
Software Engineering and Service-Oriented Systems
– A formal approach to autonomic systems programming –

Francesco Tiezzi

IMT - Institutions, Markets, Technologies

Institute for Advanced Studies Lucca

Lucca, Italy - September, 2013

In co-operation with ASCENS members, in particular R. De Nicola,
G. Ferrari, M. Loreti and R. Pugliese

www.ascens-ist.eu

Outline

1 Autonomic Computing and Ensembles Programming

2 Programming Abstractions for Autonomic Computing

3 Ensembles Modelling in SCEL

4 Operational Semantics

5 A Simple Access Control Policy Language

6 A Run-time Environment for SCEL Programs

F. Tiezzi 2

Challenges of Ensembles Programming

Ensembles are software-intensive systems featuring

massive numbers of components

complex interactions among components, and with other systems

operating in open and non-deterministic environments

dynamically adapting to new requirements, technologies and
environmental conditions

From the final report of: IST Coordinated Action InterLink [2007].

Challenges for software development of ensembles

the dimension of the systems

the need to adapt to changing environments and requirements

the emergent behaviour resulting from complex interactions

the uncertainty during design-time and run-time

F. Tiezzi 3

Autonomic Computing

A possible answer to the challenges posed by ensemble systems is:

Autonomic Computing

Systems can manage themselves by continuously

monitoring their behaviour (self-awareness) and their working
environment (context-awareness)

analysing the acquired knowledge to identify relevant changes

planning reconfigurations in order to meet their requirements

executing plan actions

Self-management requires guaranteeing the so-called self-* properties:

self-configuration

self-healing

self-optimization

self-protection

F. Tiezzi 4

Autonomic Computing

A possible answer to the challenges posed by ensemble systems is:

Autonomic Computing

Systems can manage themselves by continuously

monitoring their behaviour (self-awareness) and their working
environment (context-awareness)

analysing the acquired knowledge to identify relevant changes

planning reconfigurations in order to meet their requirements

executing plan actions

Self-management requires guaranteeing the so-called self-* properties:

self-configuration

self-healing

self-optimization

self-protection

F. Tiezzi 4

Autonomic Computing

A possible answer to the challenges posed by ensemble systems is:

Autonomic Computing

Systems can manage themselves by continuously

monitoring their behaviour (self-awareness) and their working
environment (context-awareness)

analysing the acquired knowledge to identify relevant changes

planning reconfigurations in order to meet their requirements

executing plan actions

Self-management requires guaranteeing the so-called self-* properties:

self-configuration

self-healing

self-optimization

self-protection

F. Tiezzi 4

Service-Component Ensembles

Components and Ensembles

Service Components (SCs) and Service-Component Ensembles (SCEs)
permit to dynamically structure independent, distributed entities that can
cooperate, with different roles, in open and non-deterministic environments

Interfaces and Attributes

SCs are entities with dedicated knowledge units and resources

Each SC is equipped with an interface, consisting of a collection of
attributes, describing component’s features such as identity, spatial
coordinates, group memberships, trust level, response time, etc.

Attribute-based communication

SCs use attributes to dynamically organize themselves into SCEs

Predicates over SCs’ attributes specify the targets of communication
actions, i.e. the members of an ensembles

F. Tiezzi 5

Service-Component Ensembles

Components and Ensembles

Service Components (SCs) and Service-Component Ensembles (SCEs)
permit to dynamically structure independent, distributed entities that can
cooperate, with different roles, in open and non-deterministic environments

Interfaces and Attributes

SCs are entities with dedicated knowledge units and resources

Each SC is equipped with an interface, consisting of a collection of
attributes, describing component’s features such as identity, spatial
coordinates, group memberships, trust level, response time, etc.

Attribute-based communication

SCs use attributes to dynamically organize themselves into SCEs

Predicates over SCs’ attributes specify the targets of communication
actions, i.e. the members of an ensembles

F. Tiezzi 5

Service-Component Ensembles

Components and Ensembles

Service Components (SCs) and Service-Component Ensembles (SCEs)
permit to dynamically structure independent, distributed entities that can
cooperate, with different roles, in open and non-deterministic environments

Interfaces and Attributes

SCs are entities with dedicated knowledge units and resources

Each SC is equipped with an interface, consisting of a collection of
attributes, describing component’s features such as identity, spatial
coordinates, group memberships, trust level, response time, etc.

