
0278-0070 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2015.2504875, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

IEEE TRANSACTION ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. X, MONTH YYYY 1

Workload Change Point Detection for Run-time
Thermal Management of Embedded Systems

Anup Das, Member, IEEE, Geoff V. Merrett, Member, IEEE,
Mirco Tribastone, Member, IEEE, and Bashir M. Al-Hashimi Fellow, IEEE,

Abstract—Applications executed on multicore embedded sys-
tems interact with system software (such as the OS) and
hardware, leading to widely varying thermal profiles which
accelerate some aging mechanisms, reducing the lifetime reliabil-
ity. Effectively managing the temperature therefore requires (1)
autonomous detection of changes in application workload and
(2) appropriate selection of control levers to manage thermal
profiles of these workloads. In this paper we propose a tech-
nique for workload change detection using density ratio-based
statistical divergence between overlapping sliding windows of
CPU performance statistics. This is integrated in a run-time
approach for thermal management, which uses reinforcement
learning to select workload-specific thermal control levers by
sampling on-board thermal sensors. Identified control levers
override the OS’s native thread allocation decision and scale
hardware voltage-frequency to improve average temperature,
peak temperature and thermal cycling. The proposed approach is
validated through its implementation as a hierarchical run-time
manager for Linux, with heuristic-based thread affinity selected
from the upper hierarchy to reduce thermal cycling and learning-
based voltage-frequency selected from the lower hierarchy to
reduce average and peak temperatures. Experiments conducted
with mobile, embedded and high performance applications on
ARM-based embedded systems demonstrate that the proposed
approach increases workload change detection accuracy by an
average 3.4x, reducing the average temperature by 4–25�C, peak
temperature by 6–24�C and thermal cycling by 7–35% over state-
of-the-art approaches.

Index Terms—Embedded System, run-time manager, thermal
optimization, change point detection.

I. INTRODUCTION

Modern mobile embedded systems execute applications
that interact with system software (the OS) and hardware
differently, generating widely varying thermal profiles and
increasing the power consumption [1]. Earlier studies have
shown improvement in average and peak temperatures by
dynamically switching the voltage and frequency of processing
cores (hardware control lever) [2]. An emerging concern for
embedded systems is thermal cycling, i.e. the wear-out induced
by thermal stress due to a mismatched coefficient of thermal
expansion of adjacent material layers. A recent study [3] has
shown that OS thread affinity (software control lever) has sig-
nificant impact on thermal cycling. A combination of hardware

A. Das, G. V. Merrett, M. Tribastone and B. M. Al-Hashimi are with the
Department of Electronics and Computer Science, University of Southampton,
Southampton, UK, SO17 1BJ. E-mail: {a.k.das,gvm,bmah}@ecs.soton.ac.uk

Manuscript received April 21, 2015; revised September 08, 2015.
Copyright (c) 2015 IEEE. Personal use of this material is permitted.

However, permission to use this material for any other purposes must be
obtained from the IEEE by sending an email to pubs-permissions@ieee.org.

and software control levers is effective in alleviating all three
thermal concerns – peak temperature, average temperature and
thermal cycling, leading to a reduced power consumption and
an increase in lifetime. However, determining the optimum OS
thread affinity to minimize thermal overhead while satisfying
the performance constraint is an NP-hard problem; exploring
the entire state space is usually difficult at run-time. The
technique of [3] explores a limited subset of this state-space
determined empirically at design-time for typical application
workloads.

On the other side, an application’s thermal behavior changes
within execution duration, requiring different combinations
of thermal control levers. Existing techniques cannot detect
application changes at run-time, and therefore a single choice
is made at the start of application execution. We demonstrate in
Section V, an incorrect choice of control levers can negatively
impact the performance and results in higher thermal and
hence, power overheads.

In this paper we address the following challenges for run-
time thermal optimization of embedded systems.

• detecting application workload changes at run-time;
• determining the right combination of hardware and soft-

ware control levers once a change is detected; and
• solving the NP-hard thread affinity problem at run-time.

Contributions: Our contributions are as follows:
• mathematical formulation of the thermal optimization

problem for embedded systems (Section II);
• application change detection using density ratio-based

statistical divergence between overlapping sliding win-
dows of CPU performance statistics (Section III);

• a reinforcement learning-based low overhead run-time
approach, realized as a run-time manager for Linux
(Section IV);

• a two-step hierarchical approach for thread affinity and
voltage-frequency selection, enabling finer control on
temperature and addressing scalability (Section IV); and

• validation with mobile, embedded and CPU-intensive ap-
plications on different ARM-based platforms (Section V).

This work extends our earlier work [3] by (1) run-time
application change detection and (2) two-stage hierarchical
approach for selecting thread affinity and hardware voltage-
frequency. Additionally, we provide a low-overhead run-time
manager implementation of the approach for Linux OS vali-
dated across different ARM-based embedded systems.

Experiments conducted with embedded and CPU-intensive
applications from MiBench, PARSEC and the SPLASH2

0278-0070 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2015.2504875, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

IEEE TRANSACTION ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. X, MONTH YYYY 2

TABLE I
MTTF CONSIDERING DIFFERENT WEAR-OUT MECHANISMS [4] [5].

Wear-out MTTF Comments

Electromigration (EM) A

EM

J

n

exp
✓

E

a

EM

KT

◆
A

EM

is a material-dependent constant, J is the current density, n is empirically determined constant
with a typical value of 2 for stress related failures, E

a

EM

is the activation energy of electromigration, K
is the Boltzman’s constant, and T is the temperature.

Negative Bias Temperature Instability (NBTI) A

NBTI

(V
GS

)�
exp

✓
E

a

NBTI

KT

◆
A

NBTI

is a constant dependent on the fabrication process, � is the voltage acceleration factor and
E

a

NBTI

is the activation energy.

Time Dependent Dielectric Breakdown
(TDDB)

A
TDDB

· A
G

·
⇣

1
V

GS

⌘
↵��T

exp
⇣

X

T

+ Y

T

2

⌘
V
GS

is the gate voltage, T is the temperature, ↵, �, X and Y are fitting parameters, A
G

is the surface
area of the gate oxide and A

TDDB

is an empirically determined constant.

Stress Migration (SM) A
SM

|T0 � T |�nexp
✓

E

a

SM

KT

◆
A

SM

is a material dependent constant, T0 is the metal deposition temperature and E
a

SM

is the
activation energy.

Thermal Cycling (TC)
A

TC

P
m

i=1 t

i

Thermal Stress Thermal Stress is an indication of the stress experienced due to the thermal cycling. This is obtained using

Thermal Stress =
P

m

i=1(�Ti

� T
Th

)c ⇥ e
�E

a

KT

max

(i) , A
TC

is an empirically determined
constant, �T

i

is the amplitude of the ith thermal cycle, T
Th

is the temperature at which elastic
deformation begins, c is the Coffin-Manson exponent constant, E

a

is the activation energy of thermal
cycling and T

max

(i) is the maximum temperature in the ith thermal cycle.

benchmarks suites, along with applications typically exe-
cuted on modern smartphones demonstrate that the proposed
learning-based run-time approach increases workload change
detection accuracy by an average 3.4x, reducing average tem-
perature by 4-25�C, peak temperature by 6-24�C and thermal
cycling by 7-35% over state-of-the-art approaches.

II. PROBLEM FORMULATION

The leakage power consumption of a system and its lifetime
reliability are both dependent on temperature [4] [5]. In this
section, we formulate the objective we optimize in this work.

A. Optimization Objective

As seen from Table I, three important parameters to op-
timize are average temperature, peak temperature and ther-
mal cycling, which are combined into a single objective,
thermal overhead (TO). This is computed as follows. Let
T i
1, T

i
2, · · · , T i

N
l

are Nl thermal sensor readings collected at
regular intervals in time duration ti to ti+1. The system
thermal overhead in this interval is given by

TO(ti ! ti+1) =

(
mean(T i

1 , · · · , T i
N

l

) + ! · max(T i
1 , · · · , T i

N
l

)

ThermalCycle(T

i
1 , · · · , T i

N
l

)

(1)
where thermal overhead is computed as (1) the weighted

sum of the mean and the max temperatures for thermal
optimization; or (2) the thermal cycling using the function
ThermalCycle for thermal cycling related reliability [3]
optimization. The weight ! is adjusted automatically at run-
time depending on the thermal throttling limit, specified ther-
mal safe value, and how frequently an application reaches the
critical temperature.

B. Choice of Machine Learning

Temperature of an embedded system depends on
• application, e.g. type of instructions executed

0 1 2 3 4 5 6 7
x 104

20

30

40

50

60

70

Time (ms)

Te
m

pe
ra

tu
re

 (C
el

ci
us

)

raytrace MPEG Encoding

Fig. 1. Temperature collected during execution of raytrace followed by MPEG
encoding.

• architecture, e.g. dynamic power consumed per instruc-
tion and memory access, leakage power, floorplan, pres-
ence of heat sink etc.

