wirsing 93

SENSORIA Development Environment
(SDE)

Tools as services

M. Wirsing 94

SENSORIA Development Environment
(SDE)

 Integration into Eclipse

M. Wirsing 95

SENSORIA Development Environment
(SDE)

 Eclipse-based integration platform for developing SOA-based

software

 SDE Core

 integrated tools

 Distinctive features of the SDE Core

 uses a SOA approach itself

 tools are orchestrated by the specification of a tool chain

 tool-as-service concept: Orchestrations of tools are now usable as

tools themselves

 enables SOA developers to use tools without the need to understand

the underlying formal languages

 Tool chain in SDE

 defined as a SDE script

 drawn with the graphical orchestration tool

 executable in the Eclipse environment

SDE (Sensoria/Service Development Environment)

 (contact Philip Mayer)

M. Wirsing 96
http://svn.pst.ifi.lmu.de/trac/sde

http://svn.pst.ifi.lmu.de/trac/sde

SDE

See short film

M. Wirsing 97

M. Wirsing 98

Selection of tools, techniques, methods, languages,

…

 SENSORIA approach, in particular the integrated tools in SDE

encompasses

 the whole development process of service-oriented software

 from systems in high-level languages to deployment and re-

engineering

 Difficulty to identify the “best” techniques and tools (SDE plug-ins)

 for solving a particular problem arising in the development process

 To ameliorate this problem we defined a catalogue of patterns

 serves as an index to our results

 illustrates, in a concise manner, the advantages and disadvantages of

the individual techniques

M. Wirsing 99

Example: Service modelling pattern
(simplified description)

 Context

 you are designing a SOA-based system

 the system is intended to offer services to multiple platforms and

makes use of existing services on multiple hosts

 Problem

 when designing SOA systems, it is easy to get lost in the detail of

technical specifications and implementations

 need of effective task identification, separation, and communication

 Forces

 amount of specifications and platforms in the SOA domain makes it

difficult to get a general idea of the solution space

 having a global architectural view eases the task of understanding the

SOA environment

M. Wirsing 100

Example: Service modelling pattern (cont.)
(simplified description)

 Solution

 use a specialised (graphical) modelling language to model the system

 employ these models as far as possible for generating the system

implementation

 Consequences

 Pros: better idea of how the individual artifacts fit together and better

communication between developers and customers

 Cons: Often fully automated generation of code is not feasible

 Tools

 UML CASE tools (Rational Software Modeler, MagicDraw, …)

 profiles SoaML, UML4SOA

 SENSORIA Development Environment (SDE)

 model transformations MDD4SOA

 Related patterns

 Extract formal models

 Generate implementation

M. Wirsing 101

Pattern catalogue

 Relationships between patterns

M. Wirsing 102

 Case Study
Automotive scenario

 Scenario On Road Assistance

 Driver is on the road with his car

 Diagnostic system reports a low oil level; the car is being no
longer driveable

 Driver contacts the on road assistance system

 Car position is located

 System finds appropriate services in the area (garage and rental
car)

 Based on the drivers preferences the best services are selected

 Driver is required to deposit a security payment by credit card

 On Road Assistance as orchestration of services

 services: car position, finding garage and car rental station,

selection of best service, charge credit card

 Application: visualisation of invoked services

 Each service has associated a user interface (web page)

SOA Development Process (recap)

1. Construct and validate business model (requirements)

2. Build design model

3. Analyse properties and refine design model

4. Generate SOA realization

M. Wirsing 103

1. Design model (static structure)
On Road Assistance scenario

M. Wirsing 104

M. Wirsing 105

1. Design model (orchestration)
On Road Assistance scenario

M. Wirsing 106

1. Design model (orchestration, continued)
On Road Assistance scenario

2. Selecting the „Best“ Service

 The SelectGarageService computes a list of best offers according to

user constraints and preferences, e.g.

 Fast repair: Repair as soon as possible, in less than 48 hours

 Preference: Prefer fast repair to cheap repair

 SENSORIA Approach:

 Soft Constraints over C-Semirings [Bistarelli, Montanari, Rossi 97]

 Policy language with preferences [W, Hölzl 06]

 Idea:

 Solve optimisation problems abstractly over constraint semirings

 A soft constraint C is given by

 A (finite) set X of problem variables over a domain D

 A mapping of type

 (X -> D) -> S

 which assigns values in a semiring S to valuations of X

Soft Constraints and Preferences for Services

Soft constraint system for choosing the „best“ offer

 Variables garage-cost, garage-duration, …

 Domain D = { n e N: 0 <= 10000 }

 Semiring FuzzyRing = <R+, max, min, 0,1>

Soft Constraints and Preferences for Services

 Constraints and preferences

 Repair as soon as possible, in less than 48 hours

 Private repair as cheap as possible, 1000 Euro and more almost

unacceptable

 Preference: Prefer fast repair to cheap repair

 fastRepair > cheapRepair

Soft constraint system for choosing the „best“ offer

 Variables garage-cost, garage-duration, …

 Domain D = { n e N: 0 <= 10000 }

 Semiring FuzzyRing = <R+, max, min, 0,1>

M. Wirsing 110

3. Analysis of Quantitative Properties:

Service Level Agreements

 Specifying performance by
annotating UML diagrams &
translation into stochastic process
calculus PEPA

 [DEGAS Project 2004]

 Extension to SRMC (SENSORIA
Reference Markovian Calculus)

 [Gilmore et al. 2006]

 Performance, sensitivity and
scalability analysis of Service
Level Agreements

 using
 Continuous Markov chains

 Ordinary differential equations
 [Gilmore, Hillston 2005]

 Parameter sweep [Gilmore et al.
2006, 2007]

Transformation
Back annotation,

Sensitivity, usage diag.

