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Ordinary differential equations (ODEs) with polynomial derivatives
are a fundamental tool for understanding the dynamics of systems
across many branches of science, but our ability to gain mecha-
nistic insight and effectively conduct numerical evaluations is crit-
ically hindered when dealing with large models. Here we propose
an aggregation technique that rests on two notions of equiva-
lence relating ODE variables whenever they have the same solu-
tion (backward criterion) or if a self-consistent system can be writ-
ten for describing the evolution of sums of variables in the same
equivalence class (forward criterion). A key feature of our proposal
is to encode a polynomial ODE system into a finitary structure akin
to a formal chemical reaction network. This enables the develop-
ment of a discrete algorithm to efficiently compute the largest
equivalence, building on approaches rooted in computer science
to minimize basic models of computation through iterative parti-
tion refinements. The physical interpretability of the aggregation
is shown on polynomial ODE systems for biochemical reaction net-
works, gene regulatory networks, and evolutionary game theory.
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Several models in natural and engineering sciences can be
described as a system of ordinary differential equations

(ODEs) with polynomial derivatives. A frequent concern is the
treatment of highly dimensional ODEs because of their unintel-
ligibility as well as the numerical difficulties caused by the large
computational cost of the analysis. Reduction techniques based
on singular value decomposition and Krylov subspace methods
have proved effective in producing reduced models with small
approximation errors (1, 2). However, albeit advantageous for
numerical simulations, these transformations often lead to loss of
structure and physical interpretability. This is a major limitation
when the model is used for predictive purposes or for validat-
ing mechanistic assumptions (3, 4). An alternative is to aggregate
groups of variables into macrovariables, for which an ODE sys-
tem can be explicitly derived. This has been successfully pursued,
for instance, using domain-specific techniques in computational
systems biology, where detailed mechanistic mass action ODE
models of protein interaction networks may incur combinatorial
explosion of the state space (5–7).

Here we propose a generic, domain-agnostic aggregation
method for ODEs with polynomial derivatives of any degree
based on equivalence relations (i.e., partitions) over the ODE
variables. It can be seen as an instance of a family of techniques
that consider arbitrary linear transformations of the state space
studied for a long time across many disciplines, such as chemistry
(8), ecology (9), and control theory (1). In this context, checking
whether a generic linear transformation induces an exact aggre-
gation is well-understood. Instead, it has been frequently pointed
out that a major limitation concerns the automatic generation
of a candidate transformation (10–13). This drawback does not
allow one to unravel simpler dynamics from systems of realistic
size in practice.

By contrast, we develop an efficient method for computing the
largest equivalence, leading to the maximal aggregation of an
ODE system. This is achieved by means of a partition refinement
algorithm that iteratively splits an initial partition of variables
until a fixed point. The maximal aggregation can be obtained by
starting the algorithm with the trivial partition having all ODE

variables in a single block. Furthermore, the freedom in choosing
an arbitrary initial partition is instrumental to producing reduc-
tions that preserve the dynamics of desired original variables,
which are then not aggregated.

Mathematically, our approach is a generalization of well-
known equivalence relations for Markov chains named lumpa-
bility (14). Ordinary lumpability relates states that have the same
aggregate transition rate toward every equivalence class (thus, it
is a forward criterion); in exact lumpability, two equivalent states
have the same aggregate rate from every equivalence class (thus,
it is a backward criterion). In a conceptually similar spirit, we
define forward equivalence as a relation whereby each equiv-
alence class describes the evolution of the sum of ODE vari-
ables in the original model. Backward equivalence identifies vari-
ables that have the same solutions at all time points (hence, they
must start from the same initial conditions). Indeed, forward and
backward equivalence collapse to ordinary and exact lumpabil-
ity, respectively, when the (linear) ODE system is the equation
of motion for the transient probability distribution of a continu-
ous time Markov chain (15).

Our technique describes the equivalences in finitary terms,
despite that they involve continuous ODE variables. We encode
a polynomial ODE system into a reaction network (RN), a struc-
ture akin to a formal chemical reaction network (CRN), with
one species per ODE variable and one reaction per monomial in
the derivatives. The equivalences are then relations over species
based on quantities computed by inspecting the reactions. This
structural interpretation allows the development of an algorithm
for computing maximal equivalences, building on analogous par-
tition refinement techniques developed for Markov chain lump-
ing (16, 17). These enjoy polynomial time and space complex-
ity, owing to the seminal work on foundational problems of
computer science by Paige and Tarjan (18).

Our contribution extends recent works that presented an alter-
native aggregation method based on a logical encoding into a
satisfiability problem (19) (however applicable only to ODE sys-
tems of moderate size) and an RN encoding for ODE systems
with polynomial derivatives of degree at most two (15), with the
further limitation that the criterion for forward equivalence was
only a sufficient condition for aggregation.
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Model Definitions
We consider first-order ODEs in the form

dx (t)
dt

= P(x (t)), x = (x1, . . . , xn), [1]

where P is a vector of multivariate polynomials over variables
x1, . . . , xn . Let x (0) denote the initial condition.

Equivalences. Given a partition H= {H1, . . . ,Hm} over the vari-
ables of Eq. 1, we construct an aggregation matrix A 2 Rm ⇥ n ,
A=(aij ), by setting aij =1 if xj 2 Hi and aij =0 otherwise. We
say that A induces a forward equivalence if it is possible to explic-
itly describe the dynamics for each partition block. Following ref.
20, this amounts to requiring that

AP(x ) = AP(ĀAx ), for all x , [2]

where Ā is any generalized right inverse of A.
Instead, backward equivalence captures that the solution x (t)

is “uniform” on a partition of variables H. That is, for every H 2
H and xi , xj 2 H , it holds that xi(t)= xj (t) for all t . This can be
characterized by requiring that

P(UH)✓ UH, with UH = {x 2 Rn |x uniform on H}. [3]

To obtain a reduced model, we set P̃ =APĀ, with the gener-
alized inverse Ā=(āij ), such that āij = aji/

P

k ajk . Let us con-
sider the reduced ODE system:

dy(t)
dt

= P̃(y(t)), y = (y1, . . . , ym). [4]

If A is an aggregation matrix representing a forward equivalence,
then the solution for the initial condition y(0)=Ax (0) satisfies
y(t)=Ax (t) for all t . Thus, y(t) preserves sums of variables,
but in general, the individual trajectories cannot be recovered.
Instead, if A represents a backward equivalence, then the orig-
inal solution is obtained by dividing each trace yi(t) by the size
of the equivalence class |Hi |, provided that the initial conditions
x (0) are uniform on H.

Reaction Networks. According to conditions in either Eq. 2 or 3,
checking whether a candidate partition is an equivalence involves
reasoning over uncountable state spaces. Here, we develop
appropriate finitary characterizations of forward and backward

A B C

Fig. 1. Example of reduction with forward equivalence. (A) A CRN of a basic mechanism of reversible binding between molecular species, A and B, through
A’s two identical binding sites. The state of the site is denoted by the subscripts u (unphosphorylated) and p (phosphorylated). For simplicity, we assume that
binding occurs when a site is phosphorylated, at most one molecule of B can bind to A, and at most one binding site can be phosphorylated. We set ki = i
for i = 1, . . . ,4. (B) We compute the largest forward equivalence refining the singleton initial partition of species; sp refers to a block in the set of splitters
initialized with the initial partition. At each iteration, the algorithm computes all values fr(·, ·, sp) (of which those equal to zero are not shown). Each block
is refined, such that any two species Si and Sj in the same subblock have the same values of fr(Si , ⇢, sp) and fr(Sj , ⇢, sp) for every partner ⇢. The first iteration
produces the subblocks {Au,u}, {Ap,u, Au,p}, {B}, and {Ap,uB, Au,pB}, which will form the new partition at the next iteration. For each refined block, one
among the subblocks of maximal size (here, {Ap,u, Au,p}) is not added to the set of splitters. (C) Each splitter is removed and considered in turn; however,
no blocks can be refined further. At the end of the fourth iteration, the set of splitters is empty. The resulting largest forward equivalence aggregates A
molecules that have the same phosphorylation level, abstracting from the identity of the sites and automatically revealing the assumption on their identical
dynamics that was made. Computations for backward equivalence proceed similarly using Eq. 7 and the parameter H0 of br as splitter.

equivalence by encoding an ODE into an RN. Formally, this is a
pair (S ,R) consisting of a set of species S and a set of reactions
R. We denote by MS(S) the set of all multisets with elements
in S . Each reaction is in the form µ

↵�! µ0, where µ and µ0 are
multisets of species (called reagents and products, respectively),
and the coefficient ↵ is a real number. A formal mass action
CRN is, therefore, a special case where ↵ > 0 is the kinetic
constant.

We encode each variable xi with species Si and each monomial
↵
Q

ix
pi
i appearing in the ODE of xk with the reaction

n
X

i=1

piSi
↵�! Sk +

n
X

i=1

piSi , [5]

where the operator + denotes multiset union and piSi is a mul-
tiset with pi occurrences of Si .

For the RN equivalence conditions, we define the notion of
net instantaneous stoichiometry of a species Si 2 S and of a set
of species G ✓ S because of reagents ⇢:

�(⇢,Si) :=
X

(⇢
↵�!⇡)2R

(⇡i � ⇢i)·↵ and �(⇢,G) :=
X

Si2G

�(⇢,Si),

where ⇢i and ⇡i denote the multiplicity of species Si in the
reagents and products, respectively.

To characterize forward equivalence, we further define

fr(Si , ⇢,G) :=
�(Si + ⇢,G)
[Si + ⇢]!

,

where the operator [·]! denotes the multinomial coefficient
induced by a multiset of species:

[⇢]! :=

0

@

n
P

i=1
⇢i

⇢1, . . . , ⇢n

1

A.

Our main result (SI Appendix, SI Text) is that a partition of
species H is a forward equivalence on the respective ODE vari-
ables if and only if, for any two blocks H ,H 0 2 H and any two
Si ,Sj 2 H , it holds that

fr(Si , ⇢,H
0) = fr(Sj , ⇢,H

0) [6]

for all ⇢, such that Si + ⇢ or Sj + ⇢ is a reagent in at least one
reaction of R (thus including ⇢ = ; for reactions with one species
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Fig. 2. Illustrative example of the three-step reduction up to for-
ward/backward equivalence using the RN of Fig. 1A and the largest for-
ward equivalence of Fig. 1C. In the first step, (A) the rate of each reaction
is divided by the product of the cardinalities of the equivalence classes to
which the reagents belong; we use an asterisk to indicate the representa-
tive of each equivalence class. (B) Each reaction is rewritten by replacing
every species with its representative. (C) Reactions with same reagents and
products are merged by summing the rates.

only as reagent). Intuitively, two species are related whenever
they provide same net instantaneous stoichiometry, for any reac-
tion partner ⇢, to all equivalence classes of species.

A similar result holds for backward equivalence. Here, two
species are related whenever they have the same instantaneous
stoichiometry aggregated across all reagents that are equal up to
the considered equivalence. To formally express this, let H be a
partition of species and ⇡H be the equivalence relation naturally
induced by H over multisets of species as follows:

⇡H=
n

(⇢,⇡)2MS(S)⇥MS(S)|
X

Si2H

⇢i =
X

Si2H

⇡i , 8H 2H
o

.

Also, we define

br(Si ,M,H 0) :=
X

Sk2H 0

X

⇢2M

�(Sk + ⇢,Si)
|Sk + ⇢|H 0

,

where |⇡|H 0 = |{Sl 2 H 0|⇡l > 0}| counts the number of differ-
ent species in H 0 occurring in ⇡. Then, H is a backward equiva-
lence for the corresponding ODE variables if and only if, for any
block H 2 H and any two Si ,Sj 2 H , it holds that

�(;,Si) = �(;,Sj ) and br(Si ,M,H 0) = br(Sj ,M,H 0) [7]

for all H 0 2 H and M 2 {⇢|(Sk + ⇢
↵�! ⇡) 2 R,Sk 2 S}/ ⇡H

(SI Appendix, SI Text).
The first condition of Eq. 7 regards reactions that encode con-

stants (i.e., degree zero monomials). These are ignored in Eq. 6
because they do not affect forward equivalence.

Reduction Algorithm. The largest equivalence that refines an ini-
tial partition of species is computed via iterative refinements.
Briefly, a set of “splitters” is initialized with the blocks of the
initial partition. Each splitter is considered as a candidate block
that prevents the current partition from being an equivalence. In
both Eqs. 6 and 7, the parameter H 0 represents the splitter. If
the equivalence criteria, checked with respect to the splitter, do
not hold, the partition is refined, such that any two species in the
same subblock will now satisfy them. The resulting subblocks are
added to the set of splitters, except for the largest one, follow-
ing an argument similar to ref. 18. There exists a unique fixed
point corresponding to the case where no more splitters have to
be considered, yielding the desired largest equivalence (Fig. 1).
The algorithm runs in polynomial time and space with respect
to the number of variables and monomials in the derivatives (SI

Appendix, SI Text).

For a given equivalence, a reduced RN can be obtained by
transforming the original one in three steps that preserve the
structure of the reactions (Fig. 2). For both forward and back-
ward equivalence, a species in the reduced RN represents the
sum of species belonging to that equivalence class; in the case of
a backward equivalence, the individual trajectory of an original
species can then be recovered by simply dividing the ODE solu-
tion for each representative by the cardinality of its equivalence
class. From the reduced RN, we can compute the reduced ODE
system of Eq. 4 by reversing the encoding of Eq. 5 (SI Appendix,
SI Text). This corresponds to interpreting the reduced RN with
mass action kinetics, straightforwardly generalized to nonposi-
tive reaction systems.

Applications
Molecular Biology. Multisite protein phosphorylation is a widely
studied signal transduction mechanism responsible for many reg-
ulatory roles in eukaryotic cells, such as threshold setting and
switch-like behavior (21–23). The RN in Fig. 1 is a simple model
of unordered phosphorylation, where the sites are assumed to
be equivalent. In this case, it is common to consider the same
kinetic rates when describing their interactions (21, 24, and 25) as
a mathematical simplification backed by experimental evidence
(26). In general, the full dynamics of a protein with n phosphory-
lation sites would require 2n variables to keep track of the state
of each individual site. Both forward and backward equivalence
explain the assumption of identical sites, yielding n + 1 equiv-
alence classes that group variables related to proteins with the
same number of phosphorylated sites. This confirms an earlier
lumping scheme developed specifically for this scenario (27). A
similar aggregation can be observed in the modeling of mecha-
nisms of complex formation in the case where a receptor protein
has multiple binding sites (SI Appendix, SI Text and Table S1).

Forward equivalence may also aggregate complexes exhibit-
ing different phosphorylation levels. Kozer et al. (28) propose a
model of oligomerization of the EGF receptor (EGFR) kinase.
It accounts for ligand binding, conformational changes of the
EGFR cytosolic tail induced by the presence of the ligand and
formation of dimers, trimers, and tetramers as well as EGFR
phosphorylation/dephosphorylation occurring at a single site.
The original network consists of 923 species and 11,918 reactions.
The maximal forward equivalence aggregates oligomers that are
equal up to the phosphorylation state of their sites (Fig. 3). This
leads to a reduced network with only 87 species and 705 reac-
tions, still useful to answer biologically relevant questions, such
as those in ref. 28 concerning the distribution of the cluster sizes.

An inspection of the members of the equivalence classes
suggests that the dynamics of phosphorylation/dephosphory-
lation and oligomer formation are independent. Effectively, the

A B C D E
C-I C-II

Fig. 3. Representative forward equivalence classes for the model of ref.
28. Forward equivalence aggregates molecular complexes that are equal
up to the states of the phosphorylation site (hollow/solid blue circles) of
EGFR. A shows the two-species equivalence class for EGFR (Y-shaped) with-
out conformational change of the cytosolic tail. (B) The equivalence class
aggregates EGFR when it is bound to EGF (solid red ellipses) as well as when
(C and D) the cytosolic tail has undergone conformational change (wiggled
lines). These basic patterns of equivalence carry over to all oligomers that
are formed through ectodomain cross-linking, such as (E) the three possi-
ble phosphorylation states of dimers with changed cytosolic tail and bound
to EGF.
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Fig. 4. Forward equivalence for the Fc✏RI model of early events of ref. 32.
(A) Graphical representation of the components involved in the pathway.
Lyn kinase is recruited by the � subunit of Fc✏RI, while Syk kinase binds to
the � site. Syk is modeled with two phosphorylation units for the linker
region and the activation loop. (B) Example of a class of the maximal for-
ward equivalence: the complex conformation is equal up to the states of
Syk’s phosphorylation units. The gray boxes represent a refinement which
aggregates complexes equal up to the state of the linker region only, cor-
responding to the exactly reduced model discussed in ref. 33. We use solid
and hollow circles to represent phosphorylated and unphosphorylated sites,
respectively.

equivalence classes internalize the phosphorylation dynamics in
the following sense. On any phosphorylation event, the complex
undergoes a change of state, turning into another complex within
the same equivalence class. Different members of the same class,
however, may have functionally distinct behavior. This also pre-
vents an aggregation by backward equivalence. For instance,
phosphorylation may not occur in a single EGFR (Fig. 3C,
C-I) because it depends on the context, requiring two receptors
to be bound with a conformationally changed tail (29). Instead,
a phosphorylated EGFR (Fig. 3C, C-II) may always undergo
dephosphorylation, since this is modeled as a spontaneous reac-
tion. Situations such as these, which feature site interactions
that are controlled or dependent on other sites, may block the
use of domain-specific reduction techniques (5–7, 30), since they
exploit assumptions of independence within interaction domains
(SI Appendix, SI Text). We refer to ref. 31 for a recent discussion
on the complementarity between equivalence-based CRN aggre-
gations and rule-based reduction techniques (7).

