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Motivation

Performance is a fundamental aspect of computing systems:

“[. . . ] in many practical deployment scenarios, particularly mo-
bile, performance is the new correctness.” 1

Reasoning about performance is hard:

Large input spaces, measurement and testing becomes difficult.

Behavior dependent on interplay between software and hardware,
can be machine dependent.

Usage profiles may be uncertain, performance analysis done at
design time may not be sufficient.

1Mark Harman and Peter O’Hearn. “From Start-ups to Scale-ups: Opportunities
and Open Problems for Static and Dynamic Program Analysis”. In: SCAM. 2018.
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Performance requirements at runtime

Amazon Web Services
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Performance self-adaptation

Objective: Design systems that adapt themselves to changing
environments while meeting desired performance-based service-level
agreements (throughput, response time, utilization).

Three main activities:

1 monitor the system
execution;

2 continuously update a
model of the system;

3 trigger reconfigurations
when required.

ExecutionEstimation

Monitoring Analysis

System Model

Planning

MAPE-K control loop
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Performance self-adaptation

Objective: Design systems that adapt themselves to changing
environments while meeting desired performance-based service-level
agreements (throughput, response time, utilization)

Three main activities:

1 monitor the system
execution;

2 continuously update a
model of the system;

3 trigger reconfigurations
when required.

Three main difficulties:

1 non-intrusive monitoring
infrastructure;

2 efficient and accurate
predictive models;

3 effective and robust
planner.
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Efficient performance models

We build on queuing networks, an
established class of performance
models for computing systems.

Need to convince ICPE audience?

Varsha Apte’s workshop was
yesterday. . .
Kishor Trivedi speaks tomorrow. . .
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Queuing networks

M0

M1

M2

<μ0,s0=∞>

<μ1,s1>

<μ2,s2>

<p01>

<p02>

A load balancing system

Exponentially distributed service times—can be relaxed;2

single class of users—multiple classes later;
multiple servers.

2Matthias Kowal et al. “Scaling Size and Parameter Spaces in Variability-Aware
Software Performance Models”. In: ASE. 2015.
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Queuing networks for self-adaptation?

Queuing networks enjoy efficient analysis techniques
(e.g., BCMP theorem), but:

In general, each parameterization requires a distinct analysis —
large cost when exploring large parameter spaces.

Our contribution:
Efficient parametric analysis of queuing networks.

Analytical results assume time-homogeneous networks, i.e.,
parameters do not vary with time — adaptation requires changing
the system, hence the parameters of its model.

Most analytical results available for the steady-state regime —
adaptation might need to change parameters at all time points.

Our contribution:
Approximate queuing network analysis based on fluid models.
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Parametric analysis of queuing networks

Consider a queuing network with probability matrix P, vector of
exogenous arrivals λ, and service rates µ.
Consider concrete as well as symbolic parameters.
Solve for stationary average performance indices using a
computer algebra system.3

P =


0.0 p∗1,2 p∗1,3 0.0
0.0 0.0 0.0 1.0
0.0 0.0 0.0 1.0
0.5 0.0 0.0 0.0

 λ =


λ∗1
0.0
0.0
0.1

 µ =


1.5
2.0
3.0
µ∗4



3Matthias Kowal, Ina Schaefer, and Mirco Tribastone. “Family-Based Performance
Analysis of Variant-Rich Software Systems”. In: FASE. 2014.
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Parametric analysis of queuing networks

Consider a queuing network with probability matrix P, vector of
exogenous arrivals λ, and service rates µ.
Consider concrete as well as symbolic parameters.
Solve for stationary average performance indices using a
computer algebra system.4

AQL = − 20λ∗1 + 1
80λ∗1 + 60p∗

1,2 + 60p∗
1,3 − 116

−
p∗

1,2(20λ∗1 + 1)

4(21p∗
1,2 + 20p∗

1,3 + 20λ∗1p∗
1,2 − 40)

−
10λ∗1p∗

1,2 + 10λ∗1p∗
1,3 + 1

20µ∗
4p∗

1,2 − 40µ∗
4 + 20µ∗

4p∗
1,3 + 40λ∗1p∗

1,2 + 40λ∗1p∗
1,3 + 4

−
p∗

1,3(20λ∗1 + 1)

4(30p∗
1,2 + 31p∗

1,3 + 20λ∗1p∗
1,2 − 60)

