
Software Engineering and
Service-Oriented Systems

– Analysing Service-Oriented Systems with COWS –

Francesco Tiezzi

IMT - Institutions, Markets, Technologies

Institute for Advanced Studies Lucca

Lucca, Italy - September, 2013

In co-operation with SENSORIA members, in particular Alessandro Fantechi, Stefania Gnesi,
Alessandro Lapadula, Franco Mazzanti, and Rosario Pugliese

1

Analysis techniques for COWS specifications

A bisimulation-based observational semantics [ICALP’09]

A type system for checking confidentiality properties [FSEN’07]

A logical verification methodology [FASE’08,TOSEM’12]

Analysis techniques 2

Analysis techniques for COWS specifications

A bisimulation-based observational semantics [ICALP’09]

A type system for checking confidentiality properties [FSEN’07]

A logical verification methodology [FASE’08,TOSEM’12]

Analysis techniques 2

Logics and Model checking

Process calculi provide behavioral specifications of services

Logics have been long since proved able to reason about such
complex systems as SOC applications

I provide abstract specifications of these complex systems

I can be used for describing system properties rather than system
behaviors

Logics and model checkers can be used as tools for verifying that
services enjoy desirable properties and do not manifest
unexpected behaviors

Analysis techniques 3

A logical verification methodology

Informal or semi-formal specification
(e.g. UML4SOA, SRML, …)

COWS model

SocL formulae CMC

Verification
results

requirements
formalisation

formal
specification

Model
Checking

Analysis techniques 4

Requirements formalisation
To formally express service properties we exploit

SocL
an action- and state-based, branching time, temporal logic expressly
designed to formalise in a convenient way distinctive aspects of services

action- and state-based logic
⇓

Doubly Labelled Transition Systems (L2TS) as interpretation domain
⇓

Abstract notion of services
services are thought of as sw entities which may have an internal
state and can interact with each other
services are characterised by actions and atomic propositions of
the form type/name(interaction, corrTuple)

Analysis techniques 5

Requirements formalisation
To formally express service properties we exploit

SocL
an action- and state-based, branching time, temporal logic expressly
designed to formalise in a convenient way distinctive aspects of services

action- and state-based logic
⇓

Doubly Labelled Transition Systems (L2TS) as interpretation domain
⇓

Abstract notion of services
services are thought of as sw entities which may have an internal
state and can interact with each other
services are characterised by actions and atomic propositions of
the form type/name(interaction, corrTuple)

Analysis techniques 5

SocL actions
Actions (a ∈ Act)
have the form t(i , c)

t : type of the action (e.g. request , response, fail , . . .)

i : name of the interaction which the action is part of (e.g. charge)

c: tuple of correlation values and variables identifying the interaction;
var denotes a binding occurrence of the correlation variable var

Examples
request(charge,1234,1): action starting an (instance of the) interaction
charge which will be identified through the correlation tuple 〈1234,1〉
a corresponding response action can be response(charge,1234,1)

request(charge,1234, id): request action where the second correlation
value is unknown; a (binder for a) correlation variable id is used instead
a corresponding response action can be response(charge,1234, id);
the (free) occurrence of the correlation variable id indicates the
connection with the action where the variable is bound

Analysis techniques 6

SocL actions
Actions (a ∈ Act)
have the form t(i , c)

t : type of the action (e.g. request , response, fail , . . .)

i : name of the interaction which the action is part of (e.g. charge)

c: tuple of correlation values and variables identifying the interaction;
var denotes a binding occurrence of the correlation variable var

Examples
request(charge,1234,1): action starting an (instance of the) interaction
charge which will be identified through the correlation tuple 〈1234,1〉
a corresponding response action can be response(charge,1234,1)

request(charge,1234, id): request action where the second correlation
value is unknown; a (binder for a) correlation variable id is used instead
a corresponding response action can be response(charge,1234, id);
the (free) occurrence of the correlation variable id indicates the
connection with the action where the variable is bound

Analysis techniques 6

SocL actions
Actions (a ∈ Act)
have the form t(i , c)

t : type of the action (e.g. request , response, fail , . . .)

i : name of the interaction which the action is part of (e.g. charge)

c: tuple of correlation values and variables identifying the interaction;
var denotes a binding occurrence of the correlation variable var