A similar aggregation pattern arises in a model of early
events of the signaling pathway of the high-affinity receptor for
IgE (Fc✏RI) in mast cells and basophils. The pathway includes
phosphorylation of the tyrosine residues on both the � and �
subunits of Fc✏RI by the Lyn kinase, which then recruits the
protein tyrosine kinase Syk (34). An experimentally validated
model has been proposed to provide mechanistic insights into
these processes (32). Here, a bivalent IgE ligand aggregates
Fc✏RI; Syk presents two phosphorylation units, the linker region
and the activation loop, transphosphorylated by Lyn and Syk,
respectively. The overall pathway is described by 354 molecu-
lar species and 3,680 reactions. The maximal forward equiva-
lence shows that complexes that have the same formation up
to the phosphorylation state of both units can be aggregated
(Fig. 4), yielding a reduced network with 105 species and 775
reactions. This finding extends and provides a formal proof for
the observation made in ref. 33, supplementary note 8, where
an exactly reduced network (with 172 species and 1,433 reac-
tions) was obtained by abstracting from the phosphorylation
site of the linker region only. Indeed, that network corresponds
to the refinement of the maximal forward equivalence which
separates complexes according to the phosphorylation status of
Syk (SI Appendix, SI Text).

We now discuss an example where members of the same equiv-
alence class do not have the same structure, using a detailed
model of activation of JAK, a family of enzymes that medi-
ate gene transcription (35). The mechanism is explained by the
formation of a macrocomplex by JAK binding to growth hor-
mone (GH) receptor dimers. The maximal forward equivalence

aggregates the dynamics of ligand/receptor complexes undergo-
ing constitutive turnover or endocytosis (Fig. 5). This gives non-
trivial equivalence classes containing complexes that differ in the
structure of the GH ligand/receptor. The full network (35) (SI

Appendix, SI Text), consisting of 471 species and 5,033 reactions,
is reduced to 345 species and 4,068 reactions. We find that every
complex in the same equivalence class features the same num-
ber of phosphorylated sites of JAK (Y1 and Y2). The maximal
aggregation still allows all of the analyses of ref. 35, which con-
cern the concentrations of certain complexes and the phosphory-
lation level of Y2.

We note that all previous models obey the law of mass action
and underlie ODE systems with polynomial derivatives of degree
two at most. Our technique is also applicable to ODEs with other
nonlinearities, such as biochemical networks with Michaelis–
Menten kinetics. Following, for instance, ref. 2, this can be done
by constructing an equivalent polynomial ODE system with aux-
iliary variables for rational expressions, sigmoids, and trigono-
metric functions (SI Appendix, SI Text).

Logic Models of Regulatory Networks. Logic models are another
established method to describe regulatory networks as a means
of expressing qualitative interactions between biomolecular pro-
cesses (39). Each process is associated with a Boolean vari-
able that describes two discrete states (e.g., on–off). A Boolean
update function defines how each variable may change state
depending on the values of the other variables (e.g., to represent
promotion and inhibition). Boolean models may be too coarse
when a more detailed evolution is required: for instance, to com-
pare predictions against experimental data or when they are to
be coupled with a quantitative models. For this, Boolean models
can be translated into ODEs with derivatives that agree with the
Boolean update function whenever inputs are only either zero
(false) or one (true) (38, 40, 41).

JAK2 Site Y1 
Site Y2 GH receptor

GH ligand

Phosphoinositide lipid

A

C D

E

B

Fig. 5. Graphical description of representative equivalence classes
(rounded boxes) obtained by computing the largest forward equivalence
on the model of JAK activation by Barua et al. (35). (A) Singleton block
where the complex consists of two JAK molecules with unphosphorylated
sites Y1/Y2 (hollow circles) bound to a GH dimer. Under these condi-
tions, the sites can be phosphorylated (solid circles). (B) Phosphorylation
(solid circles) at site Y1 allows the binding of SH2-B�, which can dimer
and bind to a phosphoinositide lipid. (C) Basic forward equivalence class
with three species when a GH ligand/receptor complex undergoes con-
stitutive turnover or endocytosis. (D) Since JAK2 molecules cannot bind
to degraded/internalized complexes, the three complexes have effectively
equivalent dynamics because they may only give rise to unbinding of the
JAK2 molecule. A similar symmetry can be observed among the complexes
in E, where additionally, SH2-B� and phosphoinositide can unbind.

4 of 6 | www.pnas.org/cgi/doi/10.1073/pnas.1702697114 Cardelli et al.

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1702697114/-/DCSupplemental/pnas.1702697114.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1702697114/-/DCSupplemental/pnas.1702697114.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1702697114/-/DCSupplemental/pnas.1702697114.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1702697114/-/DCSupplemental/pnas.1702697114.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1702697114/-/DCSupplemental/pnas.1702697114.sapp.pdf
http://www.pnas.org/cgi/doi/10.1073/pnas.1702697114


CO
M

PU
TE

R
SC

IE
N

CE
S

Fig. 6. Graphical representation, using ref. 36, of the Boolean model for
T-cell receptor signaling studied in refs. 37 and 38. Each node is a Boolean
variable, whereas a directed arc describes an influence represented by the
source variable appearing in the update function of the target variable. The
network has three inputs (nodes with no incoming arcs): CD8, CD45, and
the T-cell receptor TCRlig. Similar to ref. 38, we consider two variants with
and without the feedback loops Fyn ! PAGCsk and ZAP70 ! cCbl (dashed
arrows). Using the technique of ref. 38, we obtained a multivariate polyno-
mial ODE system of degree five. On this, we fixed an initial partition where
the input variables are singletons, ensuring that the largest backward equiv-
alence that refines this partition reveals nodes with equivalent dynamics for
any input. Nontrivial backward equivalence classes are represented with col-
ored nodes with the same background. The class {cCbl, LAT} is found only
when the feedback loops are active. In this case, they are simultaneously
subjected to the same influence by ZAP70. Indeed, backward equivalence
turns out to aggregate the ODEs of nodes with update functions that are
equal up to a renaming of nodes in the same equivalence class.

Here we consider the multivariate polynomial interpolation of
ref. 38. On a model of T-cell receptor signaling studied in refs.
37 and 38, backward equivalence reveals processes that exhibit
the same behavior because they are updated by functions that
are equal up to variables in the same equivalence class (Fig. 6,
and SI Appendix, Figs. S1 and S2 for further examples). From
the reduced model, we can exactly recover the original solu-
tion in terms of continuous signals in the [0, 1] interval. Instead,
forward equivalence leads to variables living in larger domains.
On this example, the maximal forward equivalence reduces the
ODE model, such that it is still possible to analyze full activa-
tion/deactivation of the downstream transcription factors CRE,
AP1, NFAT, and NFkB, which belong to the same equivalence
class (SI Appendix, Figs. S3 and S4).

Evolutionary Game Theory. The replicator equation is a well-
studied model for several natural, social, and economic systems
(42). It describes the dynamics of populations of individuals that
choose strategies with a rate of growth that depends on the com-
parison between an individual’s own payoff and the population’s
average. In its first formulation (43), the replicator equation con-
siders a state represented by the vector x = (x1, . . . , xn), where
xi denotes the probability of an individual choosing the i th strat-
egy, with 1  i  n . Its evolution is governed by the polynomial
ODE system

ẋi = xi
�

(Bx )i � xTBx
�

, 1  i  n, [8]

where B is the n ⇥ n payoff matrix, together with an initial con-
dition, such that it represents an initial proportion of strategies
[i.e.,

Pn
i=1 xi(0) = 1]. Here, backward equivalence may detect

strategies chosen with the same frequency within the population.
For instance, given the following payoff matrix

B =

2

4

1 3 2
3 1 2
4 4 1

3

5,

backward equivalence relates x1 and x2.
Similar investigations can be made on variants of the replica-

tor equations that model evolutionary dynamics over networks
(44). Here, a vertex represents a player that can interact with its
neighbors only. In this context, the problem of network aggre-
gation has also been studied using graph lumpability, a criterion
that involves conditions on the (weighted) adjacency matrix of
the network as well as on the players’ payoff matrices (45). It is
related to backward equivalence in that it captures an equiva-
lence relation between players/vertices, such that any two equiv-
alent players choose any strategy with the same frequency at all
time points. Graph lumpability turns out to be a sufficient con-
dition for backward aggregation. For instance, let us consider a
network with four players playing two strategies characterized
by adjacency matrix A = (aij )1i,j4 and payoff matrices Bi ,
1  i  4 given by

A =

2

6

4

0 0 1 0
0 0 0 2
1 0 0 1
0 1 1 0

3

7

5

,B1,2 =

2

6

4

1
4

3
4

1
2

1

3

7

5

,B3,4 =

2

6

4

1
1
2

1
4

1
2

3

7

5

.

Then, players 1 and 2 as well as players 3 and 4 have the
same ODE solutions, but this is not captured by an equiva-
lence relation in the sense of graph lumpability, since it requires
P

k2P aik =
P

k2P ajk for any two equivalent players i ,j and for
any equivalence class P of players. Clearly, this condition is not
satisfied by taking i = 1, j = 2, and P = {3, 4}.

Conclusion
We presented a technique to reduce polynomial ODE systems up
to an equivalence relation over its variables. Our method exactly
preserves observables of interest across the whole time course.
Hence, the reduced model can be used as an input to comple-
mentary techniques that sacrifice exactness, such as timescale
decomposition (46).

In the notable case where the model is a formal chemical RN,
the reduction preserves structure, in that the original reactions
are only subjected to renaming and merging. For other domain-
specific applications, such as rule-based systems, Boolean net-
works, payoff matrices, and so on, one would seek to directly
obtain reduced models of the corresponding nature induced by
a backward/forward equivalence. Technically, this does not seem
to be straightforward. For example, in the case of Boolean net-
works, forward equivalence yields a reduced ODE system where
each aggregated variable will take values in the continuous inter-
val [0,n], where n is the cardinality of the corresponding equiv-
alence class. Thus, in general, there is no Boolean network,
such that its polynomial ODE interpolation corresponds to an
aggregated ODE system up to forward equivalence because by
construction, each interpolated ODE variable takes values in
the interval [0, 1]. In this paper, we have privileged a domain-
agnostic view. We aim to address domain-specific challenges in
future work.

ACKNOWLEDGMENTS. L.C. is partially funded by a Royal Society Research
Professorship.

Cardelli et al. PNAS Early Edition | 5 of 6

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1702697114/-/DCSupplemental/pnas.1702697114.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1702697114/-/DCSupplemental/pnas.1702697114.sapp.pdf


1. Antoulas A (2005) Approximation of Large-Scale Dynamical Systems, Advances in
Design and Control (SIAM, Philadelphia).

2. Gu C (2011) QLMOR: A projection-based nonlinear model order reduction approach
using quadratic-linear representation of nonlinear systems. IEEE Trans Comput Aided
Des Integrated Circ Syst 30:1307–1320.

3. Sunnaker M, Cedersund G, Jirstrand M (2011) A method for zooming of nonlinear
models of biochemical systems. BMC Syst Biol 5:140.

4. Apri M, de Gee M, Molenaar J (2012) Complexity reduction preserving dynamical
behavior of biochemical networks. J Theor Biol 304:16–26.

5. Conzelmann H, Saez-Rodriguez J, Sauter T, Kholodenko B, Gilles E (2006) A domain-
oriented approach to the reduction of combinatorial complexity in signal transduc-
tion networks. BMC Bioinformatics 7:34.

6. Borisov NM, Chistopolsky AS, Faeder JR, Kholodenko BN (2008) Domain-oriented
reduction of rule-based network models. IET Syst Biol 2:342–351.

7. Feret J, Danos V, Krivine J, Harmer R, Fontana W (2009) Internal coarse-graining of
molecular systems. Proc Natl Acad Sci USA 106:6453–6458.

8. Okino MS, Mavrovouniotis ML (1998) Simplification of mathematical models of chem-
ical reaction systems. Chem Rev 2:391–408.

9. Iwasa Y, Andreasen V, Levin S (1987) Aggregation in model ecosystems. I. Perfect
aggregation. Ecol Modell 37:287–302.

10. Görnerup O, Jacobi MN (2010) A method for finding aggregated representations of
linear dynamical systems. Adv Complex Syst 13:199–215.

11. Simon PL, Taylor M, Kiss IZ (2010) Exact epidemic models on graphs using graph-
automorphism driven lumping. J Math Biol 62:479–508.

12. Anderson J, Chang YC, Papachristodoulou A (2011) Model decomposition and reduc-
tion tools for large-scale networks in systems biology. Automatica 47:1165–1174.

13. Turanyi T, Tomlin AS (2014) Analysis of Kinetic Reaction Mechanisms (Springer, Berlin).
14. Buchholz P (1994) Exact and ordinary lumpability in finite Markov chains. J Appl

Probab 31:59–75.
15. Cardelli L, Tribastone M, Tschaikowski M, Vandin A (2016) Efficient syntax-driven

lumping of differential equations. Proceedings of the 21st International Conference
on Tools and Algorithms for the Construction and Analysis of Systems (TACAS), Lec-
ture Notes in Computer Science (Springer, Berlin), Vol 9636, pp 93–111.

16. Derisavi S, Hermanns H, Sanders WH (2003) Optimal state-space lumping in Markov
chains. Inform Process Lett 87:309–315.

17. Valmari A, Franceschinis G (2010) Simple O(m log n) time Markov chain lumping.
Proceedings of the 16th International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS), Lecture Notes in Computer Science
(Springer, Berlin), Vol 6015, pp 38–52.

18. Paige R, Tarjan R (1987) Three partition refinement algorithms. SIAM J Comput
16:973–989.

19. Cardelli L, Tribastone M, Tschaikowski M, Vandin A (2016) Symbolic computation of
differential equivalences. Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages (POPL) (ACM, New York), pp 137–
150.
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This appendix provides accompanying material for the main text. Section S1 collects all technical results. Instead,
Section S2 provides more details on the case studies considered in the main text, and complements them with further
models.

S1. Technical Results
Using the notation and definitions of section “Model Definitions” in the main text, we hereby provide the necessary
proofs to:

• formally relate forward (Section S1.1) and backward (Section S1.2) equivalence to the syntactic conditions in
Equations 6 and 7 from the main text, respectively;

• our partition refinement algorithm, stating its correctness and complexities (Section S1.3);

• our notion of reduced RN, and formally relate its ODEs to those of the original RN (Section S1.4).

S1.1 Characterization of Forward Equivalence
Here we state and prove the first main theorem. It relates a forward equivalence on the ODE variables x

1

, . . . , xn

with the fr-conditions on the corresponding species S
1

, . . . , Sn, of the reaction network (RN) encoding. Throughout
this document, with a slight abuse of terminology we may refer to a partition of species as a forward/backward
equivalence to indicate the corresponding partition of ODE variables.

In the following, let (S, R) be an RN, R ™ S ◊ S an equivalence relation, and H = S/R. Also we denote the
choice function of H as µ : S æ S, defined such that H = {µ≠1(Y ) | Y œ µ(S)}. We lift µ to multisets by applying
it element-wise, e.g., µ(Si + Sj) = µ(Si) + µ(Sj). For any H œ H set xH :=

q
SiœHxi and let Y H œ S denote the

representative of H, i.e. such that µ≠1(Y H) = H. Finally, for any multiset fl we use fli to denote the multiplicity of
species Si in fl, and |fl| to denote the size of fl (including multiplicities).

The following two propositions are used in the proof of the theorem.

Proposition 1. The equivalence relation R satisfies the condition of Eq. (6) in the main text if and only if, for all
H œ H and fl œ MS(S), it holds that

„(fl, H)
[fl]! = „(µ(fl), H)

[µ(fl)]!

Proof. If R satisfies Eq. (6), it holds that

„(Si + fl, H)
[Si + fl]! = „(Sj + fl, H)

[Sj + fl]!

for all Si, Sj œ H. An iterative application of this identity in which each Si œ fl is replaced by Sk = µ(Si) yields the
“if” direction. To see the “only if” direction, note that

„(fl, H)
[fl]! = „(µ(fl), H)

[µ(fl)]! = „(flÕ, H)
[flÕ]!

for any flÕ that satisfies µ(fl) = µ(flÕ). Since µ(Si + fl) = µ(Sj + fl) if Si, Sj œ H, this yields the claim.

Proposition 2. Let G be a set, and H a partition of G. Then it holds

ÿ

flœMSn(G)

Ÿ

SkœG

xflk

k =
ÿ

flœGn

r
SkœG xflk

k

[fl]!

where MSn(G) := {fl œ MS(G) | |fl| = n} denotes the set of multisets in MS(G) of size n.

