
Software Engineering and
Service-Oriented Systems

– Analysing Service-Oriented Systems with COWS –

Francesco Tiezzi

IMT - Institutions, Markets, Technologies

Institute for Advanced Studies Lucca

Lucca, Italy - September, 2012

In co-operation with SENSORIA members, in particular Stefania Gnesi, Alessandro Lapadula,
Franco Mazzanti, and Rosario Pugliese,
and also Alessandro Fantechi and Nobuko Yoshida

1



Analysis techniques for COWS specifications

1 A bisimulation-based observational semantics [ICALP’09]

2 A type system for checking confidentiality properties [FSEN’07]

3 A logical verification methodology [FASE’08]
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Analysis techniques: an observational semantics
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Behavioural equivalences: key concepts
An important ingredient of a process calculus is a notion of
behavioural equivalences between its terms

Behavioural equivalences, and the related proof techniques, are a
tool providing a means to establishing formal correspondences
between terms of a process calculus

Syntactically different terms may behave the same way,
hence they ought to be considered behaviourally equivalent

Behavioural equivalences can take into account diverse
observable properties of terms (name mobility, asynchrony, . . . )

I Several different classes of behavioural equivalences have been
introduced, each one being characterised by a specific notion of
observable behaviour

I The semantics induced by such equivalences are indeed called
observational semantics
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Behavioural equivalences: key concepts

Powerful and widespread used techniques are based on the
notion of bisimulation

Intuitively, a bisimulation is a relation that permits associating two
terms if one simulates the behaviour (i.e. the actions that can be
performed) of the other and vice-versa

In doing this, the behaviour of intermediate states that the terms
traverse as they evolve have taken into account

I The action capabilities of the intermediate states does matter:
e.g. to observe different deadlock behaviours
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An observational semantics for COWS

An observational semantics permits checking interchangeability of
services and conformance against service specifications
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An observational semantics for COWS

An observational semantics permits checking interchangeability of
services and conformance against service specifications

high-level spec. low-level spec.
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An observational semantics for COWS

An observational semantics permits checking interchangeability of
services and conformance against service specifications

We have defined:
I natural notions of strong and weak open barbed bisimilarities

I manageable characterisations in terms of labelled bisimilarities

These semantics show that:
I COWS’s priority mechanisms partially recover the capability to

observe receive actions

I primitives for termination impose specific conditions on the
bisimilarities
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A natural notion of bisimulation
Observable (barb)

Predicate s ↓n holds true if there exist s′, n̄ and v̄ s.t. s
n� [n̄] v̄−−−−−−→ s′,

i.e. only the output capabilities are considered as observable

E.g. [x̄ ] (n?x̄ | n!v̄) ↓n, while [x̄ ] (n?x̄) 6 ↓n

Barbed bisimilarity '
is the largest symmetric, barb preserving, computation and context
closed relation over COWS terms

Barbed bisimilarity suffers from universal quantification over all
possible language contexts

I this makes the reasoning on terms very hard

We have provided a purely co-inductive notion of bisimulation
I only requires considering transitions of the labelled transition

system defining the semantics of the terms under analysis
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A co-inductive notion of bisimulation
Labelled bisimilarity ∼
A names-indexed family of symmetric binary relations {RN }N is a labelled

bisimulation if s1RN s2 then halt(s1)RN halt(s2) and if s1
α−−→ s′1, where bu(α) are

fresh, then:
1 if α = n� [x̄ ] w̄ then one of the following holds:

(a) ∀ v̄ s.t. M(x̄ , v̄) = σ and noc(s2,n, w̄ ·σ, | x̄ |) :

∃ s′2 : s2
n�[x̄ ] w̄−−−−−−→ s′2 and s′1 ·σRN s′2 ·σ

(b) | x̄ |=| w̄ | and ∀ v̄ s.t. M(x̄ , v̄) = σ and noc(s2,n, w̄ ·σ, | x̄ |) :

∃ s′2 : s2
∅−−→ s′2 and s′1 · σRN (s′2 | n!v̄) or s′1 · σRN (s′2 | {|n!v̄ |})

2 if α = n ∅ ` v̄ where ` =| v̄ | then one of the following holds:

(a) ∃ s′2 : s2
n ∅ ` v̄−−−−−→ s′2 and s′1RN s′2 (b) ∃ s′2 : s2

∅−−→ s′2 and s′1RN s′2
3 if α = n� [n̄] v̄ where n /∈ N then ∃ s′2 : s2

n�[n̄] v̄−−−−−→ s′2 and s′1RN∪ n̄ s′2
4 if α = ∅, α = † or α = n ∅ ` v̄ , where ` 6=| v̄ |, then ∃ s′2 : s2

α−−→ s′2 and s′1RN s′2

Two closed terms s1 and s2 are N -bisimilar, written s1 ∼N s2, if s1RN s2 for some RN
in a labelled bisimulation. They are labelled bisimilar, written s1 ∼ s2, if they are
∅-bisimilar. ∼N is called N -bisimilarity, while ∼ is called labelled bisimilarity
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Observational semantics at work: bank service
We can compare the high-level specification

bank

bank servicebank service

“ok”/ “fail”

charge

respxc

xc,xcc,
xamount * ∗ [xc, xcc, xamount]

bank • charge?〈xc, xcc, xamount〉.
xc • resp!〈chk(xcc , xamount )〉
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Observational semantics at work: bank service
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Examples: observation of receive actions

Asynchronous π-calculus: the input absorption law

τ + a(b). āb ∼ τ

COWS without priority: the receive absorption law

[x ] ( ∅+ p • o?〈x , v〉.p • o!〈x , v〉 ) ∼ ∅

where ∅ , [p′,o′] (p′ • o′!〈〉 | p′ • o′?〈〉)

COWS: the receive absorption law

[x ] ( ∅+ p • o?〈x , v〉.p • o!〈x , v〉 ) 6∼ ∅

since C , [y , z] p • o?〈y , z〉.p′′ • o′′!〈〉 | p • o!〈v ′, v〉 | [[·]] can distinguish them

However
[x , y ] ( ∅+ p • o?〈x , y〉.p • o!〈x , y〉 ) ∼ ∅
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Analysis techniques: a type system
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A type system for confidentiality properties

Type systems could be a scalable way to provide evidence that a
large number of SOC applications enjoy some given properties

Confidentiality properties
Critical data (e.g. credit card information) are shared only by
authorized partners

Our type system permits
I expressing and forcing policies regulating the exchange of data

among interacting services
I ensuring that, in that respect, services do not manifest unexpected

behaviours
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Syntax of typed COWS
s ::= (services)

kill(k) (kill)
| u • u′!〈{ε1}r1 , . . . , {εn}rn〉 (invoke)
|
∑r

i=0 pi • oi ?w̄i .si (choice)
| s | s (parallel)
| {|s|} (protection)
| [e] s (delimitation)
| ∗ s (replication)

(notations)
k : (killer) labels
ε: expressions

x : variables
v : values

n,p,o: names
u: vars |names
w : vars | values
e: labels | vars |names

Programmers can settle the partners usable to exchange any given datum,
thus avoiding the datum be accessed by unwanted services

Data are annotated with regions: u • u′!〈{ε1}r1 , . . . , {εn}rn〉

Regions r1. . . rn specify the policies regulating the exchange of the data
resulting from evaluation of ε1. . . εn

A region r can be either a finite subset of partners and variables or the
distinct element > (denoting the universe of partners)
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Static and dynamic semantics

Static semantics
A static type system infers region annotations for variable declarations
and returns well-typed terms

Dynamic semantics
The operational semantics exploits region annotations to authorize or
block the exchange of data

Analysis techniques A type system for checking confidentiality properties 15



Static semantic

The static type inference system has two main tasks
I performs some coherence checks

e.g. the partner used by an invoke must belong to the regions of all
data occurring in the argument of the activity

I derives the minimal region annotations for variable declarations that
ensure consistency of services initial configuration

F [{x}r ] s means that the datum that dynamically will replace x will be
used at most by the partners in r

Typing judgements are written Γ ` s � Γ′ ` s′, where the type
environment Γ is a finite function from variables to regions

s is well-typed if ∅ ` s′ � ∅ ` s , for some s′

i.e. s is the (typed) service obtained by decorating s′ with the
regions describing the use of each variable of s′ in its scope

Analysis techniques A type system for checking confidentiality properties 16
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used at most by the partners in r