Examples
request(charge,1234,1): action starting an (instance of the) interaction
charge which will be identified through the correlation tuple 〈1234,1〉
a corresponding response action can be response(charge,1234,1)

request(charge,1234, id): request action where the second correlation
value is unknown; a (binder for a) correlation variable id is used instead
a corresponding response action can be response(charge,1234, id);
the (free) occurrence of the correlation variable id indicates the
connection with the action where the variable is bound

Analysis techniques 6

SocL atomic propositions

Atomic propositions (π ∈ AP)
have the form p(i , c)

p: name of the proposition (accepting_request , accepting_cancel , . . .)

i : name of the interaction (e.g. charge)

c: tuple of correlation values and free variables

Examples
accepting_request(charge): proposition indicating that a state can
accept requests for the interaction charge (regardless of the correlation
data)
accepting_cancel(charge,1234,1): a state permits to cancel those
requests for interaction charge identified by the correlation tuple
〈1234,1〉

Analysis techniques 7

SocL atomic propositions

Atomic propositions (π ∈ AP)
have the form p(i , c)

p: name of the proposition (accepting_request , accepting_cancel , . . .)

i : name of the interaction (e.g. charge)

c: tuple of correlation values and free variables

Examples
accepting_request(charge): proposition indicating that a state can
accept requests for the interaction charge (regardless of the correlation
data)
accepting_cancel(charge,1234,1): a state permits to cancel those
requests for interaction charge identified by the correlation tuple
〈1234,1〉

Analysis techniques 7

SocL syntax

State formulae syntax

φ ::= true | π | ¬φ | φ ∧ φ′ | EΨ | AΨ

Path formulae syntax

Ψ ::= Xγφ | φ χUγ φ
′ | φ χW γ φ

′

Action formulae syntax

γ ::= a | χ χ ::= tt | a | τ | ¬χ | χ ∧ χ
a indicates that the action may contain variables binders

Some derived modalities
< γ > φ stands for EXγ φ [γ]φ stands for ¬ < γ > ¬φ
E(φ χU φ′) stands for φ′ ∨ E(φχUχ∨τ φ

′) EFφ stands for E(true tt Uφ)
AFγ true stands for A(true tt Uγ true) AG φ stands for ¬EF ¬φ

Analysis techniques 8

SocL syntax

State formulae syntax

φ ::= true | π | ¬φ | φ ∧ φ′ | EΨ | AΨ

Path formulae syntax

Ψ ::= Xγφ | φ χUγ φ
′ | φ χW γ φ

′

Action formulae syntax

γ ::= a | χ χ ::= tt | a | τ | ¬χ | χ ∧ χ
a indicates that the action may contain variables binders

Some derived modalities
< γ > φ stands for EXγ φ [γ]φ stands for ¬ < γ > ¬φ
E(φ χU φ′) stands for φ′ ∨ E(φχUχ∨τ φ

′) EFφ stands for E(true tt Uφ)
AFγ true stands for A(true tt Uγ true) AG φ stands for ¬EF ¬φ

E and A are existential and universal (resp.) path quantifiers

Analysis techniques 8

SocL syntax

State formulae syntax

φ ::= true | π | ¬φ | φ ∧ φ′ | EΨ | AΨ

Path formulae syntax

Ψ ::= Xγφ | φ χUγ φ
′ | φ χW γ φ

′

Action formulae syntax

γ ::= a | χ χ ::= tt | a | τ | ¬χ | χ ∧ χ
a indicates that the action may contain variables binders

Some derived modalities
< γ > φ stands for EXγ φ [γ]φ stands for ¬ < γ > ¬φ
E(φ χU φ′) stands for φ′ ∨ E(φχUχ∨τ φ

′) EFφ stands for E(true tt Uφ)
AFγ true stands for A(true tt Uγ true) AG φ stands for ¬EF ¬φ

Analysis techniques 8

SocL syntax

State formulae syntax

φ ::= true | π | ¬φ | φ ∧ φ′ | EΨ | AΨ

Path formulae syntax

Ψ ::= Xγφ | φ χUγ φ
′ | φ χW γ φ

′

Action formulae syntax

γ ::= a | χ χ ::= tt | a | τ | ¬χ | χ ∧ χ
a indicates that the action may contain variables binders

