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REACTION NETWORKS

» Fundamental model of
interaction in many natural
and engineering sciences:

» Biology
» Chemistry

» Computer Science

» Epidemiology

Physics Reports

Volume 529, Issue 2, 10 August 2013, Pages 199-264
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NETWORK LUMPING




MODELING DYNAMICS WITH REACTION NETWORKS

( STOCHASTIC SYSTEM \

» The chemical master
equation

» One state for each possible
discrete configuration
(nSa nr, nR)

» Model is a continuous-time
Markov chain (CTMC)

» One equation for each state
(solution is the probability

KO]C being in that state at an)

time point)

Species
]
S+1 %\I )

=2y
/ \

Rate Reaction

Mean-field convergence

—)

/" DETERMINISTIC SYSTEM )

» The deterministic rate
equation

» One ordinary differential
equation (ODE) for each
species

» Polynomial ODEs (typically)

» Solution can be interpreted
as an approximation of the
average CTMC dynamics

\_ j

Problem: No closed form solutions in general. Numerical solutions

heavily affected by the number of species and reactions

https://www.erode.eu



LUMPING REACTION NETWORKS

/" ORIGINALNETWORK )

m<<n
h <k

> Exact or approximate

» Observable

preserving

» Automatic

A1+ Ao o As
A, 4. 2

e Unifying approach that applies to both deterministic and stochastic

interpretations of reaction networks
[Cardelli et al., POPL 2016, LICS 2017, PNAS 2017, Bioinformatics 2020]

e Extensions/variants for other nonlinearities (min, exp, trig., etc.), differential-
algebraic equations [Tognazzi et al., IEEE Trans. Aut. Contr. 2021]
e Similarly applicable to discrete-time analogues

https://www.erode.eu



EQUATING POLYNGMIAL ODES AND REACTION NETWORKS

» Each monomial in the derivative is an edge of a (labelled)
bipartite multigraph: a reaction

mn
ik:...—l—aﬂxfi—l—...
1=1

Stoichiometric

"Reaction rate” Continuous vs Discrete

coefficient
Species \
PRODUCTS
o
—>

"~ Physical meaning not necessary, used only by lumping algorithm

https://www.erode.eu



LUMPING DIFFERENTIAL EQUATIONS/REACTION NETWORKS

» Partition (i.e., an equivalence) of variables/species such that

each partition block can be associated with a single variable
[Okino and Mavrovouniotis, 1998]

» The lumped preserves the original dynamics:
» Forward lumping preserves sums of the solutions

» Backward lumping identifies blocks with the same solution
(aka “synchronization” in other works)

» Lumping is complementary to other techniques such as fast-slow
decomposition (QE/QSSA)

https://www.erode.eu



FORWARD LUMPING AT A GLANCE

s

X

\_

564 — 3X1X3 — 4.7(:4
)°C5 — 3XZX3 — 4x5

ORIGINAL SYSTEM

X2 = + .xl — .x2 — 3X2X3 -+ 4.x5

N

)°C3 = — 3X1X3 + 4X4 — 3X2X3 ~+ 4.x5
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BACKWARD LUMPING

» Identifies variables that have equal solution when starting
with equal initial conditions

/ ORIGINAL SYSTEM \

)'62 = — 3X1X2 + 4X3

Xy =+ 3x1%, — 4x;3

\_ %

x1(0) = x,(0)

ﬁ

Y, =x =X,
Y, = X3

/ REDUCED SYSTEM \

. /

fFURWARD AND BACKWARD LUMPING ARE NOT CUMPARABLD

Backward does not
imply forward

Forward does not
imply backward

x1=—x2+1 )°C1=—x1x2

k XZ=—.X1

https://www.erode.eu



FORWARD LUMPING

Multiset of reactants \ Multiset of products

pi is the multiplicity of X

FLUX NET STOICHIOMETRY FORWARD RATE

» A partition of species is a forward equivalence if, for any two
blocks H, H'and any two species X;, X, in H it holds that

