
Ensemble-oriented programming of self-adaptive
systems with SCEL and jRESP

Michele Loreti

Dipartimento di Statistica, Informatica, Applicazioni
Università degli Studi di Firenze

AWASS 2013, Lucca, June 24-28, 2013

www.ascens-ist.eu

A Language for Programming Ensembles

We aim at at developing linguistic supports for modelling (and
programming) the behavior of service components and their ensembles,
their interactions, their sensitivity and adaptivity to the environment

SCEL

We aim at designing a specific language with

programming abstractions necessary for

representing Knowledge, Behaviors and Aggregations according to
specific Policies
programming interaction, adaptation and self- and context- awareness

linguistic primitives with solid semantic grounds

To develop logics, tools and methodologies for formal reasoning on
systems behavior
To establish qualitative and quantitative properties of both the
individual components and the ensembles

Michele Loreti 2

A Language for Programming Ensembles

We aim at at developing linguistic supports for modelling (and
programming) the behavior of service components and their ensembles,
their interactions, their sensitivity and adaptivity to the environment

SCEL

We aim at designing a specific language with

programming abstractions necessary for

representing Knowledge, Behaviors and Aggregations according to
specific Policies
programming interaction, adaptation and self- and context- awareness

linguistic primitives with solid semantic grounds

To develop logics, tools and methodologies for formal reasoning on
systems behavior
To establish qualitative and quantitative properties of both the
individual components and the ensembles

Michele Loreti 2

A Language for Programming Ensembles

We aim at at developing linguistic supports for modelling (and
programming) the behavior of service components and their ensembles,
their interactions, their sensitivity and adaptivity to the environment

SCEL

We aim at designing a specific language with

programming abstractions necessary for

representing Knowledge, Behaviors and Aggregations according to
specific Policies
programming interaction, adaptation and self- and context- awareness

linguistic primitives with solid semantic grounds

To develop logics, tools and methodologies for formal reasoning on
systems behavior
To establish qualitative and quantitative properties of both the
individual components and the ensembles

Michele Loreti 2

A Language for Programming Ensembles

We aim at at developing linguistic supports for modelling (and
programming) the behavior of service components and their ensembles,
their interactions, their sensitivity and adaptivity to the environment

SCEL

We aim at designing a specific language with

programming abstractions necessary for

representing Knowledge, Behaviors and Aggregations according to
specific Policies
programming interaction, adaptation and self- and context- awareness

linguistic primitives with solid semantic grounds

To develop logics, tools and methodologies for formal reasoning on
systems behavior
To establish qualitative and quantitative properties of both the
individual components and the ensembles

Michele Loreti 2

Key Notions

We need to enable programmers to model and describe the behavior of
service components and their ensembles, their interactions, and their
sensitivity and adaptivity to the environment they are working in.

Notions to model

1 The behaviors of components and their interactions

2 The topology of the network needed for interaction, taking into
account resources, locations and visibility/reachability issues

3 The environment where components operate and resource-negotiation
takes place, taking into account open ended-ness and adaptation

4 The global knowledge of the systems and that of its components

5 The tasks to be accomplished, the properties to guarantee and the
constraints to respect.

Michele Loreti 3

Key Notions

We need to enable programmers to model and describe the behavior of
service components and their ensembles, their interactions, and their
sensitivity and adaptivity to the environment they are working in.

Notions to model

1 The behaviors of components and their interactions

2 The topology of the network needed for interaction, taking into
account resources, locations and visibility/reachability issues

3 The environment where components operate and resource-negotiation
takes place, taking into account open ended-ness and adaptation

4 The global knowledge of the systems and that of its components

5 The tasks to be accomplished, the properties to guarantee and the
constraints to respect.

Michele Loreti 3

Key Notions

We need to enable programmers to model and describe the behavior of
service components and their ensembles, their interactions, and their
sensitivity and adaptivity to the environment they are working in.

Notions to model

1 The behaviors of components and their interactions

2 The topology of the network needed for interaction, taking into
account resources, locations and visibility/reachability issues

3 The environment where components operate and resource-negotiation
takes place, taking into account open ended-ness and adaptation

4 The global knowledge of the systems and that of its components

5 The tasks to be accomplished, the properties to guarantee and the
constraints to respect.

Michele Loreti 3

Key Notions

We need to enable programmers to model and describe the behavior of
service components and their ensembles, their interactions, and their
sensitivity and adaptivity to the environment they are working in.

Notions to model

1 The behaviors of components and their interactions

2 The topology of the network needed for interaction, taking into
account resources, locations and visibility/reachability issues

3 The environment where components operate and resource-negotiation
takes place, taking into account open ended-ness and adaptation

4 The global knowledge of the systems and that of its components

5 The tasks to be accomplished, the properties to guarantee and the
constraints to respect.

Michele Loreti 3

Key Notions

We need to enable programmers to model and describe the behavior of
service components and their ensembles, their interactions, and their
sensitivity and adaptivity to the environment they are working in.

Notions to model

1 The behaviors of components and their interactions

2 The topology of the network needed for interaction, taking into
account resources, locations and visibility/reachability issues

3 The environment where components operate and resource-negotiation
takes place, taking into account open ended-ness and adaptation

4 The global knowledge of the systems and that of its components

5 The tasks to be accomplished, the properties to guarantee and the
constraints to respect.

Michele Loreti 3

Key Notions

We need to enable programmers to model and describe the behavior of
service components and their ensembles, their interactions, and their
sensitivity and adaptivity to the environment they are working in.

Notions to model

1 The behaviors of components and their interactions

2 The topology of the network needed for interaction, taking into
account resources, locations and visibility/reachability issues

3 The environment where components operate and resource-negotiation
takes place, taking into account open ended-ness and adaptation

4 The global knowledge of the systems and that of its components

5 The tasks to be accomplished, the properties to guarantee and the
constraints to respect.

Michele Loreti 3

Key Notions

We need to enable programmers to model and describe the behavior of
service components and their ensembles, their interactions, and their
sensitivity and adaptivity to the environment they are working in.

Notions to model

1 The behaviors of components and their interactions

2 The topology of the network needed for interaction, taking into
account resources, locations and visibility/reachability issues

3 The environment where components operate and resource-negotiation
takes place, taking into account open ended-ness and adaptation

4 The global knowledge of the systems and that of its components

5 The tasks to be accomplished, the properties to guarantee and the
constraints to respect.

Michele Loreti 3

SCEL: programming abstractions

The Service-Component Ensemble Language (SCEL) currently provides
primitives and constructs for dealing with:

1 Knowledge: to describe how data, information and (local and global)
knowledge is managed

2 Behaviours: to describe how systems of components progress

3 Aggregations: to describe how different entities are brought together
to form components, systems and ensembles

4 Policies: to model and enforce the wanted evolutions of computations.

Michele Loreti 4

SCEL: programming abstractions

The Service-Component Ensemble Language (SCEL) currently provides
primitives and constructs for dealing with:

1 Knowledge: to describe how data, information and (local and global)
knowledge is managed

2 Behaviours: to describe how systems of components progress

3 Aggregations: to describe how different entities are brought together
to form components, systems and ensembles

4 Policies: to model and enforce the wanted evolutions of computations.

Michele Loreti 4

SCEL: programming abstractions

The Service-Component Ensemble Language (SCEL) currently provides
primitives and constructs for dealing with:

1 Knowledge: to describe how data, information and (local and global)
knowledge is managed

2 Behaviours: to describe how systems of components progress

3 Aggregations: to describe how different entities are brought together
to form components, systems and ensembles

4 Policies: to model and enforce the wanted evolutions of computations.

Michele Loreti 4

SCEL: programming abstractions

The Service-Component Ensemble Language (SCEL) currently provides
primitives and constructs for dealing with:

1 Knowledge: to describe how data, information and (local and global)
knowledge is managed

2 Behaviours: to describe how systems of components progress

3 Aggregations: to describe how different entities are brought together
to form components, systems and ensembles

4 Policies: to model and enforce the wanted evolutions of computations.

Michele Loreti 4

SCEL: programming abstractions

The Service-Component Ensemble Language (SCEL) currently provides
primitives and constructs for dealing with:

1 Knowledge: to describe how data, information and (local and global)
knowledge is managed

2 Behaviours: to describe how systems of components progress

3 Aggregations: to describe how different entities are brought together
to form components, systems and ensembles

4 Policies: to model and enforce the wanted evolutions of computations.

Michele Loreti 4

1. Knowledge

SCEL is parametric wrt the means of managing knowledge that would
depend on the specific class of application domains.