Attribute-based communication

SCs use attributes to dynamically organize themselves into SCEs

Predicates over SCs’ attributes specify the targets of communication
actions, i.e. the members of an ensembles

F. Tiezzi 5

Ensembles

Service-Component Ensembles

SCEs can be thought of as logical layers (built on top of the physical SCs
network) that identify dynamic (overlay) subnetworks of SCs

Physical
network
level

SC
1

SC
2

SC
3

SC
4

SCE1SC
3

SC
4

SCE2SC
1

SC
2

SC
4

F. Tiezzi 6

A Language for Programming Ensembles

We aim at developing linguistic supports for modelling (and programming)
the behavior of service components and their ensembles, their interactions,
their sensitivity and adaptivity to the environment

Service-Component Ensemble Language (SCEL)

A kernel language designed with

programming abstractions necessary for

directly representing Knowledge, Behaviors and Aggregations according
to specific Policies
naturally programming interaction, adaptation and self- and context-
awareness (Autonomic Computing)

linguistic primitives with solid semantic grounds

to develop logics, tools and methodologies for formal reasoning on
systems behavior
to establish qualitative and quantitative properties of both the
individual components and the ensembles

F. Tiezzi 7

A Language for Programming Ensembles

SCEL provides a common semantic framework for describing the meaning
of these abstractions and their interplay, while minimizing overlaps and
incompatibilities

SCEL syntax fully specifies only constructs for modeling Behaviors
and Aggregations and is parametric with respect to Knowledge and
Policies

This choice permits integrating different approaches to knowledge
handling or to policies specifications within SCEL and to easily
superimpose ACEs on top of heterogeneous ACs

SCEL is thought of as a kernel language based on which different
full-blown languages can be designed

F. Tiezzi 8

A Language for Programming Ensembles

SCEL is a blending of different concepts that have emerged in different
fields of Computer Science and Engineering

Software engineering: separation of concerns and importance of
component-based design

Multi-agent systems: relevance of knowledge handling and of
spatial representation

Middleware and network architectures: importance of flexibility in
communication

Distributed systems’ security: the role of policies

Process algebras: importance of minimality and formality

Contribution

New language with appropriate programming abstractions for autonomic
computing and their reconciliation under a single roof with a uniform
formal semantics

F. Tiezzi 9

Programming Abstractions for Autonomic Computing

F. Tiezzi 10

SCEL: programming abstractions

SCEL provides primitives and constructs for dealing with 4 programming
abstractions

1 Knowledge: to describe how data, information and knowledge is
manipulated and shared

2 Behaviours: to describe how systems of components progress

3 Aggregations: to describe how different entities are brought together
to form SCs and to construct the software architecture of SCEs

4 Policies: to control and adapt the actions of the different SCs

F. Tiezzi 11

1. Knowledge

SCEL is parametric wrt the means of managing knowledge that would
depend on the specific class of application domains

Knowledge representation: items stored in repositories

Tuples, Records

Horn Clause Clauses

Concurrent Constraints

. . .

Knowledge handling mechanisms

Pattern-matching, Reactive Tuple Spaces

Database Querying

Resolution

Constraint Solving

. . .
F. Tiezzi 12

1. Knowledge (and Awareness)

To guarantee adaptivity, some kinds of knowledge items and handling
mechanisms are required

Application data

Used for the progress of the computation

Control data

Providing information about:

SC’s current status (e.g. its position, its battery level): self-awareness

the environment (e.g. data from sensors): context-awareness

Knowledge handling mechanisms

Add information to a knowledge repository

Retrieve information from a knowledge repository

Withdraw information from a knowledge repository

F. Tiezzi 13

2. Behaviors

Behaviours are modelled as processes in the style of process calculi

Interaction

Obtained by allowing processes to access knowledge repositories, possibly
of other components

Adaptation

Modelled by retrieving from the knowledge repositories

information about the changing environment and the components
status

the code to execute for reacting to these changes

Self-configuration, self-healing and self-optimization properties are
expressed by exploiting SCEL’s interaction features

F. Tiezzi 14

2. Behaviors

Processes are the SCEL’s active computational units

Processes

P ::= nil
∣∣ a.P

∣∣ P1 + P2

∣∣ P1[P2]
∣∣ X

∣∣ A(p̄) (A(f̄) , P)

Processes are built up from the inert process nil via

action prefixing: a.P

nondeterministic choice: P1 + P2

controlled composition: P1[P2]

process variable: X

parameterized process invocation: A(p̄)

parameterised process definition: A(f̄) , P

F. Tiezzi 15

2. Behaviors

Processes are the SCEL’s active computational units

Processes

P ::= nil
∣∣ a.P

∣∣ P1 + P2

∣∣ P1[P2]
∣∣ X

∣∣ A(p̄) (A(f̄) , P)

Processes are built up from the inert process nil via

action prefixing: a.P

nondeterministic choice: P1 + P2

controlled composition: P1[P2]

process variable: X

parameterized process invocation: A(p̄)

parameterised process definition: A(f̄) , P

P1[P2] can be seen as a generalization of the many “parallel
compositions” of process calculi