• environment, e.g. ambient temperature
These dependencies are are not provided for commer-

cial off-the-shelf embedded systems. Common practice is to
pre-characterize the platform [6] to model some of these
dependencies. Additionally, hardware and software thermal
control levers effect temperature differently, depending on
application’s workload, its cross-layer interactions with system
software and hardware, and on the working environment.
Therefore, we use machine learning to identify these inter-
actions and to select appropriate control levers, to minimize
the long-term thermal overhead of a system.

C. Need for Application Change Detection

Workload on an embedded system changes both within
execution of an application and also when the system switches
application. Workload changes result in a different thermal
profile as shown in Figure 1, which plots CPU temperature
during execution of the raytrace and the MPEG encoding
applications. As seen from this figure, the thermal profile

0278-0070 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2015.2504875, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

IEEE TRANSACTION ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. X, MONTH YYYY 3

changes at 35s when there is a switch from raytrace to MPEG
encoding. Furthermore, the average temperature changes at 52s
during video encoding. This is due to a change in the frames
per second (fps) requirement from 60 to 24 fps at this time.
In comparison to the raytrace workload, the MPEG encoding
workload results in lower average temperature and higher
thermal cycling. This example illustrates that different thermal
control levers are required for processing different workload
segments, and thus necessitating an autonomous approach for
detecting workload changes.

III. APPLICATION CHANGE DETECTION

Modern processor cores (such as the ARM A-Series and the
Intel IvyBridge) are equipped with performance management
unit (PMU) consisting of registers and counters to record
hardware events during application execution. An important
event relevant to this work is the CPU cycles, defined as the
number of clock cycles consumed to execute a workload (or
a segment of it). Workload phase detection has recently been
an active subject of research [7] [8]. These approaches are
based on multi-variable offline characterization using principle
component analysis. Contrary to these approaches, our work is
a run-time only approach using CPU cycles. We have chosen a
single variable to reduce complexity for real-time requirements
and is shown to be effective (Section V). CPU cycles is
specifically selected because it provides a reasonably accurate
estimate of workload phase change.

CPU cycles collected at a regular interval during application
execution form time-series data; Figure 2 plots CPU cycles
for two applications – (a) the sobel filter implemented using
openCV and (b) the fluidanimate. Change points in this
workload (indicated by red dashed lines) are time instances
where statistical characteristics such as mean, standard de-
viation etc. differ. Objective of this work is to detect these
change points autonomously. This can be achieved by using
the statistical distance between two sliding windows as shown
in Figure 3. In this technique, (2N � b) CPU cycles count are
collected in two windows (termed as the test and the reference
window, respectively) of size N each. After executing each
workload segment, the CPU cycles count is pushed in the
test window and all other CPU cycles count are right shifted
(hence the name sliding window). Test and the reference
window have b CPU cycles in common; this is defined as the
overlapping depth of the technique. CPU cycles in the current
and (2N�b�1) previous workload segments constitute a total
of (2N � b) CPU cycles in these two windows. Total storage
requirement of the sliding window-based detection technique
is (2N � b) ⇤NBits. The statistical distance between the test
and the reference window is given by

d(Wtest,Wref) = D(Wtest || Wref) +D(Wref || Wtest) (2)

where the divergence measure D is defined as

D(Wtest || Wref) =

Z
g

✓
P

test
(x)

P

ref
(x)

◆
dx (3)

where P test
(x) and P ref

(x) are the probability density func-
tions (or simply the densities) of the CPU cycles in the test and

0 500 1000 1500 2000 2500 3000 3500
0

2

4

6 x 107

C
P

U
 C

yc
le

s

(a) openCV.sobel

0 500 1000 1500 2000 2500 3000
0

5

10

15 x 108

Time (s)

C
P

U
 C

yc
le

s

(b) fluidanimate

Fig. 2. CPU cycles collected during execution of (a) openCV.sobel and (b)
fluidanimate. Changes in execution phase are marked by red lines.

PMU

b

N-b

N-b

Fig. 3. Overlapping sliding window of CPU cycles.

the reference window, respectively; the function g() defines
the type of divergence – for Kullback-Leibler divergence,
g(t) = t log t and for Pearson divergence, g(t) = 1

2 (t�1)

2. As
shown in [9], estimating the density from time-series data is
an NP-hard problem [10]. A common alternative is to estimate
the density ratio instead [10] [11].

Let the density ratio P test(x)
P ref (x) = h (x) be estimated using a

linear model as

P

test
(x)

P

ref
(x)

= h (x) ⇡ ˆ

h (x;⇥) = ⇥TK(x) =

ˆ

P

test
(x)

P

ref
(x)

(4)

where ⇥ = (✓1 · · · ✓N)

T is the parameter to be determined
from the time-series data and K(x) = (K1(x) · · · KN (x))

T

is a Gaussian kernel basis function centered around the test
window and is defined as

Kj(x) = exp

✓
�kx�W

test
(j)k2

2�

2

◆
(5)

The estimated density is ˆ

P

test
(x) =

ˆ

h (x;⇥)P

ref
(x). The pa-

rameter ⇥ is selected such that the estimate ˆh (x;⇥)P ref
(x)

is as close as possible to the actual density P test
(x). In other

words, ⇥ is selected to minimize the divergence between
the actual density and its estimate. For demonstration, the
Kullback-Leibler (KL) divergence between them is defined as

Z
P

test
(x) log

P

test
(x)

ˆ

h (x;⇥)P

ref
(x)

dx (6)

=

Z
P

test
(x) log

P

test
(x)

P

ref
(x)

dx�
Z

P

test
(x) log

⇣
ˆ

h (x;⇥)

⌘
dx

0278-0070 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2015.2504875, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

IEEE TRANSACTION ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. X, MONTH YYYY 4

To minimize this KL divergence, it is essential to maximize
the second term of Equation 6 i.e.,

max

⇥

Z
P test

(x) log
⇣
ˆh (x;⇥)

⌘
dx ⇡ max

⇥

1

N

NX

i=1

log

⇣
⇥TK(xtest

i)

⌘

(7)
where the definition of ˆ

h from Equation 4 is used. The
constraint to the above equation is based on total probability
being 1 i.e.,

R
ˆP test

(x)dx = 1. Using Equation 4, this can be
written as

1 =

Z
P

ref
(x)

ˆ

h(x;⇥)dx ⇡ 1

N

NX

i=1

⇥TK(x

ref
i) (8)

It can be shown that Equation 7 together with the constraint
Equation 8 is a convex optimization problem, which can
be solved using a gradient descent approach. Finally, using
Equations 2-5, the statistical distance between the reference
and test window is expressed as

d(W

test
,W

ref
) =

Z ⇣
P

test
(x)� P

ref
(x)

⌘
log

⇣
ˆ

h(x;⇥)

⌘
dx

=

1

N

NX

i=1

log

⇣
⇥TK(x

test
i � x

ref
i)

⌘
(9)

Summary: Following are steps to calculate statistical distance

• Generate two windows W test and W ref with the current
and previous workload segment’s CPU cycles;

• Find ⇥, by solving the convex problem Equation 7 using
constraint Equation 8;

• Calculate the statistical distance using Equation 9.

A. Quality of Change Point Detection

Quality of application change point detection technique is
measured in terms of the number of false positives and false
negatives. These are defined as:
False Positive: An error state where the change detection al-
gorithm identifies a change point in workload, when in reality
there is no such change. A change point resets the learning
algorithm (discussed in the next section). Thus, a false positive
results in re-learning control levers for an already learned
workload resulting in learning-related energy overhead.
False Negative: An error state where the change detection
algorithm fails to identify a true change point present in a
workload. Thus, a false negative results in a new workload
to be processed using control levers learned from an old
workload, resulting in both performance and energy overheads.

We combine these error states into a single evaluation
function – Detection Quality1, defined as

Detection Quality = 1� #(False +ve) + #(False -ve)
#(Number of Changes)

(10)

1The detection quality is calculated based on the evaluator function of a
confusion matrix or the contingency table for a predictive analysis. Refer
https://en.wikipedia.org/wiki/Confusion matrix.

IV. LEARNING-BASED RUN-TIME MANAGER

Figure 4 shows a three-layer view of an embedded system.
The top most layer is the application layer, which is composed
of active applications. The middle layer is the operating sys-
tem layer (e.g., iOS, Ubuntu, Android, etc), which coordinates
an application’s execution on the hardware. Finally, at the
bottom there is the hardware layer, consisting of multicore
processors. All three layers interact with each other to execute
an application. These interactions are indicated with arrows in
the figure. The proposed Run-Time Manager is indicated by
the box RTM inside the operating system layer.

The RTM, which uses Q-learning algorithm (a variant of
reinforcement learning), repeatedly observes the current state
of a system, and selects an action. The selected action changes
the system’s state, which is used to determine the immediate
numeric payoff. Positive payoff is termed as profit and negative
payoff as punishment. Initially, the RTM does not know what
effects its actions have on the state of the system, nor what
immediate payoffs its actions will produce. Rather, it tries
out various actions in different states computing payoffs,
which are stored in a table (the Q-table). This phase of the
algorithm is known as the exploration phase. To make this
framework robust, the RTM needs to further evaluate good
decisions (those with rewards) by repeatedly selecting them
and observing the state of the system. This phase of the
algorithm is known as exploration-exploitation. In this phase
the RTM uses a fraction of the payoff to update the Q-table.
Finally, at the end of this phase, the RTM is said to have fully
learnt a workload’s thermal behavior. This phase is known as
the exploitation phase, and the RTM always selects the best
action (i.e., the action corresponding to the highest payoff) for
a particular system state.