Michele Loreti 5

1. Knowledge

SCEL is parametric wrt the means of managing knowledge that would
depend on the specific class of application domains.

Michele Loreti 5

1. Knowledge

SCEL is parametric wrt the means of managing knowledge that would
depend on the specific class of application domains.

Knowledge representation

Tuples, Records

Horn Clause Clauses,

Concurrent Constraints,

. . .

Michele Loreti 5

1. Knowledge

SCEL is parametric wrt the means of managing knowledge that would
depend on the specific class of application domains.

Knowledge handling mechanisms

Pattern-matching, Reactive Tuple Spaces

Data Bases Querying

Resolution

Constraint Solving

. . .

Michele Loreti 5

1. Knowledge (and Adaptation)

No definite stand is taken about the kind of knowledge that might depend
on the application domain. To guarantee adaptivity, we, however, require
there be some specific components.

Application data: Used for the progress of the computation.

Control data: Providing information about the environment (e.g.
data from sensors) and about the current status (e.g. its position or
its battery level).

Knowledge handling mechanisms

Add information to a knowledge repository
Retrieve information from a knowledge repository
Withdraw information from a knowledge repository

Michele Loreti 6

1. Knowledge (and Adaptation)

No definite stand is taken about the kind of knowledge that might depend
on the application domain. To guarantee adaptivity, we, however, require
there be some specific components.

Application data: Used for the progress of the computation.

Control data: Providing information about the environment (e.g.
data from sensors) and about the current status (e.g. its position or
its battery level).

Knowledge handling mechanisms

Add information to a knowledge repository
Retrieve information from a knowledge repository
Withdraw information from a knowledge repository

Michele Loreti 6

1. Knowledge (and Adaptation)

No definite stand is taken about the kind of knowledge that might depend
on the application domain. To guarantee adaptivity, we, however, require
there be some specific components.

Application data: Used for the progress of the computation.

Control data: Providing information about the environment (e.g.
data from sensors) and about the current status (e.g. its position or
its battery level).

Knowledge handling mechanisms

Add information to a knowledge repository
Retrieve information from a knowledge repository
Withdraw information from a knowledge repository

Michele Loreti 6

1. Knowledge (and Adaptation)

No definite stand is taken about the kind of knowledge that might depend
on the application domain. To guarantee adaptivity, we, however, require
there be some specific components.

Application data: Used for the progress of the computation.

Control data: Providing information about the environment (e.g.
data from sensors) and about the current status (e.g. its position or
its battery level).

Knowledge handling mechanisms

Add information to a knowledge repository
Retrieve information from a knowledge repository
Withdraw information from a knowledge repository

Michele Loreti 6

2. Behaviors

Components behaviors are modeled as a process in the style of process
calculi

Interaction is obtained by allowing processes to access knowledge
repositories, possibly of other components

Adaptation is modeled by retrieving from the knowledge repositories

information about the changing environment and the component status
the code to execute for reacting to these changes.

Processes

nil
∣∣ a.P

∣∣ P1 + P2

∣∣ P1[P2]
∣∣ X

∣∣ A(p̄) (A(f̄) , P)

The operators have the expected semantics. P1[P2] (Controlled
Composition) can be seen as a generalization of the many “parallel
compositions” of process calculi. For the meaning of a.−, see next.

Michele Loreti 7

2. Behaviors

Components behaviors are modeled as a process in the style of process
calculi

Interaction is obtained by allowing processes to access knowledge
repositories, possibly of other components

Adaptation is modeled by retrieving from the knowledge repositories

information about the changing environment and the component status
the code to execute for reacting to these changes.

Processes

nil
∣∣ a.P

∣∣ P1 + P2

∣∣ P1[P2]
∣∣ X

∣∣ A(p̄) (A(f̄) , P)

The operators have the expected semantics. P1[P2] (Controlled
Composition) can be seen as a generalization of the many “parallel
compositions” of process calculi. For the meaning of a.−, see next.

Michele Loreti 7

2. Behaviors

Components behaviors are modeled as a process in the style of process
calculi

Interaction is obtained by allowing processes to access knowledge
repositories, possibly of other components

Adaptation is modeled by retrieving from the knowledge repositories

information about the changing environment and the component status
the code to execute for reacting to these changes.

Processes

nil
∣∣ a.P

∣∣ P1 + P2

∣∣ P1[P2]
∣∣ X

∣∣ A(p̄) (A(f̄) , P)

The operators have the expected semantics. P1[P2] (Controlled
Composition) can be seen as a generalization of the many “parallel
compositions” of process calculi. For the meaning of a.−, see next.

Michele Loreti 7

2. Behaviors

Components behaviors are modeled as a process in the style of process
calculi

Interaction is obtained by allowing processes to access knowledge
repositories, possibly of other components

Adaptation is modeled by retrieving from the knowledge repositories

information about the changing environment and the component status
the code to execute for reacting to these changes.

Processes

nil
∣∣ a.P

∣∣ P1 + P2

∣∣ P1[P2]
∣∣ X

∣∣ A(p̄) (A(f̄) , P)

The operators have the expected semantics. P1[P2] (Controlled
Composition) can be seen as a generalization of the many “parallel
compositions” of process calculi. For the meaning of a.−, see next.

Michele Loreti 7

2. Behaviors

Components behaviors are modeled as a process in the style of process
calculi

Interaction is obtained by allowing processes to access knowledge
repositories, possibly of other components

Adaptation is modeled by retrieving from the knowledge repositories

information about the changing environment and the component status
the code to execute for reacting to these changes.

Processes

nil
∣∣ a.P

∣∣ P1 + P2

∣∣ P1[P2]
∣∣ X

∣∣ A(p̄) (A(f̄) , P)

The operators have the expected semantics. P1[P2] (Controlled
Composition) can be seen as a generalization of the many “parallel
compositions” of process calculi. For the meaning of a.−, see next.

Michele Loreti 7

1. Behaviours (and Actions)

Actions

get(T)@c
∣∣ qry(T)@c

∣∣ put(t)@c
∣∣ fresh(n)

∣∣ new(I,K,Π,P)

Action Targets

c ::= n
∣∣ x

∣∣ self
∣∣ P

Actions manage knowledge repositories by

withdrawing information - get(T)@c ,

retrieving information - qry(T)@c

adding information - put(t)@c

Actions operate on knowledge repository c and use T as a pattern to
select knowledge items.

Michele Loreti 8

1. Behaviours (and Actions)

Actions

get(T)@c
∣∣ qry(T)@c

∣∣ put(t)@c
∣∣ fresh(n)

∣∣ new(I,K,Π,P)

Action Targets

c ::= n
∣∣ x

∣∣ self
∣∣ P

Actions manage knowledge repositories by

withdrawing information - get(T)@c ,

retrieving information - qry(T)@c

adding information - put(t)@c

Actions operate on knowledge repository c and use T as a pattern to
select knowledge items.

