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Abstract. It is well known that exact notions of model abstraction and reduction
for dynamical systems may not be robust enough in practice because they are
highly sensitive to the specific choice of parameters. In this paper we consider this
problem for nonlinear ordinary differential equations (ODEs) with polynomial
derivatives. We introduce approximate differential equivalence as a more permis-
sive variant of a recently developed exact counterpart, allowing ODE variables
to be related even when they are governed by nearby derivatives. We develop
algorithms to (i) compute the largest approximate differential equivalence; (ii)
construct an approximate quotient model from the original one via an appropriate
parameter perturbation; and (iii) provide a formal certificate on the quality of
the approximation as an error bound, computed as an over-approximation of the
reachable set of the perturbed model. Finally, we apply approximate differential
equivalences to study the effect of parametric tolerances in models of symmetric
electric circuits.

1 Introduction

Ordinary differential equations (ODEs) are a prominent model of dynamical systems
across many branches of science and engineering, and have enjoyed increasing popularity
in computer science, for instance, in computational systems biology [13,30,4], as an
approximation to large-scale Markov models and as the laws of continuous motion in
hybrid systems [7]. This has motivated techniques for the comparison and minimization
of ODEs based on behavioral relations, along the lines of other foundational quantita-
tive models of computation, e.g. [25]. Here we consider differential equivalence [11],
recently developed as an equivalence over ODE variables yielding a quotient that pre-
serves the dynamics of the original one. However, differential equivalences (reviewed in
Section 2) are exact, hence highly sensitive to parameter values and initial conditions.
This may hinder their practical usability in some applications domains, for instance due
to parameter uncertainty arising from finite-precision measurements in biology or the
tolerances of electric components in electrical engineering.

Our objective is to develop approximate variants of differential equivalence (in
Section 3). We study models with derivatives given by multivariate polynomials (over
the ODE variables) of any degree, thus restricting the scope of [11]. However we remark
that this is still quite a generous class since it includes chemical reaction networks (CRNs)



with mass-action kinetics and linear/affine systems, thus covering, e.g., continuous-time
Markov chains through their Kolmogorov equations.

Considering polynomial derivatives allows us to introduce a notion of equivalence
that just concerns the ODE “syntax” (while the nonlinear class of ODEs of [11] required
symbolic SMT-based checks). Our main idea is to consider a threshold parameter
ε ≥ 0, which intuitively captures perturbations in polynomials coefficients. This allows
relating ODE variables that would be distinct otherwise. Like in other established
approaches such as behavioral pseudometrics (e.g., [1,9]), ε = 0 corresponds to an
exact differential equivalence of [11]. In addition to defining criteria for approximate
differential equivalences, we provide an algorithm for obtaining the largest one. This
is done via partition refinement, computing the coarsest refinement of a given initial
partition of ODE variables for a given “structural” tolerance ε.

A quotient ODE system can be constructed from a reference model, obtained through
a perturbation of the coefficients of the original model which makes the given approxi-
mate differential equivalence an exact one. By considering a metric (the Euclidean norm)
to measure the degree of perturbation, the reference model is the one which minimizes
such perturbation. This can be done efficiently by solving an optimization problem which
runs polynomially with the size of the ODE system [22]. This approach is analogous to
optimal approximate lumping for Markov chains (e.g., [16]), although our theory can be
applied to other choices of reference models.

The bound of the error produced by the reference model with respect to the original
system can be computed by studying the reachable set of the reference model from an
uncertain set of initial conditions that covers the applied perturbation. Since the reference
model subsumes any behavior of the quotient, the bound formally relates the quotient
model to the original model. Section 4 presents a bound which relies on a linearization
of the reference model (which can be efficiently computed in the case of polynomial
ODE systems). First, we bound the reachable set of the linearized model using closed
form solutions, similarly to [24]. Then, we provide a conservative condition (i.e., an over-
approximation) that ensures that the linearized model describes the original nonlinear
behavior dynamics well. Our bound is given in terms of an ε-δ argument (similar in
spirit to the ones routinely used in calculus). Informally, it states the following: for any
choice of the structural tolerance ε, there exist a degree of perturbation δ and an amplifier
λ such that, for any ODE system obtained by applying a perturbation to the reference
model of at most δ, at all time points the difference between the solution of the reference
model and the perturbed one is at most λ times the perturbation.

Being based on a linearization, it is perhaps not surprising that the as-computed δ
will account only for small perturbations of the parameters. Yet numerical experiments
in Section 5 show that these can be enough to explain quasi-symmetric behavior due
to parametric tolerances in components of real electric network designs [31]. By com-
paring to over-approximation techniques supported by state-of-the-art tools C2E2 [17],
CORA [3,2] and Flow∗ [12], we show that our bounding technique can complement
them in that it can scale to larger systems while being more conservative in the size of
the initial uncertain set that it supports.

Further related work. Differential equivalence is promising when the ODE system is
composed of several identical subsystems that depend on some common context [33].
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It is related but not comparable to bisimulation for differential systems [18,20] since it
partitions ODE variables rather than the state space. Likewise, it complements [8] that
captures nonlinear relations between ODE variables but does not enjoy a polynomial
time algorithm like [10].