Typing judgements are written Γ ` s � Γ′ ` s′, where the type
environment Γ is a finite function from variables to regions

s is well-typed if ∅ ` s′ � ∅ ` s , for some s′

i.e. s is the (typed) service obtained by decorating s′ with the
regions describing the use of each variable of s′ in its scope
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Static semantics : significant typing rules
Rule for (monadic) invoke activity:

u ∈ r

Γ ` u • u′!{e(ȳ)}r � (Γ + {x : r}x∈ȳ ) ` u • u′!{e(ȳ)}r

I it checks if the invoked partner u belongs to the region of the datum
I if it succeeds, the type environment Γ is extended by associating a

proper region to each variable used in the argument expression e

Rule for variable delimitation:

Γ ] {x : ∅} ` s � Γ′ ] {x : r} ` s′ x /∈ reg(Γ′)

Γ ` [x ] s � Γ′ ` [{x}r−{x}] s′

I it annotates the delimitation with the region associated to it by the
type environment

I premiss x /∈ reg(Γ′) and annotation r − {x} prevent initially closed
services to become open at the end of the inference
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Γ ` u • u′!{e(ȳ)}r � (Γ + {x : r}x∈ȳ ) ` u • u′!{e(ȳ)}r
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Static semantics : the other rules

Γ ` 0 � Γ ` 0 Γ ` kill(k) � Γ ` kill(k)

Γ + {x : {p}}x∈var(w̄) ` s � Γ′ ` s′

Γ ` p • o?w̄ .s � Γ′ ` p • o?w̄ .s′

Γ ` g1 � Γ1 ` g′1 Γ ` g2 � Γ2 ` g′2

Γ ` g1 + g2 � Γ1 + Γ2 ` g′1 + g′2

Γ ` s1 � Γ1 ` s′1 Γ ` s2 � Γ2 ` s′2

Γ ` s1 | s2 � Γ1 + Γ2 ` s′1 | s′2
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Static semantics : the other rules

Γ ` s � Γ′ ` s′ n /∈ reg(Γ′)

Γ ` [n] s � Γ′ ` [n] s′

Γ ` s � Γ′ ` s′

Γ ` [k ] s � Γ′ ` [k ] s′

Γ ` s � Γ′ ` s′

Γ ` {|s|} � Γ′ ` {|s′|}

Γ ` s � Γ′ ` s′

Γ ` ∗ s � Γ′ ` ∗ s′
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Dynamic semantics

The language operational semantics only performs efficiently
implementable checks to authorize or block communication

I types are just sets of (partner) names

I the region annotation (policy) of output data must contain the region
annotation of the corresponding input variables

The most significant modified rule:

s
nσ]{x 7→{v}r} ` v̄−−−−−−−−−−−−→ s′ r ′ · σ ⊆ r

[{x}r ′ ] s
nσ ` v̄−−−−−→ s′ ·{x 7→ {v}r}
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Results

Major results
Subject reduction & type safety results imply that services always
comply with the constraints (expressed by the type) of each datum

Subject reduction states that well-typedness is preserved along
computations

Type safety states that well-typed services do respect region
annotations
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Results

Major results
Subject reduction & type safety results imply that services always
comply with the constraints (expressed by the type) of each datum

Soundness
A service s is sound if, for any datum v occurring in s associated to
region r and for all possible evolutions of s, it holds that v can only be
exchanged using partners in r
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The bank service with security policies

client 
service

c,1234,
100€

charge

respc x

bank

...

client ,
bank • charge!〈c,1234,100AC〉
| [x] ( c • resp?〈x〉.s | s′ )

Client policy : only bank is authorized
to access credit card data
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The type system infers the region annotations for the bank service, e.g. . . .

bank

bankInterfacebankInterface

check

ok
failbank

bankcheck

ok
fail

check,ok,failbank service

charge

“ok”/ “fail” respxc

* * creditRatingxc,xcc,
xamount

bankInterface ,
[xc, xcc, xamount]
bank • charge?〈xc, xcc, xamount〉.
( bank • check!〈xcc, xamount〉
| bank • ok?〈xcc〉. xc • resp!〈“ok”〉

