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MOTIVATION

▸ Ordinary differential equations as a universal mathematical modelling 
language 

▸ System complexity leads to large-scale models (~ one equation per node) 

▸ Reduction/abstraction needed to gain physical intelligibility and reduce 
analysis cost
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Fig. 6. Graphical representation, using ref. 36, of the Boolean model for
T-cell receptor signaling studied in refs. 37 and 38. Each node is a Boolean
variable, whereas a directed arc describes an influence represented by the
source variable appearing in the update function of the target variable. The
network has three inputs (nodes with no incoming arcs): CD8, CD45, and
the T-cell receptor TCRlig. Similar to ref. 38, we consider two variants with
and without the feedback loops Fyn ! PAGCsk and ZAP70 ! cCbl (dashed
arrows). Using the technique of ref. 38, we obtained a multivariate polyno-
mial ODE system of degree five. On this, we fixed an initial partition where
the input variables are singletons, ensuring that the largest backward equiv-
alence that refines this partition reveals nodes with equivalent dynamics for
any input. Nontrivial backward equivalence classes are represented with col-
ored nodes with the same background. The class {cCbl, LAT} is found only
when the feedback loops are active. In this case, they are simultaneously
subjected to the same influence by ZAP70. Indeed, backward equivalence
turns out to aggregate the ODEs of nodes with update functions that are
equal up to a renaming of nodes in the same equivalence class.

Here we consider the multivariate polynomial interpolation of
ref. 38. On a model of T-cell receptor signaling studied in refs.
37 and 38, backward equivalence reveals processes that exhibit
the same behavior because they are updated by functions that
are equal up to variables in the same equivalence class (Fig. 6,
and SI Appendix, Figs. S1 and S2 for further examples). From
the reduced model, we can exactly recover the original solu-
tion in terms of continuous signals in the [0, 1] interval. Instead,
forward equivalence leads to variables living in larger domains.
On this example, the maximal forward equivalence reduces the
ODE model, such that it is still possible to analyze full activa-
tion/deactivation of the downstream transcription factors CRE,
AP1, NFAT, and NFkB, which belong to the same equivalence
class (SI Appendix, Figs. S3 and S4).

Evolutionary Game Theory. The replicator equation is a well-
studied model for several natural, social, and economic systems
(42). It describes the dynamics of populations of individuals that
choose strategies with a rate of growth that depends on the com-
parison between an individual’s own payoff and the population’s
average. In its first formulation (43), the replicator equation con-
siders a state represented by the vector x = (x1, . . . , xn), where
xi denotes the probability of an individual choosing the i th strat-
egy, with 1  i  n . Its evolution is governed by the polynomial
ODE system

ẋi = xi

�
(Bx )

i
� x

T
Bx

�
, 1  i  n, [8]

where B is the n ⇥ n payoff matrix, together with an initial con-
dition, such that it represents an initial proportion of strategies
[i.e.,

P
n

i=1 xi(0) = 1]. Here, backward equivalence may detect
strategies chosen with the same frequency within the population.
For instance, given the following payoff matrix

B =

2

4
1 3 2
3 1 2
4 4 1

3

5,

backward equivalence relates x1 and x2.
Similar investigations can be made on variants of the replica-

tor equations that model evolutionary dynamics over networks
(44). Here, a vertex represents a player that can interact with its
neighbors only. In this context, the problem of network aggre-
gation has also been studied using graph lumpability, a criterion
that involves conditions on the (weighted) adjacency matrix of
the network as well as on the players’ payoff matrices (45). It is
related to backward equivalence in that it captures an equiva-
lence relation between players/vertices, such that any two equiv-
alent players choose any strategy with the same frequency at all
time points. Graph lumpability turns out to be a sufficient con-
dition for backward aggregation. For instance, let us consider a
network with four players playing two strategies characterized
by adjacency matrix A = (aij )1i,j4 and payoff matrices Bi ,
1  i  4 given by

A =

2
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Then, players 1 and 2 as well as players 3 and 4 have the
same ODE solutions, but this is not captured by an equiva-
lence relation in the sense of graph lumpability, since it requiresP

k2P
aik =

P
k2P

ajk for any two equivalent players i ,j and for
any equivalence class P of players. Clearly, this condition is not
satisfied by taking i = 1, j = 2, and P = {3, 4}.

Conclusion

We presented a technique to reduce polynomial ODE systems up
to an equivalence relation over its variables. Our method exactly
preserves observables of interest across the whole time course.
Hence, the reduced model can be used as an input to comple-
mentary techniques that sacrifice exactness, such as timescale
decomposition (46).

In the notable case where the model is a formal chemical RN,
the reduction preserves structure, in that the original reactions
are only subjected to renaming and merging. For other domain-
specific applications, such as rule-based systems, Boolean net-
works, payoff matrices, and so on, one would seek to directly
obtain reduced models of the corresponding nature induced by
a backward/forward equivalence. Technically, this does not seem
to be straightforward. For example, in the case of Boolean net-
works, forward equivalence yields a reduced ODE system where
each aggregated variable will take values in the continuous inter-
val [0,n], where n is the cardinality of the corresponding equiv-
alence class. Thus, in general, there is no Boolean network,
such that its polynomial ODE interpolation corresponds to an
aggregated ODE system up to forward equivalence because by
construction, each interpolated ODE variable takes values in
the interval [0, 1]. In this paper, we have privileged a domain-
agnostic view. We aim to address domain-specific challenges in
future work.
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Fig. 2: Mesh networks adapted from [26].

Model Num. ABI

N |S| |H| Time (s)

4 106 56 2.48E–1
5 157 82 3.06E–1
6 218 113 3.51E–1
7 289 149 6.41E–1
8 370 190 1.05E+0
9 461 236 1.70E+0
10 561 287 4.26E+0

Table 4: Numerical results for meshes.

Model Num. ABI

Name Ref. |S| |H| Time (s)

bips98 606 [13] 7 135 5 656 5.29E+3
bips98 1142 [13] 9 735 7 225 1.08E+4
bips98 1450 [13] 11 305 8 115 1.73E+4
nopss 11k [23] 11 685 8 015 1.95E+4
mimo46x46 system [19] 13 250 9 132 5.35E+4
bips07 1693 [13] 13 275 9 073 7.59E+4
mimo8x8 system [22] 13 309 9 070 5.14E+4

Table 5: Further circuit benchmarks: numerical results.

domain on which the DAE is defined. This lead to a different notion of equivalence,
which we called algebraic backward invariance (ABI), which is based on a novel charac-
terization in terms of invariant spaces. Numerical ABI, developed to help tackle the high
computational cost of ABI, has been successfully applied to a number of benchmark
models of electrical circuits. This shows that the requirement about having exact solu-
tions is sometimes not stringent in practice. Developing more permissive, approximate
notions is part of future work, as is an extension to forward-type equivalences that
preserves sums of solutions within each equivalence class.
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POLYNOMIAL ODES
▸ Polynomial ODEs are the class of ODEs where the derivatives 

are multivariate polynomials (over the system’s variables) 

▸ They can also encode many nonlinearities (trigonometric, 
rational, exponential functions) 

▸ For applications in biochemistry, polynomial ODEs may 
encode other kinetics such as Hill, Michaelis-Menten, 
sigmoids, etc. 
 
