SCUOLA

IMT ALTI STUDI

LUCCA

Software Performance
Modeling for the Cloud

ASMTA/EPEW 2024

Mirco Tribastone Venice, 14 June 2024

Which of the following initiatives are you planning
to make progress on in the next year?

Optimizing existing use of cloud

(cost savings) 62%

Progressingon a
cloud-first strategy

Migrating more workloads

to cloud 44%

Move from on-premises
software to SaaS

Better financial reporting
on cloud costs

| |
Automated policies
Manage software licenses
in the cloud

CIOUd Opti m ization: Expand public clouds we use

Expand use of public cloud
laaS/Paas services

U Se r ,S Vi ew Expand use of containers 27%

Implement CI/CD in the cloud

42%

37%

32%

Enabling IT to broker

cloud services 18%

Expand use of cloud MSPs

Expand use of cloud o
marketplaces 8

~9
o~

N=750
Source: Flexera 2023 State of the Cloud Report

Top cloud initiatives by cloud usage for all organizations

Light Moderate

Optimizing our existing use of cloud 42nd 4 1st
(cost savings)

Migrating more workloads to cloud | L] < 15t [INGTTY < 1st

Implementing automated policies for 39% 4 2nd

cloud governance

m m Better financial reporting on cloud o
Motivation Y m—
Progressing on a cloud-first strategy 46% < 3rd

| []] M . f) . t S S
Cloud Optimization: foung fom on remises o525 T «>¢ NS < nd

38%

- Expanding use of containers 33%

User’s View
Managing software licenses used in
the cloud

Expanding use of public cloud 31%
laaS/Paas services

38% 37%

35%

Implementing continuous 27%

0
integration/delivery in cloud Zu

Expanding public clouds we use 24% 17%

Enabling Central IT to broker multiple
cloud services

22% 16%

9,000 terawatt hours (TWh)

— ENERGY FORECAST 20.9% of projected”
Widely cited forecasts suggest that the electricity demand

_ total electricity demand of information and
communications technology (ICT) will
accelerate in the 2020s, and that data
centres will take a larger slice.

M Networks (wireless and wired)
B Production of ICT

Consumer devices (televisions,
computers, mobile phones)

M Data centres

Motivation

Cloud Optimization: '

2010 2012 2014 2016 2018 2020 2022 2024 2026 2028 2030

| , VI
P rOVI d e r S I eW https://www.nature.com/articles/d41586-018-06610-y

Europe:an. @ EN Q Search
Commission

Energy, Climate change, Environment

Energy

‘ Home ‘ Topics ‘ Data and analysis \/ | Studies \/ ‘ Publications ’ Consultations | Energy explained ’ Events ‘ News ’

Home > News > Commission adopts EU-wide scheme for rating sustainability of data centres

NEWS ANNOUNCEMENT | 15 March 2024 | Directorate-General for Energy | 2 min read

Commission adopts EU-wide scheme for rating sustainability
of data centres

The Cost-Performance Trade-off
(Simplified)

* Adding more resources improves
performance (up to a point)

Performance

 But it increases cost (pay-as-you-go) or
energy consumption (on premise) KPI / SLA / QoS

 Reducing resources decreases costs
but also performance (up to a point)

Resources/Cost

Elasticity in the Cloud

Ability to dynamically scale resources based on demand

Add/remove instances to
distrubute load

Add/remove more power (CPU,
memory, etc.) to existing instances

¢ |
el | |

aW§ Q Search in this guide Contact Us English ¥ Create an AWS Account

> Documentation » Amazon EC2

Amazon EC2 Auto
Scaling

User Guide

What is Amazon EC2 Auto
Scaling?