Transformation

to SRMC/PEPA

Formal Analysis
Performance,

sensitivity, scalability

UML Diagram with

rate annotations

M. Wirsing 111

Example:

Performance of Road Assistance

 Can we guarantee the following Service Level Agreement?

At least 30% of engine failures lead to garage and rental car being

ordered within fifteen minutes and

at least 60% of engine failures lead to garage and rental car being

ordered within thirty minutes.

 Approach:

 Add rates to the time-consuming actions of the workflow

 Translate activity diagram to SRMC

M. Wirsing 112

Transformation to SRMC

 The Road Repair System (simplified)

 OnRoadAssistant ||L

 (LocationSvc || FindGrgeSvc || FindRentalCarSvc

 CChargeSvc || SelectGrgeSvc || SelectRentalCarSvc)

 Determining the current location of the car and finding nearby
services:

 OnRoadAssistant = (start,r0).

 (chargeCredit, infty).(getPosition, infty).

 ((findGarage,infty) || (findRentCarStation, infty)).

 OnRoadAssistant1

 LocationSvc = (getPosition, r2). LocationSvc ...

 Selecting garage and rental car

 OnRoadAssistant1 = ((selectBestGarage, infty) ||

 (selectBestRentalCar, infty)). OnRoadAssistant

 SelectGrgeSvc = (selectBestGarage, r5). selectGrgeSvc

Passive waiting, not

determining the rate

0.9 .. 1.1; locaton info can be

transmitted in 1 min,

with little variance

0.15 .. 1.0; processing orders may take

5 min, with high variance

M. Wirsing 113

Analysis of Service Level Agreements

 Example Service Level Agreement:

 At least 30% of engine failures lead to garage and rental car being ordered

within fifteen minutes and

 at least 60% of engine failures lead to garage and rental car being ordered

within thirty minutes.

 Analysis by varying rates r1-r5:

 5 * 5 * 5 * 5 * 5 = experiments with ipc/Hydra Tool [U. Edinburgh]

M. Wirsing 114

Analysis of Service Level Agreements

 Cumulative analysis of Service Level Agreement:

Sensitivity to

variation of r2

Consequence: A faster processing time for orders (governed by rate r5) is

more important than trying to transmit location data faster (governed by rate r2).

Sensitivity to

variation of r5

M. Wirsing 115

4. Defining tool chain in SDE

 Converter UML4SOA to BPEL/WSDL

 transformation from UML2 models to an Intermediate Orchestration

Model (IOM)

 transformation from IOM to BPEL/WSDL*

 Converter BPEL/WSDL to active BPEL/WSDL

 transformation of BPEL/WSDL* to code executable by ActiveBPEL

Engine 4.0 (open source)

 Replacement of namespace and service location within BPE /WSDL

 Create process deployment description files (catalog.xml, *.pdd)

 Transformation active BPEL to interactive BPEL

 transformation for adding user interaction mechanisms

 additional receive & reply for each invoke for communication between

user and BPEL process

 extension of reply with a list of next actions

 Deployment on a web server (Tomcat)

M. Wirsing 116

Tool chain in SDE
Graphical orchestration of tools (Eclipse plug-ins)

tool chain

execution

M. Wirsing 117

5. Executing tool chain
 Input

outputDir

model

config

M. Wirsing 118

Looking at transformation results
BPEL models

M. Wirsing 119

6. Running the deployed application
 Home Page - Setting of Preferences

M. Wirsing 120

6. Running the deployed application
 Credit card charge

M. Wirsing 121

6. Running the deployed application
 Car position

M. Wirsing 122

6. Running the deployed application
 Garage and rental car services

M. Wirsing 123

6. Running the deployed application
 Selection best services

M. Wirsing 124

7. Changing the orchestration model

M. Wirsing 125

Back to the tool chain (step 3)

tool chain

execution

M. Wirsing 126

Looking at transformation results
BPEL models

M. Wirsing 127

8. Running the deployed application again
 Home Page - Setting of Preferences

M. Wirsing 128

8. Running the deployed application again
 Car position

M. Wirsing 129

Conclusions

 Service Engineering Approach

 modelling of SOSs

 metamodels and UML profiles for SOC

 transformations to analysis models

 formal analysis of models

 annotations of models

 automatic generation of SOAs

 pattern language

 MDD4SOA@work

M. Wirsing 130

Bottom line: Ideas to take home

 Relevance of domain specific modelling language

 UML profile

 must be simple, few constructs

 Automated development approach

 model-based and semantics driven

 early qualitative and quantitative analysis based on formal techniques

 model-driven (transformations)

 pattern-based

 Importance of flexible tool support

 easy (graphically) integration of diverse tools

M. Wirsing 131

References

 OMG, www.omg.org

 SENSORIA project, www.sensoria-ist.eu

 SHAPE project (SoaML), www.shape-project.eu

 SoaML, http://www.omg.org/spec/SoaML/

http://www.omg.org/
http://www.sensoria-ist.eu/
http://www.sensoria-ist.eu/
http://www.sensoria-ist.eu/
http://www.shape-project.eu/
http://www.shape-project.eu/
http://www.shape-project.eu/

