
LUMPING AND EXPANDING REACTION NETWORKS 
MIRCO TRIBASTONE 
 

https://www.erode.eu/

CMSB 2023 

14 September 2023



https://www.erode.eu

REACTION NETWORKS
▸ Fundamental model of 

interaction in many natural 
and engineering sciences: 

▸ Biology 

▸ Chemistry  

▸ Computer Science 

▸ Epidemiology 

▸ …
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Fig. 6. Graphical representation, using ref. 36, of the Boolean model for
T-cell receptor signaling studied in refs. 37 and 38. Each node is a Boolean
variable, whereas a directed arc describes an influence represented by the
source variable appearing in the update function of the target variable. The
network has three inputs (nodes with no incoming arcs): CD8, CD45, and
the T-cell receptor TCRlig. Similar to ref. 38, we consider two variants with
and without the feedback loops Fyn ! PAGCsk and ZAP70 ! cCbl (dashed
arrows). Using the technique of ref. 38, we obtained a multivariate polyno-
mial ODE system of degree five. On this, we fixed an initial partition where
the input variables are singletons, ensuring that the largest backward equiv-
alence that refines this partition reveals nodes with equivalent dynamics for
any input. Nontrivial backward equivalence classes are represented with col-
ored nodes with the same background. The class {cCbl, LAT} is found only
when the feedback loops are active. In this case, they are simultaneously
subjected to the same influence by ZAP70. Indeed, backward equivalence
turns out to aggregate the ODEs of nodes with update functions that are
equal up to a renaming of nodes in the same equivalence class.

Here we consider the multivariate polynomial interpolation of
ref. 38. On a model of T-cell receptor signaling studied in refs.
37 and 38, backward equivalence reveals processes that exhibit
the same behavior because they are updated by functions that
are equal up to variables in the same equivalence class (Fig. 6,
and SI Appendix, Figs. S1 and S2 for further examples). From
the reduced model, we can exactly recover the original solu-
tion in terms of continuous signals in the [0, 1] interval. Instead,
forward equivalence leads to variables living in larger domains.
On this example, the maximal forward equivalence reduces the
ODE model, such that it is still possible to analyze full activa-
tion/deactivation of the downstream transcription factors CRE,
AP1, NFAT, and NFkB, which belong to the same equivalence
class (SI Appendix, Figs. S3 and S4).

Evolutionary Game Theory. The replicator equation is a well-
studied model for several natural, social, and economic systems
(42). It describes the dynamics of populations of individuals that
choose strategies with a rate of growth that depends on the com-
parison between an individual’s own payoff and the population’s
average. In its first formulation (43), the replicator equation con-
siders a state represented by the vector x = (x1, . . . , xn), where
xi denotes the probability of an individual choosing the i th strat-
egy, with 1  i  n . Its evolution is governed by the polynomial
ODE system

ẋi = xi

�
(Bx )

i
� x

T
Bx

�
, 1  i  n, [8]

where B is the n ⇥ n payoff matrix, together with an initial con-
dition, such that it represents an initial proportion of strategies
[i.e.,

P
n

i=1 xi(0) = 1]. Here, backward equivalence may detect
strategies chosen with the same frequency within the population.
For instance, given the following payoff matrix

B =

2

4
1 3 2
3 1 2
4 4 1

3

5,

backward equivalence relates x1 and x2.
Similar investigations can be made on variants of the replica-

tor equations that model evolutionary dynamics over networks
(44). Here, a vertex represents a player that can interact with its
neighbors only. In this context, the problem of network aggre-
gation has also been studied using graph lumpability, a criterion
that involves conditions on the (weighted) adjacency matrix of
the network as well as on the players’ payoff matrices (45). It is
related to backward equivalence in that it captures an equiva-
lence relation between players/vertices, such that any two equiv-
alent players choose any strategy with the same frequency at all
time points. Graph lumpability turns out to be a sufficient con-
dition for backward aggregation. For instance, let us consider a
network with four players playing two strategies characterized
by adjacency matrix A = (aij )1i,j4 and payoff matrices Bi ,
1  i  4 given by

A =

2
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Then, players 1 and 2 as well as players 3 and 4 have the
same ODE solutions, but this is not captured by an equiva-
lence relation in the sense of graph lumpability, since it requiresP

k2P
aik =

P
k2P

ajk for any two equivalent players i ,j and for
any equivalence class P of players. Clearly, this condition is not
satisfied by taking i = 1, j = 2, and P = {3, 4}.