fI'(Xi, P, H/) — fI‘(Xj, P, H/)
for all multisets partners p

» Characterisation result

MaX|maI aggregatlon of polynomlal dynamlcal systems

Cardelli*>", Mir 2, Max Tschaikowski', and Andrea Vandin

B I I I I f I I I l gdom; bDepartment of Computing, University of Oxford, Oxford OX1 3QD, United Kingdom,
} a C wa r u m p I n g e I n e s I m I a r y . . Edited by Moshe Y. Vardi, Rice University, Houston, TX, and approved July 28, 2017 (received for review February 16, 2017)
Ordinary differential equations polynomial derivatives
“ are a fundamental tool for und dynamics of system:
[ ]

https://www.erode.eu 10



LUMPING BY PARTITION REFINEMENT

1. Start with a candidate initial partition of variables (this
freedom allows us to preserve observables)

2. Refine (i.e., split) blocks of current partition until the lumping
criterion is satisfied

3. Output is the coarsest lumping that refines the initial partition

» If initial partition is the singleton one, the ouput is the maximal
lumping

» Algorithm runs in polynomial time and space wrt number of
species and reactions

https://www.erode.eu 11



EVALUATION AND REDUCTION OF ORDINARY DIFFERENTIAL EQUATIONS

| JON
{m L= A

| ERODE - Examples/ExampleODE.ode - ERODE

L E e

[ Project Explorer 52 =

BE <
v (S Examples
&3 ExampleODE.ode
&3 ExampleRN.ode
> (= InfluenceNetworks
5= Outline &2 1 “fp‘laz = 0

V = ExampleODE
b =2 parameters
V =5 species
VIi=Au IC=1.0
I=1.0
VI=Ap,IC=2.0
I=2.0
VI=B,IC=3.0
I=3.0
I=AuB,IC=0
I=ApB,IC=0
V I=5 ODEs
V I=d(Au)
VIZ(((-r1) * Au) + ((r2 * Ap) - (
V= ((-r1) * Au) + ((r2 * Ap)

VIi=(-r1)* Au
b i=-r
I=Au
P I=(r2 * Ap) - ((3.0 * AL
b i=4.0* AuB
» I=d(Ap)
p I=d(B)
P I=d(AuB)
p I=d(ApB)
VI=2views
> =v1
P i=v2

P i1=reduceBDE

A CRCRESIRY
=
&3 ExampleODE.ode 231 & ExampleRN.ode 23 1
- begin model ExampleODE -~ begin model ExampleRN
-~ begin parameters -~ begin parameters
rl=1.0r2=2.0 rl=1.0r2=2.0
end parameters end parameters
- begin init - begin init
Au =1.0 Au =1.0
Ap = 2.0 Ap = 2.0
B =3.0 B =3.0
AuB ApB AuB ApB
end init end init
- begin ODE - begin reactions
// C-style comments Au -> Ap , rl
dCAu) = -rl*Au + r2*Ap - 3*Au*B + 4*AuB Ap -> Au , r2
d(Ap) = rl*Au - r2*Ap - 3*Ap*B + 4*ApB Au + B -> AuB , 3.0
d(B) = -3*Au*B + 4*AuB - 3*Ap*B + 4*ApB AuB -> Au +B , 4.0
d(AuB) = 3*Au*B - 4*AuB Ap + B -> ApB , 3.0
d(ApB) = 3*Ap*B - 4*ApB ApB -> Ap + B , 4.0
end ODE end reactions
-~ begin views - begin views
vl = Au + Ap vl = Au + Ap
v2 = AuB v2 = AuB
end views end views
reduceBDE(reducedFile="ExampleODE_BDE") simulateODE(tEnd=1.0)
end model end model

lﬁi ERODE -ExampleRN-[15/05/2016 18-57-46-218] &% = O
AR R [ YT E N ENEST

simulateODE(tEnd=1.0)
ExampleRN - ODE solutions - All species/variables

N
1

[
[0
|

[y
]