4Matthias Kowal, Ina Schaefer, and Mirco Tribastone. “Family-Based Performance
Analysis of Variant-Rich Software Systems”. In: FASE. 2014.
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Numerical vs symbolic analysis

Variables Runtimes (s)

Nodes p m g SYM NUM NUM/SYM PC

4 1 0 0 0.011 0.049 4.47 0.545
4 0 1 0 0.004 0.043 10.78 0.185
4 0 0 1 0.009 0.045 4.92 0.190
4 1 1 1 0.011 0.046 4.13 0.214
4 2 2 2 0.014 0.049 3.60 0.319
4 4 4 4 0.020 0.049 2.43 0.310

24 1 0 0 0.011 0.066 5.96 1.141
24 0 1 0 0.004 0.063 14.60 1.124
24 0 0 1 0.011 0.067 6.29 1.152
24 1 1 1 0.013 0.068 5.04 1.244
24 2 2 2 0.016 0.068 4.31 1.100
24 0 6 0 0.007 0.065 9.94 1.004
24 4 4 4 0.099 0.070 0.70 1.904
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Numerical vs symbolic analysis

Variables Runtimes (s)

Nodes p m g SYM NUM NUM/SYM PC

142 1 0 0 0.016 6.540 397.34 5.425
142 0 1 0 0.005 8.107 1664.28 4.908
142 0 0 1 0.015 10.808 726.41 4.836
142 1 1 1 0.017 10.069 601.51 5.113
142 2 2 2 0.019 10.052 526.50 4.936
142 0 6 0 0.007 7.802 1191.79 5.137
142 4 4 4 0.026 10.985 429.83 4.942

302 1 0 0 0.019 19.186 1007.95 11.026
302 0 1 0 0.006 13.680 2292.46 11.192
302 0 0 1 0.018 13.399 728.73 11.050
302 1 1 1 0.021 19.520 909.12 11.591
302 2 2 2 0.024 19.459 820.30 11.214
302 0 6 0 0.006 13.896 2258.21 11.089
302 4 4 4 0.030 14.879 495.06 11.718
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Queuing networks for self-adaptation?

Queuing networks enjoy efficient analysis techniques
(e.g., BCMP theorem), but:

In general, each parameterization requires a distinct analysis —
large cost when exploring large parameter spaces.

Our contribution:
Efficient parametric analysis of queuing networks.

Analytical results assume time-homogeneous networks, i.e.,
parameters do not vary with time — adaptation requires changing
the system, hence the parameters of its model.

Most analytical results available for the steady-state regime —
adaptation might need to change parameters at all time points.

Our contribution:
Approximate queuing network analysis based on fluid models.
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Transient solutions for queuing networks?

Queuing network

M0

M1

M2

<μ0,s0=∞>

<μ1,s1>

<μ2,s2>

<p01>

<p02>

Forward (master) equations

π̇(2,0,0) = −2µ0π(2,0,0) + µ1π(1,1,0) + µ2π(1,0,1)

...

π̇(0,0,2) = −µ2π(0,0,2) + p0,2µ0π(1,0,1)

Underlying continuous-time Markov chain

2,0,0

1,0,1

1,1,0

0,0,2

0,2,0

0,1,1
2p0,1μ0 

μ1

μ2

μ1

μ2

p0,2μ0
p0,1μ0

p0,2μ0

p0,1μ0

μ1

μ2

2p0,2μ0 

State: < X0, X1, X2  >
s1=s2=1

State explosion

Number of states is exponential!
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Transient solutions for queuing networks?

Queuing network

M0

M1

M2

<μ0,s0=∞>

<μ1,s1>

<μ2,s2>

<p01>

<p02>

Forward (master) equations

π̇(2,0,0) = −2µ0π(2,0,0) + µ1π(1,1,0) + µ2π(1,0,1)

...

π̇(0,0,2) = −µ2π(0,0,2) + p0,2µ0π(1,0,1)

Underlying continuous-time Markov chain

2,0,0

1,0,1

1,1,0

0,0,2

0,2,0

0,1,1
2p0,1μ0 

μ1

μ2

μ1

μ2

p0,2μ0
p0,1μ0

p0,2μ0

p0,1μ0

μ1

μ2

2p0,2μ0 

State: < X0, X1, X2  >
s1=s2=1

Clients States Transitions

2 6 71
10 66 220
20 231 840
40 861 3280
80 3321 12960
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Markov population processes

M0

M1

M2

<μ0,s0=∞>

<μ1,s1>

<μ2,s2>

<p01>

<p02>

2,0,0

1,1,0

1,0,1

. . .