Set up

Get started

Launch templates
Launch configurations
Auto Scaling groups

Scale your group

Choose your scaling method

Set scaling limits

Set the default instance

warmup
Manual scaling

Scheduled scaling

Google Cloud

Compute Engine

Monitor

» Monitor logs

» Monitor resources

Organize resources using labels

Scale

+ Autoscale groups of VMs
About autoscaling groups of VMs
~ Create and manage autoscalers
Scale based on CPU utilization
Scale based on predictions

Scale based on load balancing

serving capacity

Scale based on Monitoring
metrics

Scale based on schedules

Use an autoscaling policy with

multiple signals

Manage autoscalers

Understand autoscaler decisions

Overview

Overview

Autoscalers

Cloud techonology to achieve elasticity

-

Auto Scaling > User Guide ackl F

Predictive scaling for Amazon EC2
Auto Scaling

PDF | RSS

Predictive scaling works by analyzing historical load data to detect daily or weekly
patterns in traffic flows. It uses this information to forecast future capacity needs so
Amazon EC2 Auto Scaling can proactively increase the capacity of your Auto Scaling
group to match the anticipated load.

Predictive scaling is well suited for situations where you have:

o Cyclical traffic, such as high use of resources during regular business hours and
low use of resources during evenings and weekends

» Recurring on-and-off workload patterns, such as batch processing, testing, or
periodic data analysis

» Applications that take a long time to initialize, causing a noticeable latency
impact on application performance during scale-out events

()
Solutions Products Pricing Resources Q Docs Support @ English ¥
Guides Reference Samples Resources
Compute Engine > Documentation > Guides Was this helpful? 5 ca
Scaling based on predictions O - Send feedback

You can configure autoscaling for a managed instance group (MIG) to automatically add or remove virtual
machine (VM) instances based on increases or decreases in load. However, if your application takes a few
minutes or more to initialize, adding instances in response to real-time changes might not increase your
application's capacity quickly enough. For example, if there's a large increase in load (like when users first wake
up in the morning), some users might experience delays while your application is initializing on new instances.

You can use predictive autoscaling to improve response times for applications with long initialization times and
whose workloads vary predictably with daily or weekly cycles.

When you enable predictive autoscaling, Compute Engine forecasts future load based on your MIG's history
and scales out the MIG in advance of predicted load, so that new instances are ready to serve when the load
arrives. Without predictive autoscaling, an autoscaler can only scale a group reactively, based on observed
changes in load in real time. With predictive autoscaling enabled, the autoscaler works with real-time data as
well as with historical data to cover both the current and forecasted load. For more information, see How
predictive autoscaling works and Checking if predictive autoscaling is suitable for your workload.

Azure

Products v

Architecture v

| Learn Discover ¥ Product documentation > Development languages ¥ Topics

Develop v Learn Azure v Troubleshooting Resources v

N¢ Filter by title

‘ Learn / Azure / Azure Monitor / ® Va

Azure Monitor Documentation

> Overview

> Getting started

> Monitoring scenarios

> Data sources

> Data collection

> Data platform

> Insights
> Visualize
> Analyze
v Respond

> Alerts

v AutoScale

Overview

[V W T B RS

Use predictive autoscale to scale
out before load demands in virtual
machine scale sets

Article + 04/09/2023 « 9 contributors & Feedback

In this article

Predictive autoscale offerings
Enable predictive autoscale or forecast only with the Azure portal
Enable using an Azure Resource Manager template

Frequently asked questions

Show 2 more

Oracle Cloud Infrastructure Documentation

Autoscaling
Oracle Cloud Agent

Moving Compute
Resources to a
Different Compartment

Infrastructure
Maintenance

Compute Metrics and
Monitoring

Compute NVMe
Performance

Microsoft Licensing on
Oracle Cloud
Infrastructure

Updating the Linux
iSCSI Service to
Restart Automatically

Autoscaling

Autoscaling lets you automatically adjust the number or the lifecycle state of compute instances
in an instance pool. This helps you provide consistent performance for your end users during
periods of high demand, and helps you reduce your costs during periods of low demand.

You can apply the following types of autoscaling to an instance pool:

¢ Metric-based autoscaling: An autoscaling action is triggered when a performance metric
meets or exceeds a threshold.

¢ Schedule-based autoscaling: Autoscaling events take place at the specific times that you
schedule.

Autoscaling is supported for virtual machine (VM) and bare metal instance pools that use
standard, dense I/O, and GPU shapes.