Proof. It is well known that the multinomial coe�cient [fl]! gives the number of distinct permutations of a multiset fl.
Hence, the statement easily follows by noting that for each fl œ MSn(G), Gn contains [fl]! instances that are equal to
fl up to permutation.

In the theorem below, we remark that the set {fl̃ | (fl̃ + Sk
–≠æ fi) œ R, k œ {i, j}} might contain the multiset ÿ to

account for the case of reactions with one species only (i.e., either Si or Sj) as reagent. Instead, reactions with ÿ as
reagents, which encode constants, do not a�ect the notion of forward equivalence, and are therefore ignored by fr.
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Theorem 1. H is a forward equivalence if and only if for any two blocks H, H Õ œ H and all species Si, Sj œ H it
holds

fr(Si, fl, H Õ) = fr(Sj , fl, H Õ) for all fl œ
)

fl̃ | (fl̃ + Sk
–≠æ fi) œ R, k œ {i, j}

*
.

Proof. The theorem can be proved by showing that, for each H œ H, the sum of the ODEs of the species in H can
be expressed in terms of the aggregated variables of the blocks of H only, if and only if H satisfies the condition in
Eq. (6). Set ar := max{|fl| | (fl –≠æ fi) œ R} to denote the maximal size of the reagents in R. Then such sum is:

ÿ

SiœH

ÿ

fl
–≠æfiœR

(fii ≠ fli) · – ·
Ÿ

StœS

xflt

t =
ÿ

SiœH

ÿ

flœMS(S)

Ÿ

StœS

xflt

t · „(fl, Si)

=
ÿ

flœMS(S)

Ÿ

StœS

xflt

t · „(fl, H)

=
arÿ

n=1

ÿ

flœSn

Ÿ

StœS

xflt

t · „(fl, H)
[fl]! (by Proposition 2) [SE1]

We start by showing that we can rewrite each summand of the outer summation of Eq. (SE1) in terms of the
aggregated variables whenever H satisfies the condition of Eq. (6).

ÿ

flœSn

Ÿ

StœS

xflt

t · „(fl, H)
[fl]! =

ÿ

flœSn

Ÿ

StœS

xflt

t · „(µ(fl), H)
[µ(fl)]! (by Proposition 1)

=
ÿ

flœSn≠1

ÿ

SnœS

Ÿ

StœS

xflt

t · xn · „(µ(fl + Sn), H)
[µ(fl + Sn)]!

=
ÿ

flœSn≠1

ÿ

HnœH

ÿ

SnœHn

Ÿ

StœS

xflt

t · xn · „(µ(fl + Sn), H)
[µ(fl + Sn)]!

=
ÿ

flœSn≠1

ÿ

HnœH

Ÿ

StœS

xflt

t · xHn
· „(µ(fl + Y Hn), H)

[µ(fl + Y Hn)]! [SE2]

The same transformations can be repeated for each n≠1 entries of the remaining cartesian product Sn≠1 of Eq. (SE2),
obtaining an expression in the form

ÿ

H1œH
xH1

ÿ

H2œH
xH2 . . .

ÿ

HnœH
xHn

·
„(µ(

q
1ÆiÆn Y Hi), H)

[µ(
q

1ÆiÆn Y Hi)]!

This completes the proof of the “if” direction.
We now address the “only if” direction by showing that H satisfies the condition of Eq. (6) whenever we can

rewrite Eq. (SE1) in terms of the aggregated variables. To this end, we assume that, for all H̃ œ H, there exists a
polynomial ˝

˜H of degree less than or equal to N = ar in |H| = |{H
1

, . . . , Hm}| = m variables that satisfies
Nÿ

n=1

ÿ

flœMSn(S)

Ÿ

SiœS

xfli

i · „(fl, H̃) = ˝
˜H(xH1 , . . . , xHm

)

for all x œ RS , where MSn(S) is a short-hand for {fl œ MS(S) | |fl| = n}. We will also use ‡Y H to denote the
multiplicity in the multiset ‡ of the representative of block H.

Since there exist unique coe�cients “
˜H

fl , where fl œ
tN

n=1

MSn(µ(S)), such that

˝
˜H(xH1 , . . . , xHm) =

Nÿ

n=1

ÿ

‡œMSn(µ(S))

“
˜H

‡ ·
Ÿ

HœH
x

‡Y H

H

for all x œ RS , we thus infer that
Nÿ

n=1

ÿ

flœMSn(S)

Ÿ

SiœS

xfli

i · „(fl, H̃) =
Nÿ

n=1

ÿ

‡œMSn(µ(S))

“
˜H

‡ ·
Ÿ

HœH

! ÿ

SiœH

xi

"‡Y H [SE3]
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for all V œ RS .
Given some fl œ MSn(S), we set ‡ := µ(fl) and compute how many times the monomial

r
SiœS xfli appears in the

polynomial
Ÿ

HœH
x

‡Y H

H =
Ÿ

HœH

! ÿ

SiœH

xi

"‡Y H [SE4]

That is, we want to determine the coe�cient of the monomial
r

SiœS xfli

i in the polynomial that arises if (SE4) is
multiplied out. Note that

q
SiœH fli gives the number of elements in fl that are in H œ H and that

q
SiœH fli =

(µ(fl))Y H = ‡Y H . Consequently, if H = {SH
1

, . . . , SH
|H|} and HSi denotes the block of H containing Si, the number of

monomials contributed by
! q

SkœHSi xk

"‡i is given by the multinomial coe�cient
3(

q
SiœH fli)!

flH
1

, . . . , flH
|H|

4
=

(
q

SiœH fli)!r
SiœH fli!

where flH
i denotes the occurrences in fl of SH

i . This implies that the monomial
r

SiœS xfli

i appears exactly

Ÿ

HœH

(
q

SiœH fli)!r
SiœH fli!

=
r

HœH(
q

SiœH fli)!r
SiœS fli!

times in the polynomial
r

Siœµ(S)

! q
SkœHSi xk

"‡i . Using this and (SE3) we conclude that

„(fl, H̃) = “
˜H

µ(fl)

·
r

HœH(
q

SiœH fli)!r
SiœS fli!

for any fl œ MSn(S). Now, let us assume that we are given fl, flÕ œ MSn(S) with µ(fl) = ‡ = µ(flÕ). Then, it holds
that

„(fl, H̃) ·
r

SiœS fli!r
HœH(

q
SiœH fli)!

= “
˜H

‡ = „(flÕ, H̃) ·
r

SiœS flÕ
i!r

HœH(
q

SiœH flÕ
i)!

.

Since
r

HœH(
q

SiœH fli)! =
r

HœH(
q

SiœH flÕ
i)! because µ(fl) = µ(flÕ), this is equivalent to

„(fl, H̃) ·
Ÿ

SiœS

fli! = „(flÕ, H̃) ·
Ÿ

SiœS

flÕ
i!

Thanks to the fact that µ(fl) = µ(flÕ), the above implies

„(fl, H̃)
[fl]! = „(flÕ, H̃)

[flÕ]!

and Proposition 1 yields the claim.

S1.2 Characterization of Backward Equivalence
In this section we prove the characterization theorem that relates a backward equivalence with an RN. In order to do
so, we first provide an alternative characterization of backward equivalence. This is more natural, but it is not based
on the notion of splitter, and hence it is not amenable to e�cient partition refinement. Given a species Si œ S and a
set of multisets M œ MS(S), we might write

„(M, Si) :=
ÿ

flœM
„(fl, Si) .

Proposition 3 (Alternative characterization of backward equivalence). Let (S, R) be an RN and H a partition of S.
Then H is a backward equivalence if and only if for any block H œ H, and all species Si, Sj œ H we have

„(M, Si) = „(M, Sj) for all M œ {fl | (fl –≠æ fi) œ R}/ ¥H . [SE5]
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Proof. We say that x œ RS is uniform on H whenever xi = xj for all H Õ œ H and Si, Sj œ H Õ. Next we define
JflKx :=

r
SiœS xfli

i and set Q := {fl | fl
–≠æ fi œ R}/¥H. Fix some arbitrary H œ H and Sl, Sj œ H and note that for

any Sk œ S we have:

Pk(x) =
ÿ

(fl
–≠æfi)œR

– · (fik ≠ flk)JflKx =
ÿ

MœQ

ÿ

flœM
„(Sk, fl)JflKx =

ÿ

MœQ

1 ÿ

flœM
„(Sk, fl)

2

¸ ˚˙ ˝
c(xk,M)

Jfl
0

Kx

whenever x is uniform on H, with fl
0

being a chosen representative multiset in M. Observe also that the function
x ‘æ Pk(x), where x is uniform on H, defines a polynomial in |Q| variables with the monomials {c(xk, M) · Jfl

0

Kx |
M œ Q and fl

0

being the representative of M}. Finally, recall that the multi dimensional version of Taylor’s theorem
implies that two real polynomials are equivalent if and only if they have the same monomials. Thus, Pl(x) = Pj(x)
for all x that are uniform on H if and only if c(xi, M) = c(xj , M) for all M œ Q.

We now actually prove that the conditions from Eq. (7) in the main text characterize backward equivalence. In
the theorem below, we remark that {fl | (fl + Sk

–≠æ fi) œ R, Sk œ S}/ ¥H might contain the equivalence class {ÿ},
corresponding to reactions with one reagent (Sk) only.

Theorem 2. Let (S, R) be an RN and H a partition of S. Then H is a backward equivalence if and only if for any
two blocks H, H Õ œ H, any two Si, Sj œ H, it holds that

„(ÿ, Si) = „(ÿ, Sj) and br(Si, M, H Õ) = br(Sj , M, H Õ) for all M œ
)

fl | (fl + Sk
–≠æ fi) œ R, Sk œ S

*
/ ¥H .

Proof. The proof consists in a reduction of the condition in Eq. (SE5) to the condition in Eq. (7) of the main text.
The case of reactions with ÿ as reagents is trivial, as the two conditions coincide. The rest of the proof hence focuses
on reactions with non-empty reagents. We remark that for any two fl, flÕ œ MS(S) we write fl ¥H flÕ if the two
multisets have same number of species of each block of H. Hence, for any M œ MS(S)/ ¥H and H œ H we use MH

to denote
q

SiœH fli, with fl any multiset in M.
The proof is based on the following fact:

1. For each M œ MS(S)/ ¥H and H œ H such that MH > 0 there exists a MH œ MS(S)/ ¥H defined such
that MH

H = MH ≠ 1, and for all H Õ ”= H œ H we have MH
HÕ = MHÕ .

For all H œ H such that MH > 0 we can rewrite the left-hand side of Eq. (SE5) as follows:

ÿ

SzœH

ÿ

flœMH

„(Sz + fl, Si)
|Sz + fl|H

= br(Si, MH , H) [SE6]

Hence we can rewrite Eq. (SE5) as

br(Si, MH , H) = br(Sj , MH , H)

The proof is closed by noting that by Point 1 we have that for any pair of H and M considered in Eq. (7), there
exists an MÕ œ MS(S)/ ¥H such that MÕ = MH (and vice versa). All pairs H and M not considered in Point 1
are such that br(Sk, M, H) = 0 for all Sk œ S.

Note that in the left-hand side of Eq. (SE6) we add the scaling |Sz + fl|H = |{(Sl, m) œ (Sz + fl) | Sl œ H}|. This
is needed to account for the fact that each multiset Sz + fl might be considered more than once in the left-hand side
of Eq. (SE6). Consider for example the case Sz + fl = S

1

+ S
2

, with S
1

, S
2

œ H. This multiset will be considered two
times: Sz = S

1

and fl = S
2

; Sz = S
2

and fl = S
1

.

S1.3 Partition-refinement Algorithm
In this section we present the details of our algorithm to iteratively compute the largest forward/backward equivalence
that refines a given initial input partition of variables. In particular, the RN characterizations of forward and backward
equivalence are given in the seminal style of Larsen and Skou’s probabilistic bisimulation (47), whereby, roughly
speaking, two states are equivalent if their behavior toward any equivalence class is the same. Indeed, the notion of
fr[Si, fl, H ] is in such desired format: Si is the species for which the equivalence is being checked, H is an equivalence
class of “target” states, named splitter in the literature, while fl plays the role of a label, identifying partner species
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reacting with Si. The case of br[Si, M, H] is similar. However, while for forward equivalence the labels range over the
set of multisets of species (including the empty one ÿ to indicate reactions with one reagent), in backward equivalence
the labels range over blocks of multisets containing same number of species equivalent according to the partition to
be checked (again, together with the distinguished set {ÿ} for reactions with one reagent). When used within the
partition refinement algorithm, splitting a partition block leads to a refinement of the labels considered in backward
equivalence. In other words, unlike for the forward case, the set of labels must be updated at every iteration. However,
as we will see, this does not worsen the complexity of the backward case, as the same set will be actually used to
represent the labels in both cases.

This correspondence suggests to employ a partition refinement approach similar to that for computing the largest
probabilistic bisimulation (48), iteratively refining an input partition considering a splitter block at a time that tells
apart the behavior of two species. Intuitively, the algorithm proceeds by steps in which i) it considers one of the
blocks H of the current partition as a splitter, ii) refines any block that does not satisfy the fr[·, ·, H] or br[·, ·, H]
condition, and iii) terminates when all blocks (including the intermediate generated ones) have been considered as
splitter.

Reactions with ÿ as reagent do not a�ect forward equivalence, and are hence ignored by fr. Instead, they are
considered in the backward case by the first condition of Eq. (7). This condition does not depend on the partition to
be refined (i.e., no block H Õ appears in it), and it is hence dealt with using an initialization phase that refines the
initial partition in sub-blocks that satisfy the condition.

Data Structures. We are now ready to present our algorithm. First, we introduce the data structures employed. This
is relevant in order to study the computational complexity. In particular, in order to achieve tight time and space
bounds, we make use of pointer-based data structures only. Hence we assume that species, partition blocks and
reactions are stored once and then referred to by other data structures via pointers.

Notation. For ease of presentation we fix an RN (S, R), and set s := |S|, r := |R|. Also, we use pr :=
max{

q
SiœS 1{fli>0} | (fl –≠æ fi) œ R} and pp := max{

q
SiœS 1{fii>0} | (fl –≠æ fi) œ R} to denote the maximum

number of di�erent species which appear as reagents or products of reactions in R, respectively, and p := max(pr, pp).
Also, we use ar := max{|fl| | (fl –≠æ fi) œ R} for the maximum arity of reagents in R.

We define L(R) := {fl | ÷(Si + fl
–≠æ fi) œ R} as the set of all labels, and write l := |L(R)|, which can be bounded

by O(pr · r). In fact, each reaction fl
–≠æ fi gives rise to one label per di�erent species in fl, which is bound by

pr. Each label is obtained by decreasing the multiplicity of each species Si such that fli > 0 by one. For example,
{(1, Si), (2, Sj)} gives rise to the labels {(1, Si), (1, Sj)} and {(2, Sj)}.

If we disregard pathological RNs with species not appearing in any reaction (which can always be removed from
the set S in a pre-processing step), we can bound s by O((pr + pp) · r) = O(p · r). This is because each reaction can
have at most pr and pp di�erent species as reagents and products, respectively.

We remark that, in general, p is bounded by s. However, we prefer to explicitly use it because it allows us to relate
the complexity of the algorithm to the degree of the polynomials appearing in the derivatives of the ODE system.
Indeed, we have that the maximum degree d is equal to the arity of the largest reagents in R (counting multiplicities),
and to the arity minus 1 of the largest products. Hence, we have p Æ d + 1. Similarly, we have ar = d.

RN representation. Species are stored in a list. A reaction is a structure with a real-valued field for its rate, and
two lists of pairs in the form (multiplicity,species) for the reagents and products. The list for reagents is sorted
with respect to a total ordering on the species. In addition, reactions are provided with a real field mcoeff used to
store the multinomial coe�cient ([fl]!) of its reagents (fl). Storing R thus requires O(p · r) space.

In order to e�ciently compute the multinomial coe�cients of the reagents, we assume that ar is known, and that a
vector factorials of ar entries is precomputed such that the position i contains the value of i!. However, it could be
computed in O(ar) time, because the value in the entry i is computed by multiplying the value of the entry i ≠ 1 by i.

