
Software Engineering and
Service-Oriented Systems
– An Overview of (Web) Services –

Francesco Tiezzi

IMT - Institutions, Markets, Technologies

Institute for Advanced Studies Lucca

Lucca, Italy - September, 2013

1

Setting the scene

This course focusses on Service-Oriented Systems (SOSs)

We will introduce the notion of:

I Service-Oriented Computing as a paradigm for developing SOSs

I Service as a basic block for building SOSs

Scenario 2

Service-Oriented Computing (SOC)

A compute paradigm for distributed and e-business computing

Aims at enabling developers to build networks of integrated and
collaborative applications
through the use of loosely coupled, platform-independent,
reusable components (called services)

A modern attempt to cope with old problems related to
information interchange, software integration, and B2B

I Finds its origin in object-oriented and component-based software
development

Service-Oriented Architecture (SOA): an architectural style to
realize SOC

Scenario SOC 3

Service

Interface
func.1 : type1
func.2 : type2

. . .
func.n : typen func.1

func.2

func.n

. . .

Service

Internal
implementation

Scenario Generic service 4

Service

Interface
func.1 : type1
func.2 : type2

. . .
func.n : typen func.1

func.2

func.n

. . .

Service

Internal
implementation

Service
Consumer

Scenario Generic service 4

Web Services (WSs)

Make available the functionalities that a company wants to expose
over the Web, so that they can be exploited by other services

Their underlying architecture is the World Wide Web
I Widespread and extensively used platform
I Suitable to connect different companies and customers

Independently developed applications can be
I exposed as services
I interconnected by exploiting the Web infrastructure and the relative

standards, e.g. HTTP, XML, SOAP, WSDL and UDDI

Facilitate automated integration of newly built and legacy
applications, both within and across organizational boundaries

Scenario Web service 5

Web Service (WS)

WSDL
op.1 : type1
op.2 : type2

. . .
op.n : typen op.1

op.2

op.n

. . .

Java,
Python,
.NET,
C++,
. . .

Scenario Web service 6

Web Service (WS)

WSDL
op.1 : type1
op.2 : type2

. . .
op.n : typen op.1

op.2

op.n

. . .

Java,
Python,
.NET,
C++,
. . .

Application Server
(Tomcat, JBoss, WebSphere, . . .)

Web

SOAP

Scenario Web service 6

Web Services: main features

Autonomous

Accesible via Web

Uniquely identified by an URL

Platform-independent and language-independent

Self-contained
I they can be deployed independently

Self-describing
I format of the exchanged messages are defined in their interfaces

Composable
I they can be dynamically assembled for developing distributed

systems and applications (business processes)

Scenario Web service 7

Web Services: main features
Stateless

I They treat each service request as an independent transaction

I This facilitates composability

I How are sessions and transactions among services realized?
It is up to the messages to guarantee such correlation
(see message correlation in business processes)

Scenario Web service 8

Web Services: main features
Stateless

I They treat each service request as an independent transaction

I This facilitates composability

I How are sessions and transactions among services realized?
It is up to the messages to guarantee such correlation
(see message correlation in business processes)

Scenario Web service 8

Web Services: main features
Stateless

I They treat each service request as an independent transaction

I This facilitates composability

I How are sessions and transactions among services realized?
It is up to the messages to guarantee such correlation
(see message correlation in business processes)

Scenario Web service 8

Web Services: main features
Stateless

I They treat each service request as an independent transaction

I This facilitates composability

I How are sessions and transactions among services realized?
It is up to the messages to guarantee such correlation
(see message correlation in business processes)

Scenario Web service 8

Web Services: main features
WSs can play three roles in a service-oriented architecture

Scenario Web service 9

Web Services: main features
WSs can play three roles in a service-oriented architecture

Providers
I offer functionalities

I publish machine-readable service
descriptions on broker registries

Scenario Web service 9

Web Services: main features
WSs can play three roles in a service-oriented architecture

Providers
I offer functionalities

I publish machine-readable service
descriptions on broker registries

Service descriptions should include both functional and non-functional aspects
(Quality of Service: response time, availability, reliability, security, performance, etc.)