Autoscalers

Limitations

Requires careful configuration of thresholds,
cooldown periods, and scaling policies to
avolid unnecessary scaling actions

There may be some latency in scaling
actions, which could impact performance
during rapid spikes in demand

Complex, multi-tiered applications, can add
operational complexity

Autoscalers
State of the art in industry

Target performance metric

Autoscaler Predictive Utilization Throughput Response time Automatic rules
AWS Tracking Scaling X
AWS Predictive Scaling v v v \Y; X
Azure Predictive Autoscale v o/ X X X
GCP MIG Autoscaling X v X X X
GCP Predictive Autoscaling v v X X X
Oracle Autoscale X v / X X

Autoscalers

State of the art in academia

Regression
M. Wajahat, A. Karve, A. Kochut, and A. Gandhi, “Mlscale: A machine learning based application-agnostic autoscaler,”

Sustain. Comput.: Inform. Sys., vol. 22, pp. 287-299, 2019.

Reinforcement Learning
W. Igbal, M. N. Dailey, and D. Carrera, “Unsupervised learning of dynamic resource provisioning policies for cloud-hosted

multitier web applications,” IEEE Sys. J., vol. 10, no. 4, pp. 1435-1446, 2015.

Deep Learning
C. Meng, J. Tong, M. Pan, and Y. Yu, “HRA: An intelligent holistic resource autoscaling framework for multi-service

applications,” in IEEE Int. Conf. Web Services, 2022, pp. 129-139.

Classification
H. Qiu, S. S. Banerjee, S. Jha, Z. T. Kalbarczyk, and R. K. lyer, “FIRM: An intelligent fine-grained resource management

framework for SLO-Oriented microservices,” in Proc. 14th USENIX Symp. Operating Sys. Des. Implementation, 2020.

Limitation: may be expensive (up to terabytes of training data reported)

Autoscalers

State of the art in academia

M/M/G queues
V.Tadakamalla and D.A. Menasce, “Autonomic Elasticity Control for Multi-Server Queues Under Generic Workload Surges

in Cloud Environments,” IEEE Transactions Cloud Computing, vol. 10, no. 2, pp. 984-995, 2022.

Analytic models
L. Funari, L. Petrucci, and A. Detti, “Storage-saving scheduling policies for clusters running containers,” IEEE

Transactions Cloud Computing, 2021.

“Flat” queueing networks
J. Tong, M. Wel, M. Pan, and Y. Yu, “A holistic auto-scaling algorithm for multi-service applications based on balanced

queuing network,” in IEEE Int. Conf. Web Services.

Layered queuing networks
A.U.Gias, G.Casale, and M.Woodside, “Atom: Model-driven autoscaling for microservices,” in IEEE 39th Int. Conf. Distrib.

Comput. Syst., 2019.

And our work presented today...

Layered Queuing [[==T]_
Networks (LQNSs) et

Y

* Fork/join behaviour oeennee 7/ >earch / --------- ;

» Synchronous and asynchronous calls § l . ;

» Simultaneous resource possession | P (+) pﬂl
(nesting/layering) S 3 g

» Complex server logic TS mey

G. Franks, T. Al-Omari, M. Woodside, O. Das, and S. Derisavi, “Enhanced modeling and solution of layered queueing networks,” IEEE
Trans. Soft. Eng., vol. 35, no. 2, pp. 148-161, 2008.

Fluid LQN

/ / Browse / / .
jjb — —Tb (.73) -+ TC1 (x) -+ TC2 (ZE‘) Client {m }z = 1

Y

iy—ss = Ty(x) = Toy () — Ty (2)] S o

i = Ty() = Tons () e
Te, = Pey Tms(2) — T, (2) [ecl;] [ecl;] R e
ey = (1= pe) Toms () — T, (22) A

Avoids state space explosion, number of equations proportial to number of LQN components, asymptotically
exact in the limit of large population sizes (appropriate for cloud-like scenarios)

M. Tribastone, “A fluid model for layered queueing networks,” IEEE Trans. Soft. Eng., vol. 39, no. 6, pp. 744-756, 2012

Waizmann, Tabea, and Mirco Tribastone. "DiffLQN: Differential Equation Analysis of Layered Queuing Networks." ACM/SPEC on
International Conference on Performance Engineering. 2016.

Autoscaling via Feedback Control

Optimization-based controller Cloud application
IE?nX Y fr(s,m,z,0) — (1 —)fr-(s,m)

S.t.