+ bank • fail?〈xcc〉. xc • resp!〈“fail”〉 )
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charge
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* * creditRatingxc,xcc,
xamount
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The bank service with security policies

Tclient , bank • charge!〈c, {1234}{bank},100AC〉
| [x] ( c • resp?〈x〉.s | s′ )

Client policy: only bank is authorized to access credit card data

TbankInterface , [{xc}{bank}, {xcc}{bank}, {xamount}{bank}]
bank • charge?〈xc, xcc, xamount〉.
( bank • check!〈xcc, xamount〉
| bank • ok?〈xcc〉. xc • resp!〈“ok”〉

+ bank • fail?〈xcc〉. xc • resp!〈“fail”〉 )

By using the statically inferred annotations, . . .
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The bank service with security policies

Tclient , bank • charge!〈c, {1234}{bank},100AC〉
| [x] ( c • resp?〈x〉.s | s′ )

Client policy: only bank is authorized to access credit card data

TbankInterface , [{xc}{bank}, {xcc}{bank}, {xamount}{bank}]
bank • charge?〈xc, xcc, xamount〉.
( bank • check!〈xcc, xamount〉
| bank • ok?〈xcc〉. xc • resp!〈“ok”〉

+ bank • fail?〈xcc〉. xc • resp!〈“fail”〉 )

By using the statically inferred annotations, the operational semantics
guarantees that the content of xcc cannot become available to other services

Tclient | [check,ok, fail] ( ∗TbankInterface | ∗ creditRating ) −−→ . . .

Indeed, region({xcc}{bank}) ⊆ region({1234}{bank})
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A malicious bank service

Tclient , bank • charge!〈c, {1234}{bank},100AC〉
| [x] ( c • resp?〈x〉.s | s′ )

Client policy: only bank is authorized to access credit card data

spyBankInterface , [xc, xcc, xamount]
bank • charge?〈xc, xcc, xamount〉.
( spy • check!〈xcc, xamount〉
| bank • ok?〈xcc〉. xc • resp!〈“ok”〉

+ bank • fail?〈xcc〉. xc • resp!〈“fail”〉 )

Analysis techniques A type system for checking confidentiality properties 24



A malicious bank service

Tclient , bank • charge!〈c, {1234}{bank},100AC〉
| [x] ( c • resp?〈x〉.s | s′ )

Client policy: only bank is authorized to access credit card data

TspyBankInterface , [{xc}{bank}, {xcc}{bank, spy}, {xamount}{bank, spy}]
bank • charge?〈xc, xcc, xamount〉.
( spy • check!〈xcc, xamount〉
| bank • ok?〈xcc〉. xc • resp!〈“ok”〉

+ bank • fail?〈xcc〉. xc • resp!〈“fail”〉 )

From the statically inferred annotations, . . .
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Tclient , bank • charge!〈c, {1234}{bank},100AC〉
| [x] ( c • resp?〈x〉.s | s′ )

Client policy: only bank is authorized to access credit card data

TspyBankInterface , [{xc}{bank}, {xcc}{bank, spy}, {xamount}{bank, spy}]
bank • charge?〈xc, xcc, xamount〉.
( spy • check!〈xcc, xamount〉
| bank • ok?〈xcc〉. xc • resp!〈“ok”〉

+ bank • fail?〈xcc〉. xc • resp!〈“fail”〉 )

From the statically inferred annotations, we can see that the contents of xcc
and xamount can become available to spy!
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A malicious bank service

Tclient , bank • charge!〈c, {1234}{bank},100AC〉
| [x] ( c • resp?〈x〉.s | s′ )

Client policy: only bank is authorized to access credit card data

TspyBankInterface , [{xc}{bank}, {xcc}{bank, spy}, {xamount}{bank, spy}]
bank • charge?〈xc, xcc, xamount〉.
( spy • check!〈xcc, xamount〉
| bank • ok?〈xcc〉. xc • resp!〈“ok”〉

+ bank • fail?〈xcc〉. xc • resp!〈“fail”〉 )

From the statically inferred annotations, we can see that the contents of xcc
and xamount can become available to spy!