Some derived modalities
< γ > φ stands for EXγ φ [γ]φ stands for ¬ < γ > ¬φ
E(φ χU φ′) stands for φ′ ∨ E(φχUχ∨τ φ

′) EFφ stands for E(true tt Uφ)
AFγ true stands for A(true tt Uγ true) AG φ stands for ¬EF ¬φ

X , U and W are the next, (strong) until and weak until operators
Xγφ says that in the next state of the path, reached by an action
satisfying γ, the formula φ holds

φ χUγ φ′ says that φ′ holds at some future state of the path reached by a
last action satisfying γ, while φ holds from the current state until that
state is reached and all the actions executed in the meanwhile along the
path satisfy χ

φ χWγ φ
′ holds on a path either if the corresponding strong until operator

holds or if for all the states of the path the formula φ holds and all the
actions of the path satisfy χ

Analysis techniques 8

SocL syntax

State formulae syntax

φ ::= true | π | ¬φ | φ ∧ φ′ | EΨ | AΨ

Path formulae syntax

Ψ ::= Xγφ | φ χUγ φ
′ | φ χW γ φ

′

Action formulae syntax

γ ::= a | χ χ ::= tt | a | τ | ¬χ | χ ∧ χ
a indicates that the action may contain variables binders

Some derived modalities
< γ > φ stands for EXγ φ [γ]φ stands for ¬ < γ > ¬φ
E(φ χU φ′) stands for φ′ ∨ E(φχUχ∨τ φ

′) EFφ stands for E(true tt Uφ)
AFγ true stands for A(true tt Uγ true) AG φ stands for ¬EF ¬φ

Analysis techniques 8

SocL syntax

State formulae syntax

φ ::= true | π | ¬φ | φ ∧ φ′ | EΨ | AΨ

Path formulae syntax

Ψ ::= Xγφ | φ χUγ φ
′ | φ χW γ φ

′

Action formulae syntax

γ ::= a | χ χ ::= tt | a | τ | ¬χ | χ ∧ χ
a indicates that the action may contain variables binders

Some derived modalities
< γ > φ stands for EXγ φ [γ]φ stands for ¬ < γ > ¬φ
E(φ χU φ′) stands for φ′ ∨ E(φχUχ∨τ φ

′) EFφ stands for E(true tt Uφ)
AFγ true stands for A(true tt Uγ true) AG φ stands for ¬EF ¬φ

<γ>φ states that it is possible to perform an action satisfying γ and
thereby reaching a state that satisfies formula φ

[γ]φ states that no matter how a process performs an action satisfying
γ, the state it reaches in doing so will necessarily satisfy the formula φ

EFφ means that there is some path that leads to a state at which φ
holds; that is, φ eventually holds on some path

AFγ φ means that an action satisfying γ will be performed in the future
along every path and at the reached states φ holds; if φ is true, we say
that an action satisfying γ will always eventually be performed

AG φ states that φ holds at every state on every path; that is, φ holds
globally

Analysis techniques 8

SocL description of abstract properties

Availability
the service is always capable to accept a request

AG(accepting_ request(i))

Reliability
the service guarantees a successful response to each received request

AG[request(i , v)]AFresponse(i,v) true

Responsiveness
the service guarantees a response to each received request

AG[request(i , v)] AFresponse(i,v)∨fail(i,v) true

. . .

Analysis techniques 9

SocL semantics: action formulae semantics

α |= γ � ρ means: the formula γ is satisfied over the set of closed
actions α under substitution ρ

α |= a � ρ iff ∃b ∈ α such that match(a,b) = ρ

α |= χ� ∅ iff α |= χ

where the relation α |= χ is defined as follows

I α |= tt holds always
I α |= a iff a ∈ α
I α |= τ iff α = ∅
I α |= ¬χ iff not α |= χ
I α |= χ ∧ χ′ iff α |= χ and α |= χ′

Analysis techniques 10

SocL semantics

Let 〈Q,q0,Act ,R,AP,L〉 be an L2TS, q ∈ Q and σ ∈ path(q)

The satisfaction relation of closed SocL formulae, i.e. formulae
without unbound variables, is defined as follows

q |= true holds always
q |= π iff π ∈ L(q)

q |= ¬φ iff not q |= φ

q |= φ ∧ φ′ iff q |= φ and q |= φ′

q |= EΨ iff ∃σ ∈ path(q) : σ |= Ψ

q |= AΨ iff ∀σ ∈ path(q) : σ |= Ψ

σ |= Xγφ iff ∃ ρ : σ{1} |= γ � ρ and σ(2) |= φ ρ

. . .