Performance target S - W Resource assignment
| =

— o+

Application & resource metrics

Emilio Incerto, Mirco Tribastone, Catia Trubiani. Software performance self-adaptation through efficient model predictive control. ASE 2017
Emilio Incerto, Mirco Tribastone, Catia Trubiani. Combined Vertical and Horizontal Autoscaling through Model Predictive Control. Euro-Par 2018
Emilio Incerto, Roberto Pizziol, Mirco Tribastone. pyOpt: An Efficient Optimal Autoscaler for Microservice Applications. ACSOS 2023 (best paper award)

—

Emilio Incerto, Annalisa Napolitano, Mirco Tribastone. Statistical Learning of Markov Chains of Programs. MASCOTS 2020
Giulio Garbi, Emilio Incerto, Mirco Tribastone. Learning Queuing Networks by Recurrent Neural Networks. ICPE 2020
Giulio Garbi, Emilio Incerto, Mirco Tribastone. pyP: A Development Framework for Predicting Performance of Microservices by Design. CLOUD 2023

Nicolas Gast, Luca Bortolussi, Mirco Tribastone. Size expansions of mean field approximation: Transient and steady-state analysis. PERFORMACE 2019
Francesca Randone, Luca Bortolussi, Mirco Tribastone. Refining Mean-field Approximations by Dynamic State Truncation. SIGMETRICS 2021
Francesca Randone, Luca Bortolussi, Mirco Tribastone. Jump Longer to Jump Less: Improving Dynamic Boundary Projection with h-Scaling. QEST 2022

HOpt: Optimal Autoscaler for Microservice Applications

max ¢ fr(s,m,xz,0) — (1 —v)fr(s,m)

s, m

Maximize performance while minimizing cost .t

Concurrency levels and CPU cores b=

Steady-state condition of fluid model z

Application load W T(s,m,z,0)>T
Throughput and response time threshold o
Maximum concurrency and core allocation R(s,m,z,0) <R
0<s,<5s, Vpe€ Proc
By smooth approximation of nondifferentiable constraints 0<m; <m; VteTask

uOpt: ACME Air Case Study

Open-loop Validation

—— + ++

Login Validate
[103.7 ms] / [52.3 ms] 5 | (A) Throughput
Auth {m>} Validateld {m3} S T +
Proc4 g 2
<S;> L + 4
g 1.5
A 5 LT T
/ View Update ke | |
[92.8 ms] [124.6 ms] a 05 F
(1) ViewProfile {mg4} UpdateProfile {msg} ,]
~ 8 — I
1 (B) Response time
Browse [L Query Proc9 .
[263.2 ms] [56.8 ms] <Sg> X 6 n
. . Proc6 bl
Client|{m1} QueryFlights {mg} @ O _
(1) L ar |
Book / Update = :
e oca) 2 [101.5 ms]/ [27.5 ms] 2, °
(¢)) T
<Sg>) Boothdht {m7} UpdateMiles {meg} o |
L

i H -

- 2w 0
Cancel GetReward rrocll o 0 A
/ [72.6 ms] | / /1) / [31.8 ms] / oY a «é\'\éa\ .
}

CancelBooking {mg}/ / etRewardMiles {m10

uOpt: ACME Air Case Study

Closed-loop Validation

| 40+]
60! .60 1 - A
N (7)) | | e 30
2 40 540! . 3
- O 220 |
= * I =
20 20 | S 1ol |
|—,u0pt - |—,u0pt ‘
0 | —Users| 0 | - [-ATOM 0 | | | -ATOM|
0 500 1000 1500 2000 0 500 1000 1500 2000 0 500 1000 1500 2000
Time(s) Time(s) Time(s)
- - 15]] x ' 2
Comparison with ATOM, an LQN-based | 250 | .]
autoscaler using black-box optimization) _ : 1.5 i
- - = 7))
with genetic algoritms adi 1 3200 :
Q-15 | E 1 ;
" = *
Evaluation on (re-scaled) Twitter trace 25| @™ 1 05
=
. L -39 ' 100 | T - N
U.Gias, G.Casale, and M.Woodside, “ATOM: 45l | | | _ T 0t 1
Model-driven autoscaling for microservices,” AT AS ATOM HOpt
in 39th Int. Conf. Distrib. Comput. Syst., 2019 Throughput

. Core savings
Improvement

Autoscaling via Feedback Control

Optimization-based controller Cloud application
IE?nX Y fr(s,m,z,0) — (1 —)fr-(s,m)

S.t.