Species/variable concentrations
&

S o
w
wnllnon

&) console X “:: Problemsl

ERODE -ExampleRN-[15/05/2016 18-57-46-218]

ke sk ok ok ok ok ok ok o oK ok ok ok ok ok ok ok oK ok o ok ok oKk ok ok o oKk ok ok o oK ok ok oKk ok ok ok oKk ok ok ok oK ok ok ok ok o ok ok ok ok ok ok ok oKk ok ok o oKk ok ok o oKk ok ok ok o ok ok ok ok o ok ok oKk ok ok o oKk ok ok ok oK ok ok oKk ok ok ok oKk ok ok ok oK ok ok ok ok oK ok oK R R Rk K
ok ok ok ok ok ok ok ok oK ok ok ok ok oK K ok K o oK K ok ok ok oK K ok oK o oK ok ok oK o ok K ok oK K ok ok o oK K ok ok o oK K ok oK o ok ok ok oK o ok ok ok oKk ok ok ok oKk ok ok ok oK K ok oK o oK ok ok oK o ok ok ok oK ok ok ok ok oK ok ok ok ok oK K ok ok o oK ok ok ok ok oK o ok oK ok ok o ok K R ok K
Rk kR Rk Rk Rk kR kR Rk Rk kR kkkkkkk ERODE ~ExampleRN-[15/05/2016 18-57-46-218] **kkkkkikkokkkkkkkk ko ko ok ok
ok ok ok ok ok ok ok ok oK ok ok ok ok oKk ok ok o oKk ok ok o oK ok ok oK ok o ok ok ok ok ok ok ok oKk ok ok o oKk ok ok o oK ok ok ok ok o ok ok ok ok ok ok ok oKk ok ok ok oKk ok ok ok oK ok ok ok o oKk ok ok o ok ok ok oK ok ok ok ok oKk ok ok ok oKk ok ok ok oKk ok ok o oK o ok oK ok ok o ok K kR Rk
ok ok ok ok ok ok ok ok oK K ok oK o ok K ok oK ok ok ok ok oK K ok K o oK ok ok oK o oK K ok oK o ok ok o oK K ok ok ok oK K ok K o ok ok ok oK o o K ok oK ok ok ok o oK K ok ok o oK K ok oK o ok ok ok oK ok o ok ok oK K ok ok 3 oKk ok ok o ok K ok oK ok ok ok ok oK ok ok ok ok oK K ok oK ok ok o ok oK ok oK o ok K

Reading ExampleRN...
Parameters: 2
Species: 5
Reactions: 6.

Solving ODEs of ExampleRN... completed in 0.006 (s).

0 items selected

http://www.erode.eu/
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SOME BENCHMARKS

» Original CRN could not be solved on our machine

Forward Backward

Original Model

Reactions Vars Time Vars Time

CRN5 194,054 14,531 10,855 0.4s 6,634 0.6s
CRN13 24 18 18 4 ms / 4 ms
AFF2 8,814,880 1,270,433 160,951 | ~10min | 639,509 | ~ 3 min

Sneddon M W, et al. (2011) Efficient modeling, simulation and coarse-graining of biological complexity with NFsim. In

Nature Methods

https://www.erode.eu



SOME BENCHMARKS

» Forward and backward equivalence are not comparable

Original Model Forward Backward
Reactions Vars Time Vars Time
3,538,944 262,146 222 222 12.0s
CRNS 194,054 14,531 0.6s
CRN13 24 18 18| 4 ms /| 4ms
AFF2 8,814,880 1,270,433 160,951 | ~10min | 639,509 | ~ 3 min

Suderman R, et al. (2013) Machines vs. ensembles: Effective MAPK signaling through heterogeneous sets of protein
complexes . In PLOS Computational Biology.

https://www.erode.eu 14



EPIDEMICS SPREAD ON NETWORKS

STAR NETWORK

SIS DYNAMICS

Iy - S,
I 55
I, 5 S,
I3 5 S5
I 5 Sy
So+I; X Io+ I
Sy +1Iop 2 I + I
So—|—12410+12
Sy + Iy 2 Io + I
So -+ I3 25 Iy + I
Sy 4+ Ip 25 Iz + I
So+ Iy 2 Iy + I
Sy +To 2 I + I

REDUCED SIS DYNAMICS

P
&

SA‘|‘IBA>IA‘|‘IB
SB+IAA>IB+IA
IAl>SA

Is L+ Sp
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NETWORK DYNAMICS EXAMPLES