The RTM works at the system time ticks (indicated in
the figure). It is to be noted that in this work, we adopt a
proactive thermal management approach; therefore, the next
system state is predicted and appropriate actions are enforced,
before the system reaches the state. In this way, the approach
prevents thermal emergencies (proactive), rather than reacting
when such emergencies occur (reactive). Workload prediction
is inherent to this algorithm2, i.e. at time ti the algorithm
predicts workload for the next interval to select the best action.
Specifically, at time instant ti, the RTM performs following:

• computes payoff for the time interval ti�1 ! ti;
• updates the Q-table entry corresponding to the state and

action at time ti�1;
• predicts the system state for interval ti ! ti+1;
• selects the action for the interval ti ! ti+1 based on the

predicted state.
The mapping of different components of the Q-learning-

based run-time approach are discussed next.

2In the proposed approach we use both prediction and detection. While
prediction is used to predict the system state allowing proactive thermal
management for an individual application phase, detection is used to detect ap-
plication phase change in order to perform application phase-specific thermal
optimization. The flow of the approach is as follows: the detection algorithm
(change-point detection) is used to detect a phase change; subsequently,
the prediction algorithm (EWMA) is used to perform proactive thermal
management for the detected phase.

0278-0070 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2015.2504875, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

IEEE TRANSACTION ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. X, MONTH YYYY 5

Application Layer

MPEG
Decode FFT Basic

Maths

Operating System Layer

iOS/
Android RTM

Hardware Layer

Hardware Frequency
Thread Allocation

Performance
Temperature

Performance Requirement

Thermal Sensors

core core

Performance
Monitoring

Unit

ti ti+1ti-1

ei-1 ei

time

APIs

Fig. 4. Representing an embedded systems as three stacked layers –
application, operating system and the hardware.

Payoffs: Payoff defines the optimization objective, which in
our context is the thermal overhead (average temperature, peak
temperature and thermal cycling, combined using Equation 1).
Since we are concerned with a constrained optimization prob-
lem, the performance constraint needs to be incorporated in
the payoff, which is given by the following equation

P (ti) =

(
wt ⇥ [K � TO(ti�1 ! ti)] if Fi � Fc

ws ⇥ (Fi � Fc) otherwise
(11)

where P (ti) is the payoff calculated at time instance ti, Fi

is the application performance during the interval ti�1 to ti,
TO(ti�1 ! ti) is the thermal overhead of the system in this
interval (Equation 1), Fc is the performance constraint, K
is a constant, and wt and ws are respectively the weights
for the temperature and performance. The performance of
an application is the inverse of its timing requirement. The
equation is interpreted as follows: if the performance obtained
in the interval of interest is greater than the performance
constraint, the thermal overhead is used to compute the payoff.
On the other hand, if there is performance violation, the
negative of the performance slack is used as the payoff to
prevent the system from reaching this state again in the future.
System State: The state of an embedded system is represented
using CPU cycles obtained by reading the PMU. However
for some systems, direct accesses to performance registers are
disabled in the user mode of operation. For such systems, CPU
utilization can be used as an alternative [12]. Thus, the system
state si at time ti is given by

si = Statistics(ti�1 ! ti) (12)

where Statistics(ti�1 ! ti) is the performance-related statis-
tics (CPU Cycles or utilization) in the interval ti�1 ! ti.
CPU Cycles or utilization is a real number in the interval 0
to MAX . To limit the state space, each state si is discretized
to one of the Ns levels and is indicated as ŝi. These discrete
states form rows of the Q-table.

System Action: The action space comprises of the thermal
control levers – processor voltage-frequency (hardware lever)
and thread affinity (software lever), similar to [3]. Let the
affinity be represented as a matrix:

Ma(k) =
�
c

k
1 c

k
2 · · · ckN

t

�
(13)

where Nt is the number of threads, ckj is the core where
thread j is allocated in the kth configuration and ckj 2
{c1, c2, · · · , cN

c

} with Nc being the number of cores. Most
embedded and high performance systems allow chip-wide
DVFS, i.e. all processing cores are in the same voltage domain,
allowing a single setting for all cores. Therefore, the kth action
can be represented as

ak = hMa(k) || (Vk, fk)i (14)

i.e. an action is composed of the thread affinity ma-
trix and the voltage-frequency value for all cores. Here,
(Vk, fk) 2

�
(V1, f1), (V2, f2), · · · , (VN

f

, fN
f

)

, the Nf

voltage-frequency pairs supported on the hardware. Usually,
OS allows scaling the frequency using the cpufreq API.
The voltage is scaled proportionately. Therefore, Equation 14
can be simplified to

ak = hMA(k) || fki (15)

These actions form columns of the Q-table. The total
number of actions of the Q-learning is given by

Na = Nf ⇥N

N
t

c (16)

Clearly, the number of actions grows exponentially with an
increase in the number of threads and cores. Later in Sec-
tion IV-A, we discuss algorithmic modifications to limit the
number of actions of the Q-learning algorithm.
Q-table Update: The Q-table entry corresponding to a state-
action pair at time ti�1 is updated at time ti, using the payoff
as given below.

Q(ŝi�1, âi�1) = Q(ŝi�1, âi�1) + ↵⇥ P (ti) (17)

where âi�1 2 {a1, · · · , aN
a

} is action during time ti�1 ! ti,
↵ (0  ↵  1) is the learning rate and represents fraction of
the payoff used as learning experience for updating the Q-table
entry. This is computed as

↵ =

8
><

>:

1 for 0  Nv < Nexplore

2

(N
explore

�N
v

) for Nexplore  Nv < Nexploit

0 for Nv � Nexploit

(18)

where Nv is the number of visits, and Nexplore, Nexploit are
the constants indicating the limits of the Q-learning stages, i.e.
exploration and exploitation. These parameters are selected
considering the trade-off between Q-table convergence rate
and exploration time. For a balance of these metrics, we have
used Nexplore = 3 and Nexploit = 8 (similar to of [3]).
Action Selection: As discussed before, the RTM selects an
action at time ti for controlling the thermal overhead in
the time interval ti ! ti+1 (proactive approach). So, the
RTM first needs to predict state of the system for interval
ti ! ti+1; subsequently, the RTM selects an action that
has previously resulted in the least thermal overhead for that
state. To effectively predict the system state, we use the

0278-0070 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2015.2504875, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

IEEE TRANSACTION ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. X, MONTH YYYY 6

TABLE II
MEMORY AND ENERGY OVERHEAD OF THE Q-TABLE WITH FOUR

HARDWARE FREQUENCIES ON DUAL-CORE ARM A9.

Threads
Non-hierarchical Hierarchical

Q-table related Q-table related Q-table related Q-table related
memory (KB) retention power (mW) memory (KB) retention power (mW)

2 0.625 0.15 0.15 0.04

4 2.500 0.62 0.15 0.04

6 5.625 1.40 0.15 0.04

8 10.00 2.50 0.15 0.04

exponential weighted moving average (EWMA) technique. In
this technique, the predicted system state pi+1 during the time
interval ti ! ti+1 is given by

pi+1 = � ⇥ si + (1� �)⇥ pi (19)

where � is the smoothing factor. The equation is interpreted
as follows. The predicted state in time interval ti ! ti+1 is
determined from the predicted state during interval ti�1 ! ti
(i.e. pi) and also, the actual state during this interval (i.e. si).
The action selected for this interval is given by

ai+1 = argmax Q-table(p̂i+1, :) (20)

where Q-table(p̂i+1, :) is the Q-table row corresponding to the
predicted state pi+1 (discretized to p̂i+1) and argmax returns
the index of the highest argument.

A. Reducing the Action Space

As shown in Equation 16, the number of actions increases
exponentially with the number of threads and cores. This also
increases (1) the size of the Q-table required to store learning
values; (2) the power required to retain the Q-table values in
RAM; and (3) the time required for the algorithm to learn
the thermal behavior, before applying appropriate thermal
control levers. Memory and power overhead are reported in
Table II (columns 2-3) for different thread combinations on
the experimental platform with a dual-core ARM A9 CPU.

The power overhead is computed as follows. The total
number of entries in the Q-table = Na · Ns. Each entry is
represented using 8 bits. The power needed to retain a bit is
obtained using [13]. The non-hierarchical (flat) approach of
integrating thread affinity and frequency selection as part of
the same Q-table results in exponential growth of the table
size and a corresponding increase in the power required to
retain Q-table values as the number of threads increases. It is
interesting to note that with 8 threads, the power consumption
is as high as 2.5 mW. The power consumption also increases
linearly as the number of frequency levels increases.

