Symmetry Reduction via Linear Invariant Subspaces: Exact and Approximate Methods

Lipari Workshop on Complex Networks

Mirco Tribastone

SCUOLA LUCCA

3 July 2024

Symmetry A fundamental concept across all scientific disciplines

"Generate an artistic drawing of a graph inspiring the idea of symmetry."

Symmetry in Graphs: Structure

Colors identify an equitable partition

Nodes of the same color are adjacent to the same number of nodes of each color

An orbit partition is an equitable partition, but the converse is not true in general

This fact finds its use in practical tools for graph isomorphism

The coarsest equitable partition that refines an initial coloring can be computed in $O(m \log n)$ time (*n* is the number of nodes, *m* is the edgeds) by partition refinement [Cardon and Crochemore (1982)]

Equitable partitions preserve a subset of the spectrum of the graph and (some) centralities

Symmetry in Graphs: Dynamics

Simple dynamics on a graph

Consider a dynamical system involving its adjacency matrix *A*

$$\dot{x} = Ax$$
For all colors $C, C',$
for all nodes i, i' in C

$$\sum_{k \in C'} a_{ik} = \sum_{k \in C'} a_{i'k}$$

$$x_i(0) = x_{i'}(0) \implies x_i(t) = x_{i'}$$

Synchronization/dynamical symmetry

Dynamical Symmetry in Graphs: Properties

Coincides with the notion of equitable partition for undirected/binary graphs (and can be generalized to arbitrary graphs by considering outdegrees)

The partition induces a "uniform" linear subspace U where coordinates of the same color have the same values

Dynamical symmetry is the property of U being invariant under A

An equitable partition is a necessary and sufficient condition for dynamical symmetry [Cardelli et al. (2017), but I guess it has been found several times for linear models]

$$\dot{x} = Ax$$
For all colors $C, C',$
for all nodes i, i' in C

$$\sum_{k \in C'} a_{ik} = \sum_{k \in C'} a_{i'k}$$

$$x_i(0) = x_{i'}(0) \implies x_i(t) = x_{i'}$$

Λ

Synchronization/dynamical symmetry

Dynamical Symmetry: Related Work

Markov chain lumping

$$\dot{\pi} = \pi Q \qquad \pi (k+1) = \pi (k) P$$

Known as exact lumpability [Buchholz (1994)]

It is the dual notion of **ordinary lumpability** (defined on the transpose matrix), known since Kemeny and Snell (1969)

P-ODE "backward" lumping

$$\dot{x}_1 = -x_1 x_2 + x_3$$

Extension for polynomial differential equations $\dot{x}_2 = -x_1x_2 + x_3$ [Cardelli et al., (2017)]

 $\dot{x}_3 = +x_1 x_2$ $(A_1 + A_2 \leftrightarrow A_3)$

Symmetry for a classic model for gene Still polynomial running time regulation networks [Argyris et al., (2023)]

N-ODE "backward" lumping

$$\dot{x}_1 = -\min(x_1 + x_2, K) + x_3$$

$$\dot{x}_2 = -\min(x_1 + x_2, K) + x_3$$

 $\dot{x}_3 = +x_1 x_2$

Extension for a class of nonlinear ODEs [Cardelli et al., (2016)]

NP-complete, but effective tools exist (Z3 SMT)

Boolean "backward" equivalence

$$x_1(t+1) = \neg x_3(t) \lor x_1(t)$$

$$x_2(t+1) = x_1(t) \lor x_2(t) \lor \neg x_3(t)$$

$$x_3(t+1) = x_2(t) \land \neq x_3(t)$$

Exact Symmetry Reduction Building a coarse-grained model that preserves the dynamics

$$\dot{x}_1 = -x_1 x_2 + x_3 \qquad \dot{x}_1 = -\min(x_1 + x_2, K)$$
$$\dot{x}_2 = -x_1 x_2 + x_3 \qquad \dot{x}_2 = -\min(x_1 + x_2, K)$$
$$\dot{x}_3 = +x_1 x_2 \qquad \dot{x}_3 = +x_1 x_2$$

$$x_1 = x_2$$

one equation per representative

$$\dot{X}_1 = -X_1^2 + X_2$$

 $\dot{X}_1 = -\min(2X_1, K) + \dot{X}_2 = +X_1^2$
 $\dot{X}_2 = +X_1^2$
 $\dot{X}_2 = +X_1^2$

Instance

GD06-Theory Yeast protein interaction network Collaborations in General Relativity Erdős collaboration network Autonomous system (SNAP) Oregon routing network Autonomous system (Florida) Enron email network Dictionary Caida routers Citeseer coauthorship network Citeseer copaper network YouTube