A classic approximation approach relies on Lyapunov-like functions [27,15] known
from stability theory of ODEs. However, for nonlinear systems the automatic computa-
tion of Lyapunov-like functions remains a challenging task. Restricting to special classes
of Lyapunov-like functions (e.g., sum-of-squares polynomials [18]) leads to efficient
construction algorithms which may provide tight bounds, but existence is not guaranteed.
On the other hand, approximations with differential inequalities [35] can be computed
efficiently, but may be loose. Abstraction, supported by CORA and Flow∗, locally ap-
proximates the nonlinear model by a multivariate polynomial or an affine system, see
[5,12] and references therein. Similarly in spirit we linearize across a reference trajectory.
A closer approach to ours is discussed in [17] and supported by the corresponding tool
C2E2. It combines local Lyapunov-like functions and techniques based on sensitivity
analysis [24]. Our bound is however different because the nonlinear part is bounded
analytically by restricting to polynomial derivatives.

More in general, research on approximate quotients of ODE systems spans many
disciplines. In chemistry, it can be traced back to Kuo and Wei [23]. They studied
monomolecular reaction networks, which give rise to affine ODE systems. The approxi-
mation consists in nearly exact lumping, i.e., a linear transformation of the state space
that would be exact up to a perturbation of the parameters (hence we are similar in spirit).
The approximation, however, only applies when the transition matrix underlying the
linear system is diagonalizable. Li and Rabitz extend approximate lumping to general
CRNs [26], but an explicit error bound is not given. In a similar vein, approximate
quotients in ecology have been studied from the point of view of finding a reduced ODE
system whose derivatives are as close as possible (in norm) to the derivatives of the orig-
inal ODE system, where the 0-distance induce the exact quotient [21]. The justification
that variables underlying similar ODEs have nearby solutions is grounded on Gronwall’s
inequality which is also at the basis of more recent quotient constructions [19], which
however are not algorithmic, unlike in this paper.

Notation and basic definitions. We denote the infinity norm ‖·‖∞ by ‖·‖, while ‖·‖2 is
the Euclidian norm. Whenever convenient, for a given partition of variablesH, we write
H = {xH,1, . . . , xH,|H|} for any H ∈ H. We denote by ψ[t/s] the term that arises by
replacing each occurrence of t in ψ by s. Let S be a set, andH1,H2 two partitions of S.
Then,H1 is a refinement ofH2 if for any block H1 ∈ H1 there exists a block H2 ∈ H2

such that H1 ⊆ H2. For any partition H of S, let ∼H denote the unique equivalence
relation withH = S/∼H. The transitive closure of a relation ∼ is denoted by ∼∗.

2 Background

Throughout the paper we consider a polynomial initial value problem (PIVP) over the
set of ODE variables S = {x1, . . . , xn}. It is defined by the ODEs ẋi = qi, 1 ≤ i ≤ n,
where qi is a multivariate polynomial over S . The initial condition of the PIVP is given
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by σ : S → R; xi(t) denotes the unique solution for variable xi at time point t starting
from xi(0) = σ(xi). We consider PIVPs that do not exhibit finite explosion times,
i.e., whose solutions do not have a singularity at any finite point in time. This property
is shared by the vast majority of practical models and can be efficiently checked via
numerical ODE solvers.

A polynomial qi is given in the normal form if each monomial xα ≡
∏
xi∈S x

αxi
i ,

where α ∈ NS0 is a multi-index, appears in qi at most once. The normal form of a
polynomial qi is denoted by N (qi). Without loss of generality, we assume that the
polynomials qi of a PIVP ẋ = q(x), where q = (qi)xi∈S , are given in normal form. For
a polynomial qi in normal form with variables in S, let c(qi, xα) denote the coefficient
of the monomial xα, where α ∈ NS0 .

Example 1. We use the following ODE system, with variables S = {x1, x2, x3}, as a
running example.

ẋ1 = −4.00x1 + x2 + x3 ẋ2 = 1.99x1 − x2 ẋ3 = 2.01x1 − x3 (1)

In [11] two variants of differential equivalence were introduced for IDOL, a class of
nonlinear ODE systems covering derivatives more general than polynomials. Here we
find it convenient to restate them for a PIVP. (The proofs for this correspondence are
straightforward hence we omit them.)

We begin with backward differential equivalence (BDE), which relates variables that
have the same solutions at all time points. The definition of BDE for PIVP makes pairwise
comparisons between the coefficients of any two variables in the same equivalence class.

Definition 1 (BDE). Fix a PIVP, a partition H of S and write xi ∼BH xj if all coeffi-
cients of the following polynomial are zero,

℘Hi,j := (qi − qj)
[
xH′,1

/
xH′ , . . . , xH′,|H′|

/
xH′ :H

′ ∈H
]

i.e., when ∑
α∈NS0

|c(℘Hi,j , xα)| = 0. (2)

A partitionH is a BDE ifH = S/(∼B∗H ∩ ∼H).

Essentially, establishing that a candidate partition is a BDE consists in comparing
the coefficients of the monomials of the ODEs of related variables, up to the natural
equivalence class induced on monomials by the equivalence relation through ℘Hi,j —
for instance, the partition {{x1}, {x2, x3}} will equate the monomials x1x2 and x1x3.
Then, for any two variables in the same block it must hold that the differences between
the coefficients of the same monomials (modulo the induced equivalence class) are zero.