To prevent state space explosion and providing a reasonable
Q-table size, we adopt a two-level hierarchical approach:
heuristic-based thread affinity selection, and learning-based
frequency scaling. Thread affinity is selected at a higher
interval, called the Thread affinity Selection Interval (TSI).
Frequency is scaled at a shorter interval, called the Frequency
Selection Interval (FSI). The choice of TSI and FSI are
justified in Section V.

ALGORITHM 1: Pseudo-code of the hierarchical RTM
Input: Temperature T obtained during decoding the previous frame,

frame count cnt
Output: Thread affinity array Ma and hardware frequency f

1 Initialize Ma[i] = i(modulo)Nc; TO = CalcThermalOverhead;
2 Initialize rerun = 1; tid = cid = 0 and Ma[tid] = cid;
3 TA01.push(T) and TA02.push(T);
4 /* Greedy heuristic-based affinity selection */;
5 if cnt % TSI == 0 and rerun == 1 then
6 TempArr[cid] = CalcThermalOverhead(TA01);
7 Calculate performance Fi;
8 if Fi < Fc then TempArr[cid] = 1;
9 cid = (cid+ 1)%Nc;

10 Ma[tid] = cid;
11 if cid == 0 then
12 C = argmin(TempArr);
13 Ma[tid] = C;
14 tid = (tid+ 1)%Nt;
15 end
16 /* Termination of the greedy algorithm */;
17 if tid = cid = 0 then
18 if CalcThermalOverhead(TA01) < TO then
19 TO = CalcThermalOverhead(TA01);
20 end
21 else
22 rerun = 0;
23 end
24 end
25 TA01.clear();
26 end
27 /* Q-learning based frequency selection */;
28 if cnt % FSI == 0 then
29 Calculate Payoff (Equation 11);
30 Update Q-table entry (Equation 17);
31 Predict Next State (Equation 19);
32 Select Action (Equation 20);
33 Map action to hardware frequency;
34 TA02.clear();
35 end

B. Hierarchical RTM Algorithm

Algorithm 1 provides the pseudo-code of the hierarchical
RTM, where affinity selection is performed using a greedy
heuristic (lines 1-26) and frequency selection is performed
using the Q-learning algorithm (lines 28-35), which is the
simplified version of the learning algorithm used in our earlier
work [3].

An array Ma is used to store the affinity matrix, i.e. Ma[i]
stores the core id where thread i is mapped. At the start of
the algorithm, threads are distributed equally on the cores,
i.e. Ma[i] = i(modulo)Nc. This balances the number of
threads on the cores. The thermal overhead using this balanced
thread distribution is computed and stored in a local variable
TO. Subsequently, the greedy algorithm is triggered. Two
running variables tid and cid are used to hold the values of
the current thread and core, respectively. These are initialized
in line 2 of the algorithm. The affinity matrix is changed by
allocating thread 0 on core 0. It is to be noted that another
local variable rerun is initialized to 1 and is used to determine
the termination of the greedy algorithm.

The algorithm takes the previous frame’s temperature as
an input. This temperature is pushed in two arrays TA01 and
TA02 for use in affinity selection and frequency selection sub-
processes, respectively. At every TSI , the algorithm calculates
the thermal overhead (using Equation 1) from the thermal

0278-0070 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2015.2504875, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

IEEE TRANSACTION ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. X, MONTH YYYY 7

fft ffmpeg sobel webpage streamcluster
0

200

400

600

800
Fr

am
es

 to
 re

ac
h

ex
pl

oi
ta

tio
n

ph
as

e

non-hierarchicaL
hierarchical

Fig. 5. Number of frames needed to reach steady-state (the exploitation phase)
for non-hierarchical (flat) vs hierarchical approach.

sensor samples (line 6). This is stored in the array TempArr
corresponding to the currently selected core. The application
performance is determined (line 7). If this performance is
lower than the performance constraint Fc (i.e., the performance
is violated), the array entry TempArr[cid] is replaced by
infinity or a very large number (line 8), such that this thread-
core selection is avoided in the subsequent step. The core
id is incremented; a core id of zero indicates that all core
combinations for the current thread has been explored. The
core id with the least thermal overhead is selected (line 12) and
the assignment is permanently changed (line 13). The thread
id is incremented to repeat the process for the next thread.

The greedy algorithm is terminated using the local variable
TO as shown in lines 17 - 24. A thread id and the core id of
zero indicates that the algorithm has reached one complete
iteration of thread-core selections. After this iteration, the
thermal overhead is compared with the initial thermal overhead
TO. If the thermal overhead is reduced, then the local variable
TO is updated with the new value of the thermal overhead, and
an another iteration is initiated. Otherwise, the rerun variable
is reset causing the algorithm to terminate.

Frequency selection is performed using the Q-learning al-
gorithm (discussed in details in Section IV).

C. Scalability of the Hierarchical Approach

Table II (columns 4-5) reports the memory and power
required for the Q-table entries using the hierarchical approach
on the same experimental platform and with the same setup. It
is to be noted that, for the hierarchical approach, the Q-table
stores only the frequencies as the actions. Therefore, the size
and the retention power are both independent of the number of
threads. For 8 threads, the proposed approach results in a 64x
reduction of Q-table size and a similar reduction in power
consumption. To evaluate the scalability of the hierarchical
approach, Figure 5 plots the number of frames needed by
the learning algorithm to reach the exploitation state for five
applications executed on the PandaBoard with a dual-core
ARM A9 CPU (Table IV). The number of frames to reach
the exploitation stage is an indication of the convergence
time of the algorithm. As can be seen from this figure, the
hierarchical approach results in a lower convergence time
than the non-hierarchical one. This is because thread-affinity
selection is performed using a greedy search as opposed
to being part of the Q-table based exploration in the non-

Exploitation Phase Exploitation Phase Exploitation Phase

Application A Application B

Q-learning

Change
Detection

Application

1 1

Q-Table Reset

Change of Workload
within application

Change of Workload
across application

t1 t2

0 0 0

Exploration + (Exploration-Exploitation)

Exploitation

Q-Table States

Fig. 6. Timing diagram, showing handshaking between Q-learning and change
point detection.

hierarchical technique. On average, the hierarchical approach
reduces convergence time by 3.2x, signifying the scalability.

D. Implementation Details
Figure 6 shows a timing diagram illustrating the execution

of two applications – application A followed by the execution
of application B. Application A has a workload change during
its execution (at time t1) and application B has a relatively
constant workload. The switch from application A to B takes
place at time t2. The Q-learning algorithm and the change
point detection algorithm are implemented as separate threads
and are allowed to be executed on any core alongside the
application threads (controlled using thread affinity). As seen
in the figure, the workload change of A at time t1 is detected
using the change detection thread (indicated by a value of 1
in the timing diagram); the Q-learning thread is signaled to
reset the Q-table in order to restart the learning process. A
similar sequence of events follow when there is a switch of
application (at time t2).

Communication between these threads are implemented
as message queues. There are two queues implemented –
frameQ and changeQ. The frameQ is a signal from the
application thread to the Q-learning thread indicating the
completion of a frame. This is used along with a hardware
timer to compute the frame rate, which is then used to
determine the performance impact of hardware and software
control levers (refer to Section IV). The ChangeQ is a signal
from the change detection thread to the Q-learning thread,
forcing the Q-table to reset. The inter-process communication
delays using the message queues are illustrated in the figure
with red dashed lines.

V. RESULTS

Experiments are conducted with CPU-intensive and embed-
ded applications to demonstrate the proposed approach. The
CPU-intensive applications are taken from PARSEC and the
SPLASH2 [14] benchmark suites, and embedded ones from
MiBench [15]. Additionally, a few mobile applications are also
considered. Applications used for validation of our approach
are listed in Table III. Each application is transformed to
a periodic structure, where the application is executed for
several iterations; each iteration is accompanied by a deadline,

0278-0070 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2015.2504875, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

IEEE TRANSACTION ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. X, MONTH YYYY 8

TABLE III
APPLICATIONS USED FOR DIFFERENT EXPERIMENTS.

Category Suite Benchmarks

High Performance
PARSEC blackscholes,bodytrack,fluidanimate,swaptions,streamcluster

SPLASH 2 tachyon, x264

Mobile

openCV sobel filter

MiBench fft,mpegenc,basicmath,jpeg,tiffmedian,gsm

Video Player ffmpeg

Browsing webpage

TABLE IV
PLATFORMS USED FOR DIFFERENT EXPERIMENTS.

Platform SoC Mobile Use Cores

PandaBoard TI OMAP GALAXY nexus Dual-core ARM A9

Jetson TK1 NVIDIA Tegra HTC Touch Quad-core ARM A15

Odroid XU3 Samsung Exynos Samsung S5 Quad-core ARM big.LITTLE (A7-A15)

which serves as the performance requirement. At each iteration
multiple threads are spawned, with each thread performing
some task on the input data. These iterations are referred to as
frames throughout the remainder of this work. It is important
to note that video applications (ffmpeg, openCV.sobel etc.)
automatically align to this general structure with a frame
representing a video picture or a group of pictures (GoPs).
These applications are executed on three ARM-based em-
bedded platforms, each running Linux. Characteristics of the
SoCs for these platforms are reported in Table IV. Unless
otherwise stated, all experiments are conducted on the Jetson
platform; however, thermal results on the different platforms
are provided in Table V to demonstrate the consistency of our
result across different platforms. The scope of this work is
limited to homogeneous systems. GPUs present in some of
the experimental boards are forced into sleep mode by the
operating system to minimize their thermal impact on CPU.