. . .

2p0,1µ0

2p0,2µ0

µ1

µ2

Q0 → Q1, p0,1µ0Q0

Q0 → Q2, p0,2µ0Q0

Q1 → Q0, µ1 min{Q1, s1}
Q2 → Q0, µ2 min{Q2, s2}

⇓

l1 = (−1,+1,0), f1(x) = p0,1µ0x0

l2 = (−1,0,−1), f2(x) = p0,2µ0x0

l3 = (+1,−1,0), f3(x) = µ1 min{x1, s1}
l4 = (+1,0,−1), f4(x) = µ2 min{x2, s2}

Jumps and rate functions
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Markov population processes

M0

M1

M2

<μ0,s0=∞>

<μ1,s1>

<μ2,s2>

<p01>

<p02>

Master Equation

π̇n(t) = −
∑

i

fi (n)πn(t) +

+
∑

i

fi (n − li )πn−li (t)

for all states n = (n0,n1,n2).

Q0 → Q1, p0,1µ0Q0

Q0 → Q2, p0,2µ0Q0

Q1 → Q0, µ1 min{Q1, s1}
Q2 → Q0, µ2 min{Q2, s2}

⇓

l1 = (−1,+1,0), f1(x) = p0,1µ0x0

l2 = (−1,0,−1), f2(x) = p0,2µ0x0

l3 = (+1,−1,0), f3(x) = µ1 min{x1, s1}
l4 = (+1,0,−1), f4(x) = µ2 min{x2, s2}

Jumps and rate functions
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Equations for the average

Master equation

π̇n(t) = −
∑

i

fi(n)πn(t) +
∑

i

fi(n − li)πn−li (t), for all states n.

M0

M1

M2

<μ0,s0=∞>

<μ1,s1>

<μ2,s2>

<p01>

<p02>

l1 = (−1,+1,0), f1(x) = p0,1µ0x0

l2 = (−1,0,−1), f2(x) = p0,2µ0x0

l3 = (+1,−1,0), f3(x) = µ1 min{x1, s1}
l4 = (+1,0,−1), f4(x) = µ2 min{x2, s2}

Call X (t) = (X0(t),X1(t),X2(t))
the queue length process.
The true equations for the
average queue lengths are:

˙E[X ](t) =
∑

i

liE
[
fi
(
X (t)

)]
Problem: equations are not
closed!
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Approximate equations for the average

True equations

˙E[X ](t) =
∑

i

liE
[
fi
(
X (t)

)]
l1 = (−1,+1,0), f1(x) = p0,1µ0x0

l2 = (−1,0,−1), f2(x) = p0,2µ0x0

l3 = (+1,−1,0), f3(x) = µ1 min{x1, s1}
l4 = (+1,0,−1), f4(x) = µ2 min{x2, s2}

˙E[X0](t) = −p0,1µ0E[X0](t)− p0,2µ0E[X0](t)
+E [µ1 min{X1(t), s1}] + E [µ2 min{X2(t), s2}]

˙E[X1](t) = +p0,1µ0E[X0](t)− E [µ1 min{X1(t), s1}]
˙E[X2](t) = +p0,2µ0E[X0](t)− E [µ2 min{X2(t), s2}]

How to close the equations? E[min{X ,Y}] ≈ min{E[X ],E[Y ]}
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Approximate equations for the average

True equations

˙E[X ](t) =
∑

i

liE
[
fi
(
X (t)

)]
l1 = (−1,+1,0), f1(x) = p0,1µ0x0

l2 = (−1,0,−1), f2(x) = p0,2µ0x0

l3 = (+1,−1,0), f3(x) = µ1 min{x1, s1}
l4 = (+1,0,−1), f4(x) = µ2 min{x2, s2}

Fluid Approximation

Ẋ0(t) = −p0,1µ0X0(t)− p0,2µ0X0(t)
+µ1 min{X1(t), s1}+ µ2 min{X2(t), s2}

Ẋ1(t) = +p0,1µ0X0(t)− µ1 min{X1(t), s1}
Ẋ2(t) = +p0,2µ0X0(t)− µ2 min{X2(t), s2}

How to close the equations? E[min{X ,Y}] ≈ min{E[X ],E[Y ]}
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Another interpretation: fluid limits