Example 2. In our running example let us consider the partition of variables H =
{H1, H2}, with H1 = {x1} and H2 = {x2, x3}. ThenH is not a BDE because

℘H2,3 = −0.02x1 and c(℘H2,3, x1) = −0.02 6= 0.
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Forward differential equivalence (FDE) identifies a partition that induces a quotient
ODE that tracks sums of variables in each equivalence class. For instance, for any initial
condition we have that {{x1}, {x2, x3}} is an FDE for (1) because we can find an ODE
system for x2 + x3:

ẋ1 = −4.00x1 + (x2 + x3) ˙(x2 + x3) = 4.00x1 − (x2 + x3)

The change of variable x23 = x2 + x3 gives us the quotient ODE ẋ1 = −4.00x1 + x23,
ẋ23 = 4.00x1 − x23. From this we conclude that the solution satisfies x23(t) = x2(t) +
x3(t) for all time t if this holds for the initial condition, i.e., x23(0) = x2(0) + x3(0).

For a PIVP, FDE can be checked by requiring that the evaluation of the polynomial
that represents the quotient derivative for an equivalence class is invariant with respect
to a redistribution of the values of any two variables within that equivalence class.

Definition 2 (FDE). Fix a PIVP, a partitionH of S and write xi ∼FH xj if all coefficients
of the polynomial

∑
H∈H ℘

H
i,j are zero, where

℘Hi,j :=
∑
xk∈H

qk −
∑
xk∈H

qk[xi/s(xi + xj), xj/(1− s)(xi + xj)]

That is, when
m∑
k=1

∑
α∈NS∪̇{s}0

|c(℘Hk
i,j , x

α)| = 0. (3)

H = {H1, . . . ,Hm} is an FDE whenH = S/(∼F∗H ∩ ∼H).

3 Approximate Differential Equivalences

Definitions. Approximate differential equivalence relaxes the equality conditions (2)-(3)
of Definition 1 and 2 to inequalities with respect to a tolerance level ε.

Definition 3 (Approximate BDE). Fix a PIVP, a partition H = {H1, . . . ,Hm} of
S, and ε ≥ 0. We write xi ∼BH,ε xj if

∑
α∈NS0

|c(℘Hi,j , xα)| ≤ ε, where ℘Hi,j is as in

Definition 1. A partitionH is an ε-BDE ifH = S/(∼B∗H,ε ∩ ∼H).

Definition 4 (Approximate FDE). Fix a PIVP, a partition H = {H1, . . . ,Hm} of S,
and ε ≥ 0. We write xi ∼FH,ε xj if

∑m
k=1

∑
α∈NS∪̇{s}0

|c(℘Hk
i,j , x

α)| ≤ ε, where ℘Hi,j is

as in Definition 2. A partitionH is an ε-FDE whenH = S/(∼F∗H,ε ∩ ∼H).

Setting ε = 0 recovers the exact counterparts in both cases. That is, H is an BDE
(resp., FDE) partition if and only if H is a 0-BDE (resp., 0-FDE) partition.The two
approximate differential equivalences are not comparable since their exact counterparts
are not [11]. Since these two notions have similar structure in the rest of this paper we
will illustrate only approximate BDE using small examples. Instead, both notions will
be discussed in more detail for the numerical evaluation of Section 5.
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Algorithm 1 Template partition refinement algorithm for the computation of the coarsest
ε-FDE/ε-BDE partition that refines a given initial partition G.

Require: A PIVP over variables S , a partition G of S , a threshold ε ≥ 0, and a mode χ ∈ {F,B}.
H←− G
while true do
H′ ←− S/(∼χ

∗

H,ε ∩ ∼H)
ifH′ = H then

return H
else
H ←− H′

end if
end while

Example 3. Let us consider our running example (1). Then, the partition
{
{x1}, {x2, x3}

}
is a 0.02-BDE partition, as can be easily seen from Example 2.

The next two results show the existence of largest approximate differential equiva-
lences and of a partition-refinement algorithm to compute it.

Theorem 1. Fix a PIVP, a partition G of S, and ε ≥ 0. Then, there exists a unique
coarsest ε-FDE (ε-BDE) partition refining G.

Theorem 2. Fix a PIVP, a partition G of S , and ε ≥ 0. Then, Algorithm 1 computes the
coarsest ε-FDE (ε-BDE) that refines G if χ = F (χ = B).

We now study how efficiently the conditions for approximate differential equivalence
can be computed. The notions are defined with respect to the coefficients of the polyno-
mials ℘Hi,j and ℘Hi,j and thus require the computation of their normalization. In the case of
ε-FDE, this yields exponential complexity due to term replacement. To see this, consider
for instance the PIVP ẋ1 = xk2 , ẋ2 = xk1 , for some k > 0. Then, for H =

{
{x1, x2}},

the term q1[x1/s(x1 + x2), x2/(1− s)(x1 + x2)] will be of size O(2k). This stands in
stark contrast to ε-BDE, where the conditions involve a difference between polynomials
terms with no term rewritings. This discussion can be formalized as follows.

Theorem 3. There exists a polynomialΠ such that, under the assumptions of Theorem 2,
the number of steps done by Algorithm 1 is O

(
Π(2d · p)

)
if χ = F and O

(
Π(p)

)
if

χ = B, respectively, where d is the maximum degree of the polynomial and p is the
number of monomials present in the PIVP.

In practice, d is usually not large. For example, mass-action CRNs feature ODEs with
degree-two polynomials because in nature at most two species interact in every reaction.
An experimental comparison between the reduction runtimes of ε-FDE and ε-BDE
will be presented in Section 5. We also remark that since 0-FDE/BDE coincides with
FDE/BDE, the above result provides a complexity bound for a subclass of ODE systems
considered in [11].