Temperature results are directly recorded from on-board
thermal sensors, which intrinsically incorporates the RC ther-
mal behavior of the system. Additionally, through the machine
learning we learn the relationship between input workload and
output thermal response. In all experiments, we have disabled
default thermal management policies of the operating system
to fairly estimate the thermal improvements.

A. Thermal Improvement Across Different Applications
Figure 7 plots three thermal parameters for five applications

– three mobile (fft, x264 and openCV) and two CPU intensive
ones (streamcluster and swaptions). Results obtained using
the proposed technique are compared with two state-of-the-art
approaches – Linux’s default ondemand governor [16] and the
learning-based technique [17] of Ge et al. A common trend
to follow from this figure is that average and peak tempera-
tures are higher for CPU intensive applications compared to
mobile applications. This is expected because CPU intensive
applications demand high processing power, resulting in high
CPU utilization and elevated temperatures.

opencv x264 fft streamcluster swaptions
40

60

80

100

A
vg

. T
em

pe
ra

tu
re

 (C
)

opencv x264 fft streamcluster swaptions
40

60

80

100

P
ea

k
Te

m
pe

ra
tu

re
 (C

)

opencv x264 fft streamcluster swaptions
0

0.5

1

1.5

2

N
or

m
al

iz
ed

 T
C

 D
am

ag
e

Linux ondemand Ge et al. Proposed

Fig. 7. Thermal improvement of the proposed approach on Jetson TK1.

As seen from the figure, the technique of Ge et al. improves
average and the peak temperatures significantly compared to
the ondemand governor. On average, this technique minimizes
average temperature by 10�C and peak temperature by 6�C.
These improvements are due to the consideration of peak
temperature in the optimization objective, which also improves
the average temperature. It is important to note that, due to
the consideration of peak temperature, this technique achieves
the lowest peak temperature for some applications such as the
swaptions. However, this technique does not guarantee reduc-
ing thermal cycling. This can be seen for the streamcluster
application, where the technique of Ge et al. has increased
thermal cycling related damage by more than 140% compared
to the ondemand governor.

In comparison to these state-of-the-art approaches, the pro-
posed approach balances all thermal parameters. For some
applications such as the fft, the proposed approach outper-
forms both these state-of-the-art approaches in terms of all
three thermal parameters. Specifically, for this application, the
proposed approach reduces average temperature by 27.2�C,
peak temperature by 27.5�C and thermal cycling by 54%
with respect to the ondemand governor. In comparison to
the technique of Ge et al, improvements in these thermal
parameters are 21.3�C, 23.5�C and 31%, respectively. For ap-
plications such as the streamcluster, average temperature using
the the ondemand governor is 90�C. This high temperature
degrades platform reliability, increases power consumption and
negatively impacts performance by throttling the CPU. These
limitations are addressed in the proposed technique and also
in the technique of Ge et al. While the technique of Ge et al.
have reduced the average temperature to 74.5�C (reduction by
14.5�C), thermal cycling is increased by 140%. The proposed
two stage hierarchical approach controls both these parameters
efficiently; reducing average temperature further to 60.6�C (a
further reduction of 13.8�C) and thermal cycling by 30% with
respect to the technique of Ge et al.
Summary: On average for all applications considered (in-
cluding those not shown in Figure 7), the proposed approach
reduces average temperature by 4–25�C, peak temperature

0278-0070 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2015.2504875, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

IEEE TRANSACTION ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. X, MONTH YYYY 9

TABLE V
THERMAL IMPROVEMENT OF THE PROPOSED APPROACH OVER LINUX’S

DEFAULT ONDEMAD GOVERNOR FOR DIFFERENT PLATFORMS. EACH
ENTRY REPORTS THE IMPROVEMENT IN AVERAGE TEMPERATURE

(THERMAL CYCLING).

Application Data Set PandaBoard Jetson TK1 Odroid XU3

tachyon

set 1 18.6�C (-29%) 18.1�C (4.2%) 20.1�C (7.8%)

set 2 6.7�C (47.2%) 12.1�C (55.9%) 12.5�C (61.0%)

set 3 9.2�C (80.0%) 11.9�C (133.2%) 12.2�C (130.0%)

ffmpeg

clip 1 1.8�C (67.2%) 14.1�C (81.2%) 13.7�C (101.1%)

clip 2 1.4�C (76.6%) 3.1�C (96.4%) 6.3�C (112.2%)

clip 3 0.3�C (56.7%) 9.6�C (88.8%) 13.2�C (100.8%)

mpeg enc

seq 1 1.1�C (17.3%) 16.2�C (23.3%) 20.8�C (51.2%)

seq 2 2.1�C (18.7%) 17.5�C (21.1%) 15.7�C (39.4%)

seq 3 1.4�C (9.8%) 15.1�C (11.1%) 18.9�C (22.6%)

by 6–24�C, and thermal cycling related damage by 7–35%
compared to the existing technique of Ge et al.

B. Thermal Improvement Across Different Platforms
To demonstrate consistency of the proposed approach across

different embedded platforms, we conducted an experiment
with different applications, comparing the average temperature
and the thermal cycling obtained using our approach with
the ondemand governor. For the tachyon application on data
set 1, the proposed approach reduces average temperature by
18.6�C compared to the ondemand governor on the Pand-
aBoard with dual core A9 CPU. However, the approach
increases thermal cycling by 29%. On quad core A15 CPU-
based Jetson TK1, the proposed approach reduces average
temperature by 18.1�C and reduces thermal cycling by 4.2%.
It is interesting to note the improvement in thermal cycling
in moving from dual core to quad core. This is because, with
quad-core system, the affinity lever has more state-space to
explore than a dual core system, achieving better results. A
similar trend is observed for Odroid XU3 with 8 cores. It
is to be noted that the table reports average temperature and
thermal cycling; the improvement in peak temperature is on a
similar scale as the average temperature.
Summary: For all applications and data sets considered,
the proposed approach outperforms existing techniques in all
three thermal aspects. Furthermore, the improvement using our
approach increases with more number of cores, demonstrating
its suitability for future many-core systems.

C. Performance-Thermal Trade-off
Figure 8 plots the time taken for decoding each frame of

a reference 1080p video played using the ffmpeg application.
The application is configured to drop frames if the decoding
time exceeds a fixed threshold. As seen in this figure, a frame
is dropped when the decoding time exceeds 50ms for a 24 fps
video. This threshold is set by the ffmpeg applications and can
be overridden in the user mode. There are 17 frames being
dropped during decoding of 260 frames. This is because the

0

20

40

60

80

100

120

140

160

1 51 101 151 201 251

D
e
co
d
in
g
Ti
m
e
 (m

s)

Frames

Frames Dropped = 17

Fig. 8. Performance slack for a 24 fps 720p video decoded using the ffmpeg
application. Two scenarios are reported: (a) performance slack without change
point detection and (b) performance slack with change point detection.

0

1

2

3

4

5

6

7

8

Ͳ4 Ͳ3 Ͳ2 Ͳ1 0 1 2 3 4 5 7

4

1

2

5

1 1

3

1

0 0 0

N
u
m
b
er
 o
f A

p
p
lic
at
io
n
s

Performance Variation (%)

Unexplored Slack in Application Performance ͲPower Tradeoff

Fig. 9. Performance summary across 20 different applications.

proposed run-time manager reduces the frequency of operation
for these frames to mitigate the increase in thermal aspects.
For all decoded frames, the average decoding time is 42.3
ms instead of 41.67 ms for a 24 fps video. This increase in
decoding time results in performance loss (1.5%), however
gaining significantly on thermal parameters (13.2�C reduction
in average temperature and over 80% improvement in thermal
cycling, ref. Table V, column 7).

To summarize the results for other applications, we con-
ducted experiments with twenty different applications from
the benchmark suites previously discussed. Figure 9 shows a
performance summary for these applications. The x-axis of
this figure reports the percentage performance variation using
the proposed approach (with respect to the specified deadline).
The length of each bar represents the number of applications
with the corresponding violations. In representing the number
of applications, we used a ceiling function. As an example, the
ffmpeg application has a steady-state performance violation
of 1.52% and is represented along with other applications
as part of the bar corresponding to a violation of -2%. It
is important to note that 70% of applications (14 out of
20) have negative performance variations implying that, for
these applications, the proposed approach achieves thermal
improvements by trading less than 5% in performance. There
are 6 applications which have positive performance variations,
i.e. for these application the proposed approach is not able to
exploit remaining application slack for thermal improvement
opportunities. The highest performance slack that remains to

0278-0070 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2015.2504875, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

IEEE TRANSACTION ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. X, MONTH YYYY 10

0 200 400 800 1000 1200
-60

-40

-20

0

20

40

S
la

ck
 (%

)
(a) no change detection >�@>��@>��@>��@>��@

0 200 400 600 800 1000 1200
-60

-40

-20

0

20

40

Time (s)

S
la

ck
 (%

)

600
Time (s)

(E) with change detection (SURSRVHG)

Fig. 10. Performance slack for a 24 fps 720p video decoded using the ffmpeg
application. Two scenarios are reported: (a) performance slack without change
point detection and (b) performance slack with change point detection.

be exploited is 3% (in the figure, the number of application
with performance variation of 4% or above is zero).