Michele Loreti 8

1. Behaviours (and Actions)

Actions

get(T)@c
∣∣ qry(T)@c

∣∣ put(t)@c
∣∣ fresh(n)

∣∣ new(I,K,Π,P)

Action Targets

c ::= n
∣∣ x

∣∣ self
∣∣ P

Actions manage knowledge repositories by

withdrawing information - get(T)@c ,

retrieving information - qry(T)@c

adding information - put(t)@c

Actions operate on knowledge repository c and use T as a pattern to
select knowledge items.

Michele Loreti 8

3. Aggregations

Aggregations

describe how different entities are brought together

Model resource allocation and distribution

Reflect the idea of administrative domains, i.e. the authority
controlling a given set of resources and computing agents.

are modelled by resorting to the notions of system, component and
ensemble.

Systems

S ::= C
∣∣ S1 ‖ S2

∣∣ ((νn))S

Michele Loreti 9

3. Aggregations

Aggregations

describe how different entities are brought together

Model resource allocation and distribution

Reflect the idea of administrative domains, i.e. the authority
controlling a given set of resources and computing agents.

are modelled by resorting to the notions of system, component and
ensemble.

Systems

S ::= C
∣∣ S1 ‖ S2

∣∣ ((νn))S

Michele Loreti 9

3. Aggregations (Components)

Components

C ::= I[K,Π,P]

An interface I containing information about the component itself. In
particular, each component C has attributes:

id : the name of the component C

A knowledge manager K providing control data (i.e. the local and
(part of the) global knowledge) and application data; together with a
specific knowledge handling mechanism

A set of policies Π regulating inter-component and intra-component
interactions

A process term P that performs the local computation, coordinates
their interaction with the knowledge repository and deals with
adaptation and reconfiguration

Michele Loreti 10

3. Aggregations (Components)

Components

C ::= I[K,Π,P]

An interface I containing information about the component itself. In
particular, each component C has attributes:

id : the name of the component C

A knowledge manager K providing control data (i.e. the local and
(part of the) global knowledge) and application data; together with a
specific knowledge handling mechanism

A set of policies Π regulating inter-component and intra-component
interactions

A process term P that performs the local computation, coordinates
their interaction with the knowledge repository and deals with
adaptation and reconfiguration

Michele Loreti 10

3. Aggregations (Components)

Components

C ::= I[K,Π,P]

An interface I containing information about the component itself. In
particular, each component C has attributes:

id : the name of the component C

A knowledge manager K providing control data (i.e. the local and
(part of the) global knowledge) and application data; together with a
specific knowledge handling mechanism

A set of policies Π regulating inter-component and intra-component
interactions

A process term P that performs the local computation, coordinates
their interaction with the knowledge repository and deals with
adaptation and reconfiguration

Michele Loreti 10

3. Aggregations (Components)

Components

C ::= I[K,Π,P]

An interface I containing information about the component itself. In
particular, each component C has attributes:

id : the name of the component C

A knowledge manager K providing control data (i.e. the local and
(part of the) global knowledge) and application data; together with a
specific knowledge handling mechanism

A set of policies Π regulating inter-component and intra-component
interactions

A process term P that performs the local computation, coordinates
their interaction with the knowledge repository and deals with
adaptation and reconfiguration

Michele Loreti 10

3. Aggregations (Components)

Components

C ::= I[K,Π,P]

An interface I containing information about the component itself. In
particular, each component C has attributes:

id : the name of the component C

A knowledge manager K providing control data (i.e. the local and
(part of the) global knowledge) and application data; together with a
specific knowledge handling mechanism

A set of policies Π regulating inter-component and intra-component
interactions

A process term P that performs the local computation, coordinates
their interaction with the knowledge repository and deals with
adaptation and reconfiguration

Michele Loreti 10

A SCEL component

Knowledge
K

Processes

P

I Interface

Π
Policies

Programming Abstractions

Important for improving code productivity

Michele Loreti 11

Autonomic Components Ensembles

Physical
network
levelAC1

AC2

AC3

AC4

ACE1AC3

AC4

ACE2AC1

AC2
AC4

Michele Loreti 12

4. Policies

Policies deal with the way properties of computations are represented and
enforced

Interaction: interaction predicates, . . .

Resource usage: accounting, leasing, . . .

Security: access control, trust, reputation, . . .

SCEL is parametric wrt the actual language used to express policies.

Currently we (Pugliese, Tiezzi) are defining a specific language based
on XACML.

When considering the operational semantics, we will see how policies
are exploited to control components actions, their evolutions and their
interactions.

Michele Loreti 13

SCEL: Syntax (in one slide)

Systems: S ::= C
∣∣ S1 ‖ S2

∣∣ ((νn))S

Components:C ::= I[K,Π,P]

Knowledge: K ::= . . .

Processes: P ::= nil
∣∣ a.P

∣∣ P1 + P2

∣∣ P1[P2]
∣∣ X

∣∣ A(p̄) (A(f̄) , P)

Actions: a ::= get(T)@c
∣∣ qry(T)@c

∣∣ put(t)@c
∣∣ fresh(n)

∣∣ new(I,K,Π,P)

Targets: c ::= n
∣∣ x

∣∣ self

Items: t ::= . . .− for the moment just tuples

Templates: T ::= . . .− for the moment tuples with variables

Michele Loreti 14

A runtime environment for SCEL

Basic design principles. . .

1 no centralized control
2 heavy use of recurrent patterns to simply the development of specific

policies
knowledge
. . .

3 use of open technologies to support the integration with other
tools/frameworks

Argos
DEECo
. . .

Michele Loreti 15

A runtime environment for SCEL

Basic design principles. . .

1 no centralized control

2 heavy use of recurrent patterns to simply the development of specific

policies
knowledge
. . .

3 use of open technologies to support the integration with other
tools/frameworks

Argos
DEECo
. . .

Michele Loreti 15

A runtime environment for SCEL

Basic design principles. . .

1 no centralized control
2 heavy use of recurrent patterns to simply the development of specific

policies
knowledge
. . .

3 use of open technologies to support the integration with other
tools/frameworks

Argos
DEECo
. . .

Michele Loreti 15

A runtime environment for SCEL

Basic design principles. . .

1 no centralized control
2 heavy use of recurrent patterns to simply the development of specific

policies
knowledge
. . .

3 use of open technologies to support the integration with other
tools/frameworks

Argos
DEECo
. . .

Michele Loreti 15

SCEL Syntax. . .

Systems:
S ::= C

∣∣ S1 ‖ S2
∣∣ (νn)S

Components:
C ::= I[K,Π,P]

Processes:

P ::= nil
∣∣ a.P

∣∣ P1 + P2

∣∣ P1[P2]
∣∣ X

∣∣ A(p̄) (A(f̄) , P)

Actions:
a ::= get(T)@c

∣∣ qry(T)@c
∣∣ put(t)@c

∣∣ exec(P)
∣∣ new(I,K,Π,P)

Targets:
c ::= n

∣∣ x
∣∣ self

∣∣ P

Michele Loreti 16

SCEL Syntax. . .

Systems:
S ::= C

∣∣ S1 ‖ S2
∣∣ (νn)S

Components:
C ::= I[K,Π,P]

Processes:

P ::= nil
∣∣ a.P

∣∣ P1 + P2

∣∣ P1[P2]
∣∣ X

∣∣ A(p̄) (A(f̄) , P)

Actions:
a ::= get(T)@c

∣∣ qry(T)@c
∣∣ put(t)@c

∣∣ exec(P)
∣∣ new(I,K,Π,P)

Targets:
c ::= n

∣∣ x
∣∣ self

∣∣ P

Michele Loreti 16

SCEL component

Michele Loreti 17

SCEL component

Hardware/Virtual Machine

Michele Loreti 17

SCEL component

Hardware/Virtual Machine

N
etw

orks

Michele Loreti 17

SCEL component

Hardware/Virtual Machine

N
etw

orks

Input devices/Sensors

(GPS, Temperature, Battery level,CPU load. . .)