The operational semantics does block the transition

Tclient | [check,ok, fail] ( ∗TspyBankInterface | ∗ creditRating ) 6−−→

Indeed, region({xcc}{bank, spy}) 6⊆ region({1234}{bank})
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The bank service: a bank policy

TclientKey , bank • charge!〈c, {1234}{bank},100AC〉
| [x, ykey] ( c • resp?〈x, ykey〉.s | s′ )

The client can also receive a personal secret key to be used for
successive operations
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The bank service: a bank policy

TclientKey , bank • charge!〈c, {1234}{bank},100AC〉
| [x, ykey] ( c • resp?〈x, ykey〉.s | s′ )

The client can also receive a personal secret key to be used for
successive operations

bankKeyInterface , [xc, xcc, xamount]
bank • charge?〈xc, xcc, xamount〉.
( bank • check!〈xcc, xamount〉
| bank •ok?〈xcc〉. xc • resp!〈“ok”, {key}{xc,bank}〉

+ bank • fail?〈xcc〉. xc • resp!〈“fail”, null〉 )

Policy: the bank service wants to guarantees that the key sent to
the client is not disclosed to third parties
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The bank service: a bank policy

TclientKey , bank • charge!〈c, {1234}{bank},100AC〉
| [x, ykey] ( c • resp?〈x, ykey〉.s | s′ )

The client can also receive a personal secret key to be used for
successive operations

bankKeyInterface , [xc, xcc, xamount]
bank • charge?〈xc, xcc, xamount〉.
( bank • check!〈xcc, xamount〉
| bank •ok?〈xcc〉. xc • resp!〈“ok”, {key}{xc,bank}〉

+ bank • fail?〈xcc〉. xc • resp!〈“fail”, null〉 )

Policy: the bank service wants to guarantees that the key sent to
the client is not disclosed to third parties

The policy is not fixed at design time, but depends on the value of xc
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Analysis techniques: a logical framework
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Logics and Model checking

Process calculi provide behavioral specifications of services

Logics have been long since proved able to reason about such
complex systems as SOC applications

I provide abstract specifications of these complex systems

I can be used for describing system properties rather than system
behaviors

Logics and model checkers can be used as tools for verifying that
services enjoy desirable properties and do not manifest
unexpected behaviors
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A logical verification methodology

Informal or semi-formal specification
(e.g. UML4SOA, SRML, … )

COWS model

SocL formulae CMC

Verification
results

requirements 
formalisation

formal 
specification

Model
Checking
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Requirements formalisation
To formally express service properties we exploit

SocL
an action- and state-based, branching time, temporal logic expressly
designed to formalise in a convenient way distinctive aspects of services

action- and state-based logic
⇓

Doubly Labelled Transition Systems (L2TS) as interpretation domain
⇓

Abstract notion of services
services are thought of as sw entities which may have an internal
state and can interact with each other
services are characterised by actions and atomic propositions of
the form type/name(interaction, corrTuple)
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SocL actions
Actions (a ∈ Act)
have the form t(i , c)

t : type of the action (e.g. request , response, fail , . . . )

i : name of the interaction which the action is part of (e.g. charge)

c: tuple of correlation values and variables identifying the interaction;
var denotes a binding occurrence of the correlation variable var

Examples
request(charge,1234,1): action starting an (instance of the) interaction
charge which will be identified through the correlation tuple 〈1234,1〉
a corresponding response action can be response(charge,1234,1)

request(charge,1234, id): request action where the second correlation
value is unknown; a (binder for a) correlation variable id is used instead
a corresponding response action can be response(charge,1234, id);
the (free) occurrence of the correlation variable id indicates the
connection with the action where the variable is bound
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SocL atomic propositions

Atomic propositions (π ∈ AP)
have the form p(i , c)

p: name of the proposition (accepting_request , accepting_cancel , . . . )

i : name of the interaction (e.g. charge)

c: tuple of correlation values and free variables

Examples
accepting_request(charge): proposition indicating that a state can
accept requests for the interaction charge (regardless of the correlation
data)
accepting_cancel(charge,1234,1): a state permits to cancel those
requests for interaction charge identified by the correlation tuple
〈1234,1〉
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SocL syntax

State formulae syntax

φ ::= true | π | ¬φ | φ ∧ φ′ | EΨ | AΨ

Path formulae syntax

Ψ ::= Xγφ | φ χUγ φ
′ | φ χW γ φ

′

Action formulae syntax

γ ::= a | χ χ ::= tt | a | τ | ¬χ | χ ∧ χ
a indicates that the action may contain variables binders