 
 
 

ẋ = 1

ẏ = sin(x)

z := sin(x), w := cos(x)

ẋ = 1

ẏ = z

ż = w

ẇ = �z
• Liu J, et. al. (2015) Abstraction of elementary hybrid systems by variable transformation. In International Symposium 

on Formal Methods (FM).
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ANALYZING DIFFERENTIAL EQUATIONS

dx1

dt
= f1(x1, …, xn)

dx2

dt
= f2(x1, …, xn)

⋯

dxn

dt
= fn(x1, …, xn)

ODE SYSTEM NUMERICAL SOLUTION

‣ Approximate with finite differences 
 
 

‣ Solve ODE iteratively (Euler’s method)

dxi

dt
≈

xi(t + Δt) − xi(t)
Δt

xi(t + Δt) = xi(t) + Δt ⋅ fi (x1(t), …, xn(t))

Problem: numerical analysis affected by the number of variables as 
well as the complexity of the derivatives 
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SOLUTION: MODEL REDUCTION

dx1

dt
= f1(x1, …, xn)

dx2

dt
= f2(x1, …, xn)

⋯

dxn

dt
= fn(x1, …, xn)

ORIGINAL SYSTEM REDUCED SYSTEM

dY1

dt
= F1(Y1, …, Ym)

⋯

dYm

dt
= Fm(Y1, …, Ym)

‣ Exact 

‣Observable 
preserving 

‣Automatic

m ≪ n
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LUMPING DIFFERENTIAL EQUATIONS
▸ Partition of variables such that each block can be 

associated with a single equation [Okino and 
Mavrovouniotis, 1998] 

▸ The lumped ODE preserves the original dynamics:  

▸ Forward lumping preserves sums of the solutions of the 
variables in each block 

▸ Backward lumping identifies variables with the same 
solution in each block 

▸ ODE lumping is complementary to other techniques such 
as those for fast-slow decomposition (QE/QSSA) 
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FORWARD LUMPING AT A GLANCE

·x1 = − x1 + x2 − 3x1x3 + 4x4
·x2 = + x1 − x2 − 3x2x3 + 4x5
·x3 = − 3x1x3 + 4x4 − 3x2x3 + 4x5
·x4 = 3x1x3 − 4x4
·x5 = 3x2x3 − 4x5

ORIGINAL SYSTEM

·Y1 = − 3Y1Y2 + 4Y3
·Y2 = − 3Y1Y2 + 4Y3
·Y3 = + 3Y1Y2 − 4Y3

REDUCED SYSTEM

Y1 = x1 + x2
Y2 = x3
Y3 = x4 + x5

0 0.2 0.4 0.6 0.8 1
Time

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

x(
t)

x1
x2
x3
x4
x5
x1+x2
x4+x5

0 0.2 0.4 0.6 0.8 1
Time

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

y(
t)

y1
y2
y3

�7



BACKWARD LUMPING �8

REDUCED SYSTEMORIGINAL SYSTEM
·Y1 = − 3Y2

1 + 4Y2
·Y2 = + 3Y2

1 − 4Y2

·x1 = − 3x1x2 + 4x3
·x2 = − 3x1x2 + 4x3
·x3 = + 3x1x2 − 4x3

Y1 = x1 = x2
Y2 = x3

x1(0) = x2(0)

▸ Identifies variables that have equal solution when starting 
with equal initial conditions 

FORWARD AND BACKWARD LUMPING ARE NOT COMPARABLE

·x1 = − x2 + 1
·x2 = − x1

Forward does not  
imply backward

·x1 = − x1x2
·x2 = − x1x2

Backward does not  
imply forward



A PARALLEL WITH MARKOV CHAIN LUMPING

1

2 3

k1 k2

STRUCTURE

⇡̇1 = �(k1 + k2)⇡1

⇡̇2 = k1⇡1

⇡̇3 = k2⇡1

DYNAMICS

⇧̇1 = �(k1 + k2)⇧1

⇧̇2 = (k1 + k2)⇧1

LUMPED DYNAMICS

▸ A partition                                 of the state space of a CTMC is 
ordinarily lumpable if any two states in a block  
                       have equal aggregate rate toward any block:  
 
 

▸ Preserves sums of probabilities [Kemeny & Snell,1976]

{X1, X2, . . . , XN}

xi1 , xi2 2 XI

X

j2XJ

qi1,j =: qi1,XJ = qi2,XJ :=
X

j2XJ

qi2,j



A PARALLEL WITH MARKOV CHAIN LUMPING

▸CTMC lumping as a special case of ODE lumping  
(as a specific class of linear ODEs) 

▸Condition on structure with implications on dynamics: can we 
generalize to nonlinear (polynomial) ODEs? 

▸What is the structural analogous to a transition matrix?

⇧2(t) = ⇡2(t) + ⇡3(t)q2,1 = q3,1 = 0

1

2 3

k1 k2

STRUCTURE

⇡̇1 = �(k1 + k2)⇡1

⇡̇2 = k1⇡1

⇡̇3 = k2⇡1

DYNAMICS

⇧̇1 = �(k1 + k2)⇧1

⇧̇2 = (k1 + k2)⇧1

LUMPED DYNAMICS



p1X1 + . . .+ pnXn
↵��! p1X1 + . . .+ pnXn +Xk

REACTANTS PRODUCTS

FROM POLYNOMIAL ODES TO REACTION NETWORKS

▸ Main idea: take each monomial appearing in the 
derivative and transform it into an edge of a (labelled) 
bipartite multigraph: a reaction

ẋk = . . .+ ↵
nY

i=1

xpi
i + . . .

From continuous to discreteStoichiometric 
coefficient “Reaction rate”

No physical meaning, used only for reasoning on equivalences

Species
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FORWARD EQUIVALENCE

▸ Main intuition (borrowed from process algebra): projected 
to a species, other reactants are partners/communication 
channels 

▸ Two species are equivalent if they have equal aggregate 
rate toward any block, with any possible partners 

X1 + p2X2 + p3X3
↵��! . . .

Y1 + q2Y2 + q3Y3
���! . . .

Candidate 
equivalent 

species

(Multiset) partners of X1

(Multiset) partners of Y1
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FORWARD RATEFLUX NET STOICHIOMETRY

FORWARD EQUIVALENCE, FORMALLY

▸ A partition of species is a forward equivalence if, for any two 
blocks            and any two species               in      it holds that    
 
 
for all multisets partners    

▸ Characterisation result, extending previous work  
[CONCUR’15,TACAS’16]  

⇢
↵��! ⇡

Multiset of reactants Multiset of products
⇢i is the multiplicity of Xi

H,H
0 Xi, Xj

fr(Xi, ⇢, H
0) = fr(Xj , ⇢, H

0)

⇢
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Ordinary differential equations (ODEs) with polynomial derivatives
are a fundamental tool for understanding the dynamics of systems
across many branches of science, but our ability to gain mecha-
nistic insight and effectively conduct numerical evaluations is crit-
ically hindered when dealing with large models. Here we propose
an aggregation technique that rests on two notions of equiva-
lence relating ODE variables whenever they have the same solu-
tion (backward criterion) or if a self-consistent system can be writ-
ten for describing the evolution of sums of variables in the same
equivalence class (forward criterion). A key feature of our proposal
is to encode a polynomial ODE system into a finitary structure akin
to a formal chemical reaction network. This enables the develop-
ment of a discrete algorithm to efficiently compute the largest
equivalence, building on approaches rooted in computer science
to minimize basic models of computation through iterative parti-
tion refinements. The physical interpretability of the aggregation
is shown on polynomial ODE systems for biochemical reaction net-
works, gene regulatory networks, and evolutionary game theory.