Each label is generated by decreasing the multiplicity of a species in a multiset of reagents by 1. Hence, a label
can be stored in constant space as a pair (reagents,species). For example, the label flSi

obtained by decreasing
the multiplicity of species Si by 1 in the multiset fl can be stored as (fl, Si). This encoding is not unique, as a
label can be obtained from di�erent multisets by decreasing di�erent species (e.g., the label {(2, Si), (2, Sj)} can be
obtained from {(3, Si), (2, Sj)}, {(2, Si), (3, Sj)} or {(2, Si), (2, Sj), (1, Sk)}, for any species Sk), but we will store it
only once. Furthermore, since reagents are lists of pairs (multiplicity,species) sorted with respect to the species,
it is possible to compare two labels in O(pr) time, even if di�erent encodings are used for the same label. Storing
L(R) thus takes O(l) space. The set L(R) is stored as a sorted list, for which insertions and searches cost O(pr · log l)
time, because both operations require to compare O(log l) labels, each made by up to pr pairs. In order to improve
performance we also maintain a vector pos for each reaction fl

–≠æ fi containing pr integers. The i-th entry contains
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1 LargestEquivalence (‰,S,R,H) :=

2 Init(R)

3 i f (‰ = B)

4 H = BackwardPrepartitioning (S,R,H,M)

5 spls = shallow copy of H
6 while(spls ”= ÿ)

7 Hsp = pop(spls)

8 Split (‰,S,R,M,H,Hsp ,spls)

Algorithm S1. Computation of the largest equivalences.

the position in L(R) of the label obtained by decreasing by one the multiplicity of the species in position i in the list
which stores fl. For ease of presentation we use pos[Si] to denote the label obtained by decreasing the multiplicity of
Si. This does not worsen the space complexity to store reactions.

We make use of two vectors, nzs and out, indexed by species. Each entry nzs[Si] points to a list of pairs
(reaction,netStoichiometry) containing all reactions fl

–≠æ fi such that the net stoichiometry of Si is non-zero,
i.e., (fii ≠ fli) ”= 0. Note that each reaction may appear in the lists in nzs for at most pr + pp species, thus requiring
O(p · r) space to store nzs. The vector out is similar, but each out[Si] entry points to a list of reactions having Si in
their reagents. Each reaction may appear in out for at most pr species. Thus the space required by out is O(pr · r).

In the algorithm we build sets of elements. Insertions in sets can be implemented in constant time because an
element is never added to a set more than once in our algorithm.

Refinable partition. A partition is stored as a doubly-linked list of pointers to its blocks. Each block record contains
an integer to store its size and pointers to two doubly-linked lists that divide the species into marked and unmarked,
as a result of operations that are used to split blocks, discussed later. Each species has a pointer to its block in the
current partition. Thus, finding the block for a species, marking, and unmarking take constant time. Also, it is
possible to scan the species of a block in time linear with respect to its size, and to split it in time linear with respect
to the number of marked states.

The operation of splitting a block H creates a new block H
1

containing the marked species of H, while H maintains
those that are not marked. This requires to assign the list pointed by H.marked to H

1

.unmarked and to assign an
empty list to H.marked. These operations are done in constant time, while a time linear with respect to the originally
marked species of H is necessary to update their reference to the new block H

1

. If instead H originally contained just
marked or unmarked species, then no split is actually performed, and marked species get unmarked at no further cost.

Splitters. The list of pointers spls refers to the blocks of the current partition that will be used as splitters. An
s ◊ l matrix M of real numbers is maintained to e�ciently compute the values of fr and br. Columns respect the
order of L(R). A possible majority candidate (pmc) of an array A of size s is either the value which appears more
than Âs/2Ê times in A, or any other value if it does not exist. We calculate the pmc row of the matrix M by extending
the algorithm from (17) to vectors in a straightforward manner.

We denote the row of species Si in M by M[Si], that is M[Si] œ Rl. In the course of splitting, we sort species
according to the lexicographical order on their rows in M. Clearly, sorting a set H œ H takes O(l · |H| · log |H|) time,
as O(|H| · log |H|) comparisons are needed, each requiring O(l) time.

This leads to an overall O(ar + s + p · r + l + s · l) space complexity, which, given that s and l are bound by O(p · r),
is at most O(ar + s · p · r). Other auxiliary lists and sets of pointers presented later will respect the space bound
given above.

Algorithm Overview. We are now ready to provide the partition refinement algorithm. Algorithm S1 provides the
parametric procedure LargestEquivalence for computing the largest ODE equivalence that refines a given initial
partition H of species of an RN (S, R). The first argument (‰) can be either F or B, specifying the notion of ODE
equivalence to be computed (i.e., forward or backward equivalence, respectively).

Before the actual partition refinement it is necessary to perform some initialization steps. In particular, we compute
the multinomial coe�cients of the reagents of each reaction, as well as the set of labels. Also, we have to initialize M.
Consequently, our algorithm starts (Line 2) by invoking the Init procedure.

Init (Algorithm S2). This procedure iterates the set of reactions once (Line 2), and for each reaction fl
–≠æ fi it scans

the pairs (multiplicity,species) used to store fl (Line 6), requiring O(r · pr) time. For each pair (m, Si) in fl,
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1 Init(R) :=

2 f o r a l l ((fl –≠æ fi) œ R)

3 pos = new vector of size pr

4 coeff = 1

5 size =0

6 f o r a l l ((m, X) œ fl)

7 flSi = (fl, Si) // label obtained decreasing by 1 the multiplicity of Si in fl
8 add flSi to L(R)
9 pos[Si] = position of flSi in L(R)

10 size = size + m
11 coeff = coeff · factorials[m]

12 coeff = factorials[size]/coeff

13 M = build an s ◊ l matrix of reals

Algorithm S2. Initialization: compute the multinomial coefficients and initialize the set of labels and M.

1 BackwardPrepartitioning (S,R,H):=

2 V = build an array of size s initialized to 0
3 // Iterate once R to compute „(ÿ, Si) for all species

4 f o r a l l ((ÿ –≠æ fi) œR)

5 f o r a l l ((m, Si) œ fi)

6 V[Si ]=V[Si] + m · –
7 // Refine H according to the computed values

8 f o r a l l (H œ H)

9 Sort and split H wrt V[Si], for all Si œ H , yielding H1, . . . , Hb

10 Add H1, . . . , Hb to HÕ

11 return HÕ

Algorithm S3. Pre-partition H wrt the first condition of Eq. (7).

Line 7 creates the label flSi
obtained from fl by decreasing by one the multiplicity of Si (taking constant time). Then,

Line 8 adds flSi
to L(R) in O(pr · log l) time, as discussed.

While scanning the pairs (m, Si) of fl, we also compute the multinomial coe�cient of fl (Lines 11-12). We access
the precomputed factorial of each multiplicity m in factorials, and store in coeff the products of all the factorials
of the multiplicities of fl. Then, the computation of [fl]! is completed in Line 12 by dividing the factorial of the size of
fl by coeff.

Note that Init also builds the pos vector of each reaction. It is initialized in Line 3, and set in Line 9. Finally, the
s ◊ l matrix of reals M is built and initialized to 0 in O(s · l) time. This leads to an overall O(r · p2

r · log l + s · l) time
complexity for the procedure Init.

Backward pre-partitioning (Algorithm S3). This procedure provides the coarsest refinement of H which satisfies the
first condition of backward equivalence given in Eq. (7). It refines H according to the value „(ÿ, Si) of each species Si

belonging to the same block. In particular, in this procedure we create a vector V of size s used to store the „(ÿ, ·)
values of all species. We use V[Si] to denote the entry of V corresponding to Si, which will contain „(ÿ, Si). We
can thus compute all „(ÿ, ·) values in one iteration of R only (Lines 4-6), requiring O(r · p) time. Then, we refine H
(Lines 8-10). This can be done, for each initial block H œ H, by sorting the species Si œ H according to the value
stored in their entry of V. After sorting, all species belonging to the same sub-block will be alongside each other, and
it is easy to transform them into new blocks in O(|H|) time. The sorting of each block requires O(|H| · log |H|) time,
and the total time spent in sorting is thus O(

q
HœH |H| · log |H|) Æ O(

q
HœH |H| · log s) = O(s · log s). Overall, this

yields O(r · p + s · log s) time complexity. Given that s Æ p · r, this can be bounded by O(r · p · log s).

Iterative Refinement (Algorithm S1, Lines 5-8). This procedure performs the iterative partition refinement. If ‰ = F ,
the blocks of H are split into sub-blocks of species with same fr(·, fl, Hsp) for all fl œ L(R). Instead, if ‰ = B, blocks
are split with respect to their br(·, M, Hsp) for all labels M œ

)
fl | (fl + Sk

–≠æ fi) œ R, Sk œ S
*

/ ¥H
Line 5 creates the linked list spls, consisting of initial candidate splitters as pointers to each H œ H: all blocks

of H are considered as initial candidate splitters. Then, Lines 6-8 iterate while there are candidate splitters to be
considered: after selecting a splitter (Hsp) and removing it from spls, Split is invoked to refine each block of H
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with respect to Hsp.
We now provide an overview of the Split procedure (Algorithm S4). A detailed presentation is given in the next

section, together with the complexity results. Split first computes either fr(Si, fl, Hsp) for all Si œ S and fl œ L(R)
(forward case) or br(Si, M, Hsp), for all Si œ S and M œ

)
fl | (fl + Sk

–≠æ fi) œ R, Sk œ S
*

/ ¥H (backward case).
The rates are computed for all species and labels at once and are stored in M. We recall that backward equivalence
uses di�erent labels than forward equivalence. Nevertheless, as will be discussed in the next section, the number of
labels used in the backward case is bounded by l as well, and hence M can be safely used in both cases. Then, the
algorithm iterates over the set of blocks containing a species for which at least one non-zero fr or br rate has been
computed. Each partition block H is split in sub-blocks with either same fr(·, fl, Hsp) for all labels fl (‰ = F ), or
same br(·, M, Hsp) for all labels M (‰ = B), updating the list of splitters spls accordingly. Following the usual
approach of Paige and Tarjan (18), a sub-block with maximal size is not added to spls. However, this is done only if
the block that is split (i.e., H) has been already used as a splitter, as otherwise the algorithm would be incorrect, see
the discussion in (17).

1 Split(‰,S,R,M,H,Hsp ,spls) :=

2 TS = ÿ // Set of species Si with at least a non -zero fr/br[Si ,·,Hsp]

3 TH = ÿ // Set of blocks containing the species in TS

4 f o r a l l (Sj œ Hsp)

5 i f (‰ = F )

6 ComputeFR (Sj ,M) // Compute fr(Si, fl, Sj ) for all Si ,fl. Populate TS

7 else

8 ComputeBR (Sj ,Hsp ,M) // Compute br(Si, M, Sj ) for all Si ,M. Populate TS

9 //M[Si ][fl] stores fr(Si, fl, Hsp), or br(Si, flM, Hsp), with flM a chosen flÕ œ M
10 f o r a l l (Si œ TS )

11 H = get block of Si

12 Discard label of H , if any

13 i f (M[Si] is not a zero row) // Discard spurious species from TS

14 i f (H contains no marked states ) // Add only once H to TH

15 Add H to TH

16 Mark Si in H
17 while(TH ”= ÿ)

18 H = pop(TH )

19 H1 = marked states of H
20 H = not marked states of H
21 i f (H = ÿ)

22 Give the identity of H to H1
23 else

24 Make H1 a new block

25 pmc = PMCRow (H1 ,M)

26 H2 = {Si œ H1 | M[Si] not equal to the pmc -row}
27 H1 = H1 \ H2
28 i f (H2 = ÿ)

29 b = 1 // No need to split H1.

30 else

31 Sort and split H2 according to M[Si], yielding H2, . . . , Hb

32 Make each of H2, . . . , Hb a new block

33 i f (H œspls)

34 Add H1, . . . , Hb except H to spls

35 else

36 Add [H, ]?H1, . . . , Hb to spls except a sub -block of maximal size

37 while(TS ”= ÿ)

38 Si = pop(TS )

39 touched [Si ]= false

40 f o r a l l (fl œ L(R))

41 M[Si ][fl]=0

Algorithm S4. The Split procedure.
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The Split Procedure. We now provide a more detailed description of our Split procedure, shown in Algorithm S4. It
begins (Line 2) by initializing the set of pointers TS that will refer to all species Si for which either there exists
a multiset of species fl œ L(R) such that fr(Si, fl, Hsp) ”= 0 if ‰ = F , or for which there exists an equivalence
class of multisets M such that br(Si, M, Hsp) ”= 0 if ‰ = B. Similarly, Line 3 initializes the set TH which will
point to the blocks of the species in TS . We remark that only the blocks in TH may be split due to the current
splitter Hsp. If ‰ = F , Lines 4-8 compute fr(Si, fl, Hsp) and store it in M[Si][fl] for each Si and fl. This is done by
ComputeFR in Algorithm S5. The procedure scans all the reactions in the nzs list of each Sj œ Hsp. For each reaction
(fl –≠æ fi) œ nzs[Y ] we scan all pairs (m, Si) œ fl, and compute fr(Si, flSi , Ysp), with flSi the label obtained from fl by
decreasing by one m. This ensures that all the labels of interest for the reaction are considered. We can see that the
contributions given by each reaction are divided by [fl]!, the multinomial coe�cient of the reagents of the reaction.
Also, we remark that the ns(Sj) factor corresponds to the (fij ≠ flj) one used in the characterization of forward
equivalence. The actual updates on the entries of M are performed in Line 5 invoking the simple sub-routine Update
in Lines 8-12 of Algorithm S5, which also updates TS if necessary (by using an auxiliary vector of booleans touched,
with one entry per species). We note that the index of the column in M of each label flSi is stored in pos[Sj], as
discussed.

If ‰ = B, Lines 4-8 of Algorithm S4 compute br(Si, M, Hsp) and store it in M[Si][flM] for each Si œ S and
M œ

)
fl | (fl + Sk

–≠æ fi) œ R, Sk œ S
*

/ ¥H, with H the current partition. The symbol flM denotes one of the labels in
L(R) such that flM œ M, chosen as discussed below. The label flM will be used in this iteration of the algorithm to
univocally identify M. The br rates are computed by ComputeBR of Algorithm S6. It is similar to ComputeFR, but it
scans the reactions in the out lists of each species Sj œ Hsp rather than in the nzs lists. In addition, some extra steps
(Lines 4-12) are necessary to compute labels. According to the splitter-based characterization of backward equivalence,
each reaction (Sj + flÕ –≠æ fi) œ out[Sj ] contributes rates to br that have the label corresponding to the equivalence
class of multisets M to which flÕ belongs. In Lines 5-11 we build a label flMÕ œ L(R) which characterizes MÕ in this
iteration of the algorithm. Essentially, we just replace each species in flÕ with one chosen species of its block, hence
collapsing the pairs of flÕ regarding species belonging to the same block. For doing this we provide each block H Õ œ H
with a field label used to point to a label in L(R) assigned to H Õ. This will actually be a species in H Õ fl L(R). In
particular, in Line 6 we get the block of SÕ

j , H Õ. Then, if no label is currently assigned to H Õ, we set SÕ
j as label of

H Õ. We do this for each (m, SÕ
j) œ flÕ,� and add (m, H Õ.label) to flMÕ . In case an entry (mÕ, H Õ.label) already exists in

flMÕ , it is replaced with (m + mÕ, H Õ.label). Each insertion costs O(log pr) time, because flMÕ is sorted with respect
to the species field. Once flMÕ has been computed, in Line 12 its column in M is obtained in O(pr · log l) time.

We are finally ready to invoke the update routine to update the M[Si][flM] entry of each species Si appearing as
reagent or product in the considered reaction (Lines 13-16). Reagents are decreased by their multiplicity times the
rate of the reaction, while products are increased by the same amount. Note that all the reactions such that the
considered flÕ belongs to the same label MÕ will contribute to the same flMÕ column of M. Therefore, this computes
the summation over all the multisets fl such that fl œ MÕ considered in the splitter-based characterization of backward
equivalence, see Eq. (7). We note that in Lines 7-8, for each reaction we count the number of di�erent reagent species
belonging to the splitter block Hsp. The rate of the reaction is then divided by counter ct in Lines 14 and 16, as
required by the splitter-based notion of backward equivalence.

Now that TS and M have been populated, Lines 10-16 of Algorithm S4 build TH and mark all species in TS as
discussed in the section about data structures. Note that Line 13 discards species in TS whose M-rows have only zeros.
This can happen because positive and negative values can sum up to zero (see, e.g., lines 14 and 16 of Algorithm S6).
In addition, Line 12 reinitializes all label fields of the blocks in TH , a super-set of those to which ComputeBR might
have assigned a label.

It is now possible to refine H and update the list of candidate splitters. This is done by splitting each block H œ TH

according to the computed fr or br values (Lines 17-36). As discussed in the section about data structures, the split
of a block unmarks its species at no extra computational cost. Lines 19-20 perform the discussed split operation. In
particular they split (in constant time) the species in H which appear in TH (the marked ones) from those which do
not appear in TH (the unmarked ones). Those Si œ H that yield M[Si][·] ”= 0 form the block H

1

, while the others
remain in H. If the new H is empty, then H

1

contains the same elements originally present in H and thus receives its
identity. Otherwise H

1

is made to a new block in O(|H
1

|) time.
Lines 25-27 further split H

1

by moving some of its elements in a new block H
2

in O(|H
1

|) time. In particular, we
calculate the pmc-row in order to split H

1

into (a new) H
1

and H
2

. If more than half of the species of the original H
1

have equal values in their M-row, the new block H
1

will contain those species with the pmc-row; otherwise, the new
block will contain any sub-set of H

1

with same row in M. In both cases the obtained H
1

does not need to be further

�We actually scan the pairs (m, SÕ
j ) œ (Sj + flÕ). Then, if SÕ

j = Sj we consider (m ≠ 1, SÕ
j ), and we ignore the pair if m ≠ 1 = 0.
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1 ComputeFR (Sj ,M):=

2 f o r a l l ((fl –≠æfi,ns(Sj), [fl]!,pos)œ nzs[Sj ])

3 f o r a l l ((m, Si) œ fl)

4 // Add fr(Si, flSi , Sj) to M[Si, flSi ]

5 Update (Si ,pos[Si],

–·ns(Sj )
[fl]! )

6
7 //Sub - routine to update M and TS

8 Update (Si ,col,val):=

9 i f (not( touched [Si ]))

10 touched [Si] = true

11 add Si to TS

12 M[Si ][col] = M[Si ][col] + val

Algorithm S5. Compute fr wrt the splitters.