A

Network N E N E
tntp-ChicagoRegional 1467 2596 635 932
ego-facebook 2888 5962 35 104
as20000102 6474 27 790 3885 19437
arenas-pgp 10680 48 632 8673 44074
web-webbase-2001 16 062 51186 5253 24232
as-caida20071105 26475 106762 13393 69184
ila-email-EU 32430 108794 6262 53228
topology 34761 215440 19246 168782
douban 154908 654324 59524 462128

ego-facebook

KONECT: The Koblenz Network Collection

http://konect.uni-koblenz.de/

tntp-ChicagoRegional

https://www.erode.eu
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NETWORK DYNAMICS: A POSSIBLE EXPLANATION

Mo

- -~

-—
- ~

-

=

R.J. Sanchez Garcia (2019) Exploiting symmetry in complex network analysis. Arxiv

Livorno
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NETWORK EXPANSION

Refining Mean-field Approximations by Dynamic State
Truncation

FRANCESCA RANDONE, IMT School For Advanced Studies Lucca, Italy
LUCA BORTOLUSSI, Universita degli Studi di Trieste, Italy
MIRCO TRIBASTONE, IMT School For Advanced Studies Lucca, Italy

Mean-field models are an established method to analyze large stochastic systems with N interacting objects by
means of simple deterministic equations that are asymptotically correct when N tends to infinity. For finite N,
mean-field equations provide an approximation whose accuracy is model- and parameter-dependent. Recent re-
search has focused on refining the approximation by computing suitable quantities associated with expansions
of order 1/N and 1/N? to the mean-field equation. In this paper we present a new method for refining mean-
field approximations. It couples the master equation governing the evolution of the probability distribution of
a truncation of the original state space with a mean-field approximation of a time-inhomogeneous population
process that dynamically shifts the truncation across the whole state space. We provide a result of asymptotic
correctness in the limit when the truncation covers the state space; for finite truncations, the equations give a
correction of the mean-field approximation. We apply our method to examples from the literature to show
that, even with modest truncations, it is effective in models that cannot be refined using existing techniques
due to non-differentiable drifts, and that it can outperform the state of the art in challenging models that cause
instability due orbit cycles in their mean-field equations.

PROCEEDINGS A

royalsocietypublishing.org/journal/rspa

()

Research

updates

(ite this article: Waizmann T, Bortolussi L,
Vandin A, Tribastone M. 2021 Improved
estimations of stochastic chemical kinetics by
finite-state expansion. Proc. R. Soc. A 477:
20200964.
https://doi.org/10.1098/rspa.2020.0964

Received: 6 December 2020
Accepted: 10 June 2021

Improved estimations of
stochastic chemical kinetics
by finite-state expansion

Tabea Waizmann', Luca BortolussiZ, Andrea

Vandin®* and Mirco Tribastone'

1IMT School for Advanced Studies, Lucca 55100, Italy
2Department of Mathematics and Geosciences, University of Trieste,
Trieste 34127, Italy
3Sant’Anna School of Advanced Studies, Pisa 56127, Italy
“Department of Applied Mathematics and Computer Science, DTU
Technical University of Denmark, Kgs. Lyngby 2800, Denmark
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REACTION NETWORKS AS MARKOV CHAINS

Schlogl’s system Markov chain
2X 53X, kX(X —1)/2 R T T

38X —2X, kX(X—1)(X —2)/6
- — X, k‘g

X — ., kX ks 2ks ko + 3ks 4(ka + ka)

700

. Stochastic Simulation 600 |

. = Holding time at each state is >00

. exponentially distributed with the sum o o0y

. of outgoing rates 300 |

. = Probability of a choosing a given 200 ‘:f".ﬂt“ _
trans!t!on after r.lo.ldlng time equals its 100 \\WAJ}.* D Mm“* .
transition rate divided by the rate of the T AP R G Cosga o
residence time % 2 4 6 8 10 12 14 16 18 20

Time

https://www.erode.eu 19



MEAN-FIELD APPROXIMATION/LIMIT

Schlégl's system

2X —3X, kX(X-1)/2 5
33X —2X, kX(X-1)(X-2)/6

Properties

. = Self-consistent, compact system of

: equations(one per type of agent)

. = Correctin the limit when the population

. levels go to infinity (Kurtz's theorem)

. = Derivation can be generalized to obtain

. equations for higher-order moments
(moment-closure approximation)

Derivation

Dynkin’s Formula

dE[X] K ko
dt
+ ks — kyE[X]