polynomial dynamical systems | aggregation | partition refinement

Several models in natural and engineering sciences can be
described as a system of ordinary differential equations

(ODEs) with polynomial derivatives. A frequent concern is the
treatment of highly dimensional ODEs because of their unintel-
ligibility as well as the numerical difficulties caused by the large
computational cost of the analysis. Reduction techniques based
on singular value decomposition and Krylov subspace methods
have proved effective in producing reduced models with small
approximation errors (1, 2). However, albeit advantageous for
numerical simulations, these transformations often lead to loss of
structure and physical interpretability. This is a major limitation
when the model is used for predictive purposes or for validat-
ing mechanistic assumptions (3, 4). An alternative is to aggregate
groups of variables into macrovariables, for which an ODE sys-
tem can be explicitly derived. This has been successfully pursued,
for instance, using domain-specific techniques in computational
systems biology, where detailed mechanistic mass action ODE
models of protein interaction networks may incur combinatorial
explosion of the state space (5–7).

Here we propose a generic, domain-agnostic aggregation
method for ODEs with polynomial derivatives of any degree
based on equivalence relations (i.e., partitions) over the ODE
variables. It can be seen as an instance of a family of techniques
that consider arbitrary linear transformations of the state space
studied for a long time across many disciplines, such as chemistry
(8), ecology (9), and control theory (1). In this context, checking
whether a generic linear transformation induces an exact aggre-
gation is well-understood. Instead, it has been frequently pointed
out that a major limitation concerns the automatic generation
of a candidate transformation (10–13). This drawback does not
allow one to unravel simpler dynamics from systems of realistic
size in practice.

By contrast, we develop an efficient method for computing the
largest equivalence, leading to the maximal aggregation of an
ODE system. This is achieved by means of a partition refinement
algorithm that iteratively splits an initial partition of variables
until a fixed point. The maximal aggregation can be obtained by
starting the algorithm with the trivial partition having all ODE

variables in a single block. Furthermore, the freedom in choosing
an arbitrary initial partition is instrumental to producing reduc-
tions that preserve the dynamics of desired original variables,
which are then not aggregated.

Mathematically, our approach is a generalization of well-
known equivalence relations for Markov chains named lumpa-
bility (14). Ordinary lumpability relates states that have the same
aggregate transition rate toward every equivalence class (thus, it
is a forward criterion); in exact lumpability, two equivalent states
have the same aggregate rate from every equivalence class (thus,
it is a backward criterion). In a conceptually similar spirit, we
define forward equivalence as a relation whereby each equiv-
alence class describes the evolution of the sum of ODE vari-
ables in the original model. Backward equivalence identifies vari-
ables that have the same solutions at all time points (hence, they
must start from the same initial conditions). Indeed, forward and
backward equivalence collapse to ordinary and exact lumpabil-
ity, respectively, when the (linear) ODE system is the equation
of motion for the transient probability distribution of a continu-
ous time Markov chain (15).

Our technique describes the equivalences in finitary terms,
despite that they involve continuous ODE variables. We encode
a polynomial ODE system into a reaction network (RN), a struc-
ture akin to a formal chemical reaction network (CRN), with
one species per ODE variable and one reaction per monomial in
the derivatives. The equivalences are then relations over species
based on quantities computed by inspecting the reactions. This
structural interpretation allows the development of an algorithm
for computing maximal equivalences, building on analogous par-
tition refinement techniques developed for Markov chain lump-
ing (16, 17). These enjoy polynomial time and space complex-
ity, owing to the seminal work on foundational problems of
computer science by Paige and Tarjan (18).

Our contribution extends recent works that presented an alter-
native aggregation method based on a logical encoding into a
satisfiability problem (19) (however applicable only to ODE sys-
tems of moderate size) and an RN encoding for ODE systems
with polynomial derivatives of degree at most two (15), with the
further limitation that the criterion for forward equivalence was
only a sufficient condition for aggregation.

Significance

Large-scale dynamical models hinder our capability of effec-
tively analyzing them and interpreting their behavior. We
present an algorithm for the simplification of polynomial ordi-
nary differential equations by aggregating their variables. The
reduction can preserve observables of interest and yields a
physically intelligible reduced model, since each aggregate
corresponds to the exact sum of original variables.
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X

all ⇢
↵�!⇡

↵(⇡i � ⇢i) fr(Xi, ⇢, G) :=

P
Xj2G �(Xi + ⇢, Xj)

[Xi + ⇢]!
, [⇢]! :=

✓ P
i ⇢i

⇢1, . . . , ⇢n
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BACKWARD EQUIVALENCE

▸ Definition in the same style, with a twist: 
 
 
where       is an equivalence relation on multisets of species 
naturally induced by the equivalence over species, e.g.:  
 

▸ Characterisation result: extension of [CONCUR’15] 

br(Xi,M, H) = br(Xj ,M, H)

M

A ⇠ B =) A+B + C ⇠M 2B + C
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Ordinary differential equations (ODEs) with polynomial derivatives
are a fundamental tool for understanding the dynamics of systems
across many branches of science, but our ability to gain mecha-
nistic insight and effectively conduct numerical evaluations is crit-
ically hindered when dealing with large models. Here we propose
an aggregation technique that rests on two notions of equiva-
lence relating ODE variables whenever they have the same solu-
tion (backward criterion) or if a self-consistent system can be writ-
ten for describing the evolution of sums of variables in the same
equivalence class (forward criterion). A key feature of our proposal
is to encode a polynomial ODE system into a finitary structure akin
to a formal chemical reaction network. This enables the develop-
ment of a discrete algorithm to efficiently compute the largest
equivalence, building on approaches rooted in computer science
to minimize basic models of computation through iterative parti-
tion refinements. The physical interpretability of the aggregation
is shown on polynomial ODE systems for biochemical reaction net-
works, gene regulatory networks, and evolutionary game theory.

polynomial dynamical systems | aggregation | partition refinement

Several models in natural and engineering sciences can be
described as a system of ordinary differential equations

(ODEs) with polynomial derivatives. A frequent concern is the
treatment of highly dimensional ODEs because of their unintel-
ligibility as well as the numerical difficulties caused by the large
computational cost of the analysis. Reduction techniques based
on singular value decomposition and Krylov subspace methods
have proved effective in producing reduced models with small
approximation errors (1, 2). However, albeit advantageous for
numerical simulations, these transformations often lead to loss of
structure and physical interpretability. This is a major limitation
when the model is used for predictive purposes or for validat-
ing mechanistic assumptions (3, 4). An alternative is to aggregate
groups of variables into macrovariables, for which an ODE sys-
tem can be explicitly derived. This has been successfully pursued,
for instance, using domain-specific techniques in computational
systems biology, where detailed mechanistic mass action ODE
models of protein interaction networks may incur combinatorial
explosion of the state space (5–7).