Analysis techniques 11

SocL semantics

Let 〈Q,q0,Act ,R,AP,L〉 be an L2TS, q ∈ Q and σ ∈ path(q)

The satisfaction relation of closed SocL formulae, i.e. formulae
without unbound variables, is defined as follows

. . .
σ |= φ χUγφ

′ iff ∃ j ≥ 1
σ(j) |= φ, and ∃ ρ : σ{j} |= γ � ρ and σ(j + 1) |= φ′ρ,
and ∀1 ≤ i < j : σ(i) |= φ and σ{i} |= χ

σ |= φ χWγφ
′ iff either σ |= φ χUγφ

′ or ∀ i ≥ 1 : σ(i) |= φ
and σ{i} |= χ

Analysis techniques 11

A novel verification methodology of service properties
1 Properties are initially formalized as SocL formulae,

while preserving their independence from individual service
domains and specifications

2 Services behaviour are specified as COWS terms
3 Formulae are tailored to a given specification of a service

by means of some abstraction rules that relate actions in the
specification with actions of the logic

4 The verification process takes place

Concrete
COWS model

Abstract
SocL formulae

CMC
model checker

Verification
results

Analysis techniques 12

A novel verification methodology of service properties
1 Properties are initially formalized as SocL formulae,

while preserving their independence from individual service
domains and specifications

2 Services behaviour are specified as COWS terms
3 Formulae are tailored to a given specification of a service

by means of some abstraction rules that relate actions in the
specification with actions of the logic

4 The verification process takes place

Concrete
COWS model

Abstract
SocL formulae

CMC
model checker

Verification
results

Analysis techniques 12

A novel verification methodology of service properties
1 Properties are initially formalized as SocL formulae,

while preserving their independence from individual service
domains and specifications

2 Services behaviour are specified as COWS terms
3 Formulae are tailored to a given specification of a service

by means of some abstraction rules that relate actions in the
specification with actions of the logic

4 The verification process takes place

Concrete
COWS model

Abstract
SocL formulae

CMC
model checker

Verification
results

Analysis techniques 12

A novel verification methodology of service properties
1 Properties are initially formalized as SocL formulae,

while preserving their independence from individual service
domains and specifications

2 Services behaviour are specified as COWS terms
3 Formulae are tailored to a given specification of a service

by means of some abstraction rules that relate actions in the
specification with actions of the logic

4 The verification process takes place

We resort to a linguistic formalism rather than directly using L2TSs because

L2TSs are too low level

L2TSs suffer for lack of compositionality,
i.e. they offer no means for constructing the L2TS of a composed service
in terms of the L2TSs of its components

linguistic terms are more intuitive and concise notations

using linguistic terms, services are built in a compositional way

linguistic terms are syntactically finite, even when the corresponding
semantic model (i.e. L2TSs) is not

Analysis techniques 12

A novel verification methodology of service properties
1 Properties are initially formalized as SocL formulae,

while preserving their independence from individual service
domains and specifications

2 Services behaviour are specified as COWS terms
3 Formulae are tailored to a given specification of a service

by means of some abstraction rules that relate actions in the
specification with actions of the logic

4 The verification process takes place

Concrete
COWS model

Abstract
SocL formulae

CMC
model checker

Verification
results

Analysis techniques 12

A novel verification methodology of service properties
1 Properties are initially formalized as SocL formulae,

while preserving their independence from individual service
domains and specifications

2 Services behaviour are specified as COWS terms
3 Formulae are tailored to a given specification of a service

by means of some abstraction rules that relate actions in the
specification with actions of the logic

4 The verification process takes place

Concrete
COWS model

Abstract
SocL formulae

CMC
model checker

Verification
results

Abstract
COWS model

Abstraction
Abstraction

rules

Automatically
performed by CMC

e.g.
Action: creditRequest<$1> → request(cr,$1)
Action: offer<$1,*,*> → response(cr,$1)
 …
 State: login → accepting_request(login)

Analysis techniques 12

A novel verification methodology of service properties
1 Properties are initially formalized as SocL formulae,

while preserving their independence from individual service
domains and specifications