Michele Loreti 17

SCEL component

Hardware/Virtual Machine

N
etw

orks

Input devices/Sensors

(GPS, Temperature, Battery level,CPU load. . .)

Output devices/Actuators

Michele Loreti 17

SCEL component

Hardware/Virtual Machine

N
etw

orks

Input devices/Sensors

(GPS, Temperature, Battery level,CPU load. . .)

Output devices/Actuators

Michele Loreti 17

SCEL component

Hardware/Virtual Machine

N
etw

orks

Input devices/Sensors

(GPS, Temperature, Battery level,CPU load. . .)

Output devices/Actuators

SCEL Processes (Threads)

Michele Loreti 17

SCEL component

Hardware/Virtual Machine

N
etw

orks

Input devices/Sensors

(GPS, Temperature, Battery level,CPU load. . .)

Output devices/Actuators

SCEL Processes (Threads)

Policies

Michele Loreti 17

SCEL component

Hardware/Virtual Machine

N
etw

orks

Input devices/Sensors

(GPS, Temperature, Battery level,CPU load. . .)

Output devices/Actuators

SCEL Processes (Threads)

Policies

Knowledge

Michele Loreti 17

SCEL component

Hardware/Virtual Machine

N
etw

orks

Input devices/Sensors

(GPS, Temperature, Battery level,CPU load. . .)

Output devices/Actuators

SCEL Processes (Threads)

Policies

Knowledge

Michele Loreti 17

SCEL component

Hardware/Virtual Machine

N
etw

orks

Input devices/Sensors

(GPS, Temperature, Battery level,CPU load. . .)

Output devices/Actuators

SCEL Processes (Threads)

Policies

Knowledge

A
tt
r.

Michele Loreti 17

SCEL component

Hardware/Virtual Machine

N
etw

orks

Input devices/Sensors

(GPS, Temperature, Battery level,CPU load. . .)

Output devices/Actuators

SCEL Processes (Threads)

Policies

Knowledge

A
tt
r.

P
or
ts

Michele Loreti 17

Knowledge

Components abstract from specific Knowledge implementations.

Indeed, Knowledge is a Java interface with the following methods:

put(Tuple t): boolean

get(Template t): Tuple

query(Template t): Tuple

A single implementation of this interface is currently provided:

class TupleSpace implements a tuple space (á la klaim)

Michele Loreti 18

Knowledge

Components abstract from specific Knowledge implementations.

Indeed, Knowledge is a Java interface with the following methods:

put(Tuple t): boolean

get(Template t): Tuple

query(Template t): Tuple

A single implementation of this interface is currently provided:

class TupleSpace implements a tuple space (á la klaim)

Michele Loreti 18

Knowledge

Components abstract from specific Knowledge implementations.

Indeed, Knowledge is a Java interface with the following methods:

put(Tuple t): boolean

get(Template t): Tuple

query(Template t): Tuple

A single implementation of this interface is currently provided:

class TupleSpace implements a tuple space (á la klaim)

Michele Loreti 18

Knowledge

Components abstract from specific Knowledge implementations.

Indeed, Knowledge is a Java interface with the following methods:

put(Tuple t): boolean

get(Template t): Tuple

query(Template t): Tuple

A single implementation of this interface is currently provided:

class TupleSpace implements a tuple space (á la klaim)

Michele Loreti 18

SCEL component

Hardware/Virtual Machine

N
etw

orks

Input devices/Sensors

(GPS, Temperature, Battery level,CPU load. . .)

Output devices/Actuators

SCEL Processes (Threads)

Policies

Knowledge

A
tt
r.

P
or
ts

Michele Loreti 19

Sensors. . .

Abstract class Sensor is used to identify a generic source of information:

it can be associated to a logical/physical sensor

values are exported as a tuple, each implementation has to define the
structure of the tuple containing

(“GPS”, 45.8 , 37.2)
(“BATTERY” , %87)

query actions are used to retrieve data from sensor

Michele Loreti 20

Sensors. . .

Abstract class Sensor is used to identify a generic source of information:

it can be associated to a logical/physical sensor

values are exported as a tuple, each implementation has to define the
structure of the tuple containing

(“GPS”, 45.8 , 37.2)
(“BATTERY” , %87)

query actions are used to retrieve data from sensor

Michele Loreti 20

. . . and Actuators

Abstract class Actuator is used to identify an external device that can be
controlled by SCEL processes:

it can be associated to a logical/physical actuator

values are passed as a tuple, each implementation has to define the
structure of the tuple containing

(“DIRECTION”, π/3)

values are passed to a actuator via put actions

Michele Loreti 21

. . . and Actuators

Abstract class Actuator is used to identify an external device that can be
controlled by SCEL processes:

it can be associated to a logical/physical actuator

values are passed as a tuple, each implementation has to define the
structure of the tuple containing

(“DIRECTION”, π/3)

values are passed to a actuator via put actions

Michele Loreti 21

Component Knowledge in jRESP

KnowledgeTuple Space

Adaptor 1

Adaptor 2

Adaptor n

Reasoner 1

Reasoner 2

Reasoner n

Sensors

Actuatorsput(t)query(T) put(t)

Michele Loreti 22

Component Knowledge in jRESP

Knowledge

Tuple Space

Adaptor 1

Adaptor 2

Adaptor n

Reasoner 1

Reasoner 2

Reasoner n

Sensors

Actuatorsput(t)query(T) put(t)

Michele Loreti 22

Component Knowledge in jRESP

Knowledge

Tuple Space

Adaptor 1

Adaptor 2

Adaptor n

Reasoner 1

Reasoner 2

Reasoner n

Sensors

Actuatorsput(t)query(T) put(t)

Michele Loreti 22

Component Knowledge in jRESP

Knowledge

Tuple Space

Adaptor 1

Adaptor 2

Adaptor n

Reasoner 1

Reasoner 2

Reasoner n

Sensors

Actuatorsput(t)query(T) put(t)

Michele Loreti 22

Component Knowledge in jRESP

Knowledge

Tuple Space

Adaptor 1

Adaptor 2

Adaptor n

Reasoner 1

Reasoner 2

Reasoner n

Sensors

Actuatorsput(t)query(T) put(t)

Michele Loreti 22

Component Knowledge in jRESP

Knowledge

Tuple Space

Adaptor 1

Adaptor 2

Adaptor n

Reasoner 1

Reasoner 2

Reasoner n

Sensors

Actuators

put(t)query(T) put(t)

Michele Loreti 22

Component Knowledge in jRESP

Knowledge

Tuple Space

Adaptor 1

Adaptor 2

Adaptor n

Reasoner 1

Reasoner 2

Reasoner n

Sensors

Actuatorsput(t)

query(T) put(t)

Michele Loreti 22

Component Knowledge in jRESP

Knowledge

Tuple Space

Adaptor 1

Adaptor 2

Adaptor n

Reasoner 1

Reasoner 2

Reasoner n

Sensors

Actuatorsput(t)

query(T) put(t)

When a put(t) is invoked, according to the structure of t, the right
element is selected.