(large-scale approximation)

k1

~ 5 EIX?] - k2

]E[X3] + k3 — k4E[X]
( expectatton of a functionvs.
function of the expectations)

k1 ko

]E[X]2 ]E[X]3 + k3 — k4E[X]

— —]E[X(X —1)] — K]E[X(X —1)(X — 2)] —I—.

https://www.erode.eu
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APPROXIMATION QUALITY

. Schlégl’s system ] — MFA
f M 1k =0.03

2X — 3X, kJ1X(X — 1)/2 150 1 ko = 0.0004
3X — 2X, kX(X-1)(X-2)/6 > ks = 200
— X, ks 100y ky = 4.5
X —  , kX k

......................... ; : s ns "
. Properties =

: 200" —— MFA

= Quality of the approximation can be 1801 Mk =0.03
model- and parameter-dependent ko = 0.0001
. = Always correct for linear systems and for | > 160- ks = 200

: alimited class of nonlinear systems k=35

: : - 4 — 9.

. = Exact corrections available for special i 140
. cases :

1201

https://www.erode.eu 21



FINITE STATE EXPANSION: SIMPLE EXAMPLE

3X — 2X, ko X(X —1)(X —2)/6

— X , l{?3
X —  , kX User—defined
"observation” bound
Reactmnexpansmn ........................ Auxmary"aCkedpopmatlon ...................................... \ ................
E - o fi(n) / = :
[n] 2% [n 4 1], 0<n<Ox

fi(n) = [n]k1 (X +n)(X +n —1)/2

https://www.erode.eu 22



CASE STUDIES

Heterodlmerlzatlon
k k
s mX 1 Ly mX 2
k k
—e— SIM DRE
12 - -
‘D ?
£ £
£ £
B s
Al Al
S S
X X
. . . . 04 . . . .
0 0.02 0.04 0.06 0.08 0.1 0 0.02 0.04 0.06 0.08 0.1
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CASE STUDIES

Protem degradation
k
—s mP
k k
P+E>=C C =P
30 1
25 1
S 20 S
I |
3 3
5 19 3
£ 2
A, 10 a¥
5
0¢ '
0 0.5 1 1.5 2
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CASE STUDIES

Protem degradation
k
—s mP
k k
P+E>=C C =P
30 1
25 1
S 20 S
I |
3 3
5 19 3
£ 2
A, 10 a¥
5
0¢ '
0 0.5 1 1.5 2
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N=1, V=5 N=1, V=10 N=1, V=20

Queuing System @
N % 8 % 8 % 8
— Q@
(1—p)p1 min(Q1,S1) 2 2 & 2 & 2
Q1+ S1 > S1 o . .
pp1 min(Q1,S51)
Q1+ 51 » Q2 + 52 y y y
p2 min(Q2,S52) g2 B2 B
Q2 + S > S1 3o 30 32
= Textbook model with Poisson 2, 2, 2 |
arrivals and Coxian-distributed  <: <, <,
SerVice times With Same mean ’ 0 50 100 150 200 ’ 0 50 100 150 200 o 0 50 100 150 200
and increasing variance V y R 1 PR y R
= Nservers can simultaneously £ 57 5
process client's requests g —| 8 g%
m Mean_field approximation iS (q:; | frmm—— (%; 6 § 6
insensitive to variance g 4 g . g .
= Finite state expansion can track < < <2
increaSing Va rianCeS ’ 0 50 100 150 200 ’ 0 50 100 150 200 o 0 50 100 150 200
FSE-n,; =10 FSE - n; =30 —— FSE-n; =50 —— FSE-n, =100 —— sim e mean-field

https://www.erode.eu 26



OTHER ONGOING AND FUTURE WORK

» Approximate reductions as perturbations of exact ones
for polynomial ODEs [JLAMP 2022]

» Aggregation by arbitrary linear mappings
[Bioinformatics 2021, CMSB’23 - by Alexander later]

» Lumping for uncertain models (Markov chains) [TAC
2023]

» Aggregation for Boolean networks [Vandin et al.,
CMSB’'21, CMSB’22, LICS'23]

» Generic framework for expanding reaction networks!
[SIGMETRICS'21]

https://www.erode.eu 27
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CMSB 2024 GOES TO PISA!

Don’t forget to submit your best papers there!