Conclusion

We presented a technique to reduce polynomial ODE systems up
to an equivalence relation over its variables. Our method exactly
preserves observables of interest across the whole time course.
Hence, the reduced model can be used as an input to comple-
mentary techniques that sacrifice exactness, such as timescale
decomposition (46).

In the notable case where the model is a formal chemical RN,
the reduction preserves structure, in that the original reactions
are only subjected to renaming and merging. For other domain-
specific applications, such as rule-based systems, Boolean net-
works, payoff matrices, and so on, one would seek to directly
obtain reduced models of the corresponding nature induced by
a backward/forward equivalence. Technically, this does not seem
to be straightforward. For example, in the case of Boolean net-
works, forward equivalence yields a reduced ODE system where
each aggregated variable will take values in the continuous inter-
val [0,n], where n is the cardinality of the corresponding equiv-
alence class. Thus, in general, there is no Boolean network,
such that its polynomial ODE interpolation corresponds to an
aggregated ODE system up to forward equivalence because by
construction, each interpolated ODE variable takes values in
the interval [0, 1]. In this paper, we have privileged a domain-
agnostic view. We aim to address domain-specific challenges in
future work.
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MODELING DYNAMICS WITH REACTION NETWORKS

STOCHASTIC SYSTEM

Problem: No closed form solutions in general. Numerical solutions 
heavily affected by the number of species and reactions

▸ The chemical master 
equation 

▸ One state for each possible 
discrete configuration 

 

▸ Model is a continuous-time 
Markov chain (CTMC) 

▸ One equation for each state 
(solution is the probability 
of being in that state at any 
time point) 

(nS , nI , nR)
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DETERMINISTIC SYSTEM
▸ The deterministic rate 

equation 

▸ One ordinary differential 
equation (ODE) for each 
species 

▸ Polynomial ODEs (typically) 

▸ Solution can be interpreted 
as an approximation of the 
average CTMC dynamics 

Species

ReactionRate

Mean-field convergence
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LUMPING REACTION NETWORKS

ORIGINAL NETWORK REDUCED NETWORK

‣ Exact or approximate 

‣ Observable 
preserving 

‣ Automatic

5
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• Unifying approach that applies to both deterministic and stochastic 
interpretations of reaction networks  
[Cardelli et al., POPL 2016, LICS 2017, PNAS 2017, Bioinformatics 2020] 

• Extensions/variants for other nonlinearities (min, exp, trig., etc.), differential-
algebraic equations [Tognazzi et al., IEEE Trans. Aut. Contr. 2021] 

• Similarly applicable to discrete-time analogues  
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p1X1 + . . .+ pnXn
↵��! p1X1 + . . .+ pnXn +Xk

REACTANTS PRODUCTS

EQUATING POLYNOMIAL ODES AND REACTION NETWORKS
▸ Each monomial in the derivative is an edge of a (labelled) 

bipartite multigraph: a reaction

ẋk = . . .+ ↵
nY

i=1

xpi
i + . . .