Other computational considerations motivate the choice of the definitions of approxi-
mate differential equivalence given in this paper. Another natural definition could have
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involved the computation of the maximal distance between derivatives “semantically”,
i.e., under all possible evaluations within a given domain of interest. For example, con-
sider the PIVP ẋ1 = x31 − x2, ẋ2 = x1 − x32. Establishing that {{x1, x2}} is an ε-BDE
would require checking that the difference between the derivatives satisfies

|ẋ1 − ẋ2| = |x31 − x1 + x32 − x2| ≤ ε, for all 0 ≤ x1, x2 ≤ C (4)

for some finite C > 0 that represents some bounded domain where the trajectories are
assumed to live. Since this example shows that this question is in general equivalent to
solving a nonconvex optimization problem, we infer that the problem is NP-hard [29].

However it can be easily shown that our approximate differential equivalence, defined
through the coefficients of the polynomials, corresponds to checks such as (4) in the
following sense: If a partitionH satisfies constraints similar to (4) with respect to some
ε > 0, then there exists an ε′ > 0 such that H is an ε′-FDE/BDE, and vice versa. The
basic idea is to observe that a polynomial is the zero function if and only if its coefficients
are all zero.

Finally, we remark that our structural/syntactic criteria can be used for PIVPs only.
It is the lack of analogous conditions in the case of more general functions like minima
or roots which prevents our approximate differential equivalences to be extended in a
straightforward way to the full class of nonlinear ODEs of [11].

Reference PIVP. Given a partition of variables that represents an approximate differential
equivalence, we construct a reference PIVP by finding a “perturbation” of the original
PIVP — i.e., a modification of the initial condition σ and the coefficients present
in q1, . . . , qn — which ensures that that very partition becomes an exact differential
equivalence. On this reference PIVP one can use the quotienting algorithms for FDE/BDE
developed in [11] (and not restated here formally for brevity). Therefore, the as-obtained
quotient represents an approximate reduction of the original PIVP.

We obtain the desired perturbation by treating the original initial conditions and
polynomial coefficients uniformly as initial conditions on an extended PIVP where every
coefficient is parameterized and turned into a new ODE variable.

Definition 5. The parameterization of a polynomial qi in normal form with variables S
is denoted by q̂i and arises from qi by replacing, for each α ∈ NS0 , the constant c(qi, xα)
with the parameter c(q̂i, xα).

Example 4. The polynomials q2 = 1.99x1 − x2 and q3 = 2.01x1 − x3 from Example 1
give rise to the parameterized polynomials q̂2 = c(q̂2, x1)x1 + c(q̂2, x2)x2 and q̂3 =
c(q̂3, x1)x1 + c(q̂2, x3)x3, respectively.

Definition 6 (Extended PIVP). For a PIVP P with variables S, set Θ = {c(q̂i, xα) |
1 ≤ i ≤ n, α ∈ NS0 }. Its extended version P̂ has variables S∪Θ and is given by ẋi = q̂i
and ċ(q̂i, x

α) = 0, where xi ∈ S and α ∈ NS0 . For a given σ̂ ∈ RS∪Θ, let P̂(σ̂) denote
the PIVP which arises from P̂ by replacing each v ∈ S ∪Θ by the corresponding real
value σ(v) ∈ R in P̂ . In particular, let σ̂0 ∈ RS∪Θ be such that P(σ) = P̂(σ̂0).
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Example 5. If P is the PIVP from Example 1, its extended version P̂ is

ẋ1 = c(q̂1, x1)x1 + c(q̂1, x2)x2 + c(q̂1, x3)x3, ċ(q̂1, xi) = 0, i = 1, 2, 3,

ẋ2 = c(q̂2, x1)x1 + c(q̂2, x2)x2, ċ(q̂2, xi) = 0, i = 1, 2, 3,

ẋ3 = c(q̂3, x1)x1 + c(q̂3, x2)x2, ċ(q̂3, xi) = 0, i = 1, 2, 3.

The corresponding σ̂0 satisfies σ̂0(xi) = σ(xi) for 1 ≤ i ≤ 3 and

σ̂0
(
c(q̂1, x1)

)
= −4.00, σ̂0

(
c(q̂1, x2)

)
= 1.00, σ̂0

(
c(q̂1, x3)

)
= 1.00,

σ̂0
(
c(q̂2, x1)

)
= 1.99, σ̂0

(
c(q̂2, x2)

)
= −1.00,

σ̂0
(
c(q̂3, x1)

)
= 2.01, σ̂0

(
c(q̂3, x2)

)
= −1.00.

The following is needed for the definition of the reference PIVP.

Definition 7. Given constant free polynomial ℘̂ (i.e., such that ℘̂(0) = 0) and Ξ ⊆
S ∪ Θ ∪ {s}, let t(℘̂, xα, Ξ) denote the coefficient term of xα in N (℘̂, Ξ), where
α ∈ NΞ0 and N (℘̂, Ξ) is the normal form of ℘̂ where variables outside Ξ are treated as
parameters.

Example 6. With q̂2 and q̂3 as in Example 4 and Ξ = {x1, x2, x3}, the normal form
N (q̂2 − q̂3, Ξ) is given by (c(q̂2, x1)− c(q̂3, x1))x1 + (c(q̂2, x2)− c(q̂3, x2))x2, while
t(q̂2 − q̂3, x1, Ξ) = c(q̂2, x1)− c(q̂3, x1).