F. Tiezzi 15

2. Behaviors

Processes are the SCEL’s active computational units

Processes

P ::= nil
∣∣ a.P

∣∣ P1 + P2

∣∣ P1[P2]
∣∣ X

∣∣ A(p̄) (A(f̄) , P)

Processes are built up from the inert process nil via

action prefixing: a.P

nondeterministic choice: P1 + P2

controlled composition: P1[P2]

process variable: X

parameterized process invocation: A(p̄)

parameterised process definition: A(f̄) , P

Variables X support higher-order communication, namely the capability to
exchange (the code of) a process and possibly execute it

F. Tiezzi 15

2. Behaviors

Processes are the SCEL’s active computational units

Processes

P ::= nil
∣∣ a.P

∣∣ P1 + P2

∣∣ P1[P2]
∣∣ X

∣∣ A(p̄) (A(f̄) , P)

Processes are built up from the inert process nil via

action prefixing: a.P

nondeterministic choice: P1 + P2

controlled composition: P1[P2]

process variable: X

parameterized process invocation: A(p̄)

parameterised process definition: A(f̄) , P

F. Tiezzi 15

2. Behaviours (and Actions)

Actions

a ::= get(T)@c
∣∣ qry(T)@c

∣∣ put(t)@c
∣∣ fresh(n)

∣∣ new(I,K,Π,P)

Action Targets

c ::= n
∣∣ x

∣∣ self
∣∣ ensemble (?)

Rôle of Actions

manage knowledge repositories c by

withdrawing information - get(T)@c ,
retrieving information - qry(T)@c
adding information - put(t)@c

t is a knowledge item, T is a template to select knowledge items

create new names - fresh(n)
∣∣

create new components I[K,Π,P] - new(I,K,Π,P)

F. Tiezzi 16

3. Aggregations

Aggregations

Describe how different entities are brought together to

model resource allocation and distribution

reflect the idea of administrative domains, i.e. the authority
controlling a given set of resources and computing agents

Modelled by resorting to the notions of system, component and ensemble

Systems

S ::= C
∣∣ S1 ‖ S2

∣∣ (νn)S

Single component C (see next slide)

Parallel composition ‖
Name restriction (νn) to delimit the scope of name n, thus in
S1 ‖ (νn)S2, name n is invisible from within S1

F. Tiezzi 17

3. Aggregations

Aggregations

Describe how different entities are brought together to

model resource allocation and distribution

reflect the idea of administrative domains, i.e. the authority
controlling a given set of resources and computing agents

Modelled by resorting to the notions of system, component and ensemble

Systems

S ::= C
∣∣ S1 ‖ S2

∣∣ (νn)S

Single component C (see next slide)

Parallel composition ‖
Name restriction (νn) to delimit the scope of name n, thus in
S1 ‖ (νn)S2, name n is invisible from within S1

F. Tiezzi 17

3. Aggregations (and Components)

Knowledge
K

Processes

P

I Interface

Π
Policies

Components

C ::= I[K,Π,P]

F. Tiezzi 18

3. Aggregations (and Components)

Knowledge
K

Processes

P

I Interface

Π
Policies

Components

C ::= I[K,Π,P]

Interface I: containing information about the component itself in the
form of attributes, each component C has attribute:

id : referring to the name of the component C

Knowledge repository K: providing application and control data
together with specific knowledge handling mechanisms

Policies Π: regulating inter-component and intra-component
interactions

Process P: performing the local computation, coordinating their
interaction with the knowledge repository and dealing with adaptation

F. Tiezzi 18

4. Policies

Policies deal with the way properties of computations are represented and
enforced

Interaction: interaction predicates, . . .

Resource usage: SLA, accounting, . . .

Security: access control, trust, reputation, . . .

System configuration: adaptation, . . .

SCEL is parametric wrt the actual language used to express policies

we consider here SACPL, a simple language for access control

When considering the operational semantics, we will see how policies
are exploited to control components actions, their evolutions and their
interactions

F. Tiezzi 19

SCEL: Syntax (in one slide)

Systems: S ::= C
∣∣ S1 ‖ S2

∣∣ (νn)S

Components:C ::= I[K,Π,P]

Knowledge: K ::= . . . − currently, just tuple spaces

Policies: Π ::= . . . − interaction policies and SACPL terms

Processes: P ::= nil
∣∣ a.P ∣∣ P1 + P2

∣∣ P1[P2]
∣∣ X ∣∣ A(p̄) (A(f̄) , P)

Actions: a ::= get(T)@c
∣∣qry(T)@c

∣∣put(t)@c
∣∣fresh(n)

∣∣new(I,K,Π,P)

Targets: c ::= n
∣∣ x

∣∣ self
∣∣ . . . − ensembles

Items: t ::= . . . − tuples

Templates: T ::= . . . − tuples with variables

F. Tiezzi 20

Ensembles Modelling in SCEL

F. Tiezzi 21

An ensemble

An ensemble is a set of components

with the same goal and/or

with compatible features and/or

at the same locality and/or

. . .