D. Impact of Change Point Detection on Performance
As highlighted before, in the context of change point detec-

tion, false negative has high performance penalty. To highlight
this, an experiment is conducted with the ffmpeg decoder
playing a 720p video encoded at 24 fps. Figure 10 shows
performance slack for two scenarios: (a) without change point
detection (such as [17], [3]) and (b) with the proposed change
point detection approach. In both scenarios, the Q-learning-
based run-time approach learns thermal control levers for the
video workload during the initial phase (1–80 ms). After this,
the learning algorithm reaches the exploitation phase where
good actions are selected to satisfy performance (24 fps) and
minimize thermal overhead (not shown explicitly in the figure).
At around 550 ms, there is a change in workload due to
change in video scenes. From this point forward, the two
scenarios differ significantly. Without change point detection,
the corresponding Q-learning-based run-time approach applies
thermal control levers leaned from the initial workload on this
new workload. This results in high performance violation for
the new workload, with violations as high as 50% reported
for some frames. It is to be noted that the ffmpeg application
is configured to drop frames if there is performance violation.
As a result, there are significant jitters in the video.

With change point detection, the proposed Q-learning-based
run-time approach restarts learning all thermal control levers
at 550 ms; 150 ms later (i.e. at 700 ms), the proposed run-time
approach again reaches the exploitation phase. At this phase,
good actions are selected for this new workload and there is
no performance violation. This demonstrates the significance
of change point detection for thermal optimization, which is
not addressed by any existing techniques.

E. Parameters for Change Point Detection
As discussed in Section III, there are two parameters for

the change detection technique. These are the size of the

2 4 6 8 10 12 14 16 18 20
0

100

200

La
te

nc
y

(m
s)

2 4 6 8 10 12 14 16 18 20
0

5

10

'
HW

HF
WLR

Q
4

Xa
OLW

\

:LQGRZ 6L]H (1)

Fig. 11. Latency vs detection quality trade-off.

TABLE VI
DETECTION QUALITY OF DIFFERENT CHANGE POINT DETECTION

APPROACHES (EQUATION 10).

Application Data Set
CPU Cycles Manhattan Kullback Leibler

Improvement Ref [7]
Difference Distance Divergence

tachyon

set 1 0.1 0.44 0.80 1.8x 0.98

set 2 -0.04 0.4 0.84 2.1x 0.85

set 3 0.02 0.37 0.72 1.9x 0.73

mpeg dec

clip 1 0.09 0.13 0.81 6.2x 0.88

clip 2 0.15 0.25 0.74 2.9x 0.66

clip 3 0.02 0.22 0.76 3.4x 0.70

mpeg enc

seq 1 -0.01 0.12 0.77 6.4x 1.00

seq 2 -0.01 0.33 0.81 2.4x 0.71

seq 3 -0.04 0.25 0.86 3.4x 0.72

sliding window, N and overlapping depth b. An increase in N
increases detection quality, however at the expense of increase
in the latency, i.e. delay in detecting a change. To demonstrate
this, Figure 11 plots the latency vs accuracy trade-off for
the density ratio-based change detection technique applied
to detect changes in the ffmpeg application playing a 1080p
video. As can be seen, with an increase in N , the detection
latency increases exponentially. For all experiments in this
work, we choose N = 14. This gives a detection latency of
less than 40 ms (less than a frame for 24 fps video). Similar
experiments are conducted for the parameter b, where the
detection quality increases with an increase in b, saturating
at b = 5. We used this value for all experiments.

F. Detection Quality of Change Point Detection Approaches
Table VI reports the detection quality of the proposed

Kullback-Leibler based change point detection algorithm
compared with Manhattan Distance-based and CPU cycles
difference-based detection techniques, which are used in ex-
isting works [3] [18]. The detection quality is computed using
Equation 10. From the definitions of false positive and false
negative (Section III) it can be reasoned that the number of
false negatives is always less than or equal to the number of
change points. However, there is no such constraints on the
number of false positives, meaning that the total number of
false positives and false negatives can be greater than the total
number of change points, resulting in negative value of the
detection quality. This is seen for the CPU cycles difference-
based detection approach on the mpeg encoding application

0278-0070 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2015.2504875, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

IEEE TRANSACTION ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. X, MONTH YYYY 11

100 120 140 160 180 200
3

4

5

6

7
x 105

Number of frames

C
P

U
 c

yc
le

s
(a) basicmath

actual
predicted

100 120 140 160 180 200
0.5

1

1.5

2

2.5
x 105

Number of frames

C
P

U
 c

yc
le

s

(b) sobel

actual
predicted

100 120 140 160 180 200
0.95

1

1.05

1.1

1.15

1.2

1.25
x 108

Number of frames

C
P

U
 c

yc
le

s

(c) jpeg

actual
predicted

100 110 120 130 140 150
0.5

1

1.5

2

2.5
x 105

Number of frames

C
P

U
 c

yc
le

s

(d) webpage

actual
predicted

RMS Error = 1.07%RMS Error = 0.54%

RMS Error = 0.23% RMS Error = 0.33%

Fig. 12. Workload prediction using EWMA.

for all three data sets. The detection quality of Manhat-
tan distance-based approach is higher than the difference-
based approach. The Kullback Leibler divergence used in
the proposed approach results in the highest detection quality
with an improvement of 1.8–6.4x (average 3.4x) compared to
Manhattan distance-based approach.

Finally, column 7 of the table reports the detection qual-
ity using the multi-variable offline characterization tech-
nique of [7]. For this, the first set of each application
(set 1 /clip 1 /seq 1) is part of the training data sets used
in the principle component analysis process. As a result, the
detection accuracy for these sets is high. However, when the
offline characterization approach is applied to unknown sets at
run-time (set 2/set 3), the detection quality is lower than that
of the proposed single variable-based approach using Kullback
Leibler divergence for the mpeg enc and mpeg dec. For
the tachyon application, results are comparable. Thus, multi-
variable offline characterization approach results in higher
detection quality for some application and data sets. However,
higher quality is not always guaranteed. Compared to this, the
proposed single-variable approach is a run-time only approach:
no training is needed and yet delivers over 70% detection
quality for all applications and data sets.

G. Evaluation of EWMA as the Prediction Scheme
One of the important aspects of the proposed Q-learning-

based run-time approach is its proactive nature, i.e. preventing
a system from reaching thermal emergencies. Accuracy of
this approach is dependent on accurate prediction of future
states using EWMA. To demonstrate this, Figure 12 plots
the difference between the actual and the predicted workload
for four applications: basicmath and jpeg from the MiBench
benchmark suite, sobel filtering (an OpenCV application com-
monly used in mobile phones for face recognition) and web-
page (a webpage rendering application commonly executed
on an embedded system). In this figure, the actual workload
is plotted in red and the predicted one in black for these four
applications. The root mean square (RMS) error in workload
prediction is also reported (as percentage) for each of these

0 5 10 15
20

30

40

50

60

70

A
ve

ra
ge

 T
em

pe
ra

tu
re

0 5 10 15
0

0.5

1

1.5

2

C
yc

lin
g

R
el

at
ed

 D
am

ag
e

)UHTXHQF\ 6HOHFWLRQ ,QWHUYaO (FSI)

cycling related damange
average temperature
CAT product

Fig. 13. Frequency selection interval for the freqmine application.

1 25 50 75 125 150 175 200
0

50

100

150

200

250

300

100
Thread Affitiy Selection Interval (TSI)

E
P

R
 (

K
J/

Y
e
a
rs

)

basicmath

sobel

jpeg

webpage

Fig. 14. Selection of thread affinity interval.

applications. As can be seen, the EWMA-based prediction is
able to predict CPU cycles accurately, justifying its choice for
the proposed proactive thermal management approach.

H. Selection of Control Intervals
The frequency selection interval (FSI) plays an important

role in determining the average temperature and the thermal
cycling related damage. To demonstrate this, Figure 13 plots
the average temperature (in blue) and the thermal cycling (in
red) for the freqmine, a data mining application. As seen
from this figure, choosing a low FSI (say 1) results in higher
thermal cycling but allowing finer control over temperature.
On the other hand, choosing a high FSI (say 15) results in
lower thermal cycling but at the expense of higher average
temperature. The figure also plots the product of thermal
cycling and average temperature (in black) as identified in
the figure with the legend CAT product, which represents
the average thermal stress (Table I, row 6). It can be seen,
the product of the two thermal parameters first decreases and
then increases again (due to the conflicting nature of the two
thermal parameters as discussed). An FSI of 10 results in the
minimum value of the thermal stress.