1 ComputeBR (Sj ,Hsp ,M):=

2 f o r a l l ((Sj +flÕ –≠æ fi) œ out[Sj ])

3 ct = 1

4 flMÕ
= emptylist

5 f o r a l l ((m, SÕ
j) œ flÕ

)

6 H Õ
= get block of SÕ

j

7 i f (H Õ = Hsp and SÕ
j ”= Sj )

8 ct = ct + 1
9 i f (H Õ

does not have a label)

10 H Õ
.label = SÕ

j

11 add (m,SÕ
j .label) to flMÕ

12 col = position of flMÕ
in L(R)

13 f o r a l l ((m, SÕ
j) œ (Sj + flÕ))

14 Update (SÕ
j ,col, ≠–·m

ct
)

15 f o r a l l ((m, Si) œ fi)

16 Update (Si ,col, –·m
ct

)

Algorithm S6. Compute br wrt the splitters.

split. Instead H
2

might need to be split further. We note that H
2

might be empty, meaning that there was no need
in splitting H

1

. In such case H
1

remains unchanged; in the opposite case, instead, H
2

is split in Lines 31-32 and the
obtained sub-blocks are added to H. We remark that we are guaranteed that each sub-block of H

2

has at most half
the elements originally in H. Moreover, it is worth noting that splitting blocks in H a�ects spls because spls stores
pointers to the elements of H.

Finally, we add the so obtained sub-blocks to spls by storing the corresponding pointers in spls. As discussed,
we do not add a sub-block with maximal size if the original H has already been used as splitter (Line 36). Note that
[H, ]?H

1

means that we add only one of the two blocks to spls if Line 22 gave the identity of H to H
1

. Instead, in
Line 34 there is no need to add the new H to spls because it is already there (i.e., the original H was there, and
hence the refined H inherited its presence). The procedure terminates by resetting the vector touched, used to build
TS , and the rows of M regarding the species in TS .

Theorem 3 (Algorithm complexity). Algorithm S1 calculates the coarsest forward/backward equivalences that refine
an input partition H. Its time complexity is O(r · p2 · l · log s) Æ O

!
r2 · p3 · log(s)

"
, while its space complexity is

O(ar + r · p · s).

Proof. The proof lifts the ideas of (17) to RNs. As in (17), we extend Algorithm S1 by an adjacent species X‹, a
set of compound blocks C, and two additional operations. In particular, we add the command C = {S, {X‹}} after
the command on Line 5 and we add C = (C \ {CHsp}) fi {Hsp, CHsp \ Hsp} after the command on Line 7. At the
beginning of each iteration of the while loop on Line 6, any compound block C œ C on Line 7 can be represented
as a unique union of blocks from the current partition H. Here, CHsp

refers to the unique compound block such
that Hsp ™ CHsp

. By replacing statements W (s
1

, BÕ) = W (s
2

, BÕ) from (17) with fr(X
1

, ·, Hsp) = fr(X
1

, ·, Hsp)
(or br(X

1

, ·, Hsp) = br(X
1

, ·, Hsp)), Lemma 1 from (17) carries over in a verbatim manner, thus showing that our
algorithm is correct if and only if its extended version is correct. The same applies to Lemma 2 from (17) which ensures
that the algorithm “does not split too much”, meaning that the coarsest forward or backward equivalence that refines
the partition is returned by the algorithm. By repeating the argumentation from (17), we show the first invariant:
At each new iteration on Line 7, each compound block C œ C can be written as a union of blocks from the current
partition H up to one single block from spls. That is, for each C œ C, there exist unique blocks H

1

, . . . , Hk œ H
such that C = H

1

fi . . . fi Hk with H
1

, . . . , Hk≠1

œ spls and Hk /œ spls. Using this invariant, we copy-paste the proof
for the termination from (17). Afterwards, we observe that the proof of the second invariant carries over, where
the second invariant reads as: For any H œ H, X

1

, X
2

œ H and C œ C, it holds that fr(X
1

, ·, C) = fr(X
1

, ·, C) (or
br(X

1

, ·, C) = br(X
1

, ·, C)). Using the first and the second invariant, the proof of correctness follows as in (17).
We now turn to the proof of complexity. We first consider the complexity of the algorithm without considering the

Init procedure. Space complexity has been already considered. Arguing as in (17), one can show that any Si œ S
appears at most Âlog(s) + 1Ê times in a splitter. Thus, if ‰ = F , Algorithm S1 needs O(

q
SiœS log(s) · |nzs[Si]| · pr) Æ

O(log(s) · r · p2) number of steps if we ignore lines 13, 25, 31 and 40 in Algorithm S4. The pr factor comes from the
fact that ComputeFR has to iterate over the pairs (m, Si) œ fl.

Instead, if ‰ = B, Algorithm S1 needs O(
q

SiœS log(s) · |out[Si]| · p) = O(log(s) · r · pr · p) Æ O(log(s) · r · p2)
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number of steps if we ignore lines 13, 25, 31 and 40 in Algorithm S4, as well as lines 11 and 12 of Algorithm S6. The
pr factor comes from the fact that out has size O(r · pr). By extending the possible majority candidate from (17) to
vectors and by observing that comparing and rewriting vectors in Rl needs O(l) steps, we conclude that Algorithm S1
performs at most O(l · log(s) · r · p2) steps if we ignore the sorting on Line 31 in Algorithm S4. Note that lines 11
and 12 of Algorithm S6 actually contribute only an extra log(pr) and log(l) factor per step, which is absorbed by the
l one of the other lines.

In order to see that the sorting does not cost too much, we proceed as in (17) and introduce the concept of middle
blocks. A sub-block Hi that was created by splitting some H œ HT where H, in turn, was added to HT by processing
Hsp, is called middle block if R(X, ·, Hsp) ”= 0 and R(X, ·, CHsp

\ Hsp) ”= 0 for all X œ Hi, with R œ {fr, br}. Let
Mj be the union of all middle blocks that are created through splitting during the j-th iteration of the while loop
on Line 6 in Algorithm S1 and let J denote the total number of iterations performed by the while loop on Line 6
in Algorithm S1. By arguing as in (17), it can be shown that it su�ces to prove that sorting of blocks of size
2|M

1

|, . . . , 2|MJ | does not exceed our complexity bound. We achieve this by generalizing the argumentation of (17)
as follows.

Denoting the number of middle blocks where a species Si appears by #m(Si) := |{1 Æ j Æ J | Si œ Mj}|, the
cumulative size of all middle blocks during the calculation of the algorithm is given by

qJ
j=1

|Mj | =
q

SiœS #m(Si).
In order to estimate #m(Si), we introduce the quantities

#F
c (Si) := |{C œ C | ÷⁄ œ L(R) ÷Sj œ C(fr(Si, ⁄, Sj) ”= 0)}|

#B
c (Si) := |{C œ C | ÷⁄ œ L(R) ÷Sj œ C(br(Si, M, Sj) ”= 0), with M the equivalence class of ⁄}|

Note that backward equivalence actually uses di�erent labels than forward equivalence. However, the number of labels
used in the backward case is bound by L(R), as discussed. Note also that #‰

c (Si) depends on C, where ‰ œ {F, B}.
Thus, since each new iteration refines C, the value #‰

c (Si) can only increase during the course of the algorithm. Also,
we remark that

q
SiœS #‰

c (Si) Æ 2 · r · p2. In fact, for every reaction (r), we can have at most pr combinations of
species Si and labels ⁄, and pr + pp species Sj leading to non-zero fr and br.

Let us assume that ‰ = F . By definition, any element Sk œ Hi of a middle block Hi that is created during the j-th
iteration of the while loop satisfies fr(Sk, ·, Hsp) ”= 0 and fr(Sk, ·, CHsp \Hsp) ”= 0, meaning that there exist ⁄, ⁄Õ œ L(R)
such that fr(Sk, ⁄, Hsp) ”= 0 and fr(Sk, ⁄Õ, CHsp \ Hsp) ”= 0. Consequently, a splitting of CHsp into Hsp and CHsp \ Hsp

increases #m(Sk) by one and respects #m(Sk) Æ #F
c (Sk). This yields

q
SiœS #m(Si) Æ

q
SiœS #F

c (Si) Æ 2 · r · p2 in
the case of ‰ = F .

Instead, if ‰ = B, any element Sk œ Hi of a middle block Hi that is created during the j-th iteration of the while
loop satisfies br(Sk, MÕ, Hsp) ”= 0 and br(Sk, MÕÕ, CHsp

\ Hsp) ”= 0 for some equivalence classes of multisets MÕ, MÕÕ.
Note that C and H refers to the value present in iteration 1 Æ j Æ J ; in particular, in contrast to the case ‰ = F , the
set of labels of br may vary from iteration to iteration. The last statement ensures, however, the existence of at least
a ⁄Õ œ L(R) such that ⁄Õ œ MÕ that provides a non-zero contribution to br(Sk, MÕ, Hsp). That is, such that

ÿ

SlœHsp

„(Sl + ⁄Õ, Sk)
|Sl + ⁄Õ|Hsp

”= 0 .

Similarly, the last statement also ensures the existence of at least a ⁄ÕÕ œ L(R) such that ⁄ÕÕ œ MÕÕ that provides a
non-zero contribution to br(Sk, MÕÕ, CHsp

\Hsp). This, in turn, implies the existence of Sp œ Hsp and Ss œ CHsp
\Hsp

such that ⁄Õ and ⁄ÕÕ provide a non-zero contribution to, respectively, br(Sk, MÕ, Sp) and br(Sk, MÕÕ, Ss). Consequently,
a splitting of CHsp

into Hsp and CHsp
\ Hsp increases #m(Sk) by one and respects #m(Sk) Æ #B

c (Sk). This yieldsq
SkœS #m(Sk) Æ

q
SkœS #B

c (Sk) Æ 2 · r · p2 in the case of ‰ = B.
Armed with the bound

q
SiœS #m(Si) Æ 2 · r · p2, we extend the argumentation of (17) as follows. Since |Mj | Æ s

for all 1 Æ j Æ J , the cumulative cost of the sorting is given by O(
qJ

j=1

l2|Mj | log(2|Mj |)) Æ O(
qJ

j=1

l|Mj | log(2s)) Æ
O

!
l · r · p2 · (log(s) + log(2))

"
= O

!
l · r · p2 · log s

"
. As in the calculation of the possible majority candidate before, the

factor l arises from vector comparison.
Hence, the time complexity of Algorithm S1 is O

!
l · r · p2 · log s

"
if ignoring the Init procedure, which has been

shown to have O(r · p2

r · log l + s · l) time complexity. Given that both s and l can be bound by O(r · p), we can bound
the time complexity of Algorithm S1 by O

!
r · p2 · l · log(s)

"
Æ O

!
r2 · p3 · log(s)

"
.

S1.4 Reduced Reaction Network
The partition-refinement algorithm discussed in the previous section provides a partition of species that satisfies the
forward/backward equivalence criteria. To obtain a reduced model, we now provide a notion of reduced RN up to a
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forward/backward equivalence H, where each species is associated with an equivalence class. From the reduced RN, a
reduced ODE system can be straightforwardly obtained applying mass-action kinetics. For doing this we use the
notion of choice function µ : S æ S of a partition H, which associates each species with a representative of its block
in H. The notion of choice function can be easily generalized to sets and multisets of species. Also, we denote by
#(Si) the size of the block of H that contains Si.

Definition 1. Let (S, R) be an RN and H a partition of S. Then, the reduction of (S, R) up to H is (S, R)H :=
(µ(S), RH), where RH is obtained with the following algorithm.

(0) Let R be a multiset of reactions, initialized with the empty multiset.

(1) For each reaction (fl –≠æ fi) œ R, add the following reaction to R:

µ(fl) –Õ
≠æ µ(fi), with –Õ = –r

SiœS

#(Si)fli
.

(2) RH = {fl
m·–≠≠æ fi | (m, fl

–≠æ fi) œ R}.

Essentially, step (1) transforms reactions between species into reactions between the representatives of the
equivalence classes. The original rate is scaled down by the product of the sizes of the blocks containing the reagents.
Instead, step (2) merges all reactions that have the same reagents, products, and rate after the transformation (see
for instance Fig. 2 in the main text); the pair (m, fl

–≠æ fi) indicates that there are m occurrences of reaction fl
–≠æ fi

in multiset R.

Theorem 4 (Reduction complexity). Let (S, R) be an RN, H a forward or backward equivalence and µ its choice
function. Then, (S, R)H is computed in at most O

!
|R| · |S| · log(|R| · |S|)

"
steps.

Proof. Computing the set µ(S) requires O(|S|) time, assuming that species are provided with a pointer to their block,
which in turn has a pointer to its representative. Also, we assume that each block is provided with a boolean flag,
used to add only once the representative species of each block H œ H.

Step (1) requires to iterate (once) the reactions, taking O(|R|) time. In particular, for each reaction we have in
turn to iterate its reagents and products to apply µ. This requires O(|S|) time. Assuming that the size of each block
of the species in fl is also stored within the block, the computation of the scaling factor requires just to iterate (the
blocks of) the species in fl. This requires again O(|S|) time per reaction. Finally, in order to perform e�ciently
step (2), we sort the computed reagents and products, taking O(|S| · log(|S|)) time. To sum up, step (1) requires
O

!
|R| · |S| · log |S|

"
time.

Instead, step (2) can be computed by first sorting the reactions obtained from (1), requiring O(|R| · log(|R|) · |S|)
time, where the |S| factor comes from the fact that in order to compare two reactions it is necessary to scan once
their (sorted) reagents and products (and their rate). Then, (2) is completed by iterating (once) the reactions to
actually collapse them, taking O(|R| · |S|) time.

We now formalize the relation existing between the notions of forward equivalence and reduced RN. We first relate
the derivatives in the original model with those in the reduced one.

Proposition 4. Let (S, R) be an RN, H = {H
1

, . . . , Hm} be a forward equivalence and µ its choice function. Let
P and P̂ be the vectors of polynomials in Eq. (1) from the main text of the ODEs underlying (S, R) and (S, R)H,
respectively. Then it holds: ÿ

SiœH

Pi(x) = P̂H

! ÿ

SiœH1

xi, . . . ,
ÿ

SiœHm

xi

"

for all H œ H and x œ RS
Ø0

.

Proof. We want to show that

ÿ

SiœH

ÿ

(fl
–≠æfi)œR

(fii ≠ fli) · – ·
Ÿ

SjœS

x
flj

j =
ÿ

(fl
–≠æfi)œR

(µ(fi)Y H ≠ µ(fl)Y H )r
SkœS

#(Sk)flk
· – ·

Ÿ

HÕœH
x

µ(fl)

Y HÕ
HÕ [SE7]
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where µ(·)Y H denotes the multiplicity of the representative species of block H in the multiset µ(·). We note that
µ(flÕ)Y H =

q
SlœH flÕ

l for any flÕ œ MS(S). For ar := max{|fl| | (fl –≠æ fi) œ R} the maximum arity of reagents in R,
the left-hand-side of Eq. (SE7) can be rewritten as:

arÿ

n=1

ÿ

H1œH
xH1

ÿ

H2œH
xH2 · · ·

ÿ

HnœH
xHn

·
„(

nq
l=1

Y Hl , H)

[
nq

l=1

Y Hl ]!

The right-hand-side of Eq. (SE7) can be rewritten as:

arÿ

n=1

ÿ

flœMSn(S)

r
HÕœH

x
µ(fl)

Y HÕ
HÕ

r
SkœS

#(Sk)flk

ÿ

(fl
–≠æfi)œR

(
ÿ

SlœH

fil ≠
ÿ

SlœH

fll) · – =
arÿ

n=1

ÿ

flœMSn(S)

r
HÕœH

x
µ(fl)

Y HÕ
HÕ

r
SkœS

#(Sk)flk
· „(fl, H) [SE8]

We now focus on one 1 Æ n Æ ar only of the right-hand side of Eq. (SE8). We recall that for each fl œ MSn(S) there
exist [fl]! entries in Sn equal to fl up to permutation, obtaining:

ÿ

flœMSn(S)

r
HÕœH

x
µ(fl)

Y HÕ
HÕ

r
SkœS

#(Sk)flk
· „(fl, H) =

ÿ

flœSn

r
HÕœH

x
µ(fl)

Y HÕ
HÕ

r
SkœS

#(Sk)flk
· „(fl, H)

[fl]!