Some derived modalities
< γ > φ stands for EXγ φ [γ]φ stands for ¬ < γ > ¬φ
E(φ χU φ′) stands for φ′ ∨ E(φχUχ∨τ φ′) EFφ stands for E(true tt Uφ)
AFγ true stands for A(true tt Uγ true) AG φ stands for ¬EF ¬φ
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E and A are existential and universal (resp.) path quantifiers
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a indicates that the action may contain variables binders

Some derived modalities
< γ > φ stands for EXγ φ [γ]φ stands for ¬ < γ > ¬φ
E(φ χU φ′) stands for φ′ ∨ E(φχUχ∨τ φ′) EFφ stands for E(true tt Uφ)
AFγ true stands for A(true tt Uγ true) AG φ stands for ¬EF ¬φ

X , U and W are the next, (strong) until and weak until operators
Xγφ says that in the next state of the path, reached by an action
satisfying γ, the formula φ holds

φ χUγ φ′ says that φ′ holds at some future state of the path reached by a
last action satisfying γ, while φ holds from the current state until that
state is reached and all the actions executed in the meanwhile along the
path satisfy χ

φ χWγ φ
′ holds on a path either if the corresponding strong until operator

holds or if for all the states of the path the formula φ holds and all the
actions of the path satisfy χ
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SocL syntax

State formulae syntax

φ ::= true | π | ¬φ | φ ∧ φ′ | EΨ | AΨ

Path formulae syntax

Ψ ::= Xγφ | φ χUγ φ
′ | φ χW γ φ

′

Action formulae syntax

γ ::= a | χ χ ::= tt | a | τ | ¬χ | χ ∧ χ
a indicates that the action may contain variables binders

Some derived modalities
< γ > φ stands for EXγ φ [γ]φ stands for ¬ < γ > ¬φ
E(φ χU φ′) stands for φ′ ∨ E(φχUχ∨τ φ′) EFφ stands for E(true tt Uφ)
AFγ true stands for A(true tt Uγ true) AG φ stands for ¬EF ¬φ

<γ>φ states that it is possible to perform an action satisfying γ and
thereby reaching a state that satisfies formula φ

[γ]φ states that no matter how a process performs an action satisfying
γ, the state it reaches in doing so will necessarily satisfy the formula φ

EFφ means that there is some path that leads to a state at which φ
holds; that is, φ eventually holds on some path

AFγ φ means that an action satisfying γ will be performed in the future
along every path and at the reached states φ holds; if φ is true, we say
that an action satisfying γ will always eventually be performed

AG φ states that φ holds at every state on every path; that is, φ holds
globally
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SocL description of abstract properties

Availability
the service is always capable to accept a request

AG(accepting_ request(i))

Reliability
the service guarantees a successful response to each received request

AG[request(i , v)]AFresponse(i,v) true

Responsiveness
the service guarantees a response to each received request

AG[request(i , v)] AFresponse(i,v)∨fail(i,v) true

. . .
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SocL semantics: action formulae semantics

α |= γ � ρ means: the formula γ is satisfied over the set of closed
actions α under substitution ρ

α |= a � ρ iff ∃b ∈ α such that match(a,b) = ρ

α |= χ� ∅ iff α |= χ

where the relation α |= χ is defined as follows

I α |= tt holds always
I α |= a iff a ∈ α
I α |= τ iff α = ∅
I α |= ¬χ iff not α |= χ
I α |= χ ∧ χ′ iff α |= χ and α |= χ′
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SocL semantics

Let 〈Q,q0,Act ,R,AP,L〉 be an L2TS, q ∈ Q and σ ∈ path(q)

The satisfaction relation of closed SocL formulae, i.e. formulae
without unbound variables, is defined as follows

q |= true holds always
q |= π iff π ∈ L(q)

q |= ¬φ iff not q |= φ

q |= φ ∧ φ′ iff q |= φ and q |= φ′

q |= EΨ iff ∃σ ∈ path(q) : σ |= Ψ

q |= AΨ iff ∀σ ∈ path(q) : σ |= Ψ

σ |= Xγφ iff ∃ ρ : σ{1} |= γ � ρ and σ(2) |= φ ρ

. . .
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SocL semantics

Let 〈Q,q0,Act ,R,AP,L〉 be an L2TS, q ∈ Q and σ ∈ path(q)