To illustrate the impact of changing the Thread affin-
ity Selection Interval (TSI) on energy and reliability, a
joint metric, energy per unit reliability (EPR), is introduced.
EPR represents the energy overhead (in KJ) incorporated
in the system per unit increase in reliability measured as
the mean time to failure (MTTF). This is calculated as
EPR = Energy(KJ)/MTTF (Y ears), i.e., by dividing the energy

0278-0070 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2015.2504875, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

IEEE TRANSACTION ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. X, MONTH YYYY 12

TABLE VII
PARAMETER SELECTION FOR DIFFERENT APPLICATION.

Application Data Set
Window Size Overlapping Depth Smoothing Factor

TSI FSI
N b �

tachyon

set 1 20 5 0.6 110 11

set 2 15 6 0.6 120 11

set 3 15 6 0.7 100 8

ffmpeg

clip 1 14 5 0.7 120 10

clip 2 14 5 0.6 100 8

clip 3 14 5 0.6 100 10

swaptions

data 1 10 5 0.7 110 10

data 2 12 6 0.6 110 9

data 3 16 5 0.6 110 8

basicmaths

data 1 14 5 0.7 100 10

data 2 10 5 0.7 100 8

data 3 15 5 0.6 90 10

streamcluster

data 1 15 5 0.7 90 10

data 2 14 6 0.8 90 10

data 3 14 5 0.8 110 10

Selected 14 5 0.7 100 10

consumed per iteration of the application by the MTTF
obtained assuming the application is executed infinitely on
the system. As discussed in Section II, the thread selection
interval influences primarily thermal cycling-related aging.
Therefore, thermal cycling-related MTTF is only considered
to compute the EPR. Figure 14 plots the EPR obtained using
the proposed run-time manager for the same four applications,
with TSI varying from 1 to 200. When TSI is small, there
is frequent switching of application threads. This increases
the timing overhead and degrades performance. To meet the
performance requirement, the proposed Q-learning-based run-
time approach raises the hardware frequency, and therefore
the energy consumption is higher for lower TSI. On the other
hand, lower TSI results in finer control on thermal cycling and
therefore, the reliability values are also higher. When the TSI
is increased, the energy overhead decreases and so does the
reliability. When the two objectives are combined (as EPR),
the value of EPR first decreases and then starts increasing. This
is because initially, the decrease in energy dominates over the
decrease in reliability causing a fall in ERP. However, beyond
a point, the decrease in reliability starts dominating over that
in energy consumption causing the overall EPR to increase.
This is the general trend observed for most applications. The
value of TSI corresponding to the minimum EPR is to be
selected. As seen from the figure, TSI = 100 results in best
energy-reliability trade-off for most applications.

I. Parameters Selection for Different Applications

Table VII reports values for different parameters obtained
by characterizing different applications and data sets. Only five
of these applications are reported in the table. The table also
reports the final value selected for our approach.

0 10 20 30 40 50 60 70
-6

-5

-4

-3

-2

-1

0

1

2

3

Time (s)

P
er

fo
rm

an
ce

 S
la

ck
 (%

)

x264

0 10 20 30 40
-8

-6

-4

-2

0

2

4

Time (s)

P
er

fo
rm

an
ce

 S
la

ck
 (%

)

swaptions

Fig. 15. Performance slack using the proposed algorithm.

J. Performance Obtained at Different Learning Stages

As discussed in Section IV, the Q-learning algorithm of the
proposed approach incorporates performance constraint in cal-
culating the payoff (Equation 11), i.e. the Q-learning algorithm
controls thread affinity and voltage-frequency scaling such that
all thermal parameters are improved while satisfying an appli-
cation’s performance constraint. It is to be noted that, in the
exploration phase of the Q-learning algorithm, some selected
actions violate the performance requirement. However, as the
algorithm reaches the exploitation phase, actions satisfying the
performance requirement are only selected. To illustrate this,
Figure 15 plots the performance slack for two applications
– x264 and the swaptions, executed for a period of time. As
can be seen, there are performance violations (negative slacks)
during the exploration phase (0-20s) of both these applications
with maximum violation of 5.8% and 8%, respectively. For
x264 (video playback), a 5.8% violation translates to a de-
coding time of 44 ms compared to the required 41.6 ms for
a 24 fps video. This performance degradation (although not
desired) doesn’t degrade user experience significantly. In the
exploitation phase, however, there is no performance violation.

VI. RELATED WORKS

Thermal optimization has received significant attention re-
cently due to its superlinear dependency on leakage power
and lifetime reliability. Some of these works make decisions at
design-time, determining application mapping and the voltage-
frequency of processing cores so as to minimize temperature-
related wear-outs [6], [19], [20]. Contrary to design-time tech-
niques, run-time techniques scale the voltage and frequency
of processing cores dynamically in response to the applica-
tion executing on the system. A thermal prediction model
is developed in [2] based on an offline thermal and power
characterization of an application. Using this model, optimal
and heuristic scheduling techniques are proposed for dynamic
thermal management of single instruction set heterogeneous
multiprocessor systems-on-chip (MPSoCs). This technique
suffers from the following limitations: the accuracy of the
offline characterization of an application is dependent on the
workload used for the characterization process; the approach
is dependent on multiprocessor thermal equivalent models

0278-0070 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2015.2504875, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

IEEE TRANSACTION ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. X, MONTH YYYY 13

that are difficult to obtain from manufacturer datasheets and
are overly expensive to solve at run-time; thermal cycling is
not considered; and the approach is system-dependent and
therefore needs to be re-characterized for all MPSoCs, even
with the same architecture.

A dynamic thermal management approach is proposed
in [21] based on a lumped thermal control model. Using this,
an approach is proposed to optimize the performance of an
application with soft thermal constraints. This approach also
suffers from similar limitations as discussed before. A dis-
tributed agent-based approach is proposed in [22] that uses fast
context-aware task migration to minimize peak temperature-
related hotspots. This approach does not minimize average
temperature and thermal cycling. A reinforcement learning-
based thermal management approach is proposed in [17] that
uses feedback from hardware thermal sensors to adjust the
voltage and frequency of processing cores. This work performs
performance-aware thermal management using reinforcement
learning, similar to our approach. However, decisions are
based on thermal sensor readings which are slow to capture
thermal changes and therefore, proactive thermal management
is not as effective as our approach, which is based on CPU
performance counters (refer to Section V for detailed compar-
ison). Additionally, the technique does not adapt to workload-
specific variations.

Another learning-based approach is proposed in [23] to
manage temperature of multiprocessor systems, and selects
between a set of expert policies depending on workload
characteristics. HotSpot is used for temperature modeling
based on thermal characteristics of UltraSPARC. However,
HotSpot has a known limitation on accuracy and simulation
time [6], making this approach difficult to use for real-time
applications. A control-theoretic approach is proposed in [24]
to optimize the lifetime reliability of a multiprocessor system.
Task scheduling decisions are controlled at longer intervals and
the voltage/frequency scaling is performed at a shorter interval.
Another control approach is proposed in [25] to manage
the temperature of applications running on multiprocessor
systems. A thermal-safe power budgeting is proposed in [26]
[27] for dynamic thermal management of many-core system.
A fast even-driven approach is proposed in [28] to estimate
the temperature of a multiprocessor system. Based on this
a thermal aware scheduling approach is proposed to reduce
the temperature of the system at run-time. Apart from these
works, there are other studies to reduce the power consumption
of a multicore system by scaling the hardware frequency
dynamically [29]–[32]. However, as shown in [22], these
approaches cannot guarantee to minimize a system’s thermal
overhead effectively for all application.

A common limitation of all these run-time thermal man-
agement approaches is that, these approaches cannot detect
application changes autonomously. Therefore, thermal control
levers cannot be selected optimally for all workload varia-
tions. To provide such capabilities, these techniques require
either application or user to explicitly indicate such workload
changes, complicating the software development.

VII. CONCLUSIONS

We propose a Q-learning-based run-time approach for ther-
mal management of embedded systems. This approach is
implemented as a hierarchical run-time manager (RTM) for
Linux operating system, with thread affinity selected from
the upper hierarchy to control thermal cycling and processor
voltage and frequency selected from lower hierarchy to control
average and peak temperatures. Thread affinity selection is
facilitated by a greedy heuristic, while the voltage-frequency
selection is facilitated using reinforcement learning algorithm.
The overall RTM uses statistical divergence-based change
point detection to detect changes in application workload in
order to select the most appropriate combination of thermal
control levers to manage all thermal aspects efficiently. Exten-
sive evaluation with multimedia and high performance applica-
tions on different ARM-based embedded boards demonstrate
the advantage of the proposed approach. Our continuing work
is to demonstrate this approach with concurrent applications
and GPUs. An open source Linux governor implementation
of the run-time manager will be made available online for the
benefit of the research community.