2 Services behaviour are specified as COWS terms
3 Formulae are tailored to a given specification of a service

by means of some abstraction rules that relate actions in the
specification with actions of the logic

4 The verification process takes place

Concrete
COWS model

Abstract
SocL formulae

CMC
model checker

Verification
results

Analysis techniques 12

A novel verification methodology of service properties
1 Properties are initially formalized as SocL formulae,

while preserving their independence from individual service
domains and specifications

2 Services behaviour are specified as COWS terms
3 Formulae are tailored to a given specification of a service

by means of some abstraction rules that relate actions in the
specification with actions of the logic

4 The verification process takes place

Concrete
COWS model

Abstract
SocL formulae

CMC
model checker

Verification
results

Analysis techniques 12

The model checker CMC
To assist the verification process of SocL formulae over L2TS

CMC is an efficient on-the-fly model checker

The basic idea behind CMC is that, given a state of an L2TS, the
validity of a SocL formula on that state can be established by:

I checking the satisfiability of the state predicates
I analyzing the transitions allowed in that state
I establishing the validity of some subformula in some/all of the next

reachable states

If a SocL formula is not satisfied, a counterexample is exhibited

CMC can be used to verify properties of services specified in COWS

CMC can be downloaded or experimented via its web interface at
http://fmt.isti.cnr.it/cmc

Analysis techniques 13

Model checking the bank service

bank

bankInterfacebankInterface

check

ok
fail

bank

bankcheck

ok
fail

check,ok,failbank servicebank service

charge

xid,
“ok”/ “fail”

respxc

xc,xcc,
xamount,xid

* * creditRatingcreditRating

Analysis techniques 14

Model checking the bank service
The instantiation of the generic patterns of formulae over the bank service is
obtained by just replacing any occurrence of i with charge

The bank service is always available
AG (accepting_ request(charge))

In every state the service may accept a request for the interaction charge

The bank service is responsive
AG [request(charge, v)] AFresponse(charge,v)∨fail(charge,v) true

The response and the failure notification belong to the same interaction
charge as the accepted request and they are correlated by the variable v

The bank service is reliable
AG [request(charge, v)] AFresponse(charge,v) true

The service guarantees a successful response to each received request

Analysis techniques 15

Model checking the bank service
The instantiation of the generic patterns of formulae over the bank service is
obtained by just replacing any occurrence of i with charge

The bank service is always available
AG (accepting_ request(charge))

In every state the service may accept a request for the interaction charge

The bank service is responsive
AG [request(charge, v)] AFresponse(charge,v)∨fail(charge,v) true

The response and the failure notification belong to the same interaction
charge as the accepted request and they are correlated by the variable v

The bank service is reliable
AG [request(charge, v)] AFresponse(charge,v) true

The service guarantees a successful response to each received request

Analysis techniques 15

Model checking the bank service
The instantiation of the generic patterns of formulae over the bank service is
obtained by just replacing any occurrence of i with charge

The bank service is always available
AG (accepting_ request(charge))

In every state the service may accept a request for the interaction charge

The bank service is responsive
AG [request(charge, v)] AFresponse(charge,v)∨fail(charge,v) true

The response and the failure notification belong to the same interaction
charge as the accepted request and they are correlated by the variable v

The bank service is reliable
AG [request(charge, v)] AFresponse(charge,v) true

The service guarantees a successful response to each received request

Analysis techniques 15

Model checking the bank service
The instantiation of the generic patterns of formulae over the bank service is
obtained by just replacing any occurrence of i with charge

The bank service is always available
AG (accepting_ request(charge))

In every state the service may accept a request for the interaction charge

The bank service is responsive
AG [request(charge, v)] AFresponse(charge,v)∨fail(charge,v) true

The response and the failure notification belong to the same interaction
charge as the accepted request and they are correlated by the variable v

The bank service is reliable
AG [request(charge, v)] AFresponse(charge,v) true

The service guarantees a successful response to each received request

Analysis techniques 15

Model checking the bank service

bank

bankInterfacebankInterface

check

ok
fail

bank

bankcheck

ok
fail

check,ok,failbank servicebank service

charge

xid,
“ok”/ “fail”

respxc

xc,xcc,
xamount,xid

* * creditRatingcreditRating

Abstraction rules
Action charge<*,*,*,$id> → request(charge,$id)
Action resp<$id,“ok”> → response(charge,$id)
Action resp<$id,“fail”> → fail(charge,$id)
State charge → accepting_request(charge)

Analysis techniques 16

Tool demonstration . . .