Undirected Graphs

Original size	Reduced size	Reduction ratio
102	3	2.94 %
1871	1091	58.31 %
5243	3394	64.73 %
5535	1902	34.36 %
6475	3691	57.00 %
10671	5484	51.39 %
22964	11935	51.97 %
36693	20418	55.65 %
39328	26994	68.64 %
192245	150463	78.27 %
227321	155593	68.45 %
434103	150316	34.63 %
1134891	684011	60.27 %

Instance

Glossary Graph Design '96 PhDs in computer science Kohonen citation network EPA web pages Gnutella p2p network Wikipedia who-votes-on-whom EVA corporate inter-relationships California web search Stanford CS web Gnutella p2p network (I) Gnutella p2p network (II) Enron email traffic Epinions trust network Slashdot social network Stanford web graph CNR web crawl Notre Dame web graph Berkely.edu + stanford.edu web Flickr web crawl .eu domain web crawl Google web graph .in domain web crawl Wikipedia pages

Directed Graphs

Original size	Reduced size	Reduction ratio
73	41	56.16 %
112	6	5.36 %
1883	225	11.95 %
4471	766	17.13 %
4733	598	12.63 %
6302	2208	35.04 %
8299	4216	50.80 %
8498	215	2.53 %
9665	1817	18.80~%
9915	3657	36.88 %
10880	4340	39.89 %
26519	6741	25.42 %
69245	7437	10.74 %
75889	41055	54.10 %
82169	57561	70.05 %
281905	129335	45.88 %
325558	85419	26.24 %
325730	49952	15.34 %
685252	292492	42.68 %
820879	370145	45.09 %
862665	341687	39.60 %
916429	354624	38.70 %
1382909	333283	24.10 %
1634990	1116472	68.29 %

Boolean networks from GINSim and BioModels Repositories

Maximal reduction = initial partition containing all variables **IS** = initial partition isolates all "input" variables from each other (ensures models can be reused for any input values)

Approximate Structural Symmetry Reduction

An asymmetric graph

Intuition: allow some tolerance ε when counting the number of neighbors

For example, setting $\varepsilon = 1$ recognizes approximate symmetries

Approximate symmetry

$$\sum_{k \in C'} a_{ik} = \sum_{k \in C'} a_{i'k} \Longrightarrow \left| \sum_{k \in C'} a_{ik} - \sum_{k \in C'} a_{i'k} \right|$$

It is still defined as an equivalence relation/partition which can be computed in polynomial time

Graph embedding

 $E \in \mathbb{R}^{n \times N}, \quad E_{iC} = \sum a_{ik}$

Z	_
k	

Brazil						
Method	EIG	CLO	BET			
ε -BE	8.47E-05	5.35E-04	2.79E-02			
Graphwave	5.30E-04	1.51E-03	4.08E-02			
SEGK	4.90E-03	1.40E-03	6.17E-02			
DRNE	3.41E-03	1.23E-03	4.81E-02			
struc2vec	3.68E-03	1.11E-03	4.57E-02			
GAS	7.88E-02	2.70E-02	4.19E-01			
$RID \epsilon Rs$	6.01E-03	2.64E-03	5.03E-02			
Film						
	Fili	m				
Method	Fili EIG	m CLO	BET			
Method ε-BE	Fili EIG 2.30E-03	m CLO 5.26E-03	BET 8.10E-03			
<i>Method</i> ε-BE Graphwave	Fili EIG 2.30E-03 TO	m CLO 5.26E-03 TO	BET 8.10E-03 TO			
Method ε-BE Graphwave SEGK	Fili EIG 2.30E-03 TO TO	m CLO 5.26E-03 <i>TO</i> <i>TO</i>	BET 8.10E-03 <i>TO</i> <i>TO</i> <i>TO</i>			
Method ε-BE Graphwave SEGK DRNE	Fili EIG 2.30E-03 TO TO 1.02E-02	m CLO 5.26E-03 <i>TO</i> 70 6.01E-03	BET 8.10E-03 <i>TO</i> <i>TO</i> 1.30E-02			
Method ε-BE Graphwave SEGK DRNE struc2vec	Fili EIG 2.30E-03 TO TO 1.02E-02 TO	m CLO 5.26E-03 <i>TO</i> 6.01E-03 <i>TO</i>	BET 8.10E-03 <i>TO</i> <i>TO</i> 1.30E-02 <i>TO</i>			
Method ε-BE Graphwave SEGK DRNE struc2vec GAS	Fili EIG 2.30E-03 TO TO 1.02E-02 TO 1.04E-02	m CLO 5.26E-03 <i>TO</i> 6.01E-03 <i>TO</i> 2.39E-03	BET 8.10E-03 <i>TO</i> <i>TO</i> 1.30E-02 <i>TO</i> 1.25E-02			