ACKNOWLEDGMENT

This work was supported in parts by the EPSRC
Grant EP/L000563/1 and the PRiME Programme
Grant EP/K034448/1 (www.prime-project.org).
Experimental data used in this paper can be found at
DOI:http://dx.doi.org/10.5258/SOTON/383667.

REFERENCES

[1] J. Srinivasan, S. V. Adve, P. Bose, and J. A. Rivers, “The case for lifetime
reliability-aware microprocessors,” in Proceedings of the International
Symposium on Computer Architecture, 2004.

[2] S. Sharifi, D. Krishnaswamy, and T. Rosing, “PROMETHEUS: A
proactive method for thermal management of heterogeneous mpsocs,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 32, no. 7, pp. 1110–1123, 2013.

[3] A. Das, R. A. Shafik, G. V. Merrett, B. M. Al-Hashimi, A. Kumar, and
B. Veeravalli, “Reinforcement learning-based inter- and intra-application
thermal optimization for lifetime improvement of multicore systems,” in
Proceedings of the Design Automation Conference, 2014.

[4] “Failure mechanisms and models for semiconductor devices,” JEDEC,
vol. JEP122G, 2011.

[5] H. Amrouch, V. M. van Santen, T. Ebi, V. Wenzel, and J. Henkel,
“Towards interdependencies of aging mechanisms,” in IEEE/ACM In-
ternational Conference on Computer-Aided Design (ICCAD). IEEE,
2014, pp. 478–485.

[6] A. Das, A. Kumar, and B. Veeravalli, “Reliability and energy-aware
mapping and scheduling of multimedia applications on multiprocessor
systems,” IEEE Transactions on Parallel and Distributed Systems, 2015.

[7] R. Cochran and S. Reda, “Consistent runtime thermal prediction and
control through workload phase detection,” in Proceedings of the Design
Automation Conference. ACM, 2010.

[8] M. Ghorbani, Y. Wang, Y. Xue, M. Pedram, and P. Bogdan, “Prediction
and control of bursty cloud workloads: A fractal framework,” in Proceed-
ings of the International Conference on Hardware/Software Codesign
and System Synthesis. New York, NY, USA: ACM, 2014.

[9] V. N. Vapnik and V. Vapnik, Statistical Learning Theory. Wiley New
York, 1998, vol. 2.

[10] X. Nguyen, M. Wainwright, and M. Jordan, “Estimating divergence
functionals and the likelihood ratio by convex risk minimization,” IEEE
Transactions on Information Theory, vol. 56, no. 11, pp. 5847–5861,
Nov 2010.

[11] S. Liu, M. Yamada, N. Collier, and M. Sugiyama, “Change-point
detection in time-series data by relative density-ratio estimation,” Neural
Networks, vol. 43, no. 0, pp. 72 – 83, 2013.

0278-0070 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2015.2504875, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

IEEE TRANSACTION ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. X, MONTH YYYY 14

[12] M. J. Walker, A. K. Das, G. V. Merrett, and B. Hashimi, “Run-time
power estimation for mobile ad embedded asymmetric multi-core cpus,”
HiPEAC Workshop on Energy Efficiency with Heterogenous Computing,
2015.

[13] S. Yang, S. Khursheed, B. Al-Hashimi, D. Flynn, and G. Merrett,
“Improved state integrity of flip-flops for voltage scaled retention under
pvt variation,” IEEE Transactions on Circuits and Systems I: Regular
Papers, vol. 60, no. 11, 2013.

[14] C. Bienia, S. Kumar, and K. Li, “PARSEC vs. SPLASH-2: A quan-
titative comparison of two multithreaded benchmark suites on chip-
multiprocessors,” in IEEE Symposium on Workload Characterization,
2008.

[15] M. Guthaus, J. Ringenberg, D. Ernst, T. Austin, T. Mudge, and
R. Brown, “MiBench: A free, commercially representative embedded
benchmark suite,” in IEEE Workshop on Workload Characterization,
2001.

[16] V. Pallipadi and A. Starikovskiy, “The Ondemand Governor,” in Pro-
ceedings of the Linux Symposium, 2006.

[17] Y. Ge and Q. Qiu, “Dynamic thermal management for multimedia
applications using machine learning,” in Proceedings of the Design
Automation Conference, 2011.

[18] R. A. Shafik, A. K. Das, L. A. Maeda-Nunez, S. Yang, G. V. Merrett, and
B. Al-Hashimi, “Learning transfer-based adaptive energy minimization
in embedded systems,” IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, 2015.

[19] I. Ukhov, P. Eles, and Z. Peng, “Probabilistic analysis of power and
temperature under process variation for electronic system design,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 33, no. 6, pp. 931–944, 2014.

[20] B. H. Meyer, A. S. Hartman, and D. E. Thomas, “Cost-effective lifetime
and yield optimization for noc-based mpsocs,” ACM Transactions on
Design Automation of Electronic Systems, vol. 19, no. 2, pp. 12:1–12:33,
2014.

[21] B. Shi, Y. Zhang, and A. Srivastava, “Dynamic thermal management
under soft thermal constraints,” IEEE Transactions on Very Large Scale
Integration Systems, vol. 21, no. 11, pp. 2045–2054, 2013.

[22] M. A. Faruque, J. Jahn, and J. Henkel, “Runtime thermal management
using software agents for multi- and many-core architectures,” IEEE
Design & Test of Computers, vol. 27, no. 6, pp. 58–68, 2010.

[23] A. K. Coskun, T. S. Rosing, and K. C. Gross, “Temperature management
in multiprocessor socs using online learning,” in Proceedings of the
Design Automation Conference, 2008.

[24] P. Mercati, A. Bartolini, F. Paterna, T. S. Rosing, and L. Benini, “A
linux-governor based dynamic reliability manager for android mobile
devices,” in Proceedings of the Conference on Design, Automation and
Test in Europe, 2014.

[25] F. Sironi, M. Maggio, R. Cattaneo, G. Del Nero, D. Sciuto, and
M. Santambrogio, “ThermOS: System support for dynamic thermal
management of chip multi-processors,” in International Conference on
Parallel Architectures and Compilation Techniques, 2013.

[26] S. Pagani, H. Khdr, W. Munawar, J.-J. Chen, M. Shafique, M. Li, and
J. Henkel, “TSP: Thermal Safe Power: Efficient power budgeting for
many-core systems in dark silicon,” in Proceedings of the International
Conference on Hardware/Software Codesign and System Synthesis,
2014.

[27] H. Khdr, T. Ebi, M. Shafique, H. Amrouch, and J. Henkel, “mdtm:
multi-objective dynamic thermal management for on-chip systems,” in
Proceedings of the Conference on Design, Automation and Test in
Europe. European Design and Automation Association, 2014, p. 330.

[28] J. Cui and D. Maskell, “A fast high-level event-driven thermal esti-
mator for dynamic thermal aware scheduling,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 31,
no. 6, pp. 904–917, 2012.

[29] G. Dhiman and T. Rosing, “System-level power management using
online learning,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 28, no. 5, pp. 676–689, 2009.

[30] H. Javaid, M. Shafique, J. Henkel, and S. Parameswaran, “Energy-
efficient adaptive pipelined mpsocs for multimedia applications,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 33, no. 5, pp. 663–676, 2014.

[31] R. Ye and Q. Xu, “Learning-based power management for multicore pro-
cessors via idle period manipulation,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. 33, no. 7, pp.
1043–1055, 2014.

[32] U. A. Khan and B. Rinner, “Online learning of timeout policies for dy-
namic power management,” ACM Transactions on Embedded Computing
Systems, vol. 13, no. 4, pp. 96:1–96:25, 2014.

Anup Das Dr. Anup Das received the B.Eng. degree
in Electronics and Telecommunication Engineering
from Jadavpur University, India, in 2004. He re-
ceived the Ph.D. degree in computer engineering in
the area of embedded systems from the National
University of Singapore, in 2014. He is currently
a post-doctoral research fellow at the University of
Southampton. His research interests include thermal
and energy-aware computing.

Geoff V. Merrett Geoff V. Merrett (GSM06M09)
received the BEng degree (Hons) in Electronic En-
gineering and the PhD degree from the University of
Southampton, UK, in 2004 and 2009 respectively.
He is currently an Associate Professor in energy-
efficient electronic systems at the University of
Southampton. He has research interests in energy-
efficient embedded systems and low-power pervasive
computing.

Mirco Tribastone Mirco Tribastone is Associate
Professor of Computer Science at IMT Institute
for Advanced Studies, Lucca. Previously, he has
held positions at the University of Southampton and
at the Ludwig-Maximilians University of Munich.
He received his Ph.D. from Edinburgh University
in 2010. His main interests are in the quantitative
evaluation of systems, and abstraction and model
reduction techniques with applications to software
performance engineering and computational biology.

Bashir M. Al-Hashimi Bashir M. Al-Hashimi
(M99-SM01-F09) is the Dean of the Faculty of
Physical Sciences and Engineering at University of
Southampton, UK. He is ARM Professor of Com-
puter Engineering and Co-Director of the ARM-
ECS research centre. His research interests include
low-power design and test of embedded computing
systems.