Definition 8. Given a PIVP with variables S and an ε-FDE partitionH of S , the set of
linear constraints ofH is given by{

t(℘̃Hi,j , x
α,S ∪ {s}) = 0 | α ∈ NS∪{s}0 , H ∈ H and xi ∼H xj

}
(5)

with ℘̃Hi,j =
∑
xk∈H q̂k −

∑
xk∈H q̂k[xi/s(xi + xj), xj/(1− s)(xi + xj)].

IfH is an ε-BDE partition of S, the corresponding set of linear constraints is{
t(℘̃Hi,j , x

α,S) = 0 | α ∈ NS0 , xi ∼H xj
}

∪
{
xij − xij+1

= 0 | 1 ≤ j ≤ k − 1 and {xi1 , . . . , xik} ∈ S/∼H
}
, (6)

where ℘̃Hi,j = (q̂i − q̂j)
[
xH′,1

/
xH′ , . . . , xH′,|H′|

/
xH′ :H

′ ∈H
]
.

Example 7. From Example 2, we know that H = {{x1}, {x2, x3}} is a 0.02-BDE
partition of the PIVP (1). The set of linear constraints underlying H is given by
c(q̂2, x1)− c(q̂3, x1) = 0 and x2 − x3 = 0.

Remark 1. In line with its exact counterpart, an ε-BDE is “useful” under the further
constraint that related variables have the same initial conditions in the reference model,
as a necessary condition for having equal solutions at all time points. This translates
into adding the constraints in (6) that perturbed initial conditions of related variables are
equal. This leads, for instance, to the constraint x2 − x3 = 0 in the running example.
For ε-FDE, instead, only constraints on the parameters Θ are made.
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Theorem 4. Given a PIVP P with variables S, an ε-FDE/BDE partition H and a
configuration σ̂ ∈ RS∪Θ that satisfies (5)/(6), it holds thatH is an FDE/BDE of P̂(σ̂).

The linear system of constraints from Theorem 4 can be shown to be underdeter-
mined, hence there are infinitely many perturbations that lead to an exact differential
equivalence. This observation is an instance of the well-known fact that, in general, an
approximate quotient is not unique. Here, we fix one candidate perturbation by assuming
that nearby initial conditions yield nearby trajectories. This fact is asymptotically true
due to Gronwall’s inequality, as mentioned in Section 1.

We are interested in finding a configuration σ̂ which satisfies the constraints of
Theorem 4 and minimizes the distance ‖σ̂ − σ̂0‖2. Mathematically, this corresponds to
the optimization problem

σ̂∗ = argmin
σ̂:Eq. (5)/(6) holds

‖σ̂ − σ̂0‖2 (7)

Since the solution space of a linear system is convex, the Euclidian norm yields a convex
quadratic program that can be solved in polynomial time [22].

Example 8. Let us continue Example 7 and assume that σ(x2) = σ(x3). In such a
case, it can be easily seen that σ̂∗ and σ̂0 satisfy σ̂∗(c(q̂2, x1)) = σ̂∗(c(q̂3, x1)) =(
σ̂0(c(q̂2, x1))+ σ̂0(c(q̂3, x1))

)
/2 = 2.00 and coincide on all other parameters. In other

words, the closest PIVP that enjoys an exact BDE relating x2 and x3 is given, as expected,
by perturbing the coefficients 1.99 and 2.01 of (1) to their average value, yielding:

ẋ1 = −4.00x1 + x2 + x3 ẋ2 = 2.00x1 − x2 ẋ3 = 2.00x1 − x3

The above discussions are summarized in the following.

Theorem 5. Given a PIVP, ε ≥ 0, and an ε-FDE/BDE partitionH, the solution of (7)
exists and can be computed in polynomial time.

The solution of the optimization problem (7) stated in Theorem 5 is informally
depicted in Fig. 1a.

The reference PIVP is the extended, exactly reducible PIVP with the optimum initial
condition σ̂∗, i.e., P̂(σ̂∗). Its ODE solution is called the reference trajectory.

4 Error Bounds

The objective of this section is to provide a tight bound on the difference between
the solution of the original PIVP and the reference. More specifically, we will show
how to compute two values δ > 0 and λ > 0 such that for all initial conditions
σ̂1 ∈ RS∪Θ with ‖xσ̂1(0)− xσ̂∗(0)‖ ≤ δ, it holds that max0≤t≤τ̂‖xσ̂1(t)− xσ̂∗(t)‖ ≤
λ‖xσ̂1(0) − xσ̂∗(0)‖, where xσ̂ denotes the solution underlying P̂(σ̂) and τ̂ > 0 is a
previously fixed finite time horizon.

The quantity δ gives the size of the ball around the initial condition σ̂∗ of the reference
PIVP, whereas λ is the amplifier that relates the maximum distance between trajectories
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δ

σ̂0

σ̂∗

Solution set of Eq. (5) / (6)

di
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nc
e

σ̂∗
σ̂0

ε-FDE/BDE quotient

RS∪Θ

Figure 1(b)Figure 1(a)

Fig. 1: Given a PIVP P , a partition G of S, and an ε > 0, the coarsest ε-FDE/BDE
partitionH that refines G is constructed. Afterwards, the solution σ̂∗ of the optimization
problem (7) is computed in Fig. 1(a). This allows to compute the ε-FDE/BDE quotient
P̂(σ̂∗) ofH. With this, λ and δ from Theorem 7 are calculated. In the case the distance
between σ̂0 and σ̂∗ does not exceed δ, the tight bounds of Theorem 7 can be applied and
relate the trajectories of P̂(σ̂∗) and P̂(σ̂0) = P(σ), as depicted in Fig. 1(b).

to the distance between the initial conditions. Therefore, if the initial condition of the
original PIVP P̂(σ̂0) falls within the prescribed δ ball, then the above statement will
provide a formal bound of the error made in approximating the original PIVP P̂(σ̂0)
with the reference PIVP. This idea is visualized in Fig. 1(b).