Performance target S - W Resource assignment
| =

— o+

Application & resource metrics

Emilio Incerto, Mirco Tribastone, Catia Trubiani. Software performance self-adaptation through efficient model predictive control. ASE 2017
Emilio Incerto, Mirco Tribastone, Catia Trubiani. Combined Vertical and Horizontal Autoscaling through Model Predictive Control. Euro-Par 2018
Emilio Incerto, Roberto Pizziol, Mirco Tribastone. pyOpt: An Efficient Optimal Autoscaler for Microservice Applications. ACSOS 2023 (best paper award)

Emilio Incerto, Annalisa Napolitano, Mirco Tribastone. Statistical Learning of Markov Chains of Programs. MASCOTS 2020
Giulio Garbi, Emilio Incerto, Mirco Tribastone. Learning Queuing Networks by Recurrent Neural Networks. ICPE 2020
Giulio Garbi, Emilio Incerto, Mirco Tribastone. pyP: A Development Framework for Predicting Performance of Microservices by Design. CLOUD 2023

—

Nicolas Gast, Luca Bortolussi, Mirco Tribastone. Size expansions of mean field approximation: Transient and steady-state analysis. PERFORMACE 2019
Francesca Randone, Luca Bortolussi, Mirco Tribastone. Refining Mean-field Approximations by Dynamic State Truncation. SIGMETRICS 2021
Francesca Randone, Luca Bortolussi, Mirco Tribastone. Jump Longer to Jump Less: Improving Dynamic Boundary Projection with h-Scaling. QEST 2022

MP: Predicting Performance of Microservices by Design
Motivation

Thus, four key challenges emerge for performance model-

Performance Engineering for Microservices: ing for microservices:

Research Challenges and Directions
e Adopting performance modeling to shifted use cases

Robert Heinrich,* André van Hoorn,? Holger Knoche,? Fei Li,*
Lucy Ellen Lwakatare,® Claus Pahl,s Stefan Schulte,” Johannes Wettinger? e Finding appropriate modeling abstractions

! Karlsruhe Institute of Technology, Germany .
2 University of Stuttgart, Germany e Automated extraction of performance models
% Kiel University, Germany
* Siemens AG, Austria

® University of Oulu, Finland e Learning of infrastructure behavior and integration into
°® Free University of Bozen-Bolzano, Italy
" TU Wien, Austria performance models

This is an instance of a more general problem: how to learn appropriate abstractions of
software systems for performance engineering models

MP: Predicting Performance of Microservices by Design
Approach

MS Registry | class A extends MS {
+ pOOlSize: int 4 """ + «EP» reso]ve(comm) 2 pOOlSize = 3 replicas = 1,’
+ replicas: int + «EP» register(comm) 3 @EP ("/epA/") public void epA (comm) {
+ port: int 4 bfuture = comm.call ("B", "/epB/", comm.params);
+ registry: URI HPFuture<T> 5 bstr = bfuture.get () ;

: . : dg = comm.query("db", "gry", "tr",

: | + «override» T get (’

+ main(args) v get() "\"_id\":\""+comm.params ["word"]+"\"}");
0..| «annotation» 7 gstr = dg.get () ;
java.util.concurrent. EP 3 ans = bstr + "=>" + gstr[0];
Future<T> + path: String 9 comm. respond (ans) ; }