F. Tiezzi 22

Where are ensembles in SCEL?

In the syntax, we just presented, there is no specific syntactic
construct for building ensembles

Different ways for modelling ensembles and their interaction have
been experimented

Characterizing Ensembles:

To identify those components that form an ensemble and guarantee
general communication between members of the same ensemble we have
considered:

1 Adding a specific syntactic category for ensembles

2 Enriching interfaces of some components with special attributes to
single out groups of components forming an ensemble

3 Using predicates to filter targets of send, retrieve and get operations

F. Tiezzi 23

1. Explicit syntactic category

Adding a specific syntactic category: ensembles as components

We explicitly declare the component that represents an ensemble, and
whenever the target of an operation contains the name of an ensemble it
will impact on all its components

Ensembles: C ::= I[K,Π,P]

The behavioural part P of the ensemble could distribute (retrieve)
information to (from) the relevant partners and provide an
ensemble-like (coordinated) behaviour

Components could be nested

This is the approach taken in process algebras with explicit localities or in
programming language with distributed tuple space (e.g. Klaim)

F. Tiezzi 24

Static ensembles

Drawback

Staticity of the aggregated structures; a component can be part of just
one ensemble

F. Tiezzi 25

2. Attribute-based ensembles

There is no specific syntactic construct for building ensembles, they are
dynamically formed by exploiting components interfaces and distinguished
attributes like ensemble and membership. This is useful to:

support flexibility in modeling ensemble forming, joining and leaving

avoid structuring ensembles through rigid syntactic constructs

control the communication capabilities of components

Ensemble Interfaces

Interfaces specify (possibly dynamic) attributes. Each component C has in
its interface attributes:

ensemble: determines the actual components of the ensemble created
and coordinated by C (n.b.: it might be false)

membership: determines the ensembles which C is willing to be
member of (n.b.: it might be true)

F. Tiezzi 26

Components Attribute

ensemble attribute

id ∈ {n,m, p}
active = yes ∧ battery level > 30%

membership attribute

true, false

trust level > medium

Components interactions

Only components within the same ensemble are allowed to interact

Allowing ensemble as targets

By sending to, or retrieving and getting from super one components
interacts with all the components of the same ensemble it is in

Targets: c ::= n
∣∣ x

∣∣ self
∣∣ super

F. Tiezzi 27

Components Attribute

ensemble attribute

id ∈ {n,m, p}
active = yes ∧ battery level > 30%

membership attribute

true, false

trust level > medium

Components interactions

Only components within the same ensemble are allowed to interact

Allowing ensemble as targets

By sending to, or retrieving and getting from super one components
interacts with all the components of the same ensemble it is in

Targets: c ::= n
∣∣ x

∣∣ self
∣∣ super

F. Tiezzi 27

Attribute-based ensemble

Drawback

An ensemble dissolves if its coordinator disappears: single point of failure

F. Tiezzi 28

Attribute-based ensemble

Drawback

An ensemble dissolves if its coordinator disappears: single point of failure

F. Tiezzi 28

3. Ensembles as predicates

In order to guarantee the maximum degree of flexibility and to avoid
critical component that could be not functional, we are currently
investigating the possibility of predicate-based communication primitives
that select the targets among those enjoying specific properties

Allowing Predicates as targets: ensembles as predicates

By sending to, or retrieving and getting from predicate P one components
interacts with all the components that satisfy the same predicate

Targets: c ::= n
∣∣ x

∣∣ self
∣∣ P

∣∣ p

Predicates

Boolean-valued expressions obtained by logically combining the evaluation
of relations between attributes and expressions

F. Tiezzi 29

3. Ensembles as predicates

In order to guarantee the maximum degree of flexibility and to avoid
critical component that could be not functional, we are currently
investigating the possibility of predicate-based communication primitives
that select the targets among those enjoying specific properties

Allowing Predicates as targets: ensembles as predicates

By sending to, or retrieving and getting from predicate P one components
interacts with all the components that satisfy the same predicate

Targets: c ::= n
∣∣ x

∣∣ self
∣∣ P

∣∣ p

Predicates

• active = yes ∧ battery level > 30%
• this.status = sending ∧ status = receiving

F. Tiezzi 29

3. Ensembles as predicates

In order to guarantee the maximum degree of flexibility and to avoid
critical component that could be not functional, we are currently
investigating the possibility of predicate-based communication primitives
that select the targets among those enjoying specific properties