=
ÿ

flœSn

r
HÕœH

x
µ(fl)

Y HÕ
HÕ

r
SkœS

#(Sk)µ(fl)k
· „(µ(fl), H)

[µ(fl)]! (by Proposition 1) [SE9]

For every fl œ MSn(S), the set of multisets {flÕ | µ(flÕ) = µ(fl)} has size
r

SkœS

#(Sk)µ(fl)k . Also, Eq. (SE9) does not

depend on which elements from such sets are considered. We can hence rewrite Eq. (SE9) as:

ÿ

flœSn

fl=µ(fl)

A
Ÿ

HÕœH
x

µ(fl)

Y HÕ
HÕ

B
· „(µ(fl), H)

[µ(fl)]! =
ÿ

flœSn≠1
fl=µ(fl)

ÿ

HnœH
xHn

·
A

Ÿ

HÕœH
x

µ(fl)

Y HÕ
HÕ

B
· „(fl + Y Hn , H)

[fl + Y Hn ]!

The same can be repeated for all remaining n ≠ 1 entries of the cartesian product Sn≠1, obtaining

ÿ

H1œH
xH1

ÿ

H2œH
xH2 · · ·

ÿ

HnœH
xHn ·

„(
nq

i=1

Y Hi , H)

[
nq

i=1

Y Hi ]!

This closes the proof.

Theorem 5 (Forward Reduced RN). Let (S, R) be an RN, and H be a forward equivalence. Let SHj
be the species

in (S, R)H corresponding to block Hj for any Hj œ H. Let xi denote the ODE variable for species Si in (S, R) and
x̂H the variable of the species SH in (S, R)H. Then, for all H œ H it holds

ÿ

SiœH

xi(t) = x̂H(t) at all time points t

for all x̂(0) such that x̂HÕ(0) =
q

SkœHÕ xk(0) for all H Õ œ H.

Proof. The statement follows directly from Proposition 4.

We now move our attention towards the relation existing between the notions of backward equivalence and reduced
RN.
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Proposition 5. Let (S, R) be an RN, H = {H
1

, . . . , Hm} be an equivalence over S and µ a choice function. Let
P and P̂ be the vectors of polynomials in Eq. (1) from the main text of the ODEs underlying (S, R) and (S, R)H,
respectively. Then it holds: ÿ

SiœH

Pi(x) = P̂H

! ÿ

SiœH1

xi, . . . ,
ÿ

SiœHm

xi

"

for all H œ H and x œ RS
Ø0

that are uniform on H.

Proof. We say that x(t) œ RS
Ø0

is uniform on H whenever xi(t) = xj(t) for all H Õ œ H and Si, Sj œ H Õ. Also, we
remark that for any two fl, flÕ œ MS(S) we write fl ¥H flÕ if the two multisets have same number of species of each
block of H. Hence, for any M œ MS(S)/ ¥H and H œ H we use MH to denote

q
SiœH fli, with fl œ MS(S). We

want to show that
ÿ

SiœH

ÿ

(fl
–≠æfi)œR

(fii ≠ fli) · – ·
Ÿ

SjœS

x
flj

j =
ÿ

(fl
–≠æfi)œR

(µ(fi)Y H ≠ µ(fl)Y H )r
SkœS

#(Sk)flk
· – ·

Ÿ

HÕœH
x

µ(fl)

Y HÕ
HÕ [SE10]

where µ(·)Y H denotes the multiplicity of the representative species of block H in the multiset µ(·). We note that
µ(flÕ)Y H =

q
SlœH flÕ

l for any flÕ œ MS(S).
The left-hand-side of Eq. (SE10) can be rewritten as:

ÿ

SiœH

ÿ

flœMS(S)

„(fl, Si) ·
Ÿ

SjœS

x
flj

j =
ÿ

SiœH

ÿ

flœMS(S)

„(fl, Si) ·
Ÿ

HÕœH

Ÿ

SjœHÕ
x

flj

j

=
ÿ

SiœH

ÿ

flœMS(S)

„(fl, Si) ·
Ÿ

HÕœH

Ÿ

SjœHÕ
x

flj

Y HÕ (by x being uniform on H)

=
ÿ

SiœH

ÿ

MœMS(S)/¥H

ÿ

flœM
„(fl, Si) ·

Ÿ

HÕœH
x

q
Sj œHÕ flj

Y HÕ [SE11]

=
ÿ

SiœH

ÿ

MœMS(S)/¥H

ÿ

flœM
„(fl, Si) ·

Ÿ

HÕœH
xMHÕ

Y HÕ (see below)

=
ÿ

SiœH

ÿ

MœMS(S)/¥H

Q

a
A

Ÿ

HÕœH
xMHÕ

Y HÕ

B
·

ÿ

flœM
„(fl, Si)

R

b

=
ÿ

SiœH

ÿ

MœMS(S)/¥H

AA
Ÿ

HÕœH
xMHÕ

Y HÕ

B
· „(M, Si)

B

=
ÿ

MœMS(S)/¥H

A
Ÿ

HÕœH
xMHÕ

Y HÕ

B
·

ÿ

SiœH

„(M, Si)

=
ÿ

MœMS(S)/¥H

A
Ÿ

HÕœH
xMHÕ

Y HÕ

B
· „(M, H)

where we rewrote Eq. (SE11) thanks to the fact that for any fl œ M we have same MHÕ =
q

SjœHÕ flj .
Instead, the right-hand-side of Eq. (SE10) can be rewritten as:

ÿ

(fl
–≠æfi)œR

(
ÿ

SiœH

fii≠
ÿ

SiœH

fli) · – ·

r
HÕœH

x
µ(fl)

Y HÕ
HÕ

r
SkœS

#(Sk)flk
=

ÿ

MœMS(S)/¥H

ÿ

flœM

Q

cca

r
HÕœH

x
µ(fl)

Y HÕ
HÕ

r
SkœS

#(Sk)flk

R

ddb · „(fl, H) [SE12]

=
ÿ

MœMS(S)/¥H

ÿ

flœM

Q

ca

r
HÕœH

xMHÕ
HÕ

r
HÕœH

|H Õ|MHÕ

R

db · „(fl, H) (see below)

=
ÿ

MœMS(S)/¥H

Q

ca

r
HÕœH

xMHÕ
HÕ

r
HÕœH

|H Õ|MHÕ

R

db · „(M, H) [SE13]
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where we rewrote the right-hand side of Eq. (SE12) due that the facts that: (numerator) µ(fl)Y HÕ =
q

SjœHÕ flj = MHÕ

for any fl œ M; (denumerator) #(Sz) = #(SzÕ) for any H ÕÕ œ H and Sz, SzÕ œ H Õ.
Considering Eq. (SE13), we can rewrite

r
HÕœH

xMHÕ
HÕ as

r
HÕœH

|H Õ|MHÕ ·
r

HÕœH
xMHÕ

Y HÕ . In fact:

Ÿ

HÕœH
xMHÕ

HÕ =
Ÿ

HÕœH
(

ÿ

SkœHÕ
xk)MHÕ =

Ÿ

HÕœH
(|H Õ| · xY HÕ )MHÕ =

Ÿ

HÕœH
(|H Õ|MHÕ · xMHÕ

Y HÕ ) =
Ÿ

HÕœH
|H Õ|MHÕ ·

Ÿ

HÕœH
xMHÕ

Y HÕ

Hence, we can close the proof by rewriting Eq. (SE13) as

ÿ

MœMS(S)/¥H

AA
Ÿ

HÕœH
xMHÕ

Y HÕ

B
· „(M, H)

B

The following theorem states that whenever the partition H considered in Proposition 5 is a backward equivalence,
we can recover all information in (S, R) from (S, R)H.

Theorem 6 (Backward Reduced RN). Let (S, R) be an RN, and H be a backward equivalence. Let SHj be the species
in (S, R)H corresponding to block Hj, for any Hj œ H. Let xi denote the ODE variable for species Si in (S, R), and
x̂H the variable for SH in (S, R)H. Then, for all H œ H and Si œ H it holds:

xi(t) = x̂H(t)
|H| at all time points t

for all x(0) uniform on H, and x̂(0) such that x̂HÕ(0) =
q

SkœHÕ xk(0) for all H Õ œ H.

Proof. The statement follows directly from Proposition 5, and by the fact that H is a backward equivalence. In
particular, the latter guarantees that if x(0) is uniform on H, then x(t) is uniform on H at all time points t, allowing
to apply Proposition 5 for all t.

Theorem 7 (Correspondence of reduced RN and reduced ODE System). Let (S, R) be an RN and H be an equivalence
relation. Let P and P̂ be the vectors of polynomials in Eq. (1) from the main text of the ODEs underlying (S, R) and
(S, R)H, respectively. Then, it holds that P̂ = P̃ when P̃ is as in Eq. (4) from the main text.

Proof. By Proposition 4, it holds that
ÿ

SiœH

Pi(x) = P̂H

! ÿ

SiœH1

xi, . . . ,
ÿ

SiœHm

xi

"

for all H œ H and all x œ RS . From this, we infer that P̂(y) = P̂A(x) = AP(x) = APAA(x) = APA(y) if y = Ax,
where A = (aij) is the aggregation matrix underlying H and A = (aij) is given by aij = aji/(

q
k ajk). In the last

computation, the third equality follows from (20). To see also the backward case, we first note that Proposition 5
ensures ÿ

SiœH

Pi(x) = P̂H

! ÿ

SiœH1

xi, . . . ,
ÿ

SiœHm

xi

"

for all H œ H and all x œ RS that are uniform on H. With this, it holds that APA(y) = AP(x) = P̂A(x) =
P̂AA(y) = P̂(y), where the first and the third equalities follow from the choice of A and the fact that x is uniform on
H.

S2. Case Studies
With reference to the section “Applications” in the main text, we hereby further demonstrate the applicability of
forward and backward equivalence to biological models from the literature, and comment on the nature of the obtained
reductions. In particular, we discuss the following:

• models of multisite protein phosphorylation and equivalent binding sites in mechanisms of complex formation
(Section S2.1);
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• models of site interactions that are controlled or dependent upon other sites, which cannot be found through
domain-specific reduction that exploit assumptions of independence within interaction domains (Section S2.2);

• forward equivalence for the model of early events for the signaling pathway of FC‘RI (32) (Section S2.3);

• backward equivalence for a model with Michaelis-Menten kinetics, using a translation into a polynomial ODE
system (Section S2.4);

• forward and backward equivalence in the continuous homologous of discrete Boolean models of regulatory
networks through a polynomial ODE encoding (Section S2.5).

The BioNetGen language. Sections S2.1, S2.2 and S2.3 consider models written in BioNetGen (49), a rule-based
language for modeling protein-interaction networks. In this language, chemical reaction networks (CRNs) with
mass-action kinetics are specified intensionally in terms of interactions among basic molecules. For example, consider
a kinase E(s) and a substrate protein S(p1, p2), with s, p1 and p2 being the binding sites of the two molecules. Then,
the term:

E(s!1).S(p1≥P, p2≥U !1)
represents the complex species formed upon the binding of E and S via s and p2 (denoted by the ‘.’ operator linking
molecule E and S, and ‘!1’ which tags the sites through which the binding occurs). Each binding site might be
provided with an internal state, denoted by ≥, used e.g., to represent its phosphorylation (≥P ) or unphosphorylation
(≥U). The dynamics of the system are specified in terms of rules that can be understood as an interaction pattern
between units of complexes that may occur in any molecular context. For example, a rule of form:†

E(s) + S(p1~U) <-> E(s!1).S(p1~U!1) k1, k2 [SE14]

describes reversible binding (indicated by the double arrow <->) with rates k1 and k2, respectively, between the
kinase E and any substrate protein S with unphosphorylated and unbound binding site p1, independently on the
status or binding of p2. Instead, a rule of form:

S(p1~U!+) -> S(p1~P!+) k3 [SE15]

describes the fact that S phosphorylates in p1 whenever bound with other molecules via p1. In other words, ‘!+’ acts
as a wild-card allowing to omit the molecule with which S is bound.

Starting from a set of seed species, i.e., basic complexes, the rules are exhaustively applied to enumerate all possible
complexes and their reactions as a mass-action CRN. For example, consider the following three of seed species: E(s),
S(p1≥U, p2≥U), and E(s!1).S(p1≥U, p2≥P !1)}. Then, Eq. (SE14) generates the reactions (and species):

E(s) + S(p1≥U, p2≥U) k1≠æ E(s!1).S(p1≥U !1, p2≥U),

E(s!1).S(p1≥U !1, p2≥U) k2≠æ E(s) + S(p1≥U, p2≥U),

E(s) + E(s!1).S(p1≥U, p2≥P !1) k1≠æ E(s!2).E(s!1).S(p1≥U !2, p2≥P !1),

E(s!2).E(s!1).S(p1≥U !2, p2≥P !1) k1≠æ E(s) + E(s!1).S(p1≥U, p2≥P !1).

Instead, Eq. (SE15) generates:

E(s!1).S(p1≥U !1, p2≥U) k3≠æ E(s!1).S(p1≥P !1, p2≥U),

E(s!2).E(s!1).S(p1≥U !2, p2≥P !1) k3≠æ E(s!2).E(s!1).S(p1≥P !2, p2≥P !1)

Reproducibility and tool support: ERODE. The reduction techniques presented in the main text and further discussed
in this manuscript have been implemented in ERODE (50), a tool for the evaluation and reduction of ordinary
di�erential equations. ERODE is available together with a manual and examples at http://sysma.imtlucca.it/tools/erode/.

All experiments presented in this paper have been performed using ERODE. For models written in BioNetGen we
provide links to the original BioNetGen files (extension .bngl), which can be compiled in its underlying CRN (extension
.net) using the BioNetGen tool. ERODE supports .net files generated using version 2.2.5 of BioNetGen available
at http://mmbios.org/index.php/bionetgen-2-2-5-stable. Such generated .net files can be imported into ERODE using
specifications as in Listing S7. The models in Sections S2.4 and S2.5 are provided directly as ERODE specifications,
which include the command to reproduce the discussed reductions.

† In this manuscript, we will use verbatim form to refer to BioNetGen rules, and math form to refer to reactions of reaction networks.
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1 begin model importedFromBNG

2 importBNG ( fileIn =" bngFile .net")

3 reduceNFB ( reducedFile =" bngFileFE .ode")

4 reduceNBB ( reducedFile =" bngFileBE .ode")

5 end model

Listing S7. ERODE snippet code to import and reduce BioNetGen files. Line 2 loads a .net file (using a path relative to that of the ERODE file itself). Then, Line 3 and Line 4
reduce the CRN up to forward and backward equivalence, respectively. In both cases the obtained reduced CRN is stored in the file specified in the reducedFile parameter.

S2.1 Equivalent-site Assumption in Biochemical Models
Here we detail how forward and backward equivalences may reveal the assumption of equivalent sites in a number
of computational models of protein interaction networks. We first study multisite protein phosphorylation, which
was exemplified with the CRN in Fig. 1 in the main text. We consider both a linear ODE model and a mass-action
one. Then we present an instance in a rule-based model of the Mitogen Activated Protein Kinase (MAPK) pathway.
Finally, using a model of insulin-receptor binding, we show how a similar aggregation can be found in mechanistic
models of complex formation, when a receptor protein features multiple binding sites.