Continuous vs Discrete
Stoichiometric 

coefficient “Reaction rate”

‣ Physical meaning not necessary, used only by lumping algorithm

Species

6
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LUMPING DIFFERENTIAL EQUATIONS/REACTION NETWORKS

▸ Partition (i.e., an equivalence) of variables/species such that 
each partition block can be associated with a single variable  
[Okino and Mavrovouniotis, 1998] 

▸ The lumped preserves the original dynamics:  

▸ Forward lumping preserves sums of the solutions 

▸ Backward lumping identifies blocks with the same solution 
(aka “synchronization” in other works) 

▸ Lumping is complementary to other techniques such as fast-slow 
decomposition (QE/QSSA) 

7
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FORWARD LUMPING AT A GLANCE

8

·x1 = − x1 + x2 − 3x1x3 + 4x4
·x2 = + x1 − x2 − 3x2x3 + 4x5
·x3 = − 3x1x3 + 4x4 − 3x2x3 + 4x5
·x4 = 3x1x3 − 4x4
·x5 = 3x2x3 − 4x5

ORIGINAL SYSTEM

·Y1 = − 3Y1Y2 + 4Y3
·Y2 = − 3Y1Y2 + 4Y3
·Y3 = + 3Y1Y2 − 4Y3

REDUCED SYSTEM

Y1 = x1 + x2
Y2 = x3
Y3 = x4 + x5
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BACKWARD LUMPING
▸ Identifies variables that have equal solution when starting 

with equal initial conditions 

9

REDUCED SYSTEMORIGINAL SYSTEM
·Y1 = − 3Y2

1 + 4Y2
·Y2 = + 3Y2

1 − 4Y2

·x1 = − 3x1x2 + 4x3
·x2 = − 3x1x2 + 4x3
·x3 = + 3x1x2 − 4x3

Y1 = x1 = x2
Y2 = x3

x1(0) = x2(0)

FORWARD AND BACKWARD LUMPING ARE NOT COMPARABLE

·x1 = − x2 + 1
·x2 = − x1

Forward does not  
imply backward

·x1 = − x1x2
·x2 = − x1x2

Backward does not  
imply forward
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FORWARD RATEFLUX NET STOICHIOMETRY

FORWARD LUMPING

▸ A partition of species is a forward equivalence if, for any two 
blocks            and any two species               in      it holds that    
 
 
for all multisets partners    

▸ Characterisation result  

▸ Backward lumping defined similarly 
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Ordinary differential equations (ODEs) with polynomial derivatives
are a fundamental tool for understanding the dynamics of systems
across many branches of science, but our ability to gain mecha-
nistic insight and effectively conduct numerical evaluations is crit-
ically hindered when dealing with large models. Here we propose
an aggregation technique that rests on two notions of equiva-
lence relating ODE variables whenever they have the same solu-
tion (backward criterion) or if a self-consistent system can be writ-
ten for describing the evolution of sums of variables in the same
equivalence class (forward criterion). A key feature of our proposal
is to encode a polynomial ODE system into a finitary structure akin
to a formal chemical reaction network. This enables the develop-
ment of a discrete algorithm to efficiently compute the largest
equivalence, building on approaches rooted in computer science
to minimize basic models of computation through iterative parti-
tion refinements. The physical interpretability of the aggregation
is shown on polynomial ODE systems for biochemical reaction net-
works, gene regulatory networks, and evolutionary game theory.

polynomial dynamical systems | aggregation | partition refinement

Several models in natural and engineering sciences can be
described as a system of ordinary differential equations

(ODEs) with polynomial derivatives. A frequent concern is the
treatment of highly dimensional ODEs because of their unintel-
ligibility as well as the numerical difficulties caused by the large
computational cost of the analysis. Reduction techniques based
on singular value decomposition and Krylov subspace methods
have proved effective in producing reduced models with small
approximation errors (1, 2). However, albeit advantageous for
numerical simulations, these transformations often lead to loss of
structure and physical interpretability. This is a major limitation
when the model is used for predictive purposes or for validat-
ing mechanistic assumptions (3, 4). An alternative is to aggregate
groups of variables into macrovariables, for which an ODE sys-
tem can be explicitly derived. This has been successfully pursued,
for instance, using domain-specific techniques in computational
systems biology, where detailed mechanistic mass action ODE
models of protein interaction networks may incur combinatorial
explosion of the state space (5–7).