Here we propose a generic, domain-agnostic aggregation
method for ODEs with polynomial derivatives of any degree
based on equivalence relations (i.e., partitions) over the ODE
variables. It can be seen as an instance of a family of techniques
that consider arbitrary linear transformations of the state space
studied for a long time across many disciplines, such as chemistry
(8), ecology (9), and control theory (1). In this context, checking
whether a generic linear transformation induces an exact aggre-
gation is well-understood. Instead, it has been frequently pointed
out that a major limitation concerns the automatic generation
of a candidate transformation (10–13). This drawback does not
allow one to unravel simpler dynamics from systems of realistic
size in practice.

By contrast, we develop an efficient method for computing the
largest equivalence, leading to the maximal aggregation of an
ODE system. This is achieved by means of a partition refinement
algorithm that iteratively splits an initial partition of variables
until a fixed point. The maximal aggregation can be obtained by
starting the algorithm with the trivial partition having all ODE

variables in a single block. Furthermore, the freedom in choosing
an arbitrary initial partition is instrumental to producing reduc-
tions that preserve the dynamics of desired original variables,
which are then not aggregated.

Mathematically, our approach is a generalization of well-
known equivalence relations for Markov chains named lumpa-
bility (14). Ordinary lumpability relates states that have the same
aggregate transition rate toward every equivalence class (thus, it
is a forward criterion); in exact lumpability, two equivalent states
have the same aggregate rate from every equivalence class (thus,
it is a backward criterion). In a conceptually similar spirit, we
define forward equivalence as a relation whereby each equiv-
alence class describes the evolution of the sum of ODE vari-
ables in the original model. Backward equivalence identifies vari-
ables that have the same solutions at all time points (hence, they
must start from the same initial conditions). Indeed, forward and
backward equivalence collapse to ordinary and exact lumpabil-
ity, respectively, when the (linear) ODE system is the equation
of motion for the transient probability distribution of a continu-
ous time Markov chain (15).

Our technique describes the equivalences in finitary terms,
despite that they involve continuous ODE variables. We encode
a polynomial ODE system into a reaction network (RN), a struc-
ture akin to a formal chemical reaction network (CRN), with
one species per ODE variable and one reaction per monomial in
the derivatives. The equivalences are then relations over species
based on quantities computed by inspecting the reactions. This
structural interpretation allows the development of an algorithm
for computing maximal equivalences, building on analogous par-
tition refinement techniques developed for Markov chain lump-
ing (16, 17). These enjoy polynomial time and space complex-
ity, owing to the seminal work on foundational problems of
computer science by Paige and Tarjan (18).

Our contribution extends recent works that presented an alter-
native aggregation method based on a logical encoding into a
satisfiability problem (19) (however applicable only to ODE sys-
tems of moderate size) and an RN encoding for ODE systems
with polynomial derivatives of degree at most two (15), with the
further limitation that the criterion for forward equivalence was
only a sufficient condition for aggregation.

Significance

Large-scale dynamical models hinder our capability of effec-
tively analyzing them and interpreting their behavior. We
present an algorithm for the simplification of polynomial ordi-
nary differential equations by aggregating their variables. The
reduction can preserve observables of interest and yields a
physically intelligible reduced model, since each aggregate
corresponds to the exact sum of original variables.

Author contributions: L.C., M. Tribastone, M. Tschaikowski, and A.V. designed research,
performed research, analyzed data, and wrote the paper.

The authors declare no conflict of interest.

This article is a PNAS Direct Submission.
1L.C., M. Tribastone, M. Tschaikowski, and A.V. contributed equally to this work.
2To whom correspondence should be addressed. Email: mirco.tribastone@imtlucca.it.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.
1073/pnas.1702697114/-/DCSupplemental.

www.pnas.org/cgi/doi/10.1073/pnas.1702697114 PNAS Early Edition | 1 of 6

�14



MAXIMAL AGGREGATION THROUGH PARTITION REFINEMENT

▸ Both in the same style of Larsen and Skou’s probabilistic 
bisimulation (where the partners are analogues of action type) 

▸ Intuition for computing the maximal aggregation through a 
partition refinement algorithm 

▸ Polynomial time and space complexity (in the number of 
species, number of monomials and maximum degree)  

▸ Extensions of the works of Derisavi et al., Valmari & 
Franceschinis, Baier et al., our own [MFCS’15,TACAS’16]

FORWARD RATE
fr(Xi, ⇢, H

0) = fr(Xj , ⇢, H
0)

BACKWARD RATE
br(Xi,M, H) = br(Xj ,M, H)
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PARTITION REFINEMENT EXAMPLE

▸ Binding model 

▸ Occurs over one of two binding 
sites when it is phosphorylated  

▸ Classic, basic model in biochemistry 

▸ Intuition: if the binding sites are 
identical then, by symmetry, explicit 
identity is unimportant  

Au,u
k1�! Ap,u

Ap,u
k2�! Au,u

Au,u
k1�! Au,p

Au,p
k2�! Au,u

Ap,u +B
k3�! Ap,uB

Ap,uB
k4�! Ap,u +B

Au,p +B
k3�! Au,pB

Au,pB
k4�! Au,p +B

Reaction Network
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PARTITION REFINEMENT EXAMPLE

Au,u
k1�! Ap,u

Ap,u
k2�! Au,u

Au,u
k1�! Au,p

Au,p
k2�! Au,u

Ap,u +B
k3�! Ap,uB

Ap,uB
k4�! Ap,u +B

Au,p +B
k3�! Au,pB

Au,pB
k4�! Au,p +B

Reaction Network

Au,u
k1�! Ap,u

Ap,u
k2�! Au,u

Au,u
k1�! Au,p

Au,p
k2�! Au,u

Ap,u +B
k3�! Ap,uB

Ap,uB
k4�! Ap,u +B

Au,p +B
k3�! Au,pB

Au,pB
k4�! Au,p +B

Reaction Network
�
{Au,u, Ap,u, Au,p, B,Ap,uB,Au,pB}

 

First iteration
Set of splitters�

{Au,u, Ap,u, Au,p, B,Ap,uB,Au,pB}
 

Current partition

fr(Ap,u, B, sp) = �3

fr(Au,p, B, sp) = �3

fr(B,Ap,u, sp) = �3

fr(B,Au,p, sp) = �3

fr(Ap,uB, ;, sp) = 4

fr(Au,pB, ;, sp) = 4

Current partition
�
{Au,u}, {Ap,u, Au,p}, {B}, {Ap,uB,Au,pB}

 

Set of splitters�
{Au,u}, {B}, {Ap,uB,Au,pB}

 

fr(Au,u, ;, sp) = �2

fr(Ap,u, ;, sp) = 2

fr(Au,p, ;, sp) = 2

Second iteration

sp

Set of splitters
Third iteration

�
{B}, {Ap,uB,Au,pB}

 

fr(Ap,u, B, sp) = �3

fr(Au,p, B, sp) = �3

fr(B,Ap,u, sp) = �3

fr(B,Au,p, sp) = �3

fr(Ap,uB, ;, sp) = 4

fr(Au,pB, ;, sp) = 4

sp

Set of splitters
Fourth iteration

{{Ap,uB,Au,pB}}

fr(Ap,u, B, sp) = 3

fr(Au,p, B, sp) = 3

fr(B,Ap,u, sp) = 3

fr(B,Au,p, sp) = 3

fr(Ap,uB, ;, sp) = �4

fr(Au,pB, ;, sp) = �4

spsp

A B C

▸ The initial partition may be arbitrary 
▸ Useful to single out observables that are not to be aggregated

�17
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PARTITION REFINEMENT EXAMPLE