Linear multisite protein phosphorylation. We consider the linear ODE model of multisite protein phosphorylation
studied in (21, Supplementary Doc S2). It describes the kinetics of a protein Y with n = 3 sites that can
phosphorylate/dephosphorylate independently of each other (i.e., according to the random mechanism). This leads to
an ODE system with 2n = 8 equations, each tracking the concentration of proteins with a specific configuration of
its sites. We denote each such configuration by subscripting Y with a triplet a

1

a
2

a
3

where each ai can be either ‘0’
(dephosphorylated) or ‘P ’ (phosphorylated). The ODE system can be written thus:

Ẏ
000

= ≠(–x00

+ –
0x0

+ –
00x)Y

000

+ —x00

YP 00

+ —
0x0

Y
0P 0

+ —
00xY

00P

ẎP 00

= –x00

Y
000

≠ (–P x0

+ –P 0x + —x00

)YP 00

+ —P x0

YP P 0

+ —P 0xYP 0P

Ẏ
0P 0
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0x0

Y
000

≠ (–xP 0
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0P x + —

0x0

)Y
0P 0

+ —xP 0

YP P 0

+ —
0P xY

0P P

Ẏ
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00xY
000
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00x)Y
00P + —x0P YP 0P + —

0xP Y
0P P

ẎP P 0

= –P x0

YP 00

+ –xP 0

Y
0P 0

≠ (–P P x + —xP 0

+ —P x0

)YP P 0

+ —P P xYP P P

ẎP 0P = –x0P Y
00P + –P 0xYP 00

≠ (–P xP + —x0P + —P 0x)YP 0P + —P xP YP P P

Ẏ
0P P = –

0xP Y
00P + –

0P xY
0P 0

≠ (–xP P + —
0xP + —

0P x)Y
0P P + —xP P YP P P

ẎP P P = –P P xYP P 0

+ –P xP YP 0P + –xP P Y
0P P ≠ (—P P x + —P xP + —xP P )YP P P

where the –’s and the —’s denote the phosphorylation and dephosphorylation rates, respectively. In the subscripts, ‘x’
indicates the position of the site which is involved in the reaction; for instance, –x0P is the phosphorylation rate of the
first site when the protein is in configuration Y

00P . The mathematical simplification that these rates are independent
from the specific location of the involved site translated into setting:

–x00

= –
0x0

= –
00x © –

1

–P x0

= –P 0x = –xP 0

= –
0P x = –

0xP = –x0P © –
2

–P P x = –P xP = –xP P = –
3

—x00

= —
0x0

= —
00x © —

1

—P x0

= —P 0x = —xP 0

= —
0P x = —

0xP = —x0P © —
2

—P P x = —P xP = —xP P = —
3

Under these conditions, a self-consistent ODE system with variables Y
0

, Y
1

, Y
2

, Y
3

is given in (21, Supplementary
Doc S2) which tracks the following sums of solutions

Y
0

:= Y
000

Y
1

:= YP 00

+ Y
0P 0

+ Y
00P Y

2

:= YP P 0

+ YP 0P + Y
0P P Y

3

:= YP P P

Indeed, we can confirm the ad hoc lumping scheme in (21, Supplementary Doc S2) by proving that {{Y
000

}, {YP 00

, Y
0P 0

,
Y

00P }, {YP 00

, Y
0P 0

, Y
00P }} is a forward equivalence. (In addition, the same partition is also a backward equivalence.)
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Model Original CRN Reduced CRN
|S| |R| |S| |R|

E2 18 48 12 24
E3 66 288 22 60
E4 258 1536 37 120
E5 1 026 7 680 58 210
E6 4 098 36 864 86 336
E7 16 386 172 032 122 504
E8 65 538 786 432 167 720
E9 262 146 3 538 944 222 990

Table S1. Maximal forward/backward reductions for the multisite phosphorylation models of (33). En is the model with n
independent and identical binding sites; |S| = number of species; |R| = number of reactions. For each model, the computed
forward and backward equivalences coincide.

It aggregates proteins that have equal states of the phosphorylation sites up to permutation, essentially explaining
that the identity of equivalent sites may be abstracted away in the reduced model.

Mass-action multisite phosphorylation We now consider a family of synthetic benchmark models published in (33) to
study the performance of a network-free simulator for CRNs. It consists of a collection of multisite phosphorylation
models where a substrate protein, S, can be phosphorylated and dephosphorylated by a kinase, E, and phosphatase,
D. This basic pattern occurs in di�erent models where n, the number of independent phosphorylation sites, is
varied between 2 and 9, see (33, Supplementary Note 7).‡ We denote by En the model with n sites. Since each site
has 4 distinct states (phosphorylated and unbound, unphosphorylated and unbound, phosphorylated and bound to
a phosphatase, unphosphorylated and bound to a kinase) these dynamics lead to CRNs with 4n + 2 species and
6n(4n≠1) reactions. Binding is assumed to take place according to mass-action dynamics, leading to an underlying
ODE systems with polynomial derivatives of degree two. The assumption of equivalent sites is implemented in the
model by having rate parameters that are independent of the identity of the site involved in the reaction.

Table S1 shows the results of the computation of the maximal forward/backward aggregations for these models,
obtained by initializing the partition-refinement algorithm with the trivial singleton partition where all original
species are included in one block. Both forward and backward reductions find the same coarsest partition. A manual
inspection of the as-obtained equivalence classes reveals that the equivalences aggregate complexes that have equal
states of the phosphorylation sites up to permutation. For instance, using BioNetGen, the input modeling language
used in (33), a sample equivalence class for model E2 is given by:

)
E(s!1).S(p1≥P, p2≥U !1), E(s!1).S(p1≥U !1, p2≥P )

*

It describes the equivalence between two complexes where the substrate protein S has one phosphorylated site, and
one unphosphorylated site to which the kinase E is bound.

Double phosphorylation in MAPK pathways. In (25) the authors study idealized models of the Mitogen Activated
Protein Kinase (MAPK) pathway, which transmits signals using a linear three-level sequence of kinases, MAP3K,
MAP2K, and MAPK, where the latter two are known to require double phosphorylation, e.g., (51). The Sca�-22
model of (25) describes the series of cascade events where phosphorylation occurs at a sca�old protein that is able to
recruit kinases from all tiers. Similarly to the previous model, the rates of activation of the doubly-phosphorylated
kinases are equal for both the phosphorylation sites and the order with which they phosphorylate (when the kinase
is bound to the sca�old protein) is random. The resulting CRN consists of 85 species and 487 reactions. The
corresponding source BioNetGen file is described in Appendix B of (25).

The maximal forward equivalence explains the assumption of independence between the phosphorylation sites of
MAP2K/MAP3K, yielding a reduced CRN with 56 species and 264 reactions. The largest equivalence class collapses
distinct chemical species in the original model consisting of a sca�old protein that is bound to both MAP2K and

‡As stated in (33), the corresponding source BioNetGen files are available at http://www.nfsim.org.
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MAPK with equal numbers of phosphorylated sites, as in the following sample equivalence class:
)

MAP2K (R1≥Y, R2≥Yp, s!1).MAPK (R1≥Yp, R2≥Y, s!2).Sca� (map2k!1, map3k, mapk!2),
MAP2K (R1≥Y, R2≥Yp, s!1).MAPK (R1≥Y, R2≥Yp, s!2).Sca� (map2k!1, map3k, mapk!2),
MAP2K (R1≥Yp, R2≥Y, s!1).MAPK (R1≥Yp, R2≥Y, s!2).Sca� (map2k!1, map3k, mapk!2),

MAP2K (R1≥Yp, R2≥Y, s!1).MAPK (R1≥Y, R2≥Yp, s!2).Sca� (map2k!1, map3k, mapk!2)
*

.

Here, using the BioNetGen notation, the equivalence class relates species where both the MAP2K and the MAPK
kinase have one phosphorylated site (either R1 or R2, denoted by state Yp).

Insulin receptor binding. Insulin receptors are dimers that can bind two distinct molecules of insulin. An assumption
of equivalence between the two binding sites must however take into account negative cooperativity, i.e., that the
binding a�nity for the second molecule is lower than that for the first molecule (52). The following is an excerpt
from the CRN of a model of early events in insulin and EGF signaling presented in (53, 54) which focuses on the
mechanistic description of insulin/receptor (reversible) binding only:

Ir(b1, b2) + Ins(s) k1≠æ Ir(b1!1, b2).Ins(s!1)

Ir(b1!1, b2).Ins(s!1) k≠1≠≠æ Ir(b1, b2) + Ins(s)

Ir(b1, b2) + Ins(s) k1≠æ Ir(b1, b2!1).Ins(s!1)

Ir(b1, b2!1).Ins(s!1) k≠1≠≠æ Ir(b1, b2) + Ins(s)

Ir(b1!1, b2).Ins(s!1) + Ins(s) k2≠æ Ir(b1!1, b2!2).Ins(s!1).Ins(s!2)

Ir(b1!1, b2!2).Ins(s!1).Ins(s!2) k≠2≠≠æ Ir(b1!1, b2).Ins(s!1) + Ins(s)

Ir(b1, b2!1).Ins(s!1) + Ins(s) k2≠æ Ir(b1!1, b2!2).Ins(s!1).Ins(s!2)

Ir(b1!1, b2!2).Ins(s!1).Ins(s!2) k≠2≠≠æ Ir(b1, b2!1).Ins(s!1) + Ins(s)

The di�erent a�nities are modeled by assuming that k
1

”= k
2

and k≠1

”= k≠2

. Under these conditions, forward
and backward equivalences still reveal the symmetry in the two binding sites, b1 and b2, yielding for instance the
equivalence class {Ir(b1, b2!1).Ins(s!1), Ir(b1!1, b2).Ins(s!1)}. This reduction pattern occurs in all complexes of the
signaling pathway of (53, 54) that are equal up to the identity of the site involved in the insuline/receptor binding.
In the full original model (53, Supplementary File 2), consisting of 2768 species and 38320 reactions, we found 52
occurrences of such a pattern.

S2.2 Controlled Interaction Domains
In models of protein-interaction networks with molecular complexes that exhibit internal states, dependencies may
occur among such states. This has been discussed in the main text with regard to the oligomerization model for
EFGR (28) and for the Fc‘RI signaling pathway of (32). In this section we provide detailed information on how such
situations of controlled interaction domains block the use of domain-specific model-reduction techniques, since these
crucially exploit independence of dynamics across di�erent sites (5–7, 30).

For this, here we consider a simple model of ordered phosphorylation taken from (6, Supplement 6), where the
ability of one site being phosphorylated depends on the state of other sites of the same complex. The model is defined
in BioNetGen, and is reported in Table S2.

This model consists of a substrate protein, S, with two phosphorylation sites, Y
1

and Y
2

, and a receptor R with
two activation sites, a

1

and a
2

. The activation is governed by spontaneous and independent events (rules R1-R2).
The receptor may reversibly bind to S regardless of the local states of both R and S (rule R3). However, the
phosphorylation of Y

1

/Y
2

is governed by A’s activation states: when R is bound to S and a
1

is active, then R may
phosphorylate S at Y

1

(rule R4); the phosphorylation of Y
2

requires that both a
2

be active and Y
1

phosphorylated
(rule R5). Similarly to deactivation of a

1

/a
2

, dephosphorylation of Y
1

/Y
2

is modeled as a spontaneous reaction that
is independent of the state of all other sites (rules R6-R7). The full CRN generated from such BioNetGen model
consists of 24 species and 88 reactions.

This model is used in (6) as an example to show that the domain-specific reduction technique therein introduced
(operating at the rule-based language level) may yield incorrect results when the input model exhibits site dependency.
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Id Rule Rates

R1 R(a1~U) <-> R(a1~A) 0.40, 0.60

R2 R(a2~U) <-> R(a2~A) 0.60, 0.40

R3 R(s) + S(r) <-> R(s!1).S(r!1) 0.03, 1.00

R4 R(s!1,a1~A).S(r!1,Y1~Y) -> R(s!1,a1~A).S(r!1,Y1~pY) 0.30

R5 R(s!1,a2~A).S(r!1,Y1~pY,Y2~Y) -> R(s!1,a2~A).S(r!1,Y1~pY,Y2~pY) 0.70

R6 S(Y1~pY) -> S(Y1~Y) 0.70

R7 S(Y2~pY) -> S(Y2~pY) 0.30

Table S2. BioNetGen model of ordered phosphorylation from (6, Supplement 6).

Instead, we applied our algorithm to the CRN obtained from the BioNetGen model in Table S2 where all activation and
phosphorylation events are modeled with distinct, site-specific kinetic parameters. The maximal forward equivalence
reveals the following three equivalence classes:

1. R := { R(a1≥U, a2≥U, s), R(a1≥A, a2≥U, s), R(a1≥U, a2≥A, s), R(a1≥A, a2≥A, s) }

2. S := { S(Y 1≥Y, Y 2≥Y, r), S(Y 1≥pY, Y 2≥Y, r), S(Y 1≥pY, Y 2≥pY, r), S(Y 1≥Y, Y 2≥pY, r) }

3. R.S := {
S.R(a1≥U, a2≥U, s!1).S(Y 1≥Y, Y 2≥Y, r!1), R(a1≥A, a2≥U, s!1).S(Y 1≥Y, Y 2≥Y, r!1),
S.R(a1≥U, a2≥A, s!1).S(Y 1≥Y, Y 2≥Y, r!1), R(a1≥A, a2≥A, s!1).S(Y 1≥Y, Y 2≥Y, r!1),
S.R(a1≥A, a2≥U, s!1).S(Y 1≥pY, Y 2≥Y, r!1), R(a1≥U, a2≥U, s!1).S(Y 1≥pY, Y 2≥Y, r!1),
S.R(a1≥A, a2≥A, s!1).S(Y 1≥pY, Y 2≥Y, r!1), R(a1≥U, a2≥A, s!1).S(Y 1≥pY, Y 2≥Y, r!1)
S.R(a1≥A, a2≥A, s!1).S(Y 1≥pY, Y 2≥pY, r!1), R(a1≥U, a2≥A, s!1).S(Y 1≥pY, Y 2≥pY, r!1)
S.R(a1≥A, a2≥U, s!1).S(Y 1≥pY, Y 2≥pY, r!1), R(a1≥U, a2≥U, s!1).S(Y 1≥pY, Y 2≥pY, r!1)
S.R(a1≥A, a2≥A, s!1).S(Y 1≥Y, Y 2≥pY, r!1), R(a1≥U, a2≥A, s!1).S(Y 1≥Y, Y 2≥pY, r!1)
S.R(a1≥A, a2≥U, s!1).S(Y 1≥Y, Y 2≥pY, r!1), R(a1≥U, a2≥U, s!1).S(Y 1≥Y, Y 2≥pY, r!1) }

They aggregate, respectively: i) all unbound forms R, i.e., regardless of the states of its a
1

/a
2

activation sites; ii) all
unbound forms of S, i.e., regardless of the states of its Y

1

/Y
2

activation sites; all bound R-S complexes, regardless of
the states of any of theirs sites. Intuitively, in this model forward equivalence internalizes the ordered phosphorylation
events (which take place only when the complex is formed) within the S-R equivalence class. Indeed, the reduced RN
computed according to the algorithm discussed in the main text and in Section S1.4 gives two equations only

R + S
k3≠æ R.S R.S

k≠3≠≠æ R + S

which describe the macroscopic binding/unbinding mechanism governing the three equivalence classes (at the same
rates k

3

, k≠3

as those in the original model).

S2.3 Fc‘RI Model
Here we detail the relationship between the reduction by forward equivalence and the simplified version model of the
model of early events for the signaling pathway of FC‘RI, published in (32) and discussed in the main text. The same
model (name fceri_ji.bngl) and variants thereof are presented in (33) to study the performance of a network-free
simulation for rule-based systems.

Table S3 shows the rule-based interactions for the original model using the BioNetGen syntax. For instance, rule
R1 specifies a reversible ligand-binding reaction, which represents Fc‘RI and IgE, respectively. This rule may subsume
a reaction between the seed species Rec(a) and Lig(l, l) (together with its corresponding reverse one), i.e.:

Rec(a) + Lig(l, l) kp1≠≠æ Rec(a!1).Lig(l!1, l), Rec(a!1).Lig(l!1, l) km1≠≠≠æ Rec(a) + Lig(l, l),

This generates the new species Rec(a!1).Lig(l!1, l) where the receptor is bound to the ligand. To this new species,
rule R2 may apply because, as discussed, Lig(l,l!+) in its left hand side matches any molecular complex containing
a ligand that is bound through one site only, while the other is free. Applying rule R2 to the seed species Rec(a) and
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Id Rule Rates

R1 Rec(a) + Lig(l,l) <-> Rec(a!1).Lig(l!1,l) kp1, km1

R2 Rec(a) + Lig(l,l!+) <-> Rec(a!2).Lig(l!2,l!+) kp2, km2

R3 Rec(b~Y) + Lyn(U,SH2) <-> Rec(b~Y!1).Lyn(U!1,SH2) kpL, kmL

R4 Lig(l!1,l!2).Lyn(U!3,SH2).Rec(a!2,b~Y!3).Rec(a!1,b~Y) ->
Lig(l!1,l!2).Lyn(U!3,SH2).Rec(a!2,b~Y!3).Rec(a!1,b~pY) pLb

R5 Lig(l!1,l!2).Lyn(U!3,SH2).Rec(a!2,b~Y!3).Rec(a!1,g~Y) ->
Lig(l!1,l!2).Lyn(U!3,SH2).Rec(a!2,b~Y!3).Rec(a!1,g~pY) pLg

R6 Rec(b~pY) + Lyn(U,SH2) <-> Rec(b~pY!1).Lyn(U,SH2!1) kpLd, kmLs

R7 Lig(l!1,l!2).Lyn(U,SH2!3).Rec(a!2,b~pY!3).Rec(a!1,b~Y) ->
Lig(l!1,l!2).Lyn(U,SH2!3).Rec(a!2,b~pY!3).Rec(a!1,b~pY) pLbs

R8 Lig(l!1,l!2).Lyn(U,SH2!3).Rec(a!2,b~pY!3).Rec(a!1,g~Y) ->
Lig(l!1,l!2).Lyn(U,SH2!3).Rec(a!2,b~pY!3).Rec(a!1,g~pY) pLgs

R9 Rec(g~pY) + Syk(tSH2) <-> Rec(g~pY!1).Syk(tSH2!1) kpS, kmS

R10 Lig(l!1,l!2).Lyn(U!3,SH2).Rec(a!2,b~Y!3).Rec(a!1,g~pY!4).Syk(tSH2!4,l~Y) ->
Lig(l!1,l!2).Lyn(U!3,SH2).Rec(a!2,b~Y!3).Rec(a!1,g~pY!4).Syk(tSH2!4,l~pY) pLS

R11 Lig(l!1,l!2).Lyn(U,SH2!3).Rec(a!2,b~pY!3).Rec(a!1,g~pY!4).Syk(tSH2!4,l~Y) ->
Lig(l!1,l!2).Lyn(U,SH2!3).Rec(a!2,b~pY!3).Rec(a!1,g~pY!4).Syk(tSH2!4,l~pY) pLSs

R12 Lig(l!1,l!2).Syk(tSH2!3,a~Y).Rec(a!2,g~pY!3).Rec(a!1,g~pY!4).Syk(tSH2!4,a~Y) ->
Lig(l!1,l!2).Syk(tSH2!3,a~Y).Rec(a!2,g~pY!3).Rec(a!1,g~pY!4).Syk(tSH2!4,a~pY) pSS

R13 Lig(l!1,l!2).Syk(tSH2!3,a~pY).Rec(a!2,g~pY!3).Rec(a!1,g~pY!4).Syk(tSH2!4,a~Y) ->
Lig(l!1,l!2).Syk(tSH2!3,a~pY).Rec(a!2,g~pY!3).Rec(a!1,g~pY!4).Syk(tSH2!4,a~pY) pSSs

R14 Rec(b~pY) -> Rec(b~Y) dm

R15 Rec(g~pY) -> Rec(g~Y) dm

R16 Syk(tSH2!+,l~pY) -> Syk(tSH2!+,l~Y) dm

R17 Syk(tSH2!+,a~pY) -> Syk(tSH2!+,a~Y) dm

R18 Syk(tSH2,l~pY) -> Syk(tSH2,l~Y) dc

R19 Syk(tSH2,a~pY) -> Syk(tSH2,a~Y) dc

Table S3. Model of early events for the signaling pathway of FC‘RI, originally published in (32), where the actual rate values
can be retrieved. Variants are proposed in (33) in order to study a network-free simulator for rule-based models. Removing
the rules in red yields the exactly reduced model fceri_ji_red.bngl of (32) which abstracts from the phosphorylation state
of Syk’s site l. The maximal forward equivalence abstracts from both phosphorylation sites of Syk. Its reduced CRN is
equivalent to the one obtained by removing the red and the blue rules from the model.