Here we propose a generic, domain-agnostic aggregation
method for ODEs with polynomial derivatives of any degree
based on equivalence relations (i.e., partitions) over the ODE
variables. It can be seen as an instance of a family of techniques
that consider arbitrary linear transformations of the state space
studied for a long time across many disciplines, such as chemistry
(8), ecology (9), and control theory (1). In this context, checking
whether a generic linear transformation induces an exact aggre-
gation is well-understood. Instead, it has been frequently pointed
out that a major limitation concerns the automatic generation
of a candidate transformation (10–13). This drawback does not
allow one to unravel simpler dynamics from systems of realistic
size in practice.

By contrast, we develop an efficient method for computing the
largest equivalence, leading to the maximal aggregation of an
ODE system. This is achieved by means of a partition refinement
algorithm that iteratively splits an initial partition of variables
until a fixed point. The maximal aggregation can be obtained by
starting the algorithm with the trivial partition having all ODE

variables in a single block. Furthermore, the freedom in choosing
an arbitrary initial partition is instrumental to producing reduc-
tions that preserve the dynamics of desired original variables,
which are then not aggregated.

Mathematically, our approach is a generalization of well-
known equivalence relations for Markov chains named lumpa-
bility (14). Ordinary lumpability relates states that have the same
aggregate transition rate toward every equivalence class (thus, it
is a forward criterion); in exact lumpability, two equivalent states
have the same aggregate rate from every equivalence class (thus,
it is a backward criterion). In a conceptually similar spirit, we
define forward equivalence as a relation whereby each equiv-
alence class describes the evolution of the sum of ODE vari-
ables in the original model. Backward equivalence identifies vari-
ables that have the same solutions at all time points (hence, they
must start from the same initial conditions). Indeed, forward and
backward equivalence collapse to ordinary and exact lumpabil-
ity, respectively, when the (linear) ODE system is the equation
of motion for the transient probability distribution of a continu-
ous time Markov chain (15).

Our technique describes the equivalences in finitary terms,
despite that they involve continuous ODE variables. We encode
a polynomial ODE system into a reaction network (RN), a struc-
ture akin to a formal chemical reaction network (CRN), with
one species per ODE variable and one reaction per monomial in
the derivatives. The equivalences are then relations over species
based on quantities computed by inspecting the reactions. This
structural interpretation allows the development of an algorithm
for computing maximal equivalences, building on analogous par-
tition refinement techniques developed for Markov chain lump-
ing (16, 17). These enjoy polynomial time and space complex-
ity, owing to the seminal work on foundational problems of
computer science by Paige and Tarjan (18).

Our contribution extends recent works that presented an alter-
native aggregation method based on a logical encoding into a
satisfiability problem (19) (however applicable only to ODE sys-
tems of moderate size) and an RN encoding for ODE systems
with polynomial derivatives of degree at most two (15), with the
further limitation that the criterion for forward equivalence was
only a sufficient condition for aggregation.

Significance

Large-scale dynamical models hinder our capability of effec-
tively analyzing them and interpreting their behavior. We
present an algorithm for the simplification of polynomial ordi-
nary differential equations by aggregating their variables. The
reduction can preserve observables of interest and yields a
physically intelligible reduced model, since each aggregate
corresponds to the exact sum of original variables.
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LUMPING BY PARTITION REFINEMENT

1. Start with a candidate initial partition of variables (this 
freedom allows us to preserve observables) 

2. Refine (i.e., split) blocks of current partition until the lumping 
criterion is satisfied 

3. Output is the coarsest lumping that refines the initial partition  

▸ If initial partition is the singleton one, the ouput is the maximal 
lumping 

▸ Algorithm runs in polynomial time and space wrt number of 
species and reactions