Let us recall the notion of Jacobian matrix.

Definition 9. Given an extended PIVP with variables S ∪Θ, the entries of the Jacobian
matrix A = (Ai,j)xi,xj∈S∪Θ are given by Ai,j = ∂xj

q̂i, where ∂x denotes the partial
derivative with respect to x.

Let A(t) ∈ RS∪Θ×S∪Θ denote the Jacobian obtained by plugging in the reference
trajectory xσ̂∗(t). We will need the following result from the theory of ODEs.

Theorem 6. There exists a family of matrices Λ(t0, t1), with 0 ≤ t0 ≤ t1 ≤ τ̂ , such
that the solution of ẏ(t) = A(t)y(t), where y(t0) = y0 and t0 ≤ t ≤ τ̂ , is given by
y(t) = Λ(t0, t)y0 for all t0 ≤ t ≤ τ̂ .

This is needed in the following.

Theorem 7. Consider an extended PIVP P̂ with variables S ∪ Θ and define λ0 =
max0≤t≤τ̂‖Λ(0, t)‖ and λ1 = max0≤t0≤t1≤τ̂‖Λ(t0, t1)‖. Further, define the remainder
function r : [0; τ̂ ]× RS∪Θ → RS∪Θ via

r(t, x− xσ̂∗(t)) = q̂(x)− q̂(xσ̂∗(t))−A(t)(x− xσ̂∗(t))

and let 0 ≤ d2, d3, . . . be such that ‖r(t, y)‖ ≤
∑deg(P̂)
k=2 dk‖y‖k for all y ∈ RS∪Θ and

0 ≤ t ≤ τ̂ . Then, with λ = 2λ0, for any xσ̂1(0) ∈ RS∪Θ, it holds that

‖xσ̂1(0)− xσ̂∗(0)‖ ≤ δ ⇒ max
0≤t≤τ̂

‖xσ̂1(t)− xσ̂∗(t)‖ ≤ λ‖xσ̂1(0)− xσ̂∗(0)‖

whenever δ > 0 satisfies
∑deg(P̂)
k=2 dk(2λ0δ)

k−1 ≤ (2λ1τ̂)
−1.
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Theorem 7 provides a bound on the difference xσ̂1(t) − xσ̂∗(t) in terms of the initial
perturbation xσ̂1(0) − xσ̂∗(0) if the latter is sufficiently small, i.e., does not exceed δ.

We wish to point out that the maximal δ satisfying
∑deg(P̂)
k=2 dk(2λ0δ)

k−1 ≤ (2λ1τ̂)
−1

is a root of a polynomial in one variable and thus can be efficiently approximated from
below via Newton’s method. Instead, the assumption ‖r(s, y)‖ ≤

∑deg(P̂)
k=2 dk‖y‖k on

the remainder function r states essentially that, for any k ≥ 2, the sum of all k-th order
derivatives of r are bounded by dk along the reference trajectory xσ̂∗ .

The next result shows that the bound of Theorem 7 is tight and relies on the sharp
bound available in the special case of linear systems (i.e., deg(P̂) = 1) as discussed
in [14].

Theorem 8. If an extended PIVP P̂ satisfies deg(P̂) = 1 and λ = 2λ0, it holds that

max
0≤t≤τ̂

‖xσ̂1(t)− xσ̂∗(t)‖ ≤ λ

2
‖xσ̂1(0)− xσ̂∗(0)‖

for any xσ̂1(0) ∈ RS∪Θ. The bound is tight in the sense that there exist 0 ≤ t ≤ τ̂ and
xσ̂1(0) ∈ RS∪Θ such that ‖xσ̂1(t)− xσ̂∗(t)‖ = λ

2 ‖x
σ̂1(0)− xσ̂∗(0)‖.

Note that the amplifier in Theorem 7 is twice as large as the amplifier in Theorem 8.
This is because the proof of Theorem 7 has to estimate nonlinear terms present in
the remainder function r. More importantly, Theorem 8 shows that the amplifier of
Theorem 7 cannot be substantially improved.

Remark 2. We note that λ0, λ1 can be estimated efficiently. Indeed, let exi ∈ RS∪Θ
be the xi-th unit vector in RS∪Θ, i.e., exi

(xj) = δi,j where δi,j is the Kronecker delta.
Then, if y(t0) = exi

, Theorem 6 implies y(t1) = Λ(t0, t1)exi
. Since Λ(0, t1)exi

is the
xi-column of Λ(0, t1) and Λ(t0, t1) = Λ(0, t1)Λ(0, t0)

−1, this shows that the matrices
Λ(t0, t1) can be computed by solving |S ∪Θ| instances of the linear ODE system from
Theorem 6 up to time τ̂ .

By calculating a bound L > 0 on max0≤t≤τ̂‖A(t)‖ and by computing the matrices
Λ(ti, tj) for all time points tk underlying a fixed discretization step ∆t > 0 of [0; τ̂ ], the
following can be shown.

Lemma 1. Together with λ+0 = maxi‖Λ(0, ti)‖ and λ+1 = maxi≤j‖Λ(ti, tj)‖, it holds
that λ0 ≤ λ+0 eL∆t and λ1 ≤ λ+1 [1 + L∆t(eL∆t + 1)].