Au,u
k1�! Ap,u

Ap,u
k2�! Au,u

Au,u
k1�! Au,p

Au,p
k2�! Au,u

Ap,u +B
k3�! Ap,uB

Ap,uB
k4�! Ap,u +B

Au,p +B
k3�! Au,pB

Au,pB
k4�! Au,p +B

Reaction Network
�
{Au,u, Ap,u, Au,p, B,Ap,uB,Au,pB}

 

First iteration
Set of splitters�

{Au,u, Ap,u, Au,p, B,Ap,uB,Au,pB}
 

Current partition

fr(Ap,u, B, sp) = �3

fr(Au,p, B, sp) = �3

fr(B,Ap,u, sp) = �3

fr(B,Au,p, sp) = �3

fr(Ap,uB, ;, sp) = 4

fr(Au,pB, ;, sp) = 4

Current partition
�
{Au,u}, {Ap,u, Au,p}, {B}, {Ap,uB,Au,pB}

 

Set of splitters�
{Au,u}, {B}, {Ap,uB,Au,pB}

 

fr(Au,u, ;, sp) = �2

fr(Ap,u, ;, sp) = 2

fr(Au,p, ;, sp) = 2

Second iteration

sp

Set of splitters
Third iteration

�
{B}, {Ap,uB,Au,pB}

 

fr(Ap,u, B, sp) = �3

fr(Au,p, B, sp) = �3

fr(B,Ap,u, sp) = �3

fr(B,Au,p, sp) = �3

fr(Ap,uB, ;, sp) = 4

fr(Au,pB, ;, sp) = 4

sp

Set of splitters
Fourth iteration

{{Ap,uB,Au,pB}}

fr(Ap,u, B, sp) = 3

fr(Au,p, B, sp) = 3

fr(B,Ap,u, sp) = 3

fr(B,Au,p, sp) = 3

fr(Ap,uB, ;, sp) = �4

fr(Au,pB, ;, sp) = �4

spsp

A B C

▸ Splitters do not distinguish current equivalences classes 

▸ Terminates with the maximal aggregation that refines the input 
partition 

▸ Similar approach for backward equivalence
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EVALUATION AND REDUCTION OF ORDINARY DIFFERENTIAL EQUATIONS

http://sysma.imtlucca.it/tools/erode/ [TACAS’17]

Scalability: 2.5M variables and 5M reactions analysed in ~5 minutes on an ordinary laptop

�19



MODEL FORMATS
▸ ERODE has two internal specification formats

Listing 1: Direct ODE specification.
begin model ExampleODE
begin parameters

r1 = 1.0 r2 = 2.0
end parameters

begin init

Au = 1.0 Ap = 2.0 B = 3.0
AuB ApB
end init

begin partition

{Au,Ap}, {AuB}, {B,ApB}
end partition

begin ODE

// C-style comments
d(Au) = -r1*Au + r2*Ap - 3*Au*B + 4*AuB
d(Ap) = r1*Au - r2*Ap - 3*Ap*B + 4*ApB
d(B) = -3*Au*B + 4*AuB - 3*Ap*B + 4*ApB
d(AuB) = 3*Au*B - 4*AuB
d(ApB) = 3*Ap*B - 4*ApB
end ODE

begin views

v1 = Au + Ap
v2 = AuB
end views

reduceBDE(reducedFile="ExampleODE_BDE.ode")
end model

Listing 2: Reaction network.
begin model ExampleRN
begin parameters

r1 = 1.0 r2 = 2.0
end parameters

begin init

Au = 1.0 Ap = 2.0 B = 3.0
AuB ApB

end init

begin partition

{Au,Ap}, {AuB}
end partition

begin reactions

Au -> Ap , r1
Ap -> Au , r2
Au + B -> AuB , 3.0
AuB -> Au + B , 4.0
Ap + B -> ApB , 3.0
ApB -> Ap + B , 4.0

end reactions

begin views

v1 = Au + Ap
v2 = AuB

end views

simulateODE(tEnd=1.0)
end model

3 ERODE Language

Illustrating example. We show some of ERODE ’s features using a simple model. This is
an idealized biochemical interaction between two molecules, A and B, where A can be in two
states (u for unphosphorylated and p for phosphorylated) undergoing binding/unbinding
with B. This results in five biochemical species: Au, Ap, B, AuB, and ApB. Each species is
associated with one ODE variable which models its concentration as a function of time.

Listings 1 and 2 show the two alternative specification formats for the same model (as-
suming mass-action kinetics), using plain ODEs or the RN representation, respectively.

Specification language. The input format consists of the following parts:

i) Parameter specification;

ii) Declaration of variable names with (optional) initial conditions;

iii) Initial partition of variables to be given to the reduction algorithms;

iv) ODE system, either in plain format or as an RN;

v) Observables, called views, to be tracked by the numerical solvers;

vi) Commands for ODE numerical solution, reduction, and exporting into other formats.

Alternatively, points i)-v) can be replaced by a command importBNG:

importBNG(fileIn=<filename>)

used to load “on-the-fly” a CRN generated with BioNetGen 2.2.5.

4

Listing 1: Direct ODE specification.
begin model ExampleODE
begin parameters

r1 = 1.0 r2 = 2.0
end parameters

begin init

Au = 1.0 Ap = 2.0 B = 3.0
AuB ApB
end init

begin partition

{Au,Ap}, {AuB}, {B,ApB}
end partition

begin ODE

// C-style comments
d(Au) = -r1*Au + r2*Ap - 3*Au*B + 4*AuB
d(Ap) = r1*Au - r2*Ap - 3*Ap*B + 4*ApB
d(B) = -3*Au*B + 4*AuB - 3*Ap*B + 4*ApB
d(AuB) = 3*Au*B - 4*AuB
d(ApB) = 3*Ap*B - 4*ApB
end ODE

begin views

v1 = Au + Ap
v2 = AuB
end views

reduceBDE(reducedFile="ExampleODE_BDE.ode")
end model

Listing 2: Reaction network.
begin model ExampleRN
begin parameters

r1 = 1.0 r2 = 2.0
end parameters

begin init

Au = 1.0 Ap = 2.0 B = 3.0
AuB ApB

end init

begin partition

{Au,Ap}, {AuB}
end partition

begin reactions

Au -> Ap , r1
Ap -> Au , r2
Au + B -> AuB , 3.0
AuB -> Au + B , 4.0
Ap + B -> ApB , 3.0
ApB -> Ap + B , 4.0

end reactions

begin views

v1 = Au + Ap
v2 = AuB

end views

simulateODE(tEnd=1.0)
end model

3 ERODE Language

Illustrating example. We show some of ERODE ’s features using a simple model. This is
an idealized biochemical interaction between two molecules, A and B, where A can be in two
states (u for unphosphorylated and p for phosphorylated) undergoing binding/unbinding
with B. This results in five biochemical species: Au, Ap, B, AuB, and ApB. Each species is
associated with one ODE variable which models its concentration as a function of time.

Listings 1 and 2 show the two alternative specification formats for the same model (as-
suming mass-action kinetics), using plain ODEs or the RN representation, respectively.

Specification language. The input format consists of the following parts:

i) Parameter specification;

ii) Declaration of variable names with (optional) initial conditions;

iii) Initial partition of variables to be given to the reduction algorithms;

iv) ODE system, either in plain format or as an RN;

v) Observables, called views, to be tracked by the numerical solvers;

vi) Commands for ODE numerical solution, reduction, and exporting into other formats.