	Networks				
Method	Brazil	USA	BlogCatalog	Brightkite	
	n = 131	1190	10312	58689	
ε -BE	2.94E-1	6.49E-1	6.24E+0	7.68E+1	
Graphwave	2.52E+0	1.03E+1	1.47E+3	TO	
SEGK	1.92E+1	4.58E+3	TO	TO	
DRNE	1.07E+1	2.50E+1	1.96E+2	1.26E+3	
struc2vec	1.83E+1	9.93E+3	TO	TO	
GAS	2.30E+0	7.95E+0	4.90E+2	4.98E+2	
RIDERs	3.51E+1	2.73E+2	3.96E+2	7.38E+3	

Runtime comparison against state-of-the-art methods for graph embedding

Approximate Dynamical Symmetry Reduction

An asymmetric linear ODE

$$x_{1}(t+1) = \frac{6}{10}x_{1}(t) - \frac{2}{10}x_{2}(t) + \frac{2}{10}x_{3}(t)$$

$$x_{2}(t+1) = \left(\frac{2}{10} - \varepsilon\right)x_{1}(t) + \frac{8}{10}x_{2}(t) + \frac{1}{5}$$
No reduction for $0 < \varepsilon \le 2/10$

$$x_{3}(t+1) = \frac{2}{10}x_{1}(t) + \frac{8}{10}x_{3}(t) + \frac{1}{5}$$

$$\varepsilon = 0$$

Idea: transform the equality between trajectories of variables into a **similarity measure**

$$\bigwedge_{(i,j)\in R} (x_i = x_j) \implies \bigwedge_{(i,j)\in R} \left(A_i x + b_i = A_j x + b_j \right)$$
(*R* is the equivalence relation)

becomes

$$\bigwedge_{1 \le i,j \le n} \left(|x_i(t) - x_j(t)| \le D_{ij} \right) \implies \bigwedge_{1 \le i,j \le n} \left(|x_i(t+1) - x_j(t+1)| \le D_{ij} \right)$$

 $(D_{ij}$ to be found, for a given set of initial conditions)

Can be framed as optimal transportation problem; iterative algorithm takes $O(n^5 \log n)$ time per iteration

"Backward" Dissimilarity: Intuition

$$\begin{aligned} A_2 x(t) - A_3 x(t) &|= \left| \frac{1}{10} (x_1(t) - x_1(t)) + \frac{8}{10} (x_2(t) - x_3(t)) + \frac{1}{10} \right| \\ &\leq \frac{8}{10} |x_2(t) - x_3(t)| + \frac{1}{10} |x_1(t)| \\ &\leq \frac{8}{10} |x_2(t) - x_3(t)| + \frac{1}{10} \lambda \,. \end{aligned}$$

(λ is a bound on the solution norm; if $\lambda = 2$ then $D_{ii} = 1$)

Model	!	LCS b	isim.		BD		Ì	Ratios LCS	bisim. / BD
Name	n	Time	Iter.	Time	Iter.	0	Min	$Avg \ low$	$Avg \ up$
	DTMCs https://qcomp.org/benchmarks/								
haddad	11	11.8	12	3.0	3	2	$4.60 \mathrm{E} - 2$	$4.79\mathrm{E}{-1}$	$4.99E{+}0$
brp	25	866.9	10	13.8	3	2	$7.71 \mathrm{E} - 2$	2.71E + 2	3.51E + 3
herman	32	4095.6	8	61.3	2	136	$2.41 \mathrm{E} - 1$	$5.50\mathrm{E}\!-\!1$	2.85E+0
	MO	VIEGAL	AXIES	https://networks.skewed.de/net/moviegalaxies					
328	9	2.3	9	4.2	4	0	1.58E + 0	6.37E + 0	8.57E + 0
293	13	17.2	9	15.8	4	0	1.73E + 0	4.29E + 0	5.81E + 0
347	15	23.6	9	24.4	4	9	2.64E + 0	$1.48E{+1}$	$2.02E{+1}$
17	22	252.0	9	146.4	5	16	1.41E + 0	6.00E + 0	8.09E + 0
33	25	407.1	9	904.8	6	3	1.06E + 0	3.41E + 0	4.66E + 0
804	29	761.6	9	804.6	5	15	8.13E - 1	4.38E + 0	5.93E + 0
	DOM https://networks.skewed.de/net/dom								
Cor	6	0.8	8	2.5	4	0	2.86E + 0	$2.17E{+1}$	$3.31E{+1}$
DMas	13	16.1	10	6.9	4	3	1.92E - 1	$5.26\mathrm{E}{-1}$	1.49E+0
Mwa	19	108.5	12	18.3	4	0	$2.27\mathrm{E}-1$	$2.45\mathrm{E}{-1}$	$6.06 \mathrm{E}{-1}$
		AMBASS.	BASSADOR https://networks.skewed.de/net/ambassador					ador	
2000	16	26.3	9	34.7	5	2	3.41E + 0	9.33E + 0	1.27E+1
2005	16	28.9	10	3.1	2	92	2.57E + 0	2.57E + 0	3.49E + 0
19901994	16	25.8	9	27.6	5	2	2.13E+0	$5.49E{+}0$	7.49E + 0