The next result simplifies the constraints on δ from Theorem 7 if deg(P̂) ≤ 3.

Lemma 2. In the case where deg(P̂) ≤ 3, the constraint on δ of Theorem 7 simplifies

to δ ≤
[
2τ̂λ0λ1

(
d2 +

√
d22 +

2d3
λ1τ̂

)]−1
.

The above lemma applies, for instance, to most biochemical systems, as discussed
in Section 3. The next result, instead, allows for an efficient estimation of dk, with
2 ≤ k ≤ deg(P̂).

11



Fig. 2: H-tree network adapted from [31].

i R∗i (mΩ) C∗i (fF)

1 3.19 0.280
2 6.37 0.300
3 12.75 0.130
4 25.50 0.140
5 50.00 0.070
6 100.00 0.070
7 200.00 0.035
8 400.00 0.035

Table 1: Nominal parameters of
electronic components at different
depths i.

Lemma 3. Given an extended PIVP P̂ with variables S ∪Θ, let #k(q̂i) be the number
of degree k monomials in N (q̂i) and D(q̂i, σ̂) the largest coefficient of N (q̂i) for con-
figuration σ̂ ∈ RS∪Θ. With C = max0≤t≤τ̂‖xσ̂∗(t)‖, M = maxxi∈S maxk≥2 #k(q̂i)

and D = maxxi∈S D(q̂i, σ̂∗), it suffices to set dk in Theorem 7 to Cdeg(P̂)−kMD.

For the case of linear systems whose parameters are subject to perturbation, instead, the
following lemma can be applied. It provides a sharper estimate on d2 but comes at the
price of more involved computation.

Lemma 4. Given an extended PIVP P̂ with variables S ∪Θ, the Hessian matrix Hk =
(Hk

i,j)xi,xj
of q̂k is given by Hk

i,j = ∂xi
∂xj

q̂k. With this, d2 can be chosen as d2 =
1
2 ·maxxi∈S∪Θmax0≤t≤τ̂‖Hi(xσ̂∗(t))‖.

Example 9. Since deg(P̂) = 2 in Example 5, coefficients d3, d4, . . . are zero and
we only need to bound d2. Moreover, the constraint in Theorem 7 simplifies to δ ≤
(4τ̂λ0λ1d2)

−1 thanks to Lemma 2. By applying Lemma 3, instead, we see that it suffices
to choose d2 = 2.00 because M = 2.00 and D = 1.00. In the case of τ̂ = 3.00, we thus
get λ0 = λ1 = 1.40 which yields δ ≤ 0.02.

5 Evaluation

We consider a simplified (inductance free) version of a power distribution electrical
network from [31], arranged as a tree called H-tree (Figure 2). We let N be the depth
of the tree and denote the resistances and the capacitances at depth i by Ri,k and Ci,k,
respectively. The source voltage is vs, here assumed to be constant, vs = 2.0V. Then,
the voltage across Ci,k, denoted by vi,k, obeys the affine ODE

v̇1,1 =
vS − v1,1
R1,1C1,1

− v1,1 − v2,1
R2,1C1,1

− v1,1 − v2,2
R2,2C1,1

, v̇i,k =
vi−1,l − vi,k
Ri,kCi,k

, (8)

where 1 ≤ i ≤ N , k = 1, . . . , 2i−1, and l = dk/2e, where d·e denotes the ceil function.
Here we considered networks with depth up to N = 8. For depths i ≤ 4, the nominal

12



Reference model Time (s) & Maximal Over-approximation

N Time (s) λ δ ‖·‖ λ · ‖·‖ C2E2 CORA FLOW∗

2 1.96E+0 5.41 7.95E–4 4.43E–4 2.40E–3 1.00E+1 safe 4.82E+1 8.50E–3 2.51E+1 8.21E–3
3 3.51E+0 6.27 6.33E–4 7.42E–5 4.65E–4 4.20E+2 safe 1.42E+2 7.80E–3 1.10E+2 9.74E–3
4 7.75E+0 7.78 4.71E–4 2.17E–5 1.68E–4 — 6.23E+2 5.50E–3 9.40E+2 1.16E–2
5 2.46E+1 7.78 4.71E–4 3.31E–4 2.58E–3 — 5.39E+3 5.00E–3 —
6 8.42E+1 7.78 4.71E–4 8.97E–5 6.98E–4 — — —
7 4.74E+2 7.78 4.71E–4 4.22E–4 3.28E–3 — — —
8 — — — —

Table 2: H-tree model results.

parameter values R∗i and C∗i were taken from [31]; for i ≥ 5, instead, we extrapolated
them. The parameters are summarized in Table 1.

In [31] the authors show that when the values of resistors and capacitors of any depth
are equal, i.e., Ri,· ≡ R∗i and Ci,· ≡ C∗i then the network is symmetric. That is, the
voltages at the capacitors in any level are equal at all time points. Indeed,

{
{vi,k | 1 ≤

k ≤ 2i−1} | 1 ≤ i ≤ N
}

is an exact BDE partition (with N equivalence classes).
We now study the robustness of the symmetry under the realistic assumption that

resistances and capacitances are only approximately equal. In particular, we test whether
it is possible to explain quasi-symmetries when the parameters have tolerance η = 0.01%.
This corresponds to a practical situation when components or measurements parameters
enjoy high accuracy. We considered networks of different size by varying the maximum
depth N from 2 to 8. For each size, in order to simulate a quasi-symmetric scenario we
built 30 distinct ODE models by sampling values for Ri,k and Ci,k uniformly at random
within η percent from their nominal values. These repetitions were made in order to
avoid fixing a single instance that might unfairly favor our algorithm. To each model we
applied the ε-BDE reduction algorithm; choosing ε = 6.00E-4, it returned a quotient
corresponding to a perfectly symmetrical case. The reduction times were below 0.5 s in
all cases. (Throughout this section, the runtimes reported were measured on a VirtualBox
virtual machine running Ubuntu 64 bits over an actual 2.6 GHz Intel Core i5 machine
with 4 GB of RAM.) Then, we computed the values of δ and λ over a time horizon of 7
times units. This was chosen as a representative time point, for any N , of the transient
state of the network (to account for the fact that, typically, circuits are analyzed in the
time domain for transient analysis only).