Markov population process

l1 = (−1,+1,0), f1(x) = p0,1µ0x0

l2 = (−1,0,−1), f2(x) = p0,2µ0x0

l3 = (+1,−1,0), f3(x) = µ1 min{x1,K s1}
l4 = (+1,0,−1), f4(x) = µ2 min{x2,K s2}

CTMC family

X 1(0) = (Q0,Q1,Q2)

X 2(0) = 2(Q0,Q1,Q2)

. . .

X K (0) = K (Q0,Q1,Q2)

Fix some initial condition (Q0,Q1,Q2)

Consider Markov chains with increasing clients as well as servers
In the limit as K goes to infinity one sample path of X K (t)/K will
converge to the fluid equations5

5T. G. Kurtz. “Solutions of ordinary differential equations as limits of pure Markov
processes”. In: J. Appl. Prob. (1970).
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Fluid approximation of queuing networks

Let 1, . . . ,N be the queuing stations;

let P = (pi,j)1≤i,j≤N be the routing probability matrix;

let s1, . . . , sN be the server multiplicities;

let µ1, . . . , µN be the service rates.

The fluid approximation is given by6

Ẋi(t) = −µi min{Xi(t), si}+
∑

j

pj,iµj min{Xj(t), sj}, i = 1, . . . ,N.

It can be also defined for time-varying parameters:

Ẋi(t) = −µi(t) min{Xi(t), si(t)}+
∑

j

pj,i(t)µj(t) min{Xj(t), sj(t)}

6Mirco Tribastone. “A Fluid Model for Layered Queueing Networks”. In: IEEE
Trans. Software Eng. (2013).
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Mean approximation accuracy
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Fluid limit accuracy
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Comparison between a sample path of the CTMC and the fluid model
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Interlude: ERODE session

https://sysma.imtlucca.it/tools/erode/

L. Cardelli, M. Tschaikowski, M. Tribastone, and A. Vandin. “ERODE: A tool for the
evaluation and reduction of ordinary differential equations,” TACAS’17.
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Running example: HAT architecture

C2

p01

p02

LB

C1HAT

s1 signal

s2 signal

queue length probe

W p signal

In house developed web application
It resembles CPU intensive behaviour
Dispatcher (i.e., LB) and Computation Node (i.e., C1, C2)
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Model validation
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Model validation

0 20 40 60 80 100 120
W (#Concurrent Users)

0

1

2

3

4

5

6

7

T
h

ro
u

g
h

p
u

t 
(r

e
q

/s
)

Measured
ODE

(a) System throughput

0 20 40 60 80 100 120
W (#Concurrent Users)

0

1

2

3

4

5

6

R
e

s
p

o
n

s
e

 t
im

e
 (

s
)

Measured
ODE

(b) System response time

Incerto and Tribastone (IMT) Model-based performance self-adaptation ICPE’19 30 / 76



Performance self-adaptation

Objective: Design systems that adapt themselves to changing
environments while meeting desired performance-based service-level
agreements (throughput, response time, utilization)

Three main activities:

1 monitor the system
execution;

2 continuously update a
model of the system;

3 trigger reconfigurations
when required.

Three main difficulties:

1 non-intrusive monitoring
infrastructure;

2 efficient and accurate
predictive models;

3 effective and robust
planner.
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A Performance-driven MAPE-K control loop

Performance
ViolationsAdaptation Engine

Adaptation Space
Specification

Planning

QN code Transient fluid
approximation

Performance
Indices

Analysis

Constraints
Specifications

Constraints 
Analysis Engine

Runtime
QN Model

Runtime System
Monitoring

Monitoring
λ P z

Parameters Set

μi Cxi

Adaptation 
 Actions

Execution

Actions Execution

Knowledge

Estimation

Parameters
Estimator

An MAPE-K framework based on fluid QN
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Symbolic performance adaptation

Idea: Encode performance-driven adaptation as a satisfiability
modulo theories (SMT) problem.7

Goal: Query an SMT solver for a feasible assignment of the
system parameters needed to satisfy QoS requirements or getting
a formal proof of its non-existence.
We rely on a combination of:

queuing networks: quantitative model to represent QoS attributes
of the system;
symbolic analysis: represent all possible system configuration as
a set of nonlinear real constraints;
SMT: devise feasible system configurations.