Alternatively, points i)-v) can be replaced by a command importBNG:

importBNG(fileIn=<filename>)

used to load “on-the-fly” a CRN generated with BioNetGen 2.2.5.

4

▸ Basic support for: 
▸ BioNetGen (net format) 
▸ SBML 
▸ MATLAB

▸ Planned support: 
▸ GINSIM 
▸ BioModels 
▸ …



SOME BENCHMARKS

Original Model Forward Backward 

ID Reactions Vars Vars Time Vars Time

CRN1 3,538,944 262,146 222 7.5 s 222 12.0 s

CRN5 194,054 14,531 10,855 0.4 s 6,634 0.6 s

CRN13 24 18 18 4 ms 7 4 ms

AFF2 8,814,880 1,270,433 160,951 ~ 10 min 639,509 ~ 3 min

▸ Original CRN could not be solved on our machine

�21

Sneddon M W, et al. (2011) Efficient modeling, simulation and coarse-graining of biological complexity with NFsim. In 
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SOME BENCHMARKS

Original Model Forward Backward 

ID Reactions Vars Vars Time Vars Time

CRN1 3,538,944 262,146 222 7.5 s 222 12.0 s

CRN5 194,054 14,531 10,855 0.4 s 6,634 0.6 s

CRN13 24 18 18 4 ms 7 4 ms

AFF2 8,814,880 1,270,433 160,951 ~ 10 min 639,509 ~ 3 min

▸ Forward and backward equivalence are not comparable

�22

Suderman R, et al. (2013) Machines vs. ensembles: Effective MAPK signaling through heterogeneous sets of protein 
complexes . In PLOS Computational Biology.



WHAT DOES AGGREGATION PRESERVE?

▸ Equal complexes up to the states of the phosphorylation 
site (hollow/solid blue circles) of EGFR independently of: 

▸ Conformational change of the cytosolic tail 

▸ EGF binding state  

▸ Conformational of cytosolic tail 

▸ Cross-linking 

C
O

M
P

U
T
E
R

S
C

IE
N

C
E
S

A B C

Fig. 2. Illustrative example of the three-step reduction up to for-
ward/backward equivalence using the RN of Fig. 1A and the largest for-
ward equivalence of Fig. 1C. In the first step, (A) the rate of each reaction
is divided by the product of the cardinalities of the equivalence classes to
which the reagents belong; we use an asterisk to indicate the representa-
tive of each equivalence class. (B) Each reaction is rewritten by replacing
every species with its representative. (C) Reactions with same reagents and
products are merged by summing the rates.

only as reagent). Intuitively, two species are related whenever
they provide same net instantaneous stoichiometry, for any reac-
tion partner ⇢, to all equivalence classes of species.

A similar result holds for backward equivalence. Here, two
species are related whenever they have the same instantaneous
stoichiometry aggregated across all reagents that are equal up to
the considered equivalence. To formally express this, let H be a
partition of species and ⇡H be the equivalence relation naturally
induced by H over multisets of species as follows:

⇡H=
n
(⇢,⇡)2MS(S)⇥MS(S)|

X

Si2H

⇢i =
X

Si2H

⇡i , 8H 2H

o
.

Also, we define

br(Si ,M,H 0) :=
X

Sk2H 0

X

⇢2M

�(Sk + ⇢,Si)
|Sk + ⇢|H 0

,

where |⇡|H 0 = |{Sl 2 H
0
|⇡l > 0}| counts the number of differ-

ent species in H
0 occurring in ⇡. Then, H is a backward equiva-

lence for the corresponding ODE variables if and only if, for any
block H 2 H and any two Si ,Sj 2 H , it holds that

�(;,Si) = �(;,Sj ) and br(Si ,M,H 0) = br(Sj ,M,H 0) [7]

for all H 0
2 H and M 2 {⇢|(Sk + ⇢

↵
�! ⇡) 2 R,Sk 2 S}/ ⇡

H

(SI Appendix, SI Text).
The first condition of Eq. 7 regards reactions that encode con-

stants (i.e., degree zero monomials). These are ignored in Eq. 6
because they do not affect forward equivalence.

Reduction Algorithm. The largest equivalence that refines an ini-
tial partition of species is computed via iterative refinements.
Briefly, a set of “splitters” is initialized with the blocks of the
initial partition. Each splitter is considered as a candidate block
that prevents the current partition from being an equivalence. In
both Eqs. 6 and 7, the parameter H

0 represents the splitter. If
the equivalence criteria, checked with respect to the splitter, do
not hold, the partition is refined, such that any two species in the
same subblock will now satisfy them. The resulting subblocks are
added to the set of splitters, except for the largest one, follow-
ing an argument similar to ref. 18. There exists a unique fixed
point corresponding to the case where no more splitters have to
be considered, yielding the desired largest equivalence (Fig. 1).
The algorithm runs in polynomial time and space with respect
to the number of variables and monomials in the derivatives (SI
Appendix, SI Text).

For a given equivalence, a reduced RN can be obtained by
transforming the original one in three steps that preserve the
structure of the reactions (Fig. 2). For both forward and back-
ward equivalence, a species in the reduced RN represents the
sum of species belonging to that equivalence class; in the case of
a backward equivalence, the individual trajectory of an original
species can then be recovered by simply dividing the ODE solu-
tion for each representative by the cardinality of its equivalence
class. From the reduced RN, we can compute the reduced ODE
system of Eq. 4 by reversing the encoding of Eq. 5 (SI Appendix,
SI Text). This corresponds to interpreting the reduced RN with
mass action kinetics, straightforwardly generalized to nonposi-
tive reaction systems.

Applications

Molecular Biology. Multisite protein phosphorylation is a widely
studied signal transduction mechanism responsible for many reg-
ulatory roles in eukaryotic cells, such as threshold setting and
switch-like behavior (21–23). The RN in Fig. 1 is a simple model
of unordered phosphorylation, where the sites are assumed to
be equivalent. In this case, it is common to consider the same
kinetic rates when describing their interactions (21, 24, and 25) as
a mathematical simplification backed by experimental evidence
(26). In general, the full dynamics of a protein with n phosphory-
lation sites would require 2n variables to keep track of the state
of each individual site. Both forward and backward equivalence
explain the assumption of identical sites, yielding n + 1 equiv-
alence classes that group variables related to proteins with the
same number of phosphorylated sites. This confirms an earlier
lumping scheme developed specifically for this scenario (27). A
similar aggregation can be observed in the modeling of mecha-
nisms of complex formation in the case where a receptor protein
has multiple binding sites (SI Appendix, SI Text and Table S1).

Forward equivalence may also aggregate complexes exhibit-
ing different phosphorylation levels. Kozer et al. (28) propose a
model of oligomerization of the EGF receptor (EGFR) kinase.
It accounts for ligand binding, conformational changes of the
EGFR cytosolic tail induced by the presence of the ligand and
formation of dimers, trimers, and tetramers as well as EGFR
phosphorylation/dephosphorylation occurring at a single site.
The original network consists of 923 species and 11,918 reactions.
The maximal forward equivalence aggregates oligomers that are
equal up to the phosphorylation state of their sites (Fig. 3). This
leads to a reduced network with only 87 species and 705 reac-
tions, still useful to answer biologically relevant questions, such
as those in ref. 28 concerning the distribution of the cluster sizes.