The satisfaction relation of closed SocL formulae, i.e. formulae
without unbound variables, is defined as follows

. . .
σ |= φ χUγφ

′ iff ∃ j ≥ 1
σ(j) |= φ, and ∃ ρ : σ{j} |= γ � ρ and σ(j + 1) |= φ′ρ,
and ∀1 ≤ i < j : σ(i) |= φ and σ{i} |= χ

σ |= φ χWγφ
′ iff either σ |= φ χUγφ

′ or ∀ i ≥ 1 : σ(i) |= φ
and σ{i} |= χ
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A novel verification methodology of service properties
1 Properties are initially formalized as SocL formulae,

while preserving their independence from individual service
domains and specifications

2 Services behaviour are specified as COWS terms
3 Formulae are tailored to a given specification of a service

by means of some abstraction rules that relate actions in the
specification with actions of the logic

4 The verification process takes place

Concrete
COWS model

Abstract
SocL formulae

CMC
model checker

Verification
results
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1 Properties are initially formalized as SocL formulae,

while preserving their independence from individual service
domains and specifications

2 Services behaviour are specified as COWS terms
3 Formulae are tailored to a given specification of a service

by means of some abstraction rules that relate actions in the
specification with actions of the logic

4 The verification process takes place

We resort to a linguistic formalism rather than directly using L2TSs because

L2TSs are too low level

L2TSs suffer for lack of compositionality,
i.e. they offer no means for constructing the L2TS of a composed service
in terms of the L2TSs of its components

linguistic terms are more intuitive and concise notations

using linguistic terms, services are built in a compositional way

linguistic terms are syntactically finite, even when the corresponding
semantic model (i.e. L2TSs) is not
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1 Properties are initially formalized as SocL formulae,

while preserving their independence from individual service
domains and specifications

2 Services behaviour are specified as COWS terms
3 Formulae are tailored to a given specification of a service

by means of some abstraction rules that relate actions in the
specification with actions of the logic

4 The verification process takes place

Concrete
COWS model

Abstract
SocL formulae

CMC
model checker

Verification
results

Abstract
COWS model

Abstraction
Abstraction

rules

Automatically 
performed by CMC

e.g.
Action: creditRequest<$1> → request(cr,$1)
Action: offer<$1,*,*> → response(cr,$1)
  …
 State: login → accepting_request(login)
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The model checker CMC
To assist the verification process of SocL formulae over L2TS

CMC is an efficient on-the-fly model checker

The basic idea behind CMC is that, given a state of an L2TS, the
validity of a SocL formula on that state can be established by:

I checking the satisfiability of the state predicates
I analyzing the transitions allowed in that state
I establishing the validity of some subformula in some/all of the next

reachable states

If a SocL formula is not satisfied, a counterexample is exhibited

CMC can be used to verify properties of services specified in COWS

CMC can be downloaded or experimented via its web interface at
http://fmt.isti.cnr.it/cmc
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Model checking the bank service

bank

bankInterfacebankInterface

check

ok
fail

bank

bankcheck

ok
fail

check,ok,failbank servicebank service

charge

xid,
“ok”/ “fail”

respxc

xc,xcc,
xamount,xid

* * creditRatingcreditRating
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Model checking the bank service
The instantiation of the generic patterns of formulae over the bank service is
obtained by just replacing any occurrence of i with charge

The bank service is always available
AG (accepting_ request(charge))

In every state the service may accept a request for the interaction charge

The bank service is responsive
AG [request(charge, v)] AFresponse(charge,v)∨fail(charge,v) true

The response and the failure notification belong to the same interaction
charge as the accepted request and they are correlated by the variable v

The bank service is reliable
AG [request(charge, v)] AFresponse(charge,v) true

The service guarantees a successful response to each received request
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Model checking the bank service

bank

bankInterfacebankInterface

check

ok
fail

bank

bankcheck

ok
fail

check,ok,failbank servicebank service

charge

xid,
“ok”/ “fail”

respxc

xc,xcc,
xamount,xid

* * creditRatingcreditRating

Abstraction rules
Action charge<*,*,*,$id> → request(charge,$id)
Action resp<$id,“ok”> → response(charge,$id)
Action resp<$id,“fail”> → fail(charge,$id)
State charge → accepting_request(charge)