7Emilio Incerto, Mirco Tribastone, and Catia Trubiani. “Symbolic Performance
Adaptation”. In: SEAMS. 2016.
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Preliminaries: Satisfiability Modulo Theory

Satisfiability Modulo Theory8 checks the satisfiability of logical
formulas over one ore more theory, i.e., if there exists an
assignment or real number satisfying

3x + 2y − z ≥ 4 ∧ x ≥ 0 ∧ y ≥ 0

We interpret the symbolic expressions as a set of constraints that
the parametric values have to satisfy
We augment them with further constraints representing the QoS
requirements Q

Exploiting the Non-Linear Real Arithmetic theory NRA we
encode this problem as an SMT problem suitable to devise the set
of feasible parameters satisfying Q

8Clark Barrett et al. “Handbook of Satisfiability: Volume 185 Frontiers in Artificial
Intelligence and Applications”. In: ed. by A. Biere et al. IOS Press, 2009.
Chap. Satisfiability Modulo Theories.
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The SMT adaptation problem

M be the symbolic solution of the QN
Q be a set of QoS requirements
D be a set of domain assumptions
R be a set of resource constraints

The QoS-based adaptation is turned into the satisfiability problem:

Find an assignment of the variables for modelM that ensures
Q subjected to constraints D ∧R.

Q := {T0 ≥ C/2}
D := {C = 350}

R :=
{
∀i , j ∈ S.

∑
k∈S

pi,k = 1.0∧

0 ≤ pi,j ≤ 1.0∧1 ≤ si ≤ 40 ∧ 0.02 ≤ 1
µi
≤ 10

}
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Case study

QN model for a three-tier system9

Control objective

Rs = C/T1 ≤ 1 C ∈ [1,304], Z = 0.

9Bhuvan Urgaonkar et al. “An analytical model for multi-tier internet services and
its applications”. In: SIGMETRICS. 2005.
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Case study: SMT problem formulation

Q := (T1 ≥ C) ∧ ∀i ∈ S.
(
(Ui ≤ 1.0 ∧ Ui ≥ 0.6) ∨ Ui = 0.0

)
D ∧R := (Z = 0) ∧R1 ∧R2

R1 := ∀i , j ∈ S.
(
0.0 ≤ pi,j ≤ 1.0) ∧ ∀i ∈ S.

∑
j∈S

pi,j = 1.0

R2 := ∀i ∈ S.
(
(1.0 ≤ si ≤ 40.0) ∧ (0.06 ≤ 1

µi
≤ 10.0)

)
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Case study: numerical results

50 100 150 200 250 300

Number of clients

0.8

0.85

0.9

0.95

1

R
e

s
p

o
n

s
e

 T
im

e
 (

s
)

Response Time
QoS Requirement

50 100 150 200 250 300

Number of clients

0.5

0.6

0.7

0.8

0.9

1

U
ti
liz

a
ti
o

n
 (

%
)

Max U
i

Min U
i

QoS Requirement

Incerto and Tribastone (IMT) Model-based performance self-adaptation ICPE’19 39 / 76



Case study: numerical results
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Discussion

Advantages:

Computation pushed at design-time phase for the symbolic solution

Adaptation step is performed in a few ms even for realistic fully
parametric three-tier models

The solver may return an unsatisfiability result, meaning that there
is no configurations satisfying the requirements

Limitations:

Single class QNs model

Closed form QNs model for the symbolic solution

Steady state analysis

Scalability of the SMT solver
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Self-adaptation via model predictive control

Idea: Encode performance-driven self-adaptation as a model
predictive control (MPC) problem10

Goals: Get optimal assignments of the system parameters
needed for steering an application toward a desired operating
point (e.g., throughput)

fully automated
multiple adaptation knobs
considers actual run-time conditions
involves the solution of mixed integer nonlinear programs (MINLPs)

As a main technical result we formally translate the naive MINLP
MPC formulation in a mixed integer quadratic programming
(MIQP) one

10Emilio Incerto, Mirco Tribastone, and Catia Trubiani. “Software Performance
Self-Adaptation through Efficient Model Predictive Control”. In: ASE’17.