10 }
Communication

+ params: Map<String, String> class B extends MS {

11
12 poolSize = 2; replicas = 1;
+ call(dest_ms, path, cparams): yPFuture<String> = @EP ("/epB/") public void epB(comm)
+ respond(body) 14 hw = "hello" + "world";
+ query(db_name, gry_name, coll_name, gry_txt): 15 comm. respond (hw) ; }
1

uPFuture <Document[]>

MP: Predicting Performance of Microservices by Design
Static Analysis

@f : - = [> eon |

[C TR PRUL) @f é E E?]
ommunication.ca pPFuture.get ? | 3
A.epA db.qry - 2 comp_1 4][?] ¢ ~ e
N "nf 4 J | U "”? / y local ¢ [reg_4[?] reg_6 [?]
N | R line 14 ! |]]
H P'T:teugi'get local \ 7 / resp_15 |- v v
y line 8 é A ! .
~ I'nf S J N 7 /| |Communication.respond B <1> {2} | : comm_4 comm_6
4 T N | A line 15 :
Communication.query — L) .
tion. !
db.ary Commumlci:: egn respond / exchange 417) /
. |Inle 6 J | L J Net <1> {0} E comp._8 [?]
5 v
é /[___ary ["1 f] | T resp_9
db <1> {0} A <1> {5}

From code annotation to LQN model structure with “holes” (parameter values) to be
filled by dynamic analysis with single-user explorative runs

MP: Predicting Performance of Microservices by Design
Validation: Increasing Load

AcmeAir JPet Store
T | | —10 _I | | | | | | | [@—10
40 - R 80 .
—~30 = 607 >
2 § 2 §
= 20 ® > 5 — 40 ® S 5
” < "
10 - | 0% 20 ® &® & @p O &)
R R’ R R + |
i t+ 7 P T L + T
0 — (Q\| < (00 © (Q\| < o0 © (Q\| O O — (Q\| < 0 © (q\| < o0 © (q\| O
IR IR LR
Clients Clients
Tea Store TMS
| — |10 300F — T T — @10
200 = i 32
m + . 5200 1 .
a & oC L X oC
LB ® ® ® ® ® | 0 L® % ® @ © F T+,
- &N < © © o < 0 © o - &N < ©© © o < O O
Clients Clients

Legend:’ X Ground truth response time O Predicted response time —+ Response time prediction error

ign

by Des

ICroservices

Pawa

Performance of M
Vertical Scaling (add more workers)

ing

Predict

Validation

uP

10

0% JO4ID | Y

JPet Store

1

10

w
0
X |
m X
_ xR
_ R
m + &
_ &
n w {9
N o o
o o
uonezi|in

0 1018 | Y

Acme Air

~—

H

D
Q)

=
m ®
m &
| L
m + &
_ +
wH (g D
N o o
o (@)
uonezijiN

0% JOJID | Y

TMS

W%
Z
&

0.5

To)
N
o

uonez||in

0 1018 | Y

X9 o

I

| s

10

)

- 78
______________________________.(;Z)___{_)___{é)___(&)___;z___:/__
¢ i

N 0 0 O Q
0 0 90 W
S S S &8

S ¢
B

Tea Store
()
X
Q
,§Q)
S
k_

1

0.75 |

0
o o«
o

-

oneZinn

Bottleneck shift

Response time prediction error

|

Utilization threshold

Legend: < Ground truth utilization of B © Predicted utilization of B

ign

% JoJie | Y % 410418 1Y

10

by Des

X 1 Q\,\ .

ICroservices

JPet Store
R
g @
K-p-
TMS
O
>/

/\ H
|

|

Bottleneck shift

1

| | |
To NN To RETe To RN To B To!
N o N N o ©
o o o o

uonezinn uolneziin

0% JOLID | YH 9% 10418 |YH

o
—

10

X

K9 o .
¢, 9 u
T T e R

)
e
>
G
©
7
X
L

PaVal
Y

X 1 m«\mvm«\

Performance of M
Horizontal Scaling (add more instances)

Acme Air
QO
<V
p_

Tea Store

ing

b e e e e e e e e e e e e e e e e e o e e g

|

o L ~—

| | | | |
- 0 1V W 1 W0 0
i~ o S ~ e S
o o o o

uonezinn uoneziin

Predict

LP:
Validation

Legend: < Ground truth utilization of B © Predicted utilization of B ---- Utilization threshold + Response time prediction error