The presence of uncertain parameters required us to transform the originally affine
system (8) into a polynomial system of degree two (by substituting each 1/(Ri,kCj,l)
with a corresponding new state variable) with 2N+1 states. This nonlinearity ruled out
the application of standard over-approximation techniques for linear systems.

We present the results for the random model with the smallest value of δ in Table 2.
The runtimes (second column) refer to the computation cost of the λ-δ pair. In all cases,
δ turned out to be larger than the distance between the original model and its quotient
‖σ̂0 − σ̂∗‖ = ‖xσ̂0(0) − xσ̂∗(0)‖ (shown in column ‖·‖). This demonstrates that the
0.01% tolerance can be formally explained by approximate differential equivalence, as
confirmed by the small values of the amplifiers λ.
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We compared against C2E2, CORA, and Flow∗. (We did not compare our technique
with other approaches applicable to nonlinear dynamics such as VNODE-LP [32],
Ariadne [6] or HySAT/iSAT [28] because those have been compared to Flow∗ in the
past [12].) While for CORA and Flow∗ the comparison can be made directly, C2E2 seeks
to decide whether a given set is reachable. In order to perform as fair a comparison as
possible we chose unreachable sets generously far away from the over-approximations
computed with our bound, in order to ensure that C2E2 computes an over-approximation
proving this. In all three cases, the initial uncertain set was fixed so as to correspond to
the ball around the initial condition of the reference model σ̂∗ that included the original
model σ̂0. This is the most favorable condition for the tools since it corresponds to the
smallest uncertainty set which can provide a guaranteed error bound. Other settings of
C2E2, CORA, and Flow∗ were chosen such to ensure successful termination. In the case
of Flow∗ we used estimation remainder 0.10 and allowed for adaptive Taylor model
degree between 2 and 6. In C2E2 we set the K value to 2000. We used the time step 0.10
for C2E2 since this ensured safety for the models that could be analyzed. For CORA
and Flow∗ we set time step equal to 0.01 as this led to tight enough bounds. For our
approach, instead, we used time step 0.023 because this ensured tight approximations of
λ0 and λ1 via Lemma 1. In all cases the time-out was set to 3 hours.

The comparison results are also reported in Table 2. The over-approximations com-
puted by C2E2 are not shown because they need not to be tight in order to verify the
reachability problem. This is because C2E2 is refining an over-approximation only if
this is necessary to decide safety. Thus, we report that C2E2 was able to verify a set
to be safe, i.e., unreachable. For a network of depth N , the over-approximations for
CORA and Flow∗ are reported as the maximal diameter of the flowpipe underlying
vN,1 across all time points. As such, it can be compared to the product λ · ‖σ̂0 − σ̂∗‖
given by our bound, which is also explicitly reported in the table for the sake of easy
comparability (column λ · ‖·‖). Both CORA and Flow∗ reported tight bounds, of the
same orders as ours. These correspond to at most ca. 1% error on the observed variable,
which cannot exceed the value of 2.0 (the source voltage applied to the network). C2E2
did not terminate within the time-out with models with N > 3, while Flow∗ ran out of
memory for N > 4; CORA, instead, failed to compute the symbolic Jacobian matrices
for N > 5. Our approach, instead, timed out for N = 8. However, we wish to point
out that our algorithm naturally applies to parallelization. Indeed, its bottleneck is in
the computation of the set of linear ODE systems discussed in Remark 2, which can be
trivially solved independently from each other.

Discussion. In summary, the experimental results suggest that our bounding technique
may complement the current state of the art in reachability analysis. Indeed, it has been
shown to handle ODE systems of larger size, but it provides a δ neighborhood that can
explain perturbations up to ca 0.1% at best. This makes our approach beneficial for the
automatic detection and abstraction from quasi-symmetries due to small uncertainties,
e.g., measurement errors. On the other hand, algorithms such as those implemented in
C2E2, CORA, and Flow∗ can theoretically cover arbitrarily larger initial uncertainties,
but at a computational cost that blocked their applicability to our larger benchmarks. In
future work it is worth investigating a possible combination of these techniques.
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6 Conclusion

Reasoning about quantitative properties approximately can represent an effective way of
taming the complexity of real systems. Here we have considered ordinary differential
equations (ODEs) with polynomial derivatives. We developed notions of equivalence
as a relaxation of their exact counterparts, allowing the derivatives of related ODE
variables to vary up to a desired tolerance. Our algorithmic approach can be useful
to systematically discover quasi-symmetries in situations such as those presented in
our case study. In future work, it would be also possible to integrate other bounding
techniques, such as [35] which lacks an automatic synthesis of a reference model but can
offer a tradeoff between tightness of the bound and computation cost in its derivation.
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