11
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EVALUATION AND REDUCTION OF ORDINARY DIFFERENTIAL EQUATIONS

http://www.erode.eu/ [TACAS’17]
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SOME BENCHMARKS

Original Model Forward Backward 

ID Reactions Vars Vars Time Vars Time

CRN1 3,538,944 262,146 222 7.5 s 222 12.0 s

CRN5 194,054 14,531 10,855 0.4 s 6,634 0.6 s

CRN13 24 18 18 4 ms 7 4 ms

AFF2 8,814,880 1,270,433 160,951 ~ 10 min 639,509 ~ 3 min

▸ Original CRN could not be solved on our machine

13

Sneddon M W, et al. (2011) Efficient modeling, simulation and coarse-graining of biological complexity with NFsim. In 
Nature Methods
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SOME BENCHMARKS

Original Model Forward Backward 

ID Reactions Vars Vars Time Vars Time

CRN1 3,538,944 262,146 222 7.5 s 222 12.0 s

CRN5 194,054 14,531 10,855 0.4 s 6,634 0.6 s

CRN13 24 18 18 4 ms 7 4 ms

AFF2 8,814,880 1,270,433 160,951 ~ 10 min 639,509 ~ 3 min

▸ Forward and backward equivalence are not comparable

14

Suderman R, et al. (2013) Machines vs. ensembles: Effective MAPK signaling through heterogeneous sets of protein 
complexes . In PLOS Computational Biology.
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EPIDEMICS SPREAD ON NETWORKS

15

STAR NETWORK

DRAFT

A

Fig. 4. Example of SBE reduction of SIS dynamics on a coarse-grained network. (A)
Star network over which an SIS process evolves according to the CRN in Eq. 2, starting
from an initial condition where the infection starts at node 0 (i.e., S1 = 0, I1 = 1,
and Si = 1, Ii = 0, for i = 1, 2, 3, 4; (B) Reduced CRN from the SBE that partition
the species into blocks SA = {S0}, IA = {I0}, SB = {S1, S2, S3, S4}

and IB = {I1, I2, I3, I4}, which induces the partition with blocks PA = {0}

and PB = {1, 2, 3, 4} on the graph; (C) the reduced CRN corresponds to the
description of the SIS dynamics on the graph quotiented by PA and PB .

⁄ and µ respectively. [MT: clarify initial condition] With this
formulation, it is possible to discover an ordinary lumpability
of the underlying CTMC by means of an SBE on the CRN of
exponentially smaller size, consisting of 2N species and E+N
reactions, where E is the number of edges of the graph.

It can be shown that, for any such SIS model, the maximal
SBE is the trivial partition where all the species are in a
single block. This is an invariant property stating that the
total population of individuals in the system is constant (37).
A non-degenerate reduction may be obtained by considering
initial partitions with two blocks, hereafter denoted by S =
{Si | 1 Æ i Æ N} and I = {Ii | 1 Æ i Æ N}, that separates
species associated with nodes in the susceptible state from
those in the infected state, respectively. Such a setting leads to
noticeable SBE reductions for SIS models evolving on several
real-world networks from the literature (Table 1).

[MT: We can do any model, not just SIS] An inspection
of the obtained SBE equivalence classes reveals that each
refinement of the initial block S matches a refinement of
block I for the same subset of nodes of the graph, naturally
partitioning the nodes of the graph. As a consequence, the
reduced CRN can be understood as a description of the SIS
dynamics on the graph quotiented by such partition. The
reduced CRN e�ectively defines a meta-population model (),
where the number of agents in each macro-node of the quotient
graph is equal to the size of the equivalence class that it
subsumes (Fig. 4).