Analysis techniques A logical verification methodology 40



Tool demonstration . . .
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Model checking: a calculus-based approach

We have seen a calculus-based methodology for model checking
COWS specifications

People in charge of verifying systems are required to understand and deal
with calculi and logics.
This may not be the case, especially within , where people are usually familiar
with higher-level UML-based modelling languages
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UML4SOA

The most widely used language for modelling sw systems is UML

UML4SOA is a UML 2.0 profile, inspired by WS-BPEL,
that has been expressly designed for modeling service-oriented
applications

UML4SOA activity diagrams express the behavioral aspects of
services

I integrate UML with specialized actions for exchanging messages,
specialized structured activity nodes and activity edges for
representing scopes with event, fault and compensation handlers

Since UML4SOA specifications are static models, they are not
suitable for direct automated analysis
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UML4SOA: diagram example
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How to reconcile
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How to reconcile
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Our proposal
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Our proposal

Venus: a Verification ENvironment for UML models of Services
A software environment for verifying behavioural properties of UML
models of services by exploiting process calculi and temporal logics

UML models of services: UMLSOA activity diagrams
Venus shepherds the (non-expert) users to set the behavioural
service properties they want to verify
It is a proof-of-concept implementation
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Bank scenario: bank service
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Bank scenario: credit rating service
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Bank scenario: client service
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Venus demo 1/16
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Venus demo 2/16
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Venus demo 3/16
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Venus demo 4/16
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Venus demo 5/16
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Venus demo 6/16
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Venus demo 7/16
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Venus demo 8/16
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Venus demo 9/16
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Venus demo 10/16
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Venus demo 11/16
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Venus demo 12/16
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Venus demo 13/16
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Venus demo 14/16
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Venus demo 15/16
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Venus demo 16/16
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Venus architecture
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Venus architecture
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From UML4SOA to COWS

creditRequest •initialize?〈xportal ,xid ,xname,xpwd〉

xportal •initialize!〈creditRequest , xid , xuserOk 〉

∗e?〈true〉.
[n1, . . . ,nn] (n1!〈g1〉 | . . . | nn!〈gn〉

| n1?〈true〉.e1!〈true〉 + . . . + nn?〈true〉.en!〈true〉 )

∗ (e1?〈true〉.e!〈g〉 + . . .+ en?〈true〉.e!〈g〉 )

∗e?〈true〉. (e1!〈g1〉 | . . . | en!〈gn〉 )

∗e1?〈true〉. . . . .en?〈true〉.e!〈g〉

Analysis techniques A logical verification methodology 68



From UML4SOA to COWS

[r, stack ]
( [k ] (GRAPH ; {|c • main?〈〉.GRAPHc |}

| {|Stack |} | ∗GRAPHev )
| r?〈〉. {|GRAPHe |} )

c • main!〈〉 kill(k) | {|r!〈〉|}

stack • compAll!〈〉

Our COWS implementation of UML4SOA constructs follows a
compositional approach
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Concluding remarks
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Conclusions

COWS permits modelling different and typical aspects of
services and Web services technologies

I multiple start activities, receive conflicts, routing of correlated
messages, service instances and interactions among them

COWS can express the most common workflow patterns and
can encode many other process and orchestration languages

COWS, with some mild linguistic additions, can model all the
relevant phases of the life cycle of service-oriented applications

I publication, discovery, negotiation, deployment, orchestration,
reconfiguration and execution
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Conclusions
The observational semantics permits to check interchangeability
of services and conformance against service specifications

The type system permits specifying and forcing policies for
constraining the services that can safely access any given datum

I Types are just sets and operations on types are union, intersection,
subset inclusion, . . .

I The runtime semantics only involves efficiently implementable
operations on sets

The logical verification framework for checking functional
properties of SOC applications has many advantages

I It can be easily tailored to other service-oriented specification
languages

I SocL’s parametric formulae permit expressing properties about
many kinds of interaction patterns, e.g. one-way, request-response,
one request-multiple responses, . . .
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