Michele Loreti 22

Component Knowledge in jRESP

Knowledge

Tuple Space

Adaptor 1

Adaptor 2

Adaptor n

Reasoner 1

Reasoner 2

Reasoner n

Sensors

Actuatorsput(t)

query(T) put(t)

Adapters will use a put to add a knowledge item (e.g. a fact) represented
by t in the corresponding reasoner.

Michele Loreti 22

Component Knowledge in jRESP

Knowledge

Tuple Space

Adaptor 1

Adaptor 2

Adaptor n

Reasoner 1

Reasoner 2

Reasoner n

Sensors

Actuators

put(t)

query(T)

put(t)

Michele Loreti 22

Component Knowledge in jRESP

Knowledge

Tuple Space

Adaptor 1

Adaptor 2

Adaptor n

Reasoner 1

Reasoner 2

Reasoner n

Sensors

Actuators

put(t)

query(T)

put(t)

Similarly, a get will be dispatched according to template T .

Michele Loreti 22

Component Knowledge in jRESP

Knowledge

Tuple Space

Adaptor 1

Adaptor 2

Adaptor n

Reasoner 1

Reasoner 2

Reasoner n

Sensors

Actuators

put(t)

query(T)

put(t)

Adapters will use a query to ask to the corresponding reasoner about a
query described via T .

Michele Loreti 22

Component Knowledge in jRESP

Knowledge

Tuple Space

Adaptor 1

Adaptor 2

Adaptor n

Reasoner 1

Reasoner 2

Reasoner n

Sensors

Actuators

put(t)query(T) put(t)

Reasoners can autonomously interact with the knowledge!

Michele Loreti 22

Component Knowledge in jRESP

Knowledge

Tuple Space

Adaptor 1

Adaptor 2

Adaptor n

Reasoner 1

Reasoner 2

Reasoner n

Sensors

Actuators

put(t)query(T)

put(t)

Reasoners can autonomously interact with the knowledge!

Michele Loreti 22

Policies

Action execution on each component is regulated by a policy.

This is an interface that provides methods like:

put(Agent a, Tuple t , Target l)

acceptGet(Locality l , Template t)

each node forwards received request to its policy.

Policies are organized in a stack:

the policy at one level relies on the one at the level below to actually
execute SCEL actions

the policy at the lower level is the one that allows any operation

Michele Loreti 23

Policies

Action execution on each component is regulated by a policy.

This is an interface that provides methods like:

put(Agent a, Tuple t , Target l)

acceptGet(Locality l , Template t)

each node forwards received request to its policy.

Policies are organized in a stack:

the policy at one level relies on the one at the level below to actually
execute SCEL actions

the policy at the lower level is the one that allows any operation

Michele Loreti 23

Policies

Action execution on each component is regulated by a policy.

This is an interface that provides methods like:

put(Agent a, Tuple t , Target l)

acceptGet(Locality l , Template t)

each node forwards received request to its policy.

Policies are organized in a stack:

the policy at one level relies on the one at the level below to actually
execute SCEL actions

the policy at the lower level is the one that allows any operation

Michele Loreti 23

Policies

Action execution on each component is regulated by a policy.

This is an interface that provides methods like:

put(Agent a, Tuple t , Target l)

acceptGet(Locality l , Template t)

each node forwards received request to its policy.

Policies are organized in a stack:

the policy at one level relies on the one at the level below to actually
execute SCEL actions

the policy at the lower level is the one that allows any operation

Michele Loreti 23

Policies

Action execution on each component is regulated by a policy.

This is an interface that provides methods like:

put(Agent a, Tuple t , Target l)

acceptGet(Locality l , Template t)

each node forwards received request to its policy.

Policies are organized in a stack:

the policy at one level relies on the one at the level below to actually
execute SCEL actions

the policy at the lower level is the one that allows any operation

Michele Loreti 23

Ports

Each node is equipped with a set of ports that are able to handle:

point-to-point interactions

group interactions (ensemble oriented)

Currently the following ports have been developed:

InetPort, this kind of ports uses TCP to point-to-point interactions
and UDP for the group ones

ServerPort, in this case a centralized server is used to collect and
dispatch nodes’ actions

VirtualPort, this is used to simulate nodes running on virutal devices

To simplify interactions with other framework/tools, even developed in
languages that are different from Java, JSon format is used.

Michele Loreti 24

Ports

Each node is equipped with a set of ports that are able to handle:

point-to-point interactions

group interactions (ensemble oriented)

Currently the following ports have been developed:

InetPort, this kind of ports uses TCP to point-to-point interactions
and UDP for the group ones

ServerPort, in this case a centralized server is used to collect and
dispatch nodes’ actions

VirtualPort, this is used to simulate nodes running on virutal devices

To simplify interactions with other framework/tools, even developed in
languages that are different from Java, JSon format is used.

Michele Loreti 24

Ports

Each node is equipped with a set of ports that are able to handle:

point-to-point interactions

group interactions (ensemble oriented)

Currently the following ports have been developed:

InetPort, this kind of ports uses TCP to point-to-point interactions
and UDP for the group ones

ServerPort, in this case a centralized server is used to collect and
dispatch nodes’ actions

VirtualPort, this is used to simulate nodes running on virutal devices

To simplify interactions with other framework/tools, even developed in
languages that are different from Java, JSon format is used.

Michele Loreti 24

Ports

Each node is equipped with a set of ports that are able to handle:

point-to-point interactions

group interactions (ensemble oriented)

Currently the following ports have been developed:

InetPort, this kind of ports uses TCP to point-to-point interactions
and UDP for the group ones

ServerPort, in this case a centralized server is used to collect and
dispatch nodes’ actions

VirtualPort, this is used to simulate nodes running on virutal devices

To simplify interactions with other framework/tools, even developed in
languages that are different from Java, JSon format is used.

Michele Loreti 24

Ports

Each node is equipped with a set of ports that are able to handle:

point-to-point interactions

group interactions (ensemble oriented)

Currently the following ports have been developed:

InetPort, this kind of ports uses TCP to point-to-point interactions
and UDP for the group ones

ServerPort, in this case a centralized server is used to collect and
dispatch nodes’ actions

VirtualPort, this is used to simulate nodes running on virutal devices

To simplify interactions with other framework/tools, even developed in
languages that are different from Java, JSon format is used.

Michele Loreti 24

Ports

Each node is equipped with a set of ports that are able to handle:

point-to-point interactions

group interactions (ensemble oriented)

Currently the following ports have been developed:

InetPort, this kind of ports uses TCP to point-to-point interactions
and UDP for the group ones

ServerPort, in this case a centralized server is used to collect and
dispatch nodes’ actions

VirtualPort, this is used to simulate nodes running on virutal devices

To simplify interactions with other framework/tools, even developed in
languages that are different from Java, JSon format is used.

Michele Loreti 24

Ports

Each node is equipped with a set of ports that are able to handle:

point-to-point interactions

group interactions (ensemble oriented)

Currently the following ports have been developed:

InetPort, this kind of ports uses TCP to point-to-point interactions
and UDP for the group ones

ServerPort, in this case a centralized server is used to collect and
dispatch nodes’ actions

VirtualPort, this is used to simulate nodes running on virutal devices

To simplify interactions with other framework/tools, even developed in
languages that are different from Java, JSon format is used.

Michele Loreti 24

Example: Group actions

get(T)@P

1 A request message containing template T and attribute names
occurring in P is sent via a multicast channel

2 All the components that receives the message reply with:

a tuple t matching template T
a list of requested attributes

3 If the node originating the requests receives attributes that satisfies
predicate P, action is executed. Otherwise, the request is sent again.

Michele Loreti 25

Example: Group actions

get(T)@P

1 A request message containing template T and attribute names
occurring in P is sent via a multicast channel

2 All the components that receives the message reply with:

a tuple t matching template T
a list of requested attributes

3 If the node originating the requests receives attributes that satisfies
predicate P, action is executed. Otherwise, the request is sent again.