According to this structural interpretation of SBE, the
reduced model is still an epidemic process, albeit on a coarse-
grained network; as such, it is still amenable to the appli-
cability of a wide range of analysis techniques developed for
such systems (14). These include several forms of mean-field
approximation (38)[MT: other], whose computational cost for
the generation and solution of the resulting nonlinear di�eren-
tial equations may greatly benefit from the availability of a
stochastically equivalent reduced model. Since SBE is a suf-
ficient condition for CTMC lumping, coarser aggregations of
the CTMC state space could be obtained in principle. Indeed,
Simon et al. prove that an orbit partition of a graph induces a
lumping on the CTMC (37). In our tested networks we found
that the maximal SBE induces a partition on the nodes of the
graph which is a refinement of an orbital partition, although in
many cases it is not considerably stricter. One the other hand,
the lumped CTMC arising from an orbit partition cannot be
interpreted as one arising from an epidemic process on the
quotiented graph [MT: supplementary material? or figure].

Discussion

Stochasticity is a key tool to understand a variety of phe-
nomena regarding the dynamics of reaction networks, but the
capability of exactly analyzing complex models escapes us due
to the lack of analytical solutions and the high computational
cost of numerical simulations in general. SBE is an equivalence
relation that enables aggregation in the sense of Markov chain
lumping by identifying structural properties on the set of reac-
tions, without the need of the costly enumeration of the state
space. Owing to the polynomial space and time complexity
of the reduction algorithm, it can be seen as a universal pre-
processing step that exactly preserves the stochastic dynamics
of species of interest to the modeler. Since SBE gives rise to
a CRN where the reactions preserve the structure (up to a
renaming of the species into equivalence classes), the reduction
maintains a physical interpretation in terms of coarse-grained
interactions between populations of meta-species.

Another important consequence of the availability of a re-
duced CRN is that SBE is orthogonal to any of the analysis
techniques available for stochastic reaction networks. Simula-
tions may run faster because they traverse fewer reactions at
each time step (19); when feasible, one can generate the un-
derlying CTMC to be further analyzed or reduced (9, 10, 17);
the reduced CRN can be subjected to complementary coarse-
graining techniques concerned with time-scale separation (39–
42). More generally, since the reduced CRN preserves the
stochastic dynamics in the sense specified above, it can be
used as the basis for various forms of approximate analysis
such as linear noise or moment closure approximation (3),
where the complexity of the resulting system of equations
grows rapidly with the number of species and reactions.
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from an initial condition where the infection starts at node 0 (i.e., S1 = 0, I1 = 1,
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formulation, it is possible to discover an ordinary lumpability
of the underlying CTMC by means of an SBE on the CRN of
exponentially smaller size, consisting of 2N species and E+N
reactions, where E is the number of edges of the graph.

It can be shown that, for any such SIS model, the maximal
SBE is the trivial partition where all the species are in a
single block. This is an invariant property stating that the
total population of individuals in the system is constant (37).
A non-degenerate reduction may be obtained by considering
initial partitions with two blocks, hereafter denoted by S =
{Si | 1 Æ i Æ N} and I = {Ii | 1 Æ i Æ N}, that separates
species associated with nodes in the susceptible state from
those in the infected state, respectively. Such a setting leads to
noticeable SBE reductions for SIS models evolving on several
real-world networks from the literature (Table 1).

[MT: We can do any model, not just SIS] An inspection
of the obtained SBE equivalence classes reveals that each
refinement of the initial block S matches a refinement of
block I for the same subset of nodes of the graph, naturally
partitioning the nodes of the graph. As a consequence, the
reduced CRN can be understood as a description of the SIS
dynamics on the graph quotiented by such partition. The
reduced CRN e�ectively defines a meta-population model (),
where the number of agents in each macro-node of the quotient
graph is equal to the size of the equivalence class that it
subsumes (Fig. 4).