Ongoing Work: Serverless Computing

Growing interest from academia and industry

[gTg SERVERLESS ARCHITECTURE MARKET SIZE 2023 T0 2033 (USD BILLION] x

110 $ 106.12
99

88
11
66
89
44
33
22
11

<

$43.44

$ 34.75
$27.79

$22.23

$11.38 §14.22 S11.18

S2023 2024 | 2025 | 2026 W 2027 | 2028 [2020 N 2030 | 2031 J 2032 J 2033

Source: https://www.precedenceresearch.com/serverless-architecture-market

Serverless Computing

FaaS: Function-as-a-Service

Developers focus on code

Deployment and scaling is the platform’s
responsibility

Billing based on actual number of executed
instances (billable instances)

Limitations

Developers must manually specify CPU and
memory requirements, and maximum concurrency
level for each function instance (2nd gen.)

Cold starts may negatively impact performance

Performance optimization by trial and error

Tune concurrency for your service

The number of concurrent requests that each instance can serve can be limited by the technology stack
and the use of shared resources such as variables and database connections.

To optimize your service for maximum stable concurrency:

1.

2.

Optimize your service performance.

Set your expected level of concurrency support in any code-level concurrency configuration. Not all
technology stacks require such a setting.

Deploy your service.

Set Cloud Run concurrency for your service equal or less than any code-level configuration. If there is
no code-level configuration, use your expected concurrency.

Use load testing (4 tools that support a configurable concurrency. You need to confirm that your
service remains stable under expected load and concurrency.

If the service does poorly, go to step 1 to improve the service or step 2 to reduce the concurrency. If
the service does well, go back to step 2 and increase the concurrency.

Continue iterating until you find the maximum stable concurrency.

https://cloud.google.com/run/docs/tips/general#tuning-concurrency

https://cloud.google.com/run/docs/tips/general#tuning-concurrency

Wasteless

Model-driven Optimization for FaaS

/ {WasteLess}

ﬁ L& hoce Fluid LQN
~ R
Faa$S Application r Optimal CPU Cores &
7~ N - 1> , > ‘ 5 Concurrency Configuration
Profiling
—>Cf(n\))_ 1 a"’\—' ~ o ‘ o’
CJ?:P—-’@——’@ —I" Sﬁ% Concurrency/Memory Mapping >
(T D— |
N - / | - lc >. T)
Developers | \ Optimal Memory
\ / Configuration
~ —_ ~ \ W, /

Wasteless: Validation Results

200 w w T | | | |
—No-concurrency K
" --Wasteless 0.8 ! i
s $150 GCR ' !
4 C I
% ‘:\(‘l | Google Cloud Run,, : % 06" : .
)= £100 o |
A e »(£ D > E— :
PN | q(‘m\) Cf(:)“ CJ/%\\)) | rs 04 |
S N fi f2 f3 | c=3 50+t 0.2 : —No-concurrency |
Users) m / - WasteLess
! GCR
0 O_ 1 | 1 | | T o
0 0 5 10 15 20 25 30
Time(m) Time(s)

I
QEJ 35 ! _ 80
|
|
. L I i 60 - | -
~ 30 | n 1
) 25 - i 8 40 i
2 S
S~ A < S 20 o 20 - .
/ . > D >CE D S | | B —
(n) (n) \ o 15+ | ‘ - L 0 .
[I | | ~
Login Validateld ()] ‘ 1 ~—
| | - 10 - | | 4 @ 20 i
e
|) > ! g s 9 B
f > ﬁn) ﬁn) | S | © 40r ‘ l
) I
SN, | g . e 0 =
ﬁ e»al | ViewProfile UpdateProfile | o) ‘ E -60
° =) < b : |
Cams!) | ol :] 50 L
o, - 3
: | N)Cf\) | -10 = ! = (GCR—W L)*100 (NoConc—W L)+100
! n S (GCR-W L)x100 . (NoConc—W L)*100 A= — B: NoConc
Users | | A B
: GCR : NoConc
L QueryFlights |
I 1
| > ﬁ'ln) J{i\) | GCR ‘ Wasteless —Auth GCR Wasteless Total Billable Instances GCR Wasteless _C:}:jateld
| Cr\) BookFlights UpdateMiles 1600 Validateld | I\ A ViewProfile
() | J | ViewProfile 100 25 — UpdateProFile
| = —UpdateProFile | —/ P -
| Cance|BOOking | "'n\ 1 400 (/ ~ f UpdateM"es _g‘) “‘ | "“ Update.Mlles
E 1200 I BookFlights | @ 801 ‘ ® 20 g°°kF:'ghti.
\ GCP Cloud Run > n —CancelBooking | £ = ancelBooking
) y g | QueryFlights | & e LA 8uerthg:|:/|s |
1000 [f I ‘ Dall @ [f N etrewardMiles
N - GetRewardsMiles W = I\ | GetrewardMiles|| < g =15} / :
— -l N “’\ f [(] [0 [g
—————————————— = 800 \ ys d]
a /i 1 © > [l R \
[} " \ i \ — / [/
& 600 : \« @ 40 § 10 I / \ \
e 400 | — A2\ Y /) ' — | O //
| -4 N I [~ —F
| / O\ N —— o B] % \ ‘ 5 'y
200 / \/ \\\ / (\ — _-,v_x;‘ ;7 — 7 N— \ ,l/ .
P — 1 f , 0 * ‘ U l T
5 10 15 20 25 30 0 5 10 15 20 25 0 5 25