Analysis techniques 17

Model checking: a calculus-based approach

We have seen a calculus-based methodology for model checking
COWS specifications

People in charge of verifying systems are required to understand and deal
with calculi and logics.
This may not be the case, especially within , where people are usually familiar
with higher-level UML-based modelling languages

Analysis techniques 18

Model checking: a calculus-based approach

We have seen a calculus-based methodology for model checking
COWS specifications

People in charge of verifying systems are required to understand and deal
with calculi and logics.
This may not be the case, especially within industrial contexts, where people
are usually familiar with higher-level UML-based modelling languages

Analysis techniques 18

Model checking: a calculus-based approach

We have seen a calculus-based methodology for model checking
COWS specifications

People in charge of verifying systems are required to understand and deal
with calculi and logics.
This may not be the case, especially within industrial contexts, where people
are usually familiar with higher-level UML-based modelling languages

Analysis techniques 18

Model checking: a calculus-based approach

We have seen a calculus-based methodology for model checking
COWS specifications

People in charge of verifying systems are required to understand and deal
with calculi and logics.
This may not be the case, especially within industrial contexts, where people
are usually familiar with higher-level UML-based modelling languages

Analysis techniques 18

UML4SOA

The most widely used language for modelling sw systems is UML

UML4SOA is a UML 2.0 profile, inspired by WS-BPEL,
that has been expressly designed for modeling service-oriented
applications

UML4SOA activity diagrams express the behavioral aspects of
services

I integrate UML with specialized actions for exchanging messages,
specialized structured activity nodes and activity edges for
representing scopes with event, fault and compensation handlers

Since UML4SOA specifications are static models, they are not
suitable for direct automated analysis

Analysis techniques 19

UML4SOA: diagram example

Analysis techniques 20

How to reconcile

Analysis techniques 21

How to reconcile

Analysis techniques 21

Our proposal

Analysis techniques 22

Our proposal

Analysis techniques 22

Our proposal

Venus: a Verification ENvironment for UML models of Services
A software environment for verifying behavioural properties of UML
models of services by exploiting process calculi and temporal logics

UML models of services: UMLSOA activity diagrams
Venus shepherds the (non-expert) users to set the behavioural
service properties they want to verify
It is a proof-of-concept implementation

Analysis techniques 23

Our proposal

Venus: a Verification ENvironment for UML models of Services
A software environment for verifying behavioural properties of UML
models of services by exploiting process calculi and temporal logics

UML models of services: UMLSOA activity diagrams
Venus shepherds the (non-expert) users to set the behavioural
service properties they want to verify
It is a proof-of-concept implementation

Analysis techniques 23

Our proposal

Venus: a Verification ENvironment for UML models of Services
A software environment for verifying behavioural properties of UML
models of services by exploiting process calculi and temporal logics

UML models of services: UMLSOA activity diagrams
Venus shepherds the (non-expert) users to set the behavioural
service properties they want to verify
It is a proof-of-concept implementation

Analysis techniques 23

Our proposal

Venus: a Verification ENvironment for UML models of Services
A software environment for verifying behavioural properties of UML
models of services by exploiting process calculi and temporal logics

UML models of services: UMLSOA activity diagrams
Venus shepherds the (non-expert) users to set the behavioural
service properties they want to verify
It is a proof-of-concept implementation

