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Motivation
Cloud Optimization: 
Provider’s View https://www.nature.com/articles/d41586-018-06610-y



The Cost-Performance Trade-off
(Simplified)

• Adding more resources improves 
performance (up to a point)


• But it increases cost (pay-as-you-go) or 
energy consumption (on premise)


• Reducing resources decreases costs 
but also performance (up to a point)

Performance

Resources/Cost

KPI / SLA / QoS

Objective: find the minimal amount of 
resources that meets desired key 

performance indicators



Elasticity in the Cloud
Ability to dynamically scale resources based on demand 

Horizontal Scaling

Add/remove instances to 
distrubute load

Add/remove more power (CPU, 
memory, etc.) to existing instances

Vertical Scaling



Autoscalers
Cloud techonology to achieve elasticity 



Autoscalers
Limitations

Proper configuration
Requires careful configuration of thresholds, 
cooldown periods, and scaling policies to 
avoid unnecessary scaling actions

Latency
There may be some latency in scaling 
actions, which could impact performance 
during rapid spikes in demand

Complexity Complex, multi-tiered applications, can add 
operational complexity



Autoscalers
State of the art in industry

Target performance metric

Autoscaler Predictive Utilization Throughput Response time Automatic rules

AWS Tracking Scaling x ✔ ✔ ✔ ✔

AWS Predictive Scaling ✔ ✔ ✔ v x

Azure Predictive Autoscale ✔ ✔ x x x

GCP MIG Autoscaling x ✔ x x x

GCP Predictive Autoscaling ✔ ✔ x x x

Oracle Autoscale x ✔ ✔ x x



Autoscalers
State of the art in academia

Black-box modeling
Regression  
M. Wajahat, A. Karve, A. Kochut, and A. Gandhi, “Mlscale: A machine learning based application-agnostic autoscaler,” 
Sustain. Comput.: Inform. Sys., vol. 22, pp. 287–299, 2019.


Reinforcement Learning  
W. Iqbal, M. N. Dailey, and D. Carrera, “Unsupervised learning of dynamic resource provisioning policies for cloud-hosted 
multitier web applications,” IEEE Sys. J., vol. 10, no. 4, pp. 1435–1446, 2015.


Deep Learning 
C. Meng, J. Tong, M. Pan, and Y. Yu, “HRA: An intelligent holistic resource autoscaling framework for multi-service 
applications,” in IEEE Int. Conf. Web Services, 2022, pp. 129–139. 
 
Classification 
H. Qiu, S. S. Banerjee, S. Jha, Z. T. Kalbarczyk, and R. K. Iyer, “FIRM: An intelligent fine-grained resource management 
framework for SLO-Oriented microservices,” in Proc. 14th USENIX Symp. Operating Sys. Des. Implementation, 2020.

Limitation: may be expensive (up to terabytes of training data reported)



Autoscalers
State of the art in academia

White-box modeling
M/M/G queues 
V.Tadakamalla and D.A. Menascè, “Autonomic Elasticity Control for Multi-Server Queues Under Generic Workload Surges 
in Cloud Environments,” IEEE Transactions Cloud Computing, vol. 10, no. 2, pp. 984–995, 2022. 


Analytic models  
L. Funari, L. Petrucci, and A. Detti, “Storage-saving scheduling policies for clusters running containers,” IEEE 
Transactions Cloud Computing, 2021. 


“Flat” queueing networks 
J. Tong, M. Wei, M. Pan, and Y. Yu, “A holistic auto-scaling algorithm for multi-service applications based on balanced 
queuing network,” in IEEE Int. Conf. Web Services. 
 
Layered queuing networks 
A.U.Gias, G.Casale, and M.Woodside, “Atom: Model-driven autoscaling for microservices,” in IEEE 39th Int. Conf. Distrib. 
Comput. Syst., 2019.


And our work presented today… 



Layered Queuing 
Networks (LQNs)
• Fork/join behaviour

• Synchronous and asynchronous calls

• Simultaneous resource possession 

(nesting/layering)

• Complex server logic

G. Franks, T. Al-Omari, M. Woodside, O. Das, and S. Derisavi, “Enhanced modeling and solution of layered queueing networks,” IEEE 
Trans. Soft. Eng., vol. 35, no. 2, pp. 148–161, 2008.




Fluid LQN

M. Tribastone, “A fluid model for layered queueing networks,” IEEE Trans. Soft. Eng., vol. 39, no. 6, pp. 744–756, 2012

Waizmann, Tabea, and Mirco Tribastone. "DiffLQN: Differential Equation Analysis of Layered Queuing Networks." ACM/SPEC on 
International Conference on Performance Engineering. 2016.

Avoids state space explosion, number of equations proportial to number of LQN components, asymptotically 
exact in the limit of large population sizes (appropriate for cloud-like scenarios)



Autoscaling via Feedback Control

Performance target

Optimization-based controller

Resource assignment

Cloud application

Application & resource metrics

Emilio Incerto, Mirco Tribastone, Catia Trubiani. Software performance self-adaptation through efficient model predictive control. ASE 2017 
Emilio Incerto, Mirco Tribastone, Catia Trubiani. Combined Vertical and Horizontal Autoscaling through Model Predictive Control. Euro-Par 2018 
Emilio Incerto, Roberto Pizziol, Mirco Tribastone. μOpt: An Efficient Optimal Autoscaler for Microservice Applications. ACSOS 2023 (best paper award)