Michele Loreti 25

Example: Group actions

get(T)@P

1 A request message containing template T and attribute names
occurring in P is sent via a multicast channel

2 All the components that receives the message reply with:

a tuple t matching template T
a list of requested attributes

3 If the node originating the requests receives attributes that satisfies
predicate P, action is executed. Otherwise, the request is sent again.

Michele Loreti 25

Example: Group actions

get(T)@P

1 A request message containing template T and attribute names
occurring in P is sent via a multicast channel

2 All the components that receives the message reply with:

a tuple t matching template T
a list of requested attributes

3 If the node originating the requests receives attributes that satisfies
predicate P, action is executed. Otherwise, the request is sent again.

Michele Loreti 25

Example: Group actions

get(T)@P

1 A request message containing template T and attribute names
occurring in P is sent via a multicast channel

2 All the components that receives the message reply with:

a tuple t matching template T
a list of requested attributes

3 If the node originating the requests receives attributes that satisfies
predicate P, action is executed. Otherwise, the request is sent again.

Michele Loreti 25

P2P group-oriented protocol

We have integrated a new port based on FreePastry framework.

point-to-point interactions relies on DHT primitives (the key is the
node name);

group-oriented interactions are implemented via multicast.

Group-oriented via multicast:

We associate a topic to each predicate;

When a predicate is satisfied/unsatisfied a component
register/deregister for a topic;

Operations on a predicate are then realised via a multicast on the
corresponding topic;

A special topic is used to coordinate activities.

Michele Loreti 26

P2P group-oriented protocol

We have integrated a new port based on FreePastry framework.

point-to-point interactions relies on DHT primitives (the key is the
node name);

group-oriented interactions are implemented via multicast.

Group-oriented via multicast:

We associate a topic to each predicate;

When a predicate is satisfied/unsatisfied a component
register/deregister for a topic;

Operations on a predicate are then realised via a multicast on the
corresponding topic;

A special topic is used to coordinate activities.

Michele Loreti 26

P2P group-oriented protocol

We have integrated a new port based on FreePastry framework.

point-to-point interactions relies on DHT primitives (the key is the
node name);

group-oriented interactions are implemented via multicast.

Group-oriented via multicast:

We associate a topic to each predicate;

When a predicate is satisfied/unsatisfied a component
register/deregister for a topic;

Operations on a predicate are then realised via a multicast on the
corresponding topic;

A special topic is used to coordinate activities.

Michele Loreti 26

P2P group-oriented protocol

We have integrated a new port based on FreePastry framework.

point-to-point interactions relies on DHT primitives (the key is the
node name);

group-oriented interactions are implemented via multicast.

Group-oriented via multicast:

We associate a topic to each predicate;

When a predicate is satisfied/unsatisfied a component
register/deregister for a topic;

Operations on a predicate are then realised via a multicast on the
corresponding topic;

A special topic is used to coordinate activities.

Michele Loreti 26

P2P group-oriented protocol

We have integrated a new port based on FreePastry framework.

point-to-point interactions relies on DHT primitives (the key is the
node name);

group-oriented interactions are implemented via multicast.

Group-oriented via multicast:

We associate a topic to each predicate;

When a predicate is satisfied/unsatisfied a component
register/deregister for a topic;

Operations on a predicate are then realised via a multicast on the
corresponding topic;

A special topic is used to coordinate activities.

Michele Loreti 26

P2P group-oriented protocol

We have integrated a new port based on FreePastry framework.

point-to-point interactions relies on DHT primitives (the key is the
node name);

group-oriented interactions are implemented via multicast.

Group-oriented via multicast:

We associate a topic to each predicate;

When a predicate is satisfied/unsatisfied a component
register/deregister for a topic;

Operations on a predicate are then realised via a multicast on the
corresponding topic;

A special topic is used to coordinate activities.

Michele Loreti 26

P2P group-oriented protocol

We have integrated a new port based on FreePastry framework.

point-to-point interactions relies on DHT primitives (the key is the
node name);

group-oriented interactions are implemented via multicast.

Group-oriented via multicast:

We associate a topic to each predicate;

When a predicate is satisfied/unsatisfied a component
register/deregister for a topic;

Operations on a predicate are then realised via a multicast on the
corresponding topic;

A special topic is used to coordinate activities.

Michele Loreti 26

Swarm robotics scenario. . .

Robots in the swarm are distributed over a physical area and have to reach
different zones according an assigned task:

each robot has to fulfil one of two different tasks (task1 or tasks2).

Robots are unaware about the position of the two target zones:

to discover the location of the target, robots follow a random walk;

when a robot reaches the area, it ‘publishes’ its location in the local
knowledge repository. . .

robots with the same task can get aware about position of target area.

robots stop moving when the level of their batteries goes under a
given threshold.

Michele Loreti 27

Swarm robotics scenario. . .

Robots in the swarm are distributed over a physical area and have to reach
different zones according an assigned task:

each robot has to fulfil one of two different tasks (task1 or tasks2).

Robots are unaware about the position of the two target zones:

to discover the location of the target, robots follow a random walk;

when a robot reaches the area, it ‘publishes’ its location in the local
knowledge repository. . .

robots with the same task can get aware about position of target area.

robots stop moving when the level of their batteries goes under a
given threshold.

Michele Loreti 27

Swarm robotics scenario. . .

Robots in the swarm are distributed over a physical area and have to reach
different zones according an assigned task:

each robot has to fulfil one of two different tasks (task1 or tasks2).

Robots are unaware about the position of the two target zones:

to discover the location of the target, robots follow a random walk;

when a robot reaches the area, it ‘publishes’ its location in the local
knowledge repository. . .

robots with the same task can get aware about position of target area.

robots stop moving when the level of their batteries goes under a
given threshold.

Michele Loreti 27

Swarm robotics scenario. . .

Robots in the swarm are distributed over a physical area and have to reach
different zones according an assigned task:

each robot has to fulfil one of two different tasks (task1 or tasks2).

Robots are unaware about the position of the two target zones:

to discover the location of the target, robots follow a random walk;

when a robot reaches the area, it ‘publishes’ its location in the local
knowledge repository. . .

robots with the same task can get aware about position of target area.

robots stop moving when the level of their batteries goes under a
given threshold.

Michele Loreti 27

Swarm robotics scenario. . .

Robots in the swarm are distributed over a physical area and have to reach
different zones according an assigned task:

each robot has to fulfil one of two different tasks (task1 or tasks2).

Robots are unaware about the position of the two target zones:

to discover the location of the target, robots follow a random walk;

when a robot reaches the area, it ‘publishes’ its location in the local
knowledge repository. . .

robots with the same task can get aware about position of target area.

robots stop moving when the level of their batteries goes under a
given threshold.

Michele Loreti 27

Swarm robotics scenario. . .

Robots in the swarm are distributed over a physical area and have to reach
different zones according an assigned task:

each robot has to fulfil one of two different tasks (task1 or tasks2).

Robots are unaware about the position of the two target zones:

to discover the location of the target, robots follow a random walk;

when a robot reaches the area, it ‘publishes’ its location in the local
knowledge repository. . .

robots with the same task can get aware about position of target area.

robots stop moving when the level of their batteries goes under a
given threshold.

Michele Loreti 27

Ensembles in robotic scenario. . .

Q: What are the “ensembles” in the considered scenario?

A: The set of robots that can fulfil the same task.
NB: There is no central coordinator!

Q: How can “ensembles” be identified?

A: Each robot publishes in its interface the task that it can fulfil.