Allowing Predicates as targets: ensembles as predicates

By sending to, or retrieving and getting from predicate P one components
interacts with all the components that satisfy the same predicate

Targets: c ::= n
∣∣ x

∣∣ self
∣∣ P

∣∣ p

Predicates

Name p, exposed as an interface attribute, is a reference to a predicate
stored in the component’s repository; it enables changing predicates

F. Tiezzi 29

Predicate-based ensembles

Good point

No specific coordinator!
Ensembles are determined by the predicates validated by each component

F. Tiezzi 30

An simple example

A swarm robotics scenario

Robots of a swarm have to reach different zones according to the
tasks that they have to do (here, task1 or tasks2)

e.g. help other robots, reach a safe area, clear a minefield, etc.

Robots are not informed about the position of the two target zones

each robot follows a random walk
when a robot reaches its target area, it publishes the location within its
local repository to make it available to robots with the same task
informed robots can then move directly towards the target, by saving
time wrt random walking (i.e., they self-optimise their behaviour)

F. Tiezzi 31

An simple example

A swarm robotics scenario

Robots of a swarm have to reach different zones according to the
tasks that they have to do (here, task1 or tasks2)

e.g. help other robots, reach a safe area, clear a minefield, etc.

Robots are not informed about the position of the two target zones

each robot follows a random walk
when a robot reaches its target area, it publishes the location within its
local repository to make it available to robots with the same task
informed robots can then move directly towards the target, by saving
time wrt random walking (i.e., they self-optimise their behaviour)

The robotics scenario can be expressed in SCEL as a system

S , I1[K1,Π1,P1] ‖ I2[K2,Π2,P2]
‖ I3[K3,Π3,P3] ‖ I4[K4,Π4,P4] ‖ . . .

F. Tiezzi 31

An simple example

The first robot is the component I1[K1,Π1,P1]

The robot runs process P1 defined as

qry(“targetLocation”, ?x , ?y)@(task = “task1”) .
put(“targetLocation”, x , y)@self .
P ′1

Symbol ‘?’ indicates a variable binder in a template

F. Tiezzi 32

Operational Semantics

F. Tiezzi 33

SCEL: Operational Semantics

Structural operational semantics relies on the notion of LTS

Labelled Transition System (LTS): a triple 〈S,L, −→ 〉
A set of states S
A set of transition labels L
A labelled transition relation −→ ⊆ S × L× S modelling the
actions that can be performed from each state and the new
state reached after each such transition

SCEL’s semantics is structured in two layers:

1 Processes semantics specifies process commitments, i.e. the actions
that processes can initially perform, while ignoring process allocation,
available data, regulating policies, . . .

2 Systems semantics builds on process commitments and systems
configuration to provide a full description of systems behavior

F. Tiezzi 34

SCEL: Operational Semantics

Structural operational semantics relies on the notion of LTS

Labelled Transition System (LTS): a triple 〈S,L, −→ 〉
A set of states S
A set of transition labels L
A labelled transition relation −→ ⊆ S × L× S modelling the
actions that can be performed from each state and the new
state reached after each such transition

SCEL’s semantics is structured in two layers:

1 Processes semantics specifies process commitments, i.e. the actions
that processes can initially perform, while ignoring process allocation,
available data, regulating policies, . . .

2 Systems semantics builds on process commitments and systems
configuration to provide a full description of systems behavior

F. Tiezzi 34

Operational Semantics of Processes

Rules for Processes

a.P ↓a P P ↓◦ P

P ↓α P ′

P + Q ↓α P ′
Q ↓α Q ′

P + Q ↓α Q ′
P{p̄/f̄ } ↓α P ′

A(p̄) ↓α P ′
A(f̄) , P

P ↓α P ′ Q ↓β Q ′

P[Q] ↓α[β] P
′[Q ′]

P ′ ↓α P ′′

P ↓α P ′′
P ≡ P ′

a.P executes action a and then behaving like process P

↓◦ indicates that process P may always decide to stay idle

The semantics of P[Q] at process level is very permissive and
generates all combinations of the commitments of the involved
processes

its behaviour is refined at systems level when policies enter the game

F. Tiezzi 35

SOS Rules for Systems (excerpt)

From process actions to component actions

P ↓α P ′ Π, I : α � λ, σ,Π′

I[K,Π,P]
λ−→ I[K,Π′,P ′σ]