Scenario Web service 9

Web Services: main features
WSs can play three roles in a service-oriented architecture

Requesters/Consumers
I discover functionalities

I invoke providers

Scenario Web service 9

Web Services: main features
WSs can play three roles in a service-oriented architecture

Requesters/Consumers
I discover functionalities

I invoke providers

Scenario Web service 9

Web Services: main features
WSs can play three roles in a service-oriented architecture

Requesters/Consumers
I discover functionalities

I invoke providers

Scenario Web service 9

Web Services: main features
WSs can play three roles in a service-oriented architecture

Brokers
I allow automated publication and

discovery

I rely on registries

Scenario Web service 9

Web Services: main features
WSs can play three roles in a service-oriented architecture

Brokers
I allow automated publication and

discovery

I rely on registries

Scenario Web service 9

Web Services: advantages

Interoperability
I WSs allow different applications running on different platforms to

interact in a loosely coupled way

Reusability
I WSs are component that can be (re)used in different systems and

domains

Standardization
I WSs rely on open, standard protocols

Scenario Web service 10

Web Services: disadvantages

Performances
I They can be lower than other approaches for distributed computing,

due to the use of XML

Security issues
I The use of HTTP allows WSs to avoid security measures

such as firewalls

Critical systems
I Currently, there are no mature standards for relevant aspects of

critical applications, e.g. distributed transactions

Scenario Web service 11

WSDL

WSDL 12

What is WSDL?

WSDL stands for Web Services Description Language

WSDL is an XML document

WSDL is used to describe the public interface of a Web service

WSDL is used to define the location of a Web service

Version 1.1 is the W3C standard most widely used

Version 2.0 is a W3C Recommendation, but it is not widely
adopted yet

WSDL 13

WSDL documents

A WSDL document defines the features of a Web service by
means of:

I portType, describes the operation provided by the service
I message, describes the messages exchanged by the service
I types, defines the data types used by the service
I binding, defines the communication protocol for a portType

Notation:
I ? indicates that an element/attribute can be omitted
I + indicates that an element can be present more than once, but

cannot be omitted
I * indicates that an element can be present more than once or

omitted

WSDL 14

WSDL document structure

<definitions>
<types> ?
data type definitions ...

</types>
<message> *
message format definitions ...

</message>
<portType> *
definition of the interface (i.e. set of operations) ...

</portType>
<binding> *
protocol and data format specifications ...

</binding>
</definitions>

WSDL document structure 15

< portType > element

<definitions>
...
<portType>
definition of the interface (i.e. set of operations) ...

</portType>
...

</definitions>

The < portType > element is the most relevant WSDL element
and describes

I a Web service
I the operations that can be performed
I the messages that are involved

< portType > can be compared to a function library (a module,
a class,. . .) in a traditional programming language

WSDL document structure 16

< message > element

<definitions>
...
<message>
message format definitions ...

</message>
...

</definitions>

The < message > element defines the data format of an
operation
Each message can consist of one or more parts

I Message parts can be compared to the parameters of a function in
a traditional programming language

WSDL document structure 17

< types > element

<definitions>
...
<types>
data type definitions ...

</types>
...

</definitions>

The < types > element defines the data types udsed by the Web
service
WSDL uses XML Schema to define data types

I this implies the maximum platform independence

WSDL document structure 18

The < binding > element

<definitions>
...
<binding>
binding definitions...

</binding>
...

</definitions>

The < binding > element defines the format of the messages
and the details of the protocol used by each WSDL port

WSDL document structure 19

Example

<message name="getTermRequest">
<part name="term" type="xs:string"/>

</message>

<message name="getTermResponse">
<part name="value" type="xs:string"/>

</message>

<portType name="glossaryTerms">
<operation name="getTerm">

<input message="getTermRequest"/>
<output message="getTermResponse"/>

</operation>
</portType>

Example 20

Example

W.r.t. traditional programming languages:

I “glossaryTerms” is a function library

I “getTerm” is a function

I “getTermRequest” is the input parameter of the function

I “getTermResponse” is the return parameter

Example 21

Operation types

The most common operation type is request-response
(see previous example)

WSDL defines 4 types of operation:
Types Definitions
Request-response The operation receives a request and

will return a response
Solicit-response The operation sends a message and

waits for a response
One-way The operation receives a message but

will not return a response
Notification The operation sends a message but

will not wait for a response

Operation types 22

Operation types

Client Server

Request-Response
Request <input>

Respone <output>

Client Server

Solicit-Response
Request <output>

Response <input>

Operation types 23

Operation types

Client Server

One-way

Message <input>

Client Server

Notification

Message <output>

Operation types 24

Operation types: syntax

< portType > syntax

<portType name="ncname">
<operation name="ncname" /> *

</portType>

Syntax of a request-response operation

<operation name="n_name">
<input name="n_name"? message="m_name"/>
<output name="n_name"? message="m_name"/>
<fault name="n_name" message="m_name"/> *