By relying on group-oriented queries robots in the same ensemble can get
aware about the position of the zone and then can move directly towards
the target.

Michele Loreti 28

Ensembles in robotic scenario. . .

Q: What are the “ensembles” in the considered scenario?

A: The set of robots that can fulfil the same task.
NB: There is no central coordinator!

Q: How can “ensembles” be identified?

A: Each robot publishes in its interface the task that it can fulfil.

By relying on group-oriented queries robots in the same ensemble can get
aware about the position of the zone and then can move directly towards
the target.

Michele Loreti 28

Ensembles in robotic scenario. . .

Q: What are the “ensembles” in the considered scenario?

A: The set of robots that can fulfil the same task.

NB: There is no central coordinator!

Q: How can “ensembles” be identified?

A: Each robot publishes in its interface the task that it can fulfil.

By relying on group-oriented queries robots in the same ensemble can get
aware about the position of the zone and then can move directly towards
the target.

Michele Loreti 28

Ensembles in robotic scenario. . .

Q: What are the “ensembles” in the considered scenario?

A: The set of robots that can fulfil the same task.
NB: There is no central coordinator!

Q: How can “ensembles” be identified?

A: Each robot publishes in its interface the task that it can fulfil.

By relying on group-oriented queries robots in the same ensemble can get
aware about the position of the zone and then can move directly towards
the target.

Michele Loreti 28

Ensembles in robotic scenario. . .

Q: What are the “ensembles” in the considered scenario?

A: The set of robots that can fulfil the same task.
NB: There is no central coordinator!

Q: How can “ensembles” be identified?

A: Each robot publishes in its interface the task that it can fulfil.

By relying on group-oriented queries robots in the same ensemble can get
aware about the position of the zone and then can move directly towards
the target.

Michele Loreti 28

Ensembles in robotic scenario. . .

Q: What are the “ensembles” in the considered scenario?

A: The set of robots that can fulfil the same task.
NB: There is no central coordinator!

Q: How can “ensembles” be identified?

A: Each robot publishes in its interface the task that it can fulfil.

By relying on group-oriented queries robots in the same ensemble can get
aware about the position of the zone and then can move directly towards
the target.

Michele Loreti 28

Ensembles in robotic scenario. . .

Q: What are the “ensembles” in the considered scenario?

A: The set of robots that can fulfil the same task.
NB: There is no central coordinator!

Q: How can “ensembles” be identified?

A: Each robot publishes in its interface the task that it can fulfil.

By relying on group-oriented queries robots in the same ensemble can get
aware about the position of the zone and then can move directly towards
the target.

Michele Loreti 28

Robotics scenario in SCEL. . .

Each robot is a SCEL component with two main behaviours:

managed element (ME), that executes the next control step retrieved
from local knowledge;

autonomic manager (AM), that depending on info received from the
environment puts in the knowledge the next control step.

Info from the environment includes:

values retrieved from robot’s sensors (GPS sensor, target sensor,. . .);

messages collected/received from other robots.

Self-adaptation is realised by exploiting SCEL higher-order features:

autonomic manager AM implements the adaptation logic by replacing
the control step code in knowledge repository.

Michele Loreti 29

Robotics scenario in SCEL. . .

Each robot is a SCEL component with two main behaviours:

managed element (ME), that executes the next control step retrieved
from local knowledge;

autonomic manager (AM), that depending on info received from the
environment puts in the knowledge the next control step.

Info from the environment includes:

values retrieved from robot’s sensors (GPS sensor, target sensor,. . .);

messages collected/received from other robots.

Self-adaptation is realised by exploiting SCEL higher-order features:

autonomic manager AM implements the adaptation logic by replacing
the control step code in knowledge repository.

Michele Loreti 29

Robotics scenario in SCEL. . .

Each robot is a SCEL component with two main behaviours:

managed element (ME), that executes the next control step retrieved
from local knowledge;

autonomic manager (AM), that depending on info received from the
environment puts in the knowledge the next control step.

Info from the environment includes:

values retrieved from robot’s sensors (GPS sensor, target sensor,. . .);

messages collected/received from other robots.

Self-adaptation is realised by exploiting SCEL higher-order features:

autonomic manager AM implements the adaptation logic by replacing
the control step code in knowledge repository.

Michele Loreti 29

Robotics scenario in SCEL. . .

Each robot is a SCEL component with two main behaviours:

managed element (ME), that executes the next control step retrieved
from local knowledge;

autonomic manager (AM), that depending on info received from the
environment puts in the knowledge the next control step.

Info from the environment includes:

values retrieved from robot’s sensors (GPS sensor, target sensor,. . .);

messages collected/received from other robots.

Self-adaptation is realised by exploiting SCEL higher-order features:

autonomic manager AM implements the adaptation logic by replacing
the control step code in knowledge repository.

Michele Loreti 29

Robotics scenario in SCEL. . .

Each robot is a SCEL component with two main behaviours:

managed element (ME), that executes the next control step retrieved
from local knowledge;

autonomic manager (AM), that depending on info received from the
environment puts in the knowledge the next control step.

Info from the environment includes:

values retrieved from robot’s sensors (GPS sensor, target sensor,. . .);

messages collected/received from other robots.

Self-adaptation is realised by exploiting SCEL higher-order features:

autonomic manager AM implements the adaptation logic by replacing
the control step code in knowledge repository.

Michele Loreti 29

Robotics scenario in SCEL. . .

Each robot is a SCEL component with two main behaviours:

managed element (ME), that executes the next control step retrieved
from local knowledge;

autonomic manager (AM), that depending on info received from the
environment puts in the knowledge the next control step.

Info from the environment includes:

values retrieved from robot’s sensors (GPS sensor, target sensor,. . .);

messages collected/received from other robots.

Self-adaptation is realised by exploiting SCEL higher-order features:

autonomic manager AM implements the adaptation logic by replacing
the control step code in knowledge repository.

Michele Loreti 29

Robotics scenario in SCEL. . .
Step 1: Creating components

A component is created when an object of class Node is instantiated:

Node <TupleSpace > n =

new Node <TupleSpace >(

"Robot"+i,

new TupleSpace ()

);

n.addPort(vp);

Class Node is parametrized with respect a class that implements the
interface characterising a knowledge manager

in the example above we use TupleSpace

New knowledge managers, for instance the one based on KnowLang,
can be easily integrated!

Michele Loreti 30

Robotics scenario in SCEL. . .
Step 1: Creating components

A component is created when an object of class Node is instantiated:

Node <TupleSpace > n =

new Node <TupleSpace >(

"Robot"+i,

new TupleSpace ()

);

n.addPort(vp);

Class Node is parametrized with respect a class that implements the
interface characterising a knowledge manager

in the example above we use TupleSpace

New knowledge managers, for instance the one based on KnowLang,
can be easily integrated!

Michele Loreti 30

Robotics scenario in SCEL. . .
Step 1: Creating components

A component is created when an object of class Node is instantiated:

Node <TupleSpace > n =

new Node <TupleSpace >(

"Robot"+i,

new TupleSpace ()

);

n.addPort(vp);

Class Node is parametrized with respect a class that implements the
interface characterising a knowledge manager

in the example above we use TupleSpace

New knowledge managers, for instance the one based on KnowLang,
can be easily integrated!

Michele Loreti 30

Robotics scenario in SCEL. . .
Step 1: Creating components

A component is created when an object of class Node is instantiated:

Node <TupleSpace > n =

new Node <TupleSpace >(

"Robot"+i,

new TupleSpace ()

);

n.addPort(vp);

Class Node is parametrized with respect a class that implements the
interface characterising a knowledge manager

in the example above we use TupleSpace

New knowledge managers, for instance the one based on KnowLang,
can be easily integrated!