Interaction Predicates: The interleaving case

E [[T]]I = T ′ N [[c]]I = c ′ match(T ′, t) = σ

Π⊕, I : get(T)@c � I : t / c ′, σ,Π⊕

N.B: c ′ can be a component identifier or a predicate

Π⊕, I : α � λ, σ,Π⊕

Π⊕, I : α[◦] � λ, σ,Π⊕

Π⊕, I : α � λ, σ,Π⊕

Π⊕, I : ◦[α] � λ, σ,Π⊕

F. Tiezzi 36

SOS Rules for Systems (excerpt)

From process actions to component actions

P ↓α P ′ Π, I : α � λ, σ,Π′

I[K,Π,P]
λ−→ I[K,Π′,P ′σ]

Interaction Predicates: The interleaving case

E [[T]]I = T ′ N [[c]]I = c ′ match(T ′, t) = σ

Π⊕, I : get(T)@c � I : t / c ′, σ,Π⊕

N.B: c ′ can be a component identifier or a predicate

Π⊕, I : α � λ, σ,Π⊕

Π⊕, I : α[◦] � λ, σ,Π⊕

Π⊕, I : α � λ, σ,Π⊕

Π⊕, I : ◦[α] � λ, σ,Π⊕

F. Tiezzi 36

SOS Rules for Systems (excerpt)

From process actions to component actions

P ↓α P ′ Π, I : α � λ, σ,Π′

I[K,Π,P]
λ−→ I[K,Π′,P ′σ]

Intra-component withdrawal

I[K,Π,P]
I:t/n−−→ I[K,Π′,P ′] n = I.id K 	 t = K′ Π′ ` I : t /̄ I,Π′′

I[K,Π,P]
τ−→ I[K′,Π′′,P ′]

Authorization predicates

We will see an example later on . . .

F. Tiezzi 36

SOS Rules for Systems (excerpt)

From process actions to component actions

P ↓α P ′ Π, I : α � λ, σ,Π′

I[K,Π,P]
λ−→ I[K,Π′,P ′σ]

Intra-component withdrawal

I[K,Π,P]
I:t/n−−→ I[K,Π′,P ′] n = I.id K 	 t = K′ Π′ ` I : t /̄ I,Π′′

I[K,Π,P]
τ−→ I[K′,Π′′,P ′]

Authorization predicates

We will see an example later on . . .

F. Tiezzi 36

SOS Rules for Systems (excerpt)

From process actions to component actions

P ↓α P ′ Π, I : α � λ, σ,Π′

I[K,Π,P]
λ−→ I[K,Π′,P ′σ]

Intra-component withdrawal

I[K,Π,P]
I:t/n−−→ I[K,Π′,P ′] n = I.id K 	 t = K′ Π′ ` I : t /̄ I,Π′′

I[K,Π,P]
τ−→ I[K′,Π′′,P ′]

Inter-component, point-to-point withdrawal

S1
I:t/n−−→S ′1 S2

I:t /̄J−−−→ S ′2 J .id =n I.π ` I : t /̄J ,Π′

S1 ‖ S2
τ−→ S ′1[I.π := Π′] ‖ S ′2

F. Tiezzi 36

More SOS Rules for Systems

Inter-component, group-oriented withdrawal

S1
I:t/P−−→ S ′1 S2

I:t /̄J−−−→ S ′2 J |= P I.π ` I : t /̄J ,Π′

S1 ‖ S2
τ−→ S ′1[I.π := Π′] ‖ S ′2

F. Tiezzi 37

Simple Access Control Policy Language

F. Tiezzi 38

SACPL

SACPL: Simple Access Control Policy Language

A language for defining access control policies
and access requests

Follows the PBAC model

Inspired to, but much simpler than, XACML

Integrated with SCEL

F. Tiezzi 39

SACPL

SACPL: Simple Access Control Policy Language

A language for defining access control policies
and access requests

Follows the PBAC model

Inspired to, but much simpler than, XACML

Integrated with SCEL

F. Tiezzi 39

Access Control

Require access to
 resources and systems

F. Tiezzi 40

Access Control

Authorization service
(access control mechanism)

F. Tiezzi 40

Access Control

Send a
request

authorized
user

resource
(e.g. EHR)

F. Tiezzi 40

Access Control

authorized
user

resource
(e.g. EHR)

F. Tiezzi 40

Access Control

Send a
request

unauthorized
user

resource
(e.g. EHR)

F. Tiezzi 40

Access Control

unauthorized
user

resource
(e.g. EHR)

F. Tiezzi 40

Policy Based Access Control
(PBAC)

Access Control
Mechanism

Policy
Decision
Point (PDP)

Policy repository

Resources

Resources are governed
by policies

A policy is a document that exactly specifies the subject credentials and requirements
that a requestor must fulfill to access some resources

F. Tiezzi 41

Policy Based Access Control
(PBAC)

Access Control
Mechanism

Policy
Decision
Point (PDP)