Time (m) Time (m)

Limitations and Future Work

Optimization-based controller Cloud application
IE?nX Y fr(s,m,z,0) — (1 —)fr-(s,m)

S.t.

Performance target S - W Resource assignment
| =
l

— o+

Application & resource metrics

Model-based optimal autoscalers can be effective

Difficulty in comparing techniques developed in the literature (competition”? more benchmarks?)

Modeling assumptions may be difficult to hold in practice:

full availability of the application under study; homogeneity of the platform on which the
application runs; abillity to isolate the application to execute calibration runs; ...

Right-level of abstraction is difficult to find (art more than science?): Techniques to derive model
abstractions automatically (from code, bytecode, etc.)? Using model simplification methods??

Francesca Randone, Luca Bortolussi, Emilio Incerto, Mirco Tribastone:. Inference of Probabilistic Programs with Moment-Matching Gaussian Mixtures. POPL 2024

Acknowledgements

 Emilio Incerto (main collaborator)
* |uca Bortolussi

* Giulio Garbl

* Nicolas Gast

* Roberto Pizziol

* Francesca Randone

* Gabriele Russo Russo

» (Catia Trubiani

e Tabea Waizmann

Finanziato
dall'Unione europea

NextGenerationEU

[taliadomani

PIANO NAZIONALE
DI RIPRESA E RESILIENZA

THE
Tuscany Health Ecosystem

Other References

 Luca Cardelli, Giuseppe Squillace, Mirco Tribastone, Max Tschaikowski, Andrea Vandin: Formal lumping of polynomial differential equations through
approximate equivalences. J. Log. Algebraic Methods Program. 134: 100876 (2023)

 Luca Cardelli, Radu Grosu, Kim Guldstrand Larsen, Mirco Tribastone, Max Tschaikowski, Andrea Vandin: Algorithmic Minimization of Uncertain Continuous-
Time Markov Chains. IEEE Trans. Autom. Control. 68(11): 6557-6572 (2023)

* Alexey Ovchinnikov, Isabel Cristina Pérez-Verona, Gleb Pogudin, Mirco Tribastone: CLUE: exact maximal reduction of kinetic models by constrained
lumping of differential equations. Bioinform. 37(12): 1732-1738 (2021)

« L Cardelli, M Tribastone, M Tschaikowski, A Vandin. Symbolic computation of differential equivalences. Theoretical Computer Science 777, 132-154

. Luca Cardelli, Mirco Tribastone, Max Tschaikowski, Andrea Vandin: Guaranteed Error Bounds on Approximate Model Abstractions Through Reachability
Analysis. QEST 2018: 104-121

. L Cardelli, IC Perez-Verona, M Tribastone, M Tschaikowski, A Vandin. Exact maximal reduction of stochastic reaction networks by species lumping.
Bioinformatics 37 (15), 2175-2182

 Luca Cardelli, Mirco Tribastone, Max Tschaikowski, Andrea Vandin: Efficient Syntax-Driven Lumping of Differential Equations. TACAS 2016