According to this structural interpretation of SBE, the
reduced model is still an epidemic process, albeit on a coarse-
grained network; as such, it is still amenable to the appli-
cability of a wide range of analysis techniques developed for
such systems (14). These include several forms of mean-field
approximation (38)[MT: other], whose computational cost for
the generation and solution of the resulting nonlinear di�eren-
tial equations may greatly benefit from the availability of a
stochastically equivalent reduced model. Since SBE is a suf-
ficient condition for CTMC lumping, coarser aggregations of
the CTMC state space could be obtained in principle. Indeed,
Simon et al. prove that an orbit partition of a graph induces a
lumping on the CTMC (37). In our tested networks we found
that the maximal SBE induces a partition on the nodes of the
graph which is a refinement of an orbital partition, although in
many cases it is not considerably stricter. One the other hand,
the lumped CTMC arising from an orbit partition cannot be
interpreted as one arising from an epidemic process on the
quotiented graph [MT: supplementary material? or figure].

Discussion

Stochasticity is a key tool to understand a variety of phe-
nomena regarding the dynamics of reaction networks, but the
capability of exactly analyzing complex models escapes us due
to the lack of analytical solutions and the high computational
cost of numerical simulations in general. SBE is an equivalence
relation that enables aggregation in the sense of Markov chain
lumping by identifying structural properties on the set of reac-
tions, without the need of the costly enumeration of the state
space. Owing to the polynomial space and time complexity
of the reduction algorithm, it can be seen as a universal pre-
processing step that exactly preserves the stochastic dynamics
of species of interest to the modeler. Since SBE gives rise to
a CRN where the reactions preserve the structure (up to a
renaming of the species into equivalence classes), the reduction
maintains a physical interpretation in terms of coarse-grained
interactions between populations of meta-species.

Another important consequence of the availability of a re-
duced CRN is that SBE is orthogonal to any of the analysis
techniques available for stochastic reaction networks. Simula-
tions may run faster because they traverse fewer reactions at
each time step (19); when feasible, one can generate the un-
derlying CTMC to be further analyzed or reduced (9, 10, 17);
the reduced CRN can be subjected to complementary coarse-
graining techniques concerned with time-scale separation (39–
42). More generally, since the reduced CRN preserves the
stochastic dynamics in the sense specified above, it can be
used as the basis for various forms of approximate analysis
such as linear noise or moment closure approximation (3),
where the complexity of the resulting system of equations
grows rapidly with the number of species and reactions.
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Fig. 4. Example of SBE reduction of SIS dynamics on a coarse-grained network. (A)
Star network over which an SIS process evolves according to the CRN in Eq. 2, starting
from an initial condition where the infection starts at node 0 (i.e., S1 = 0, I1 = 1,
and Si = 1, Ii = 0, for i = 1, 2, 3, 4; (B) Reduced CRN from the SBE that partition
the species into blocks SA = {S0}, IA = {I0}, SB = {S1, S2, S3, S4}

and IB = {I1, I2, I3, I4}, which induces the partition with blocks PA = {0}

and PB = {1, 2, 3, 4} on the graph; (C) the reduced CRN corresponds to the
description of the SIS dynamics on the graph quotiented by PA and PB .

⁄ and µ respectively. [MT: clarify initial condition] With this
formulation, it is possible to discover an ordinary lumpability
of the underlying CTMC by means of an SBE on the CRN of
exponentially smaller size, consisting of 2N species and E+N
reactions, where E is the number of edges of the graph.

It can be shown that, for any such SIS model, the maximal
SBE is the trivial partition where all the species are in a
single block. This is an invariant property stating that the
total population of individuals in the system is constant (37).
A non-degenerate reduction may be obtained by considering
initial partitions with two blocks, hereafter denoted by S =
{Si | 1 Æ i Æ N} and I = {Ii | 1 Æ i Æ N}, that separates
species associated with nodes in the susceptible state from
those in the infected state, respectively. Such a setting leads to
noticeable SBE reductions for SIS models evolving on several
real-world networks from the literature (Table 1).

[MT: We can do any model, not just SIS] An inspection
of the obtained SBE equivalence classes reveals that each
refinement of the initial block S matches a refinement of
block I for the same subset of nodes of the graph, naturally
partitioning the nodes of the graph. As a consequence, the
reduced CRN can be understood as a description of the SIS
dynamics on the graph quotiented by such partition. The
reduced CRN e�ectively defines a meta-population model (),
where the number of agents in each macro-node of the quotient
graph is equal to the size of the equivalence class that it
subsumes (Fig. 4).