Policy repository

Resources

Resources are governed
by policies

A policy is a document that exactly specifies the credentials and requirements that a
requestor must fulfill to access some resources

F. Tiezzi 41

Policy Based Access Control
(PBAC)

PBAC is by now the de-facto standard model for enforcing access
control policies in service-oriented architectures

An authorization decision is based on the values of some attributes
required to allow access to a resource according to policies created by
the security administrator

Attributes are sets of properties used to describe the entities that
must be considered for authorization; they might concern

the subject who is demanding access:

identity, role, age, zip code, IP address, group memberships,
citizenships, company, management level, certifications, etc.

the action that the subject wants to perform:

read and/or write, patterns of argument data, etc.

the object (or resource) impacted by the action:

identity, location, size, value, EHR, etc.

the environment in which access is requested:

time, date, location, system load, available memory, battery level, etc.

F. Tiezzi 42

Policy Based Access Control
(PBAC)

PBAC is by now the de-facto standard model for enforcing access
control policies in service-oriented architectures

An authorization decision is based on the values of some attributes
required to allow access to a resource according to policies created by
the security administrator

Attributes are sets of properties used to describe the entities that
must be considered for authorization; they might concern

the subject who is demanding access:

identity, role, age, zip code, IP address, group memberships,
citizenships, company, management level, certifications, etc.

the action that the subject wants to perform:

read and/or write, patterns of argument data, etc.

the object (or resource) impacted by the action:

identity, location, size, value, EHR, etc.

the environment in which access is requested:

time, date, location, system load, available memory, battery level, etc.
F. Tiezzi 42

Policy Based Access Control
(PBAC): advantages

Overcomes scalability problems of previous AC models and enables
systems integration

Enables fine-grained access control: targets and requests can be
expressed with greater freedom than is usually the case

The request format is not limited to the form subject-object-action

Provides dynamic, context-aware access control

The authorization decision may depend also on context/environment
attributes, not only on subject/resource ones

F. Tiezzi 43

The XACML standard

XACML

is a widely used implementation of PBAC

defines an XML-based language for writing policies

defines an XML-based language for representing access requests

defines how a PDP mades authorization decision

is currently used in many large scale projects (e.g., epSOS, NHIN)

F. Tiezzi 44

Policy Syntax

Π ::= (Policies)
〈Decision ; target:{ Targets } 〉 (atomic policy)

| Π p-o Π | Π d-o Π (policy combination)

Decision ::= permit | deny (Decisions)

Targets ::= (Targets)
MatchF (Designator ,Expr) (atomic target)

| Targets or Targets | Targets and Targets (target combination)

MatchF ::= equal | pattern-match (Matching functions)
| greater-than | . . .

Designator ::= action | pattern | subject.attr | object.attr (Designators)

Expr ::= get | qry | put | fresh | new (Expressions)
| T | value
| subject.attr | object.attr
| not Expr | Expr or Expr | Expr and Expr
| Expr + Expr | Expr × Expr | . . .
| Expr < Expr | Expr = Expr | . . .

F. Tiezzi 45

Policy Syntax

Π ::= (Policies)
〈Decision ; target:{ Targets } 〉 (atomic policy)

| Π p-o Π | Π d-o Π (policy combination)

Decision ::= permit | deny (Decisions)

Targets ::= (Targets)
MatchF (Designator ,Expr) (atomic target)

| Targets or Targets | Targets and Targets (target combination)

MatchF ::= equal | pattern-match (Matching functions)
| greater-than | . . .

Designator ::= action | pattern | subject.attr | object.attr (Designators)

Expr ::= get | qry | put | fresh | new (Expressions)
| T | value
| subject.attr | object.attr
| not Expr | Expr or Expr | Expr and Expr
| Expr + Expr | Expr × Expr | . . .
| Expr < Expr | Expr = Expr | . . .

F. Tiezzi 45

Policy Syntax

Π ::= (Policies)
〈Decision ; target:{ Targets } 〉 (atomic policy)

| Π p-o Π | Π d-o Π (policy combination)

Decision ::= permit | deny (Decisions)

Targets ::= (Targets)
MatchF (Designator ,Expr) (atomic target)

| Targets or Targets | Targets and Targets (target combination)

MatchF ::= equal | pattern-match (Matching functions)
| greater-than | . . .

Designator ::= action | pattern | subject.attr | object.attr (Designators)

Expr ::= get | qry | put | fresh | new (Expressions)
| T | value
| subject.attr | object.attr
| not Expr | Expr or Expr | Expr and Expr
| Expr + Expr | Expr × Expr | . . .
| Expr < Expr | Expr = Expr | . . .