Incerto and Tribastone (IMT) Model-based performance self-adaptation ICPE’19 43 / 76



MPC philosophy

The main idea is to encode the discrete time version the ODE
model as constraints of the optimization problem
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Naive MPC formulation

min
µ,s,p,x

H−1∑
k=0

M∑
i=1

wi,k (mi(k)− r̂i(k))2 + wsi,k ∆s2
i,k

s.t.
xi(k + 1) = (−µi(k) min{xi(k), si(k)}+

+
∑
j∈S

pj,i(k)µj(k) min{xj(k), sj(k)})∆t + xi(k)

si(k) ∈ {si , si + 1, . . . , si}

0 ≤ pi,j(k) ≤ 1,
∑
j∈S

pi,j(k) = 1

for 1 ≤ i ≤ M,0 ≤ k ≤ H − 1,
r̂i(k) set point
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MIP formulation

We reformulate the system relying on “virtual” adaptation knobs
which are related to the original ones
min{xi(k), si(k)} = αi(k) can be encoded through standard MIP
techniques11

µi(k)αi(k) can be encoded by adding slack variables γi(k) and
proper bound constraints

µi(k)αi(k) = µ̂iαi(k) + γi(k)↔ µi(k) = µ̂i +
γi(k)

αi(k){
µi(k) ≤ µ̄i ↔ γi(k) ≤ (µ̄i − µ̂i)αi(k)

µi(k) ≥ µi ↔ γi(k) ≥ (µi − µ̂i)αi(k)

The new linear time system is

ẋi(t) = γi(t) +
∑
j∈S

(−γj(t) + ζj,i(t)), i , j ∈ S

11www.gurobi.com/documentation/8.1/refman/constraints.html
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MIP formulation

Theorem
Denoting by S = {µ∗i (k),p∗i,j(k), s∗i (k), x∗i (k)} an optimal solution of the
non-linear adaptation problem, there exists an MPC problem based on
the MIP formulation with linear dynamics such that its optimal solution
S ′ = {γ′i (k), x ′i (k), ζ ′i,j(k), s′i (k)} satisfies:

µ∗i (k) =

−
γ′i (k)

x ′i (k)∆t if x ′i (k) ≤ s′i (k)

− γ′i (k)

s′i (k)∆t if x ′i (k) > s′i (k)

p∗i,j(k) =
γ′i (k)− ζ ′i,j(k)

γ′i (k)
, s∗i (k) = s′i (k),

for all k = 0, . . . ,H − 1.
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Evaluation

We evaluate the effectiveness and the scalability of the MPC
approach on a real system

an in-house developed web application
By studying two non trivial adaptation scenarios

hardware degradation
workload fluctuation

Scalability comparison with probabilistic model checking
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HAT architecture
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Numerical evaluation: hardware degradation
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Numerical evaluation: workload fluctuation
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Numerical evaluation: workload fluctuation
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MPC scalability evaluation

Comparison against MDP (TO: timeout after 120 s)12

MIP Markov Decision Processes

W Runtime(s) Runtime(s) # States # Transitions

80 0.0037 71 3 018 789 334 732 743
90 0.0036 87 3 805 074 421 958 628

100 0.0040 TO 4 682 259 519 272 613
110 0.0038 TO 5 650 344 626 674 698
120 0.0041 TO 6 709 329 744 164 883

12Marta Kwiatkowska, Gethin Norman, and David Parker. “PRISM 4.0: Verification
of Probabilistic Real-time Systems”. In: CAV. 2011.
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Conclusion

Contribution: a model predictive control based self-adaptive
approach to continuously meet performance requirements
Advantages:

fully automated
efficient
it works during the transient regime
the proposed linearization technique can be straightforwardly
applied to more expressive models (e.g., Petri Nets)

Limitations:
single-class model
QN parametrization
throughput and queue length QoS requirements only
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Adaptation of co-located applications

Meeting performance targets of co-located applications (e.g.,
virtualized cloud environments) is challenging

Scaling techniques:
Vertical scaling: assigns resource shares on each individual
machine
Horizontal scaling: chooses the number of virtual machines
employed

State-of-the-art approaches apply vertical and horizontal scaling
in an isolated fashion (i.e., symmetric load balancing)

Ineffective when machines have different hardware characteristics
(e.g., software aging or hardware degradation)
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Adaptation of co-located applications

A model based approach:

Multi-class QN as the quantitative model
Analysed by means of QNs fluid approximation
Combined horizontal and vertical scaling formulated as an MPC
quadratic programming problem

Main technical results:13

A multi-class model that enables an accurate representation of the
capped allocation paradigm
The specification of latency-based requirements
Extension of [ASE’17]

13Emilio Incerto, Mirco Tribastone, and Catia Trubiani. “Combined Vertical and
Horizontal Autoscaling Through Model Predictive Control”. In: EURO-PAR. 2018.