According to this structural interpretation of SBE, the
reduced model is still an epidemic process, albeit on a coarse-
grained network; as such, it is still amenable to the appli-
cability of a wide range of analysis techniques developed for
such systems (14). These include several forms of mean-field
approximation (38)[MT: other], whose computational cost for
the generation and solution of the resulting nonlinear di�eren-
tial equations may greatly benefit from the availability of a
stochastically equivalent reduced model. Since SBE is a suf-
ficient condition for CTMC lumping, coarser aggregations of
the CTMC state space could be obtained in principle. Indeed,
Simon et al. prove that an orbit partition of a graph induces a
lumping on the CTMC (37). In our tested networks we found
that the maximal SBE induces a partition on the nodes of the
graph which is a refinement of an orbital partition, although in
many cases it is not considerably stricter. One the other hand,
the lumped CTMC arising from an orbit partition cannot be
interpreted as one arising from an epidemic process on the
quotiented graph [MT: supplementary material? or figure].

Discussion

Stochasticity is a key tool to understand a variety of phe-
nomena regarding the dynamics of reaction networks, but the
capability of exactly analyzing complex models escapes us due
to the lack of analytical solutions and the high computational
cost of numerical simulations in general. SBE is an equivalence
relation that enables aggregation in the sense of Markov chain
lumping by identifying structural properties on the set of reac-
tions, without the need of the costly enumeration of the state
space. Owing to the polynomial space and time complexity
of the reduction algorithm, it can be seen as a universal pre-
processing step that exactly preserves the stochastic dynamics
of species of interest to the modeler. Since SBE gives rise to
a CRN where the reactions preserve the structure (up to a
renaming of the species into equivalence classes), the reduction
maintains a physical interpretation in terms of coarse-grained
interactions between populations of meta-species.

Another important consequence of the availability of a re-
duced CRN is that SBE is orthogonal to any of the analysis
techniques available for stochastic reaction networks. Simula-
tions may run faster because they traverse fewer reactions at
each time step (19); when feasible, one can generate the un-
derlying CTMC to be further analyzed or reduced (9, 10, 17);
the reduced CRN can be subjected to complementary coarse-
graining techniques concerned with time-scale separation (39–
42). More generally, since the reduced CRN preserves the
stochastic dynamics in the sense specified above, it can be
used as the basis for various forms of approximate analysis
such as linear noise or moment closure approximation (3),
where the complexity of the resulting system of equations
grows rapidly with the number of species and reactions.
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NETWORK DYNAMICS EXAMPLES
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KONECT: The Koblenz Network Collection 
http://konect.uni-koblenz.de/

tntp-ChicagoRegional as20000102 arenas-pgp

ego-facebook reduced ego-facebook
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NETWORK DYNAMICS: A POSSIBLE EXPLANATION
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REACTION NETWORKS AS MARKOV CHAINS
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MEAN-FIELD APPROXIMATION/LIMIT
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APPROXIMATION QUALITY
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FINITE STATE EXPANSION: SIMPLE EXAMPLE
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User—defined 
“observation” bound

Auxiliary tracked population
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CASE STUDIES
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OTHER ONGOING AND FUTURE WORK

▸ Approximate reductions as perturbations of exact ones 
for polynomial ODEs [JLAMP 2022] 

▸ Aggregation by arbitrary linear mappings   
[Bioinformatics 2021, CMSB’23 - by Alexander later] 

▸ Lumping for uncertain models (Markov chains) [TAC 
2023] 

▸ Aggregation for Boolean networks [Vandin et al., 
CMSB’21, CMSB’22, LICS’23] 

▸ Generic framework for expanding reaction networks! 
[SIGMETRICS’21]
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