F. Tiezzi 45

Policy Syntax

Π ::= (Policies)
〈Decision ; target:{ Targets } 〉 (atomic policy)

| Π p-o Π | Π d-o Π (policy combination)

Decision ::= permit | deny (Decisions)

Targets ::= (Targets)
MatchF (Designator ,Expr) (atomic target)

| Targets or Targets | Targets and Targets (target combination)

MatchF ::= equal | pattern-match (Matching functions)
| greater-than | . . .

Designator ::= action | pattern | subject.attr | object.attr (Designators)

Expr ::= get | qry | put | fresh | new (Expressions)
| T | value
| subject.attr | object.attr
| not Expr | Expr or Expr | Expr and Expr
| Expr + Expr | Expr × Expr | . . .
| Expr < Expr | Expr = Expr | . . .

F. Tiezzi 45

Request Syntax

SACPL requests (ranged over by ρ) are functions mapping names to
elements, written as collections of pairs of the form (name, element)

A typical example of request

{(subject, I), (item, t), (action, get), (object,J)}

Interface I is the subject of the request; it provides a set of attributes
characterising the corresponding element

J is the object of the request

I requires the authorization to withdraw (get) the item t from the J

Semantics: Π ` ρ
Π ` ρ means that the authorization decision returned by Π in response to
ρ is permit, i.e. access to the resource requested in ρ is granted by Π

F. Tiezzi 46

Request Syntax

SACPL requests (ranged over by ρ) are functions mapping names to
elements, written as collections of pairs of the form (name, element)

A typical example of request

{(subject, I), (item, t), (action, get), (object,J)}

Interface I is the subject of the request; it provides a set of attributes
characterising the corresponding element

J is the object of the request

I requires the authorization to withdraw (get) the item t from the J

Semantics: Π ` ρ
Π ` ρ means that the authorization decision returned by Π in response to
ρ is permit, i.e. access to the resource requested in ρ is granted by Π

F. Tiezzi 46

Request Syntax

SACPL requests (ranged over by ρ) are functions mapping names to
elements, written as collections of pairs of the form (name, element)

A typical example of request

{(subject, I), (item, t), (action, get), (object,J)}

Interface I is the subject of the request; it provides a set of attributes
characterising the corresponding element

J is the object of the request

I requires the authorization to withdraw (get) the item t from the J

Semantics: Π ` ρ
Π ` ρ means that the authorization decision returned by Π in response to
ρ is permit, i.e. access to the resource requested in ρ is granted by Π

F. Tiezzi 46

Integration with SCEL

Orthogonal aspects of components behaviour can be regulated by
different kinds of policies, enforced together but evaluated separately

The policy of a component I[K,Π,P] can be better thought of as a
tuple of policies, e.g. (Πi ,Πac , . . .)

Πi is an interaction policy regulating the interaction among processes
inside a SCEL component
Πac is an access control policy, written in SACPL, regulating the
access to the knowledge and resources of SCEL components

Authorization predicate Π ` λ,Π′

Πac ` λ2ρ(λ)

(Πi ,Πac , . . .) ` λ, (Πi ,Πac , . . .)

The predicate converts authorization requests written in the SCEL’s labels
format into requests in the SACPL format through the function λ2ρ(·), e.g.

λ2ρ(I : t /̄J) = {(subject, I), (item, t), (action, get), (object,J)}

F. Tiezzi 47

Integration with SCEL

Orthogonal aspects of components behaviour can be regulated by
different kinds of policies, enforced together but evaluated separately

The policy of a component I[K,Π,P] can be better thought of as a
tuple of policies, e.g. (Πi ,Πac , . . .)

Πi is an interaction policy regulating the interaction among processes
inside a SCEL component
Πac is an access control policy, written in SACPL, regulating the
access to the knowledge and resources of SCEL components

Authorization predicate Π ` λ,Π′

Πac ` λ2ρ(λ)

(Πi ,Πac , . . .) ` λ, (Πi ,Πac , . . .)

The predicate converts authorization requests written in the SCEL’s labels
format into requests in the SACPL format through the function λ2ρ(·), e.g.

λ2ρ(I : t /̄J) = {(subject, I), (item, t), (action, get), (object,J)}

F. Tiezzi 47

A Run-time Environment for SCEL Programs

F. Tiezzi 48

jRESP
A Run-time Environment for SCEL Programs

See next lecture (26 Sept) by Michele Loreti . . .

F. Tiezzi 49

For further details about SCEL, visit

http://rap.dsi.unifi.it/scel

F. Tiezzi 50

http://rap.dsi.unifi.it/scel

	Autonomic Computing and Ensembles Programming
	Programming Abstractions for Autonomic Computing
	Ensembles Modelling in SCEL
	Operational Semantics
	A Simple Access Control Policy Language
	A Run-time Environment for SCEL Programs