Incerto and Tribastone (IMT) Model-based performance self-adaptation ICPE’19 57 / 76



The multi-class QN model

Multi class QN model of load balancer with
two co-located applications
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The multi-class fluid QN model

For each station i and each class c we define the ODE:

ẋi,c(t) = −µi,c min{xi,c(t), αi,c(t)si}+∑
j∈S

pj,i,c(t)µj,c min{xj,c(t), αj,c(t)sj}

with αi,c(t) ≥ 0,
∑

c∈C αi,c(t) ≤ 1.

We define the following metrics:
Class-c throughput at station i

Ti,c(t) = µi,c min{xi,c(t), αi,c(t)si}

Instantaneous response time

Ri,c(t) =
xi,c(t)
Ti,c(t)
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MPC QP formulation

In [ASE’17] we employed MPC for performance runtime
adaptation for single class queuing networks

We showed how it could be formulated as a series of
mixed-integer quadratic program (MIQP)

Here we extend this formulation for controlling the multi-class QN
under the cap allocation sharing

A positive side effect: quadratic programming (QP) formulation
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MPC QP formulation

The QP formulation is possible due to the following:

min{xi,c(t), αi,c(t)si} = γi,c(t)

m

γi,c(t) ≥ 0, γi,c(t) ≤ si

γi,c(t) ≤ xi,c(t)
∑
c∈C

γi,c(t) ≤ si

with i ∈ S, c ∈ C

then if γ∗i,c(t) 6= x∗i,c(t) the real actuator can be computed as

α∗i,c(t) =
γ∗i,c(t)

si
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Numerical evaluation: system description

We show that the combined vertical and horizontal adaptation can
efficiently meet performance targets when either of the two
techniques alone cannot

We used the OpenVz hypervisor while horizontal scaling has been
enabled through a NodeJS-based load balancer

For emulating a multi class scenario, we ran two instances of the
same load balanced HAT deployment consisting of two OpenVz
virtual machines each
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Numerical evaluation: system description
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Numerical evaluation: hardware degradation

From a symmetric
set-up, inject a
degradation event such
that service rate at node
LM1 becomes 3 times
smaller

Objective: set points R1 = 2 s and T2 = 50 r/s

Workload of 200 users and think times with average 1 s

Control approaches evaluated in two separate 20-minute-long
sessions
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Numerical evaluation: hardware degradation
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(d) Vertical & horizontal scaling

Response time distribution without (a,b) and with (c,d) degradation
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Numerical evaluation: hardware degradation
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(d) Vertical & horizontal scaling

Class-2 average throughput with (a,b) and without (c,d) degradation
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Discussion

Contribution: an efficient approach for performance adaptation of
distributed co-located applications.

The main novelties lay:

The combined usage of vertical and horizontal scaling techniques

A multi-class fluid model for co-located applications under a capped
resources allocation scheduler.

Future works:

modeling response time distribution instead of its average only

include resource contention policies for network, memory, I/O

consider more expressive resource schedulers and system
performance interactions
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Moving horizon estimation of service demands

Well calibrated model parameters are necessary for computing
accurate predictions

When dealing with queuing networks service demands are
fundamental

The estimation need to be performed:

continuously
non intrusively

MHE: We formulate the estimation problem as a quadratic
program solved according to the moving horizon paradigm.14

14Emilio Incerto, Annalisa Napolitano, and Mirco Tribastone. “Moving Horizon
Estimation of Service Demands in Queuing Networks”. In: MASCOTS. 2018.
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Estimator formulation

minimize
x̄ ,T

H∑
k=1

M∑
i=1

(x i(k)− x̃i(k))2,

subject to:

x i(k + 1) = x i(k)− Ti(k) +
M∑

j=1

pj,iTj(k)

x i(0) = x̃i(0), 1 ≤ i ≤ M,0 ≤ k ≤ H − 1.