Optimization-based  Control

Learning Models
Emilio Incerto, Annalisa Napolitano, Mirco Tribastone. Statistical Learning of Markov Chains of Programs. MASCOTS 2020 
Giulio Garbi, Emilio Incerto, Mirco Tribastone. Learning Queuing Networks by Recurrent Neural Networks. ICPE 2020 
Giulio Garbi, Emilio Incerto, Mirco Tribastone. μP: A Development Framework for Predicting Performance of Microservices by Design. CLOUD 2023


Improving Fluid Approximation
Nicolas Gast, Luca Bortolussi, Mirco Tribastone. Size expansions of mean field approximation: Transient and steady-state analysis. PERFORMACE 2019 
Francesca Randone, Luca Bortolussi, Mirco Tribastone. Refining Mean-field Approximations by Dynamic State Truncation. SIGMETRICS 2021 
Francesca Randone, Luca Bortolussi, Mirco Tribastone. Jump Longer to Jump Less: Improving Dynamic Boundary Projection with h-Scaling. QEST 2022



μOpt: Optimal Autoscaler for Microservice Applications

Maximize performance while minimizing cost
Objective Function

Concurrency levels and CPU cores
Decision variables

Steady-state condition of fluid model 
Application load W 
Throughput and response time threshold 
Maximum concurrency and core allocation

Constraints

Solution
By smooth approximation of nondifferentiable constraints



μOpt: ACME Air Case Study
Open-loop Validation



μOpt: ACME Air Case Study
Closed-loop Validation

Comparison with ATOM, an LQN-based 
autoscaler using black-box optimization 
with genetic algoritms 
 
Evaluation on (re-scaled) Twitter trace 
 
U.Gias, G.Casale, and M.Woodside, “ATOM: 
Model-driven autoscaling for microservices,” 
in 39th Int. Conf. Distrib. Comput. Syst., 2019 Throughput  

improvement Core savings



Autoscaling via Feedback Control

Performance target

Optimization-based controller

Resource assignment

Cloud application

Application & resource metrics

Emilio Incerto, Mirco Tribastone, Catia Trubiani. Software performance self-adaptation through efficient model predictive control. ASE 2017 
Emilio Incerto, Mirco Tribastone, Catia Trubiani. Combined Vertical and Horizontal Autoscaling through Model Predictive Control. Euro-Par 2018 
Emilio Incerto, Roberto Pizziol, Mirco Tribastone. μOpt: An Efficient Optimal Autoscaler for Microservice Applications. ACSOS 2023 (best paper award)

Optimization-based  Control

Learning Models
Emilio Incerto, Annalisa Napolitano, Mirco Tribastone. Statistical Learning of Markov Chains of Programs. MASCOTS 2020 
Giulio Garbi, Emilio Incerto, Mirco Tribastone. Learning Queuing Networks by Recurrent Neural Networks. ICPE 2020 
Giulio Garbi, Emilio Incerto, Mirco Tribastone. μP: A Development Framework for Predicting Performance of Microservices by Design. CLOUD 2023


Improving Fluid Approximation
Nicolas Gast, Luca Bortolussi, Mirco Tribastone. Size expansions of mean field approximation: Transient and steady-state analysis. PERFORMACE 2019 
Francesca Randone, Luca Bortolussi, Mirco Tribastone. Refining Mean-field Approximations by Dynamic State Truncation. SIGMETRICS 2021 
Francesca Randone, Luca Bortolussi, Mirco Tribastone. Jump Longer to Jump Less: Improving Dynamic Boundary Projection with h-Scaling. QEST 2022



μP: Predicting Performance of Microservices by Design
Motivation

This is an instance of a more general problem: how to learn appropriate abstractions of 
software systems for performance engineering models



μP: Predicting Performance of Microservices by Design
Approach



μP: Predicting Performance of Microservices by Design
Static Analysis

From code annotation to LQN model structure with “holes” (parameter values) to be 
filled by dynamic analysis with single-user explorative runs



μP: Predicting Performance of Microservices by Design
Validation: Increasing Load



μP: Predicting Performance of Microservices by Design
Validation: Vertical Scaling (add more workers)



μP: Predicting Performance of Microservices by Design
Validation: Horizontal Scaling (add more instances)



Ongoing Work: Serverless Computing
Growing interest from academia and industry



Serverless Computing
FaaS: Function-as-a-Service

Benefits
Developers focus on code 


Deployment and scaling is the platform’s 
responsibility


Billing based on actual number of executed 
instances (billable instances) 

Limitations
Developers must manually specify CPU and 
memory requirements, and maximum concurrency 
level for each function instance (2nd gen.)


Cold starts may negatively impact performance 


Performance optimization by trial and error https://cloud.google.com/run/docs/tips/general#tuning-concurrency

https://cloud.google.com/run/docs/tips/general#tuning-concurrency


WasteLess 
Model-driven Optimization for FaaS



WasteLess: Validation Results
Simple three-tier app

ACME Air (GCR Porting)
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Limitations and Future Work

Performance target

Optimization-based controller

Resource assignment

Cloud application

Application & resource metrics

Model-based optimal autoscalers can be effective


Difficulty in comparing techniques developed in the literature (competition? more benchmarks?) 


Modeling assumptions may be difficult to hold in practice: 
full availability of the application under study; homogeneity of the platform on which the 
application runs; ability to isolate the application to execute calibration runs; …


Right-level of abstraction is difficult to find (art more than science?): Techniques to derive model 
abstractions automatically (from code, bytecode, etc.)? Using model simplification methods?
Francesca Randone, Luca Bortolussi, Emilio Incerto, Mirco Tribastone:. Inference of Probabilistic Programs with Moment-Matching Gaussian Mixtures. POPL 2024
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