Analysis techniques 23

Bank scenario: bank service

Analysis techniques 24

Bank scenario: credit rating service

Analysis techniques 25

Bank scenario: client service

Analysis techniques 26

Venus demo 1/16

Analysis techniques 27

Venus demo 2/16

Analysis techniques 28

Venus demo 3/16

Analysis techniques 29

Venus demo 4/16

Analysis techniques 30

Venus demo 5/16

Analysis techniques 31

Venus demo 6/16

Analysis techniques 32

Venus demo 7/16

Analysis techniques 33

Venus demo 8/16

Analysis techniques 34

Venus demo 9/16

Analysis techniques 35

Venus demo 10/16

Analysis techniques 36

Venus demo 11/16

Analysis techniques 37

Venus demo 12/16

Analysis techniques 38

Venus demo 13/16

Analysis techniques 39

Venus demo 14/16

Analysis techniques 40

Venus demo 15/16

Analysis techniques 41

Venus demo 16/16

Analysis techniques 42

Venus architecture

Analysis techniques 43

Venus architecture

Analysis techniques 43

From UML4SOA to COWS

creditRequest •initialize?〈xportal ,xid ,xname,xpwd〉

xportal •initialize!〈creditRequest , xid , xuserOk 〉

∗e?〈true〉.
[n1, . . . ,nn] (n1!〈g1〉 | . . . | nn!〈gn〉

| n1?〈true〉.e1!〈true〉 + . . . + nn?〈true〉.en!〈true〉)

∗ (e1?〈true〉.e!〈g〉 + . . .+ en?〈true〉.e!〈g〉)

∗e?〈true〉. (e1!〈g1〉 | . . . | en!〈gn〉)

∗e1?〈true〉.en?〈true〉.e!〈g〉

Analysis techniques 44

From UML4SOA to COWS

[r, stack]
([k] (GRAPH ; {|c • main?〈〉.GRAPHc |}

| {|Stack |} | ∗GRAPHev)
| r?〈〉. {|GRAPHe |})

c • main!〈〉 kill(k) | {|r!〈〉|}

stack • compAll!〈〉

Our COWS implementation of UML4SOA constructs follows a
compositional approach

Analysis techniques 45

From UML4SOA to COWS

[r, stack]
([k] (GRAPH ; {|c • main?〈〉.GRAPHc |}

| {|Stack |} | ∗GRAPHev)
| r?〈〉. {|GRAPHe |})

c • main!〈〉 kill(k) | {|r!〈〉|}

stack • compAll!〈〉

Our COWS implementation of UML4SOA constructs follows a
compositional approach

Analysis techniques 45

Concluding remarks

Concluding remarks 46

Conclusions

COWS permits modelling different and typical aspects of
services and Web services technologies

I multiple start activities, receive conflicts, routing of correlated
messages, service instances and interactions among them

COWS can express the most common workflow patterns and
can encode many other process and orchestration languages

COWS, with some mild linguistic additions, can model all the
relevant phases of the life cycle of service-oriented applications

I publication, discovery, negotiation, deployment, orchestration,
reconfiguration and execution

Concluding remarks 47

Conclusions
The observational semantics permits to check interchangeability
of services and conformance against service specifications

The type system permits specifying and forcing policies for
constraining the services that can safely access any given datum

I Types are just sets and operations on types are union, intersection,
subset inclusion, . . .

I The runtime semantics only involves efficiently implementable
operations on sets

The logical verification framework for checking functional
properties of SOC applications has many advantages

I It can be easily tailored to other service-oriented specification
languages

I SocL’s parametric formulae permit expressing properties about
many kinds of interaction patterns, e.g. one-way, request-response,
one request-multiple responses, . . .

Concluding remarks 48

http://rap.dsi.unifi.it/cows/

Concluding remarks 49

http://rap.dsi.unifi.it/cows/

References

References 50

References 1/4

A WSDL-based type system for WS-BPEL
A. Lapadula, R. Pugliese, F. Tiezzi. Proc. of COORDINATION’06, LNCS
4038, 2006.

A calculus for orchestration of web services
A. Lapadula, R. Pugliese, F. Tiezzi. Proc. of ESOP’07, LNCS 4421, 2007.

go back

Regulating data exchange in service oriented applications
A. Lapadula, R. Pugliese, F. Tiezzi. Proc. of FSEN’07, LNCS 4767, 2007.

go back

COWS: A timed service-oriented calculus
A. Lapadula, R. Pugliese, F. Tiezzi. Proc. of ICTAC’07, LNCS 4711,
2007. go back

Stochastic COWS
D. Prandi, P. Quaglia. Proc. of ICSOC’07, LNCS 4749, 2007.