µ∗i :=

∑H−1
k=0 T ∗i (k)∑H−1

k=0 min {x∗i (k), si}
, 1 ≤ i ≤ M.
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Numerical evaluation

Accuracy comparison between the queue length maximum likelihood
estimation (QMLE)16 and our approach (MHE).

x(0) = (3,0,0) x(0) = (9,0,0) x(0) = (12,0,0) x(0) = (19,0,0) x(0) = (26,0,0)

H = 2347,U2 ≈ 0.10 H = 688,U2 ≈ 0.30 H = 521,U2 ≈ 0.40 H = 353,U2 ≈ 0.60 H = 262,U2 ≈ 0.80

K QMLE MHE QMLE MHE QMLE MHE QMLE MHE QMLE MHE

1 0.52 9.25 ± 1.03 1.37 9.63 ± 1.06 2.07 7.90 ± 1.01 3.40 6.58 ± 0.81 5.15 4.89 ± 0.69
2 448.30 4.13 ± 0.62 126.54 3.93 ± 0.58 67.18 4.20 ± 0.63 5.46 3.90 ± 0.56 2.33 3.59 ± 0.54
5 184.02 2.26 ± 0.33 60.41 3.02 ± 0.43 42.09 2.76 ± 0.38 8.78 2.07 ± 0.33 1.65 2.06 ± 0.34

10 92.29 1.65 ± 0.27 30.53 1.99 ± 0.31 23.18 1.82 ± 0.31 9.50 2.09 ± 0.30 3.89 1.50 ± 0.24
20 45.18 1.37 ± 0.21 15.01 1.13 ± 0.19 11.32 1.36 ± 0.18 6.41 1.36 ± 0.19 5.81 1.17 ± 0.18
50 18.67 0.74 ± 0.10 6.08 0.81 ± 0.14 4.57 0.78 ± 0.11 2.72 0.81 ± 0.12 5.17 0.73 ± 0.10

16Weikun Wang et al. “Maximum likelihood estimation of closed queueing network
demands from queue length data”. In: ICPE. 2016.
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Numerical evaluation

MHE scalability analysis

Errors Runtimes (s)

M min avg 95-th max min avg 95-th max

5 1.60 2.53 4.12 4.50 0.03 0.03 0.03 0.04
10 1.63 2.46 3.28 3.56 0.08 0.08 0.09 0.09
15 1.59 2.63 3.48 4.56 0.18 0.18 0.19 0.19
20 1.62 2.52 3.19 3.82 0.34 0.38 0.48 0.52
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Conclusion

We defined optimization methods based on fluid queuing networks
enabling fast adaptation reactions under strict time constraints.

Through an extensive numerical validation we have shown how
complex multi-dimensional adaptation actions can be computed at
a small computational cost in real-world scenarios.

We developed the first transient estimation technique for service
demands of QNs enabling effective and efficient parameter
estimation in a minimally intrusive manner.
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Future work

The definition of model predictive control problem based on the
fluid interpretation of layered queuing networks.

The definition of performance-driven self-adaptation approaches
considering higher-order statistics of the controlled quantities,
e.g., variance

The development of minimally intrusive estimation techniques for
multi-class QNs with non-exponentially distributed service times
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Further related work
A number of results on self-adaptation by means of formal quantitative
verification.17 18

Runtime use of discrete time Markov chains for reliability of self-adaptive
systems.19

Control-theoretic approaches for learning and updating a linear model from
measurements and controlling it via a single parameter.20

Control of software performance via service-rate adaption using a queuing
model.21

17Carlo Ghezzi et al. “Managing non-functional uncertainty via model-driven
adaptivity”. In: ICSE’13.

18A. Filieri, G. Tamburrelli, and C. Ghezzi. “Supporting Self-adaptation via
Quantitative Verification and Sensitivity Analysis at Run Time”. In: IEEE Trans.
Software Eng. (2016).

19Antonio Filieri et al. “Self-adaptive software meets control theory: A preliminary
approach supporting reliability requirements”. In: ASE’11.

20Antonio Filieri, Henry Hoffmann, and Martina Maggio. “Automated Design of
Self-adaptive Software with Control-theoretical Formal Guarantees”. In: ICSE’14.

21Davide Arcelli et al. “Control theory for model-based performance-driven software
adaptation”. In: QoSA’15.
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