Michele Loreti 30

Knowledge. . .

The interface Knowledge identifies a generic knowledge repository and
indicates the high-level primitives to manage pieces of relevant information
coming from different sources.

This interface contains the methods for withdrawing/retrieving/adding
piece of knowledge from/to a repository:

put(Template t): Tuple

get(Template t): Tuple

query(Template t): Tuple

Sensors and Actuators:

external data can be collected into a knowledge repository via sensors;

actuators can be used to forward data to external components.

Michele Loreti 31

Knowledge. . .

The interface Knowledge identifies a generic knowledge repository and
indicates the high-level primitives to manage pieces of relevant information
coming from different sources.

This interface contains the methods for withdrawing/retrieving/adding
piece of knowledge from/to a repository:

put(Template t): Tuple

get(Template t): Tuple

query(Template t): Tuple

Sensors and Actuators:

external data can be collected into a knowledge repository via sensors;

actuators can be used to forward data to external components.

Michele Loreti 31

Knowledge. . .

The interface Knowledge identifies a generic knowledge repository and
indicates the high-level primitives to manage pieces of relevant information
coming from different sources.

This interface contains the methods for withdrawing/retrieving/adding
piece of knowledge from/to a repository:

put(Template t): Tuple

get(Template t): Tuple

query(Template t): Tuple

Sensors and Actuators:

external data can be collected into a knowledge repository via sensors;

actuators can be used to forward data to external components.

Michele Loreti 31

Robotics scenario in SCEL. . .
Step 2: Adding sensors and actuators

n.addActuator(scenario.getDirectionActuator(i));

n.addSensor(scenario.getLocationSensor(i));

n.addActuator(scenario.getStopActuator(i));

n.addSensor(scenario.getBatterySensor(i));

n.addSensor(scenario.getTargetSensor(i));

Remark:

In the code above, scenario is the Java classes modelling the physical
environment where robots work.

Michele Loreti 32

Robotics scenario in SCEL. . .
Step 2: Adding sensors and actuators

n.addActuator(scenario.getDirectionActuator(i));

n.addSensor(scenario.getLocationSensor(i));

n.addActuator(scenario.getStopActuator(i));

n.addSensor(scenario.getBatterySensor(i));

n.addSensor(scenario.getTargetSensor(i));

Remark:

In the code above, scenario is the Java classes modelling the physical
environment where robots work.

Michele Loreti 32

Attribute collectors. . .

Attribute values are published on component interfaces via attribute
collectors:

when a request for an attribute is received, the corresponding
collector is selected.

node’s knowledge is used to compute the actual attribute value.

Each attribute collector is associated with a name and a template:

when the attribute is evaluated a tuple matching the template is
retrieved (via a predicative query action);

the retrieved tuple is used to compute the actual attribute value.

Michele Loreti 33

Attribute collectors. . .

Attribute values are published on component interfaces via attribute
collectors:

when a request for an attribute is received, the corresponding
collector is selected.

node’s knowledge is used to compute the actual attribute value.

Each attribute collector is associated with a name and a template:

when the attribute is evaluated a tuple matching the template is
retrieved (via a predicative query action);

the retrieved tuple is used to compute the actual attribute value.

Michele Loreti 33

Robotics scenario in SCEL. . .
Step 3: Robots behaviour

n.addAttributeCollector(

new AttributeCollector(

"task",

new Template(

new ActualTemplateField("task"),

new FormalTemplateField(Integer.class)

)

) {

@Override

protected Attribute doEval(Tuple t) {

return new Attribute(

"task",

t.getElementAt(Integer.class , 1));

}

}

);

Michele Loreti 34

Behaviours. . .

SCEL processes are implemented as threads via the abstract class Agent
which provides the methods for:

executing another agent,

for generating fresh names,

for instantiating a new component

and for withdrawing/retrieving/adding information items from/to
shared knowledge repositories.

Michele Loreti 35

Robotics scenario in SCEL. . .
Step 3: Behaviour

public class ManagedElement extends Agent {

public ManagedElement () {

super(" ManagedElement ");

}

@Override

protected void doRun() throws Exception {

while (true) {

Tuple t = query(new Template(

new ActualTemplateField (" controlStep ")

,

new FormalTemplateField(Agent.class)) ,

Self.SELF);

Agent X = t.getElementAt(Agent.class , 1);

call(X);

}

}

}

Michele Loreti 36

Robotics scenario in SCEL. . .
Step 3: Robots behaviour

Autonomic manager (a fragment):

t = query(new Template(

new ActualTemplateField (" informed ") ,

new FormalTemplateField(Boolean.class)) ,

Self.SELF);

boolean informed = t.getElementAt(Boolean.class , 1);

if (informed) {

put(new Tuple("controlStep" , new Informed ()) ,

Self.SELF);

get(new Template(new ActualTemplateField ("seek")) ,

Self.SELF);

} else {

put(new Tuple("controlStep" , new RandomWalk ()) ,

Self.SELF);

get(new Template(new ActualTemplateField ("seek")) ,

Self.SELF);

}

Michele Loreti 37

Running the scenario...

Michele Loreti 38

Concluding remarks

We have briefly presented (first version of) a framework that permits
developing and executing SCEL oriented applications in Java

Considered framework should be now populated with. . .

specific implementations for policies, knowledge the proposed
solutions;

significative examples that can also help assessing/improving the
performance of runtime framework.

We are now working on a top-level programming language that, enriching
SCEL with standard programming primitives, permits simplifying
development of SCEL programs.

Michele Loreti 39

Concluding remarks

We have briefly presented (first version of) a framework that permits
developing and executing SCEL oriented applications in Java

Considered framework should be now populated with. . .

specific implementations for policies, knowledge the proposed
solutions;

significative examples that can also help assessing/improving the
performance of runtime framework.

We are now working on a top-level programming language that, enriching
SCEL with standard programming primitives, permits simplifying
development of SCEL programs.

Michele Loreti 39

Concluding remarks

We have briefly presented (first version of) a framework that permits
developing and executing SCEL oriented applications in Java

Considered framework should be now populated with. . .

specific implementations for policies, knowledge the proposed
solutions;

significative examples that can also help assessing/improving the
performance of runtime framework.

We are now working on a top-level programming language that, enriching
SCEL with standard programming primitives, permits simplifying
development of SCEL programs.

Michele Loreti 39

Concluding remarks

We have briefly presented (first version of) a framework that permits
developing and executing SCEL oriented applications in Java

Considered framework should be now populated with. . .

specific implementations for policies, knowledge the proposed
solutions;

significative examples that can also help assessing/improving the
performance of runtime framework.

We are now working on a top-level programming language that, enriching
SCEL with standard programming primitives, permits simplifying
development of SCEL programs.

Michele Loreti 39

Concluding remarks

We have briefly presented (first version of) a framework that permits
developing and executing SCEL oriented applications in Java

Considered framework should be now populated with. . .

specific implementations for policies, knowledge the proposed
solutions;

significative examples that can also help assessing/improving the
performance of runtime framework.

We are now working on a top-level programming language that, enriching
SCEL with standard programming primitives, permits simplifying
development of SCEL programs.

Michele Loreti 39

Concluding remarks

We have briefly presented (first version of) a framework that permits
developing and executing SCEL oriented applications in Java

Considered framework should be now populated with. . .

specific implementations for policies, knowledge the proposed
solutions;

significative examples that can also help assessing/improving the
performance of runtime framework.

We are now working on a top-level programming language that, enriching
SCEL with standard programming primitives, permits simplifying
development of SCEL programs.

Michele Loreti 39

Good work!

Michele Loreti 40

	Programming Abstractions for Autonomic Computing