References 51

http://rap.dsi.unifi.it/cows/papers/wsc-coordination06.pdf
http://rap.dsi.unifi.it/cows/papers/cows-esop07.pdf
http://rap.dsi.unifi.it/cows/papers/cows-fsen07.pdf
http://rap.dsi.unifi.it/cows/papers/cows-ictac07.pdf
http://www.springerlink.com/content/w2l808085878626v/?p=cd88aaa603e84226835042340b626289&pi=19

References 2/4

A model checking approach for verifying COWS specifications
A. Fantechi, S. Gnesi, A. Lapadula, F. Mazzanti, R. Pugliese, F. Tiezzi.
Proc. of FASE’08, LNCS 4961, 2008. go back

Service discovery and negotiation with COWS
A. Lapadula, R. Pugliese, F. Tiezzi. Proc. of WWV’07, ENTCS 200(3),
2008. go back

Specifying and Analysing SOC Applications with COWS
A. Lapadula, R. Pugliese, F. Tiezzi. In Concurrency, Graphs and Models,
LNCS 5065, 2008.

SENSORIA Patterns: Augmenting Service Engineering with Formal
Analysis, Transformation and Dynamicity
M. Wirsing, et al. Proc. of ISOLA’08, Communications in Computer and
Information Science 17, 2008.

A formal account of WS-BPEL
A. Lapadula, R. Pugliese, F. Tiezzi. Proc. of COORDINATION’08, LNCS
5052, 2008.

References 52

http://rap.dsi.unifi.it/cows/papers/cows_logic.pdf
http://rap.dsi.unifi.it/cows/papers/cows_sla.pdf
http://rap.dsi.unifi.it/cows/papers/cows_ugo.pdf
http://rap.dsi.unifi.it/cows/papers/isola08.pdf
http://rap.dsi.unifi.it/cows/papers/isola08.pdf
http://rap.dsi.unifi.it/cows/papers/blite.pdf

References 3/4

Formal analysis of BPMN via a translation into COWS
D. Prandi, P. Quaglia, N. Zannone. Proc. of COORDINATION’08, LNCS
5052, 2008.

Relational Analysis of Correlation
J. Bauer, F. Nielson, H.R. Nielson, H. Pilegaard. Proc. of SAS’08, LNCS
5079, 2008.

A Symbolic Semantics for a Calculus for Service-Oriented Computing
R. Pugliese, F. Tiezzi, N. Yoshida. Proc. of PLACES’08, ENTCS 241,
2009.

Specification and analysis of SOC systems using COWS: A finance case
study
F. Banti, A. Lapadula, R. Pugliese, F. Tiezzi. Proc. of WWV’08, ENTCS
235(C), 2009.

From Architectural to Behavioural Specification of Services
L. Bocchi, J.L. Fiadeiro, A. Lapadula, R. Pugliese, F. Tiezzi. Proc. of
FESCA’09, ENTCS 253/1, 2009.

References 53

http://www.springerlink.com/content/j648143597nn2510/?p=cb75e9042f584e62afe63a95484636f9&pi=15
http://www.springerlink.com/content/u6317h7354117658/
http://rap.dsi.unifi.it/cows/papers/cows_places.pdf
http://rap.dsi.unifi.it/cows/papers/cows_wwv08.pdf
http://rap.dsi.unifi.it/cows/papers/cows_wwv08.pdf
http://rap.dsi.unifi.it/cows/papers/fesca09.pdf

References 4/4

On observing dynamic prioritised actions in SOC
R. Pugliese, F. Tiezzi, N. Yoshida. Proc. of ICALP’09, LNCS 5556, 2009.

go back

On secure implementation of an IHE XUA-based protocol for
authenticating healthcare professionals
M. Masi, R. Pugliese, F. Tiezzi. Proc. of ICISS’09, LNCS 5905, 2009.

Rigorous Software Engineering for Service-Oriented Systems - Results
of the SENSORIA Project on Software Engineering for Service-Oriented
Computing
M. Wirsing and M. Hölzl Editors. LNCS, 2010. To appear.

An Accessible Verification Environment for UML Models of Services
F. Banti, R. Pugliese, F. Tiezzi. Journal of Symbolic Computation, 2010.
To appear.

A criterion for separating process calculi
F. Banti, R. Pugliese, F. Tiezzi. Proc. of EXPRESS’10, 2010. go back

References 54

http://rap.dsi.unifi.it/cows/papers/PTY-bis4cows.pdf
http://rap.dsi.unifi.it/cows/papers/cows_iciss09.pdf
http://rap.dsi.unifi.it/cows/papers/cows_iciss09.pdf
http://rap.dsi.unifi.it/cows/papers/express2010.pdf

	Analysis techniques
	Concluding remarks