An inspection of the members of the equivalence classes
suggests that the dynamics of phosphorylation/dephosphory-
lation and oligomer formation are independent. Effectively, the

A B C D E
C-I C-II

Fig. 3. Representative forward equivalence classes for the model of ref.
28. Forward equivalence aggregates molecular complexes that are equal
up to the states of the phosphorylation site (hollow/solid blue circles) of
EGFR. A shows the two-species equivalence class for EGFR (Y-shaped) with-
out conformational change of the cytosolic tail. (B) The equivalence class
aggregates EGFR when it is bound to EGF (solid red ellipses) as well as when
(C and D) the cytosolic tail has undergone conformational change (wiggled
lines). These basic patterns of equivalence carry over to all oligomers that
are formed through ectodomain cross-linking, such as (E) the three possi-
ble phosphorylation states of dimers with changed cytosolic tail and bound
to EGF.

Cardelli et al. PNAS Early Edition | 3 of 6
Kozer N, et al. (2013) Exploring higher-order EGFR oligomerisation and phosphorylation - a combined experimental 
and theoretical approach. Mol Biosyst 9: 1849–1863 

FROM 923 SPECIES AND 11,918  
REACTIONS TO 87 SPECIES AND 
705 REACTIONS  



WHAT DOES AGGREGATION PRESERVE?

▸ Molecular complexes 
with different structure 
but equivalent dynamics 

▸ Only holds when the 
complex is endocytosed

B  Equivalence class

L
S

L
S

L
S

L
S

Activation loopS Syk LynL LinkerIgE dimer FC RI

A  Components

Fig. 4. Forward equivalence for the Fc✏RI model of early events of ref. 32.
(A) Graphical representation of the components involved in the pathway.
Lyn kinase is recruited by the � subunit of Fc✏RI, while Syk kinase binds to
the � site. Syk is modeled with two phosphorylation units for the linker
region and the activation loop. (B) Example of a class of the maximal for-
ward equivalence: the complex conformation is equal up to the states of
Syk’s phosphorylation units. The gray boxes represent a refinement which
aggregates complexes equal up to the state of the linker region only, cor-
responding to the exactly reduced model discussed in ref. 33. We use solid
and hollow circles to represent phosphorylated and unphosphorylated sites,
respectively.

equivalence classes internalize the phosphorylation dynamics in
the following sense. On any phosphorylation event, the complex
undergoes a change of state, turning into another complex within
the same equivalence class. Different members of the same class,
however, may have functionally distinct behavior. This also pre-
vents an aggregation by backward equivalence. For instance,
phosphorylation may not occur in a single EGFR (Fig. 3C,
C-I) because it depends on the context, requiring two receptors
to be bound with a conformationally changed tail (29). Instead,
a phosphorylated EGFR (Fig. 3C, C-II) may always undergo
dephosphorylation, since this is modeled as a spontaneous reac-
tion. Situations such as these, which feature site interactions
that are controlled or dependent on other sites, may block the
use of domain-specific reduction techniques (5–7, 30), since they
exploit assumptions of independence within interaction domains
(SI Appendix, SI Text). We refer to ref. 31 for a recent discussion
on the complementarity between equivalence-based CRN aggre-
gations and rule-based reduction techniques (7).

A similar aggregation pattern arises in a model of early
events of the signaling pathway of the high-affinity receptor for
IgE (Fc✏RI) in mast cells and basophils. The pathway includes
phosphorylation of the tyrosine residues on both the � and �
subunits of Fc✏RI by the Lyn kinase, which then recruits the
protein tyrosine kinase Syk (34). An experimentally validated
model has been proposed to provide mechanistic insights into
these processes (32). Here, a bivalent IgE ligand aggregates
Fc✏RI; Syk presents two phosphorylation units, the linker region
and the activation loop, transphosphorylated by Lyn and Syk,
respectively. The overall pathway is described by 354 molecu-
lar species and 3,680 reactions. The maximal forward equiva-
lence shows that complexes that have the same formation up
to the phosphorylation state of both units can be aggregated
(Fig. 4), yielding a reduced network with 105 species and 775
reactions. This finding extends and provides a formal proof for
the observation made in ref. 33, supplementary note 8, where
an exactly reduced network (with 172 species and 1,433 reac-
tions) was obtained by abstracting from the phosphorylation
site of the linker region only. Indeed, that network corresponds
to the refinement of the maximal forward equivalence which
separates complexes according to the phosphorylation status of
Syk (SI Appendix, SI Text).

We now discuss an example where members of the same equiv-
alence class do not have the same structure, using a detailed
model of activation of JAK, a family of enzymes that medi-
ate gene transcription (35). The mechanism is explained by the
formation of a macrocomplex by JAK binding to growth hor-
mone (GH) receptor dimers. The maximal forward equivalence

aggregates the dynamics of ligand/receptor complexes undergo-
ing constitutive turnover or endocytosis (Fig. 5). This gives non-
trivial equivalence classes containing complexes that differ in the
structure of the GH ligand/receptor. The full network (35) (SI
Appendix, SI Text), consisting of 471 species and 5,033 reactions,
is reduced to 345 species and 4,068 reactions. We find that every
complex in the same equivalence class features the same num-
ber of phosphorylated sites of JAK (Y1 and Y2). The maximal
aggregation still allows all of the analyses of ref. 35, which con-
cern the concentrations of certain complexes and the phosphory-
lation level of Y2.

We note that all previous models obey the law of mass action
and underlie ODE systems with polynomial derivatives of degree
two at most. Our technique is also applicable to ODEs with other
nonlinearities, such as biochemical networks with Michaelis–
Menten kinetics. Following, for instance, ref. 2, this can be done
by constructing an equivalent polynomial ODE system with aux-
iliary variables for rational expressions, sigmoids, and trigono-
metric functions (SI Appendix, SI Text).

Logic Models of Regulatory Networks. Logic models are another
established method to describe regulatory networks as a means
of expressing qualitative interactions between biomolecular pro-
cesses (39). Each process is associated with a Boolean vari-
able that describes two discrete states (e.g., on–off). A Boolean
update function defines how each variable may change state
depending on the values of the other variables (e.g., to represent
promotion and inhibition). Boolean models may be too coarse
when a more detailed evolution is required: for instance, to com-
pare predictions against experimental data or when they are to
be coupled with a quantitative models. For this, Boolean models
can be translated into ODEs with derivatives that agree with the
Boolean update function whenever inputs are only either zero
(false) or one (true) (38, 40, 41).

JAK2 Site Y1 
Site Y2 GH receptor

GH ligand

Phosphoinositide lipid

A

C D

E

B

Fig. 5. Graphical description of representative equivalence classes
(rounded boxes) obtained by computing the largest forward equivalence
on the model of JAK activation by Barua et al. (35). (A) Singleton block
where the complex consists of two JAK molecules with unphosphorylated
sites Y1/Y2 (hollow circles) bound to a GH dimer. Under these condi-
tions, the sites can be phosphorylated (solid circles). (B) Phosphorylation
(solid circles) at site Y1 allows the binding of SH2-B�, which can dimer
and bind to a phosphoinositide lipid. (C) Basic forward equivalence class
with three species when a GH ligand/receptor complex undergoes con-
stitutive turnover or endocytosis. (D) Since JAK2 molecules cannot bind
to degraded/internalized complexes, the three complexes have effectively
equivalent dynamics because they may only give rise to unbinding of the
JAK2 molecule. A similar symmetry can be observed among the complexes
in E, where additionally, SH2-B� and phosphoinositide can unbind.