</operation>

Operation types 25

Operation types: syntax

Syntax of a solicit-response operation

<operation name="n_name">
<output name="n_name"? message="m_name"/>
<input name="n_name"? message="m_name"/>
<fault name="n_name" message="m_name"/> *

</operation>

Syntax of a one-way operation

<operation name="n_name">
<input name="n_name"? message="m_name"/>

</operation>

Operation types 26

Operation types: syntax
Syntax of a notification operation

<operation name="n_name">
<output name="n_name"? message="m_name"/>

</operation>

Request-response and solicit-response operations can specify
zero or more elements < fault.../ >

I they indicate the format of possible error messages sent back as
operation result

Interaction modality:
I synchronous: the client is blocked

F it is defined by a request-response operation
(the response should be close to the request)

I asynchronous: the client can perform other activities while waiting
F it is defined by a pair of one-way operations:

- request op. is provided by server and invoked by client
- response op. (callback) is provided by client and invoked by server

Operation types 27

One-way: example

<message name="newTermValues">
<part name="term" type="xs:string"/>
<part name="value" type="xs:string"/>

</message>

<portType name="glossaryTerms">
<operation name="setTerm">

<input name="newTerm" message="newTermValues"/>
</operation>

</portType >

The “setTerm” operation permits inserting a new term in the
glossary
The input message “newTermValues” is composed of a new
“term” and the corresponding “value”

Operation types 28

Binding

We have seen the definition of the abstract interface of a Web
service

I it is not bound to a concrete network address (i.e. an URL)
I it is not bound to any protocol for data transmission
I it can be used for different implementations of the service

The < binding > element defines the concrete part of the
service interface

Syntax of the < binding > element

<binding type="n_type" name="n_name">

< binding > has two attributes:
I name: defines the name of the binding
I type: specifies the portType for the binding

Binding 29

Binding to SOAP: example

<binding type="glossaryTerms" name="b1">
<soap:binding style="document"
transport="http://schemas.xmlsoap.org/soap/http" />
<operation>
<soap:operation
soapAction="http://example.com/getTerm"/>

<input>
<soap:body use="literal"/>

</input>
<output>
<soap:body use="literal"/>

</output>
</operation>

</binding>

Binding 30

Binding to SOAP

The < binding > element contains:

<soap:binding style="document"
transport="http://schemas.xmlsoap.org/soap/http" />

I style can be either “document” (the messages contain documents)
or “rpc” (the messages contain parameters and return values);

I transport: specifies the transport protocol used by SOAP

The < soap : binding > element is followed by the binding
definitions of the operation provided by the port:

I it must be specified how the input and output are encoded:
“literal” (no encoding) or
“encoded” (the encoding is specified by the encodingStyle attribute)

Binding 31

WSDL vs. Contracts

WSDL can be thought of as a simple notion of contract between
the provider and the clients of a Web service

Problem: it is a notion of contract too poor of information
I e.g., a Web service for goods delivery could be reply to an order

request after 20 yerars!

The following aspects should be taken into account:
I quality of service (QoS)
I time
I execution order of the operations
I . . .

Contracts 32

WSDL and UDDI
UDDI: Universal Description, Discovery and Integration

I it relies on a directory (registry) that stores information about
Web services

F basically, such information consists of WSDL descriptions
I it is based on the SOAP protocol
I it is like a telephone book
I the search of Web services is mostly performed manually

UDDI 33

References

References 34

Some references

http://www.w3.org/

http://www.w3.org/TR/xml/

http://www.w3schools.com/

http://www.w3schools.com/xml/

http://www.w3schools.com/webservices/

http://www.w3schools.com/wsdl/

http://www.w3schools.com/soap/

. . .

References 35

http://www.w3.org/
http://www.w3.org/TR/xml/
http://www.w3schools.com/
http://www.w3schools.com/xml/
http://www.w3schools.com/webservices/
http://www.w3schools.com/wsdl/
http://www.w3schools.com/soap/

	WSDL document structure
	Example
	Operation types
	Binding
	Contracts
	UDDI