or

Conclusion

- of models
- Equitable partitions are "easy" to compute and characterize symmetric symmetry)
- Approximate variants become more challenging:

Equitable partitioning is a simple concept that finds applications across a variety

• Many more in addition to those seen in the talk: chemistry, logics, machine learning (graph kernels and graph neural networks), linear optimization

dynamics in many cases (while they are only necessary conditions for structural

computation cost: but it is **competitive** with respect to the state of the art

• Availability of error bounds with respect to asymmetries in the initial conditions and/or parameters: more research needed, bounds for specific models?

Acknowledgements

- Georgios Argyris (DTU Denmark)
- Giorgio and Giovanni Bacci (Aalborg)
- Luca Cardelli (Oxford)
- Radu Grosu (TU Wien)
- Alberto Lluch Lafuente (DTU Denmark)
- Kim Larsen (Aalborg)
- Isabel Cristina Perez Verona (IMT)
- Giuseppe Squillace (IMT)
- Stefano Tognazzi (IMT)
- Max Tschaikowski (Aalborg)
- Andrea Vandin (Scuola Sant'Anna Pisa)

Finanziato dall'Unione europea NextGenerationEU

THE Tuscany Health Ecosystem

Thanks!

E Fall

References

- Dynamical Systems, to appear in QEST (2024)
- approximate equivalences. J. Log. Algebraic Methods Program. 134: 100876 (2023)
- TACAS (2) 2024: 343-362
- Time Markov Chains. IEEE Trans. Autom. Control. 68(11): 6557-6572 (2023)
- BMC Bioinform. 24(1): 212 (2023)
- Autom. Control. 67(7): 3484-3493 (2022)
- 132-154
- repository. Theor. Comput. Sci. 893: 41-59 (2021)
- \bullet Analysis. QEST 2018: 104-121
- TACAS (2) 2017: 310-328
- Luca Cardelli, Mirco Tribastone, Max Tschaikowski, Andrea Vandin: Efficient Syntax-Driven Lumping of Differential Equations. TACAS 2016

Giorgio Bacci, Giovanni Bacci, Kim G. Larsen, Giuseppe Squillace, Mirco Tribastone, Max Tschaikowski, and Andrea Vandin: Dissimilarity for Linear

Luca Cardelli, Giuseppe Squillace, Mirco Tribastone, Max Tschaikowski, Andrea Vandin: Formal lumping of polynomial differential equations through

Antonio Jiménez-Pastor, Kim G. Larsen, Mirco Tribastone, Max Tschaikowski: Forward and Backward Constrained Bisimulations for Quantum Circuits.

Luca Cardelli, Radu Grosu, Kim Guldstrand Larsen, Mirco Tribastone, Max Tschaikowski, Andrea Vandin: Algorithmic Minimization of Uncertain Continuous-

Georgios Argyris, Alberto Lluch-Lafuente, Mirco Tribastone, Max Tschaikowski, Andrea Vandin: Reducing Boolean networks with backward equivalence.

Stefano Tognazzi, Mirco Tribastone, Max Tschaikowski, Andrea Vandin: Differential Equivalence for Linear Differential Algebraic Equations. IEEE Trans.

Luca Cardelli, Mirco Tribastone, Max Tschaikowski, Andrea Vandin. Symbolic computation of differential equivalences. Theoretical Computer Science 777,

Isabel Cristina Pérez-Verona, Mirco Tribastone, Andrea Vandin: A large-scale assessment of exact lumping of quantitative models in the BioModels

Luca Cardelli, Mirco Tribastone, Max Tschaikowski, Andrea Vandin: Guaranteed Error Bounds on Approximate Model Abstractions Through Reachability

Luca Cardelli, Mirco Tribastone, Max Tschaikowski, Andrea Vandin: ERODE: A Tool for the Evaluation and Reduction of Ordinary Differential Equations.