4 of 6 | www.pnas.org/cgi/doi/10.1073/pnas.1702697114 Cardelli et al.

FROM 471 SPECIES AND 5,033 REACTIONS TO 345 SPECIES AND 4,068 REACTIONS  

Barua D, Faeder JR, Haugh JM (2009) A bipolar clamp mechanism for activation of Jak-family protein tyrosine kinases. 
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Fig. 6. Graphical representation, using ref. 36, of the Boolean model for
T-cell receptor signaling studied in refs. 37 and 38. Each node is a Boolean
variable, whereas a directed arc describes an influence represented by the
source variable appearing in the update function of the target variable. The
network has three inputs (nodes with no incoming arcs): CD8, CD45, and
the T-cell receptor TCRlig. Similar to ref. 38, we consider two variants with
and without the feedback loops Fyn ! PAGCsk and ZAP70 ! cCbl (dashed
arrows). Using the technique of ref. 38, we obtained a multivariate polyno-
mial ODE system of degree five. On this, we fixed an initial partition where
the input variables are singletons, ensuring that the largest backward equiv-
alence that refines this partition reveals nodes with equivalent dynamics for
any input. Nontrivial backward equivalence classes are represented with col-
ored nodes with the same background. The class {cCbl, LAT} is found only
when the feedback loops are active. In this case, they are simultaneously
subjected to the same influence by ZAP70. Indeed, backward equivalence
turns out to aggregate the ODEs of nodes with update functions that are
equal up to a renaming of nodes in the same equivalence class.

Here we consider the multivariate polynomial interpolation of
ref. 38. On a model of T-cell receptor signaling studied in refs.
37 and 38, backward equivalence reveals processes that exhibit
the same behavior because they are updated by functions that
are equal up to variables in the same equivalence class (Fig. 6,
and SI Appendix, Figs. S1 and S2 for further examples). From
the reduced model, we can exactly recover the original solu-
tion in terms of continuous signals in the [0, 1] interval. Instead,
forward equivalence leads to variables living in larger domains.
On this example, the maximal forward equivalence reduces the
ODE model, such that it is still possible to analyze full activa-
tion/deactivation of the downstream transcription factors CRE,
AP1, NFAT, and NFkB, which belong to the same equivalence
class (SI Appendix, Figs. S3 and S4).

Evolutionary Game Theory. The replicator equation is a well-
studied model for several natural, social, and economic systems
(42). It describes the dynamics of populations of individuals that
choose strategies with a rate of growth that depends on the com-
parison between an individual’s own payoff and the population’s
average. In its first formulation (43), the replicator equation con-
siders a state represented by the vector x = (x1, . . . , xn), where
xi denotes the probability of an individual choosing the i th strat-
egy, with 1  i  n . Its evolution is governed by the polynomial
ODE system

ẋi = xi

�
(Bx )

i
� x

T
Bx

�
, 1  i  n, [8]

where B is the n ⇥ n payoff matrix, together with an initial con-
dition, such that it represents an initial proportion of strategies
[i.e.,

P
n

i=1 xi(0) = 1]. Here, backward equivalence may detect
strategies chosen with the same frequency within the population.
For instance, given the following payoff matrix

B =

2

4
1 3 2
3 1 2
4 4 1

3

5,

backward equivalence relates x1 and x2.
Similar investigations can be made on variants of the replica-

tor equations that model evolutionary dynamics over networks
(44). Here, a vertex represents a player that can interact with its
neighbors only. In this context, the problem of network aggre-
gation has also been studied using graph lumpability, a criterion
that involves conditions on the (weighted) adjacency matrix of
the network as well as on the players’ payoff matrices (45). It is
related to backward equivalence in that it captures an equiva-
lence relation between players/vertices, such that any two equiv-
alent players choose any strategy with the same frequency at all
time points. Graph lumpability turns out to be a sufficient con-
dition for backward aggregation. For instance, let us consider a
network with four players playing two strategies characterized
by adjacency matrix A = (aij )1i,j4 and payoff matrices Bi ,
1  i  4 given by

A =

2

64

0 0 1 0
0 0 0 2
1 0 0 1
0 1 1 0

3

75,B1,2 =

2

64

1
4

3
4

1
2

1

3

75,B3,4 =

2

64
1

1
2

1
4

1
2

3

75.

Then, players 1 and 2 as well as players 3 and 4 have the
same ODE solutions, but this is not captured by an equiva-
lence relation in the sense of graph lumpability, since it requiresP

k2P
aik =

P
k2P

ajk for any two equivalent players i ,j and for
any equivalence class P of players. Clearly, this condition is not
satisfied by taking i = 1, j = 2, and P = {3, 4}.

Conclusion

We presented a technique to reduce polynomial ODE systems up
to an equivalence relation over its variables. Our method exactly
preserves observables of interest across the whole time course.
Hence, the reduced model can be used as an input to comple-
mentary techniques that sacrifice exactness, such as timescale
decomposition (46).

In the notable case where the model is a formal chemical RN,
the reduction preserves structure, in that the original reactions
are only subjected to renaming and merging. For other domain-
specific applications, such as rule-based systems, Boolean net-
works, payoff matrices, and so on, one would seek to directly
obtain reduced models of the corresponding nature induced by
a backward/forward equivalence. Technically, this does not seem
to be straightforward. For example, in the case of Boolean net-
works, forward equivalence yields a reduced ODE system where
each aggregated variable will take values in the continuous inter-
val [0,n], where n is the cardinality of the corresponding equiv-
alence class. Thus, in general, there is no Boolean network,
such that its polynomial ODE interpolation corresponds to an
aggregated ODE system up to forward equivalence because by
construction, each interpolated ODE variable takes values in
the interval [0, 1]. In this paper, we have privileged a domain-
agnostic view. We aim to address domain-specific challenges in
future work.

ACKNOWLEDGMENTS. L.C. is partially funded by a Royal Society Research
Professorship.

Cardelli et al. PNAS Early Edition | 5 of 6

CHAINS OF SYMMETRIES: EQUIVALENT NODES RECEIVE EQUIVALENT INFLUENCES 

• Wittmann DM, et al. (2009) Transforming boolean models to continuous models: Methodology and application to t-
cell receptor signaling. BMC Syst Biol 3:1–21 

• Le Novere N (2015) Quantitative and logic modelling of molecular and gene networks. Nat Rev Genet 16:146–158

▸ Differential-equation semantics  
for gene networks 

▸ Each node is a an ODE variable  

▸ Update agrees with the boolean 
semantics for 0/1 inputs 

▸ Result is a polynomial ODE of 
arbitrary degree
y = x1 ^ x2 =) ẏ = x1x2



ONGOING AND FUTURE WORK

▸ All our algorithms so far are for exact reductions 

▸ Approximate reductions as perturbations of exact ones 
[QEST’18] 

▸ Differential-algebraic equations [CDC’18]  

▸ Continuous dynamics with constraints  
(mass conservation,  rigid-body dynamics, current and 
voltage laws, …) 

▸ Popular in many branches of science and engineering 

▸ Applications in new areas (e.g., brain network models)
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