Rec(a!1).Lig(l!1, l) will yield a new species, Rec(a!1).Rec(a!2).Lig(l!1, l!2), that represents the IgE dimer recruiting
both FC‘RI units.

As discussed in the main text, the full CRN for this model consists of 354 species and 3 680 reactions. The maximal
forward equivalence aggregates species that have equal structure up to the phosphorylation status of both Syk’s sites
a and l (representing the activation loop and linker, respectively). The assumption of independence mentioned in
the main text between the dynamics of Syk’s sites and those that lead to a structural change in the complex can be
explained by visual inspection of the rules. Indeed, none of the rules that lead to a change of structure (i.e., R1, R2,
R3, R6, and R9) specify a context dependent on the phosphorylation state of Syk’s sites; conversely, none of the rules
related to Syk’s phosphorylation events (R10, R11, R12, R13, R16, R17, R18, and R19) lead to a change of structure
in the molecular complex involved.

In (33, Supplementary Note 8) the authors observe, without a formal proof, that an exactly reduced model may be
obtained by abstracting away the phosphorylation state of Syk’s site l. This is achieved in the rule-based model by
removing R10 and R11, which define a transphosphorylation of l by Lyn when it is free or bound to SH2, respectively.
The resulting CRN has 172 species and 1433 reactions (name fceri_ji_red.bngl).

Here, we first observe that the very same CRN is obtained by also removing rules R16 and R18 because they are
never fired since Syk’s site l is never phosphorylated. We can prove that this model is an exact reduction in the sense
of a forward equivalence by verifying that the partition that aggregates the original model into blocks of complexes
with the same structure up to the phosphorylation state of site l is a forward equivalence, Indeed, the reduced CRN
up to such equivalence corresponds to the CRN of fceri_ji_red.bngl. In addition, as discussed in the main text,
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the maximal forward equivalence can aggregate more, abstracting from the state of both phosphorylation sites of Syk,
leading to a reduced CRN with 105 species and 732 reactions. This is equivalent to a CRN obtained by the original
rule-based model by removing all rules that concern Syk’s phosphorylation events, i.e., R10–R13 and R16–R19. Both
reductions can be generated using the ERODE specification provided as Supplementary File 1.

S2.4 Septation Initiation Netwrok in fission yeast

We now consider a model of the Septation Initiation Network (SIN) in fission yeast presented in (55). With this
we show how backward equivalence explains the symmetric behavior analyzed in (55); in doing so, we show that
our technique can be in applied in some cases of ODE models with other nonlinearities (e.g., rational expressions,
sigmoids, and trigonometric functions). For this one requires simple algebraic manipulations that lead to a polynomial
ODE system with additional auxiliary variables which represent algebraic constraints. However, in general care has
to be taken in order to ensure the well-definedness of the auxiliary variables at all time points. For example, we
study the minimal model of asymmetry established as presented in (55, Supplemetary Text S1) and shown below for
completeness:
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where kS
on

, kS
o�

, k
bias

, kB
on

, kB
o�

, k
11P , k

11dP , and Js1 are given kinetic parameters; Cdc11OldT = Cdc11NewT is
a given concentration level of sca�old protein Cdc11 , while SIN

tot

and Byr4
tot

are the total concentration levels of
SIN (whose members are modeled as a single variable) and Byr4 (which represents the limiting component of the
complex Cdc16 -Byr4 ). The subscripts ‘old’ and ’new’ refer to components that were existing already in the mother
cell and those in the daughter cell, respectively. This model features rational expressions in Equations (SE20)-(SE21),
which define Michaelis-Menten kinetics for the phosphorylation and dephosphorylation of Cdc11 promoted by SIN
(the quantity Cdc11OldT ≠ Cdc11

oldP

represents the concentration of dephosphorylated Cdc11 in the mother cell).

Following for instance (2), we first translate this ODE into an equivalent one by first introducing new variables:
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This makes Equations (SE20)-(SE21) polynomial ODEs in these new variables:
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To the as-obtained equations we couple di�erential equations for the new variables:
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Thus, from the polynomial ODE system consisting of Equations (SE16)–(SE19), (SE22)–(SE27) one can get the
solution of original ODE system of Equations (SE16)–(SE21) whenever the respective initial conditions are consistent,
e.g., when y

old

(0) = 1/(Js1 + Cdc11OldT ≠ Cdc11
oldP

(0)). This shows that initial conditions on this polynomial
ODE system may not be chosen arbitrarily. For example, one must ensure that Cdc11

oldP

(0) ”= Js1 + Cdc11OldT
because otherwise it would yield an undefined initial condition.

Now, on this polynomial ODE system we can check that when k
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= 0 the partition
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is a backward equivalence. This explains the symmetry between mother and daughter cells discussed in (55) when the
binding rate kB

on

is not subject to a bias.

S2.5 Logic models of regulatory networks
In this section we provide more details on how both backward and forward equivalence can capture symmetries in
Boolean networks.

As discussed in the main text, each species Si in a Boolean network has associated a Boolean variable bi œ {0, 1}
that describes its activation status. The dynamics of a species is described by a Boolean expression Bi, its Boolean
update function, which collects the positive (promotion) and negative (inhibition) contribution that a subset of other
species {bi1, . . . , biN } has on it. Given the current state of the variables at time step t, denoted by bi1(t), . . . , biN (t),
the next state of bi at step t + 1 is given by:

bi(t + 1) = Bi(bi1(t), . . . , biN (t))

This is a model of synchronous Boolean networks, where all activation statuses at time step t + 1 are computed
synchronously by evaluating each update function at time step t.

The technique from (38) gives an ODE system where each Boolean variable bi is replaced by a real variable xi, and
each Boolean function Bi is associated with a perfect continuous homologous Bi, a real function that coincides with
Bi for values in {0, 1}. Formally, the obtained ODE system is component-wise defined for each species Si as:

ẋi = Bi(xi1, . . . , xiN ) ≠ xi

·i

with Bi(bi1, . . . , biN ) = Bi(xi1, . . . , xiN ) whenever bij = xij for all j œ {1, . . . , N}. The term Bi describes the
production of species Si, while ≠xi is a first-order decay term. The additional parameter ·i can be interpreted as the
lifetime of species Si. In particular, here we use the BooleCube continuous homologous of (38). It is obtained by
multi-linearly interpolating the Boolean function, leading to an encoding with polynomial multivariate ODE systems.

When the network is analyzed according to its Boolean semantics, an important issue is the study of its attractors.
Reduction techniques for Boolean networks have been developed with the objective of reducing the number of variables
whilst preserving these dynamical properties, e.g., (56). Backward and forward equivalence o�er an orthogonal
reduction technique for the exact simplification of the dynamics arising from the polynomial ODE interpretation.
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1 EGF = true

2 ERBB1 = EGF

3 ERBB2 = EGF

4 ERBB3 = EGF

5 ERBB2_3 = ERBB2 · ERBB3

6 ERBB1_2 = ERBB1 · ERBB2

7 ERBB1_3 = ERBB1 · ERBB3

8 AKT1 = (¬IGF1R · ¬ERBB1 · ¬ERBB2_3 · ¬ERBB1_2 · ERBB1_3 ) ‚
9 (¬IGF1R · ¬ERBB1 · ¬ERBB2_3 · ERBB1_2 ) ‚

10 (¬IGF1R · ¬ERBB1· ERBB2_3 ) ‚ (¬IGF1R · ERBB1) ‚ ( IGF1R)

11 MEK1 = (¬IGF1R · ¬ERBB1 · ¬ERBB2_3 · ¬ERBB1_2 · ERBB1_3 ) ‚
12 (¬IGF1R · ¬ERBB1 · ¬ERBB2_3 · ERBB1_2 ) ‚
13 (¬IGF1R · ¬ERBB1· ERBB2_3 ) ‚ (¬IGF1R · ERBB1) ‚ ( IGF1R)

14 IGF1R = (¬ER_alpha · AKT1 · ¬ERBB2_3 ) ‚ ( ER_alpha · ¬ERBB2_3 )

15 ER_alpha = (¬MEK1 · AKT1) ‚ (MEK1)

16 MYC = (¬MEK1 · ¬ER_alpha · AKT1) ‚ (¬MEK1 · ER_alpha ) ‚ (MEK1)

17 CyclinD1 = (¬MEK1 · ER_alpha · AKT1 · MYC) ‚ (MEK1 · ER_alpha · MYC)

18 p27 = ¬CDK4 · ¬CDK2 · ¬AKT1 · ¬MYC

19 p21 = ¬CDK4 · ¬AKT1 · ¬MYC

20 CyclinE1 = MYC

21 CDK4 = ¬p21 · CyclinD1 · ¬p27

22 CDK6 = CyclinD1

23 CDK2 = ¬p21 · ¬p27 · CyclinE1

24 pRB1 = CDK4 · CDK6

Listing S8. Boolean model for tyrosine kinase ERBB2 from (57). The left-hand side is the state of a Boolean variable at the next time step, given by the evaluation of the
right-hand side proposition with the values at the current time step. In the synchronous model, all rules are applied simultaneously at every time step.

Backward equivalence. Let us consider the Boolean model for tyrosine kinase ERBB2 used in (57) to study the
activation of the tumor suppressor retinoblastoma protein pRB through the ERBB-receptor. The complete model is
given in Listing S8, which has been generated automatically using the Ginsim tool (36) from the Ginsim specifica-
tion http://ginsim.org/node/39. The model has one input species, EGF (Line 1), whose activation triggers the activation
of three ERBB receptors (Lines 2-4). This in turn leads to a cascade of interactions resulting in the activation of the
output species pRB1 (Line 24).

We computed the largest backward equivalence on the BooleCube encoding of this model using an initial partition
with two blocks, one containing the input EGF, and one containing the remaining species (see Supplementary File 2).
This guarantees that the obtained backward reduction can be used for any value assigned to the input species, while it
is assumed that the other species are all initialized with 0 (false). The algorithm returned the non-singleton equivalence
classes {x

ERBB1

, x
ERBB2

, x
ERBB3

}, {x
ERBB1_3

, x
ERBB2_3

}, and {x
ATK1

, x
MEK1

}. As in the main text, we report such
equivalence classes by distinguished background colors, in Fig. S1, using the Ginsim graphical representation of
the Boolean network. In particular, boxes represent species, while green and red arrows represent promotion and
inhibition relations, respectively. The graphical representation abstracts from the actual update functions, and only
maintains the promotion/inhibition relations. For example, Fig. S1 contains an inhibitor arrow from ERBB2_3 to
IGF1R due to the term ¬ERBB2_3 appearing in the update function of IGF1R.

The computed backward equivalence can be explained in terms of the original Boolean dynamics of Listing S8.
Specifically, the two species AKT1 and MEK1 have the same Boolean update function, hence they will have same
value at any point in time if initialized equally. A similar argument holds for species ERBB1, ERBB2, and ERBB3.
Interestingly, this in turn guarantees that also ERBB2_3, ERBB1_2 and ERBB1_3 will always have same value, as
they have same update function up to the three equivalent species ERBB1, ERBB2, and ERBB3.

This “chain of symmetries” is more evident in Fig. 6 from the main text, depicting the Boolean network for T-cell
receptor signaling studied in (37, 38). The figure provides the graphical representation of the Ginsim specification
available at http://ginsim.org/node/78. We computed the largest backward equivalences of the BooleCube encoding of
the two model variants considered in the main text starting with an initial partition with a singleton block per input
variable, which are x

CD45

, x
CD8

, and x
TCRlig

. The computed backward equivalences coincide with the equivalence
classes depicted in Fig. 6 from the main text (see Supplementary File 3). In this model, the two species x

JNK

and
x

NFAT

form a backward equivalence class due to a chain of equivalences of length 4 involving the backward equivalence
classes {x

DAG

, x
IP3

}, {x
PKCth

, x
Ca

} and {x
SEK

, x
IKK

, x
Calcin

}. Again, this is due to the symmetries present in the
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ERBB2_3ERBB1_2 ERBB1_3

Fig. S1. Graphical representation, using (36), of the Boolean model for tyrosine kinase ERBB2 from (57). Using the BoolCube multivariate polynomial ODE encoding of (38),
we fixed an initial partition where the input variables are singletons, ensuring that the largest backward equivalence that refines this partition reveals nodes with equivalent
dynamics for any choice of the input values. Each non-trivial backward equivalence class is represented with colored nodes with the same background.

Boolean update functions of these nine species, provided in Listing S9, which also carry over to their BooleCube
encoding, given in Listing S10. Indeed, we see that the variables in each backward equivalence class have same
Boolean update functions and same derivatives, up to renaming of equivalent variables.

Another example is the model proposed in (58) to study the Fc‘RI signaling pathway during mast cell activation.
Fig. S2 provides a graphical representation of the model, using the Ginsim specification available at http://ginsim.
org/node/180. Here, x

NF-kB

and x
CALCINEURIN

are backward equivalent due to a chain of symmetries of length
three, involving the equivalence classes {x

DAG

, x
IP3

} and {x
PKC

, x
Ca

}. As for the previous Boolean networks, we
computed the largest backward equivalence of the BooleCube encoding of the model starting from an initial partition
with singleton blocks for the input species, cCbl, PIP2 and Ag, obtaining the partition depicted in Fig. S2 (see
Supplementary File 4).

Forward equivalence. Applying the forward equivalence criterion to ODE models of Boolean networks gives a reduced
model where the variables related to non-trivial equivalence classes do not live in the domain [0, 1]. Nevertheless,
forward equivalence can still be meaningfully applied by isolating variables of interest in initial singleton partition
blocks, as discussed in the main text. Additionally, here we show that when di�erent variables of interest are
aggregated, the reduced model may still be useful for the analysis.

Fig. S3 shows the largest forward equivalence for the BoolCube encoding of the T-cell model in Fig. 6 from the
main text. For both variants (with and without the feedback loops indicated by the dashed arrows) the ODE variables
related to the outputs CRE, AP1, NFKB and NFAT, form a forward equivalence class. In addition, we note that
also forward equivalence leads to “chains of symmetries” as discussed for backward equivalence. Intuitively, Rsk and
Ca form a forward equivalence class because they a�ect the dynamics of variables belonging to the same forward
equivalence class (respectively, CREB and Calcin) in the same way. A similar consideration holds for CREB and
Calcin, which a�ect the dynamics of CRE and NFAT, respectively, in the same way. The outputs form a forward
equivalence class because they do not a�ect the dynamics of other variables. Each output variable only appears in
its own derivative, hence their ODEs can be trivially rewritten in terms of their sums. This can be explained by
considering the update functions of the mentioned variables, shown in Listing S11, whose ODE encodings are given in
Listing S12. Indeed, the ODEs in Listing S12 can be rewritten in terms of sums of variables within the mentioned
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1 DAG = PLCg_a

2 IP3 = PLCg_a

3
4 PKCth = DAG

5 Ca = IP3

6
7 SEK = PKCth

8 IKK = PKCth

9 Calcin = Ca

10
11 JNK = SEK

12 NFAT = Calcin

Listing S9. Excerpt of the Boolean model for T-cell receptor signaling studied
in (37, 38), depicted in Fig. 6 from the main text for species collapsing onto
non-trivial equivalence classes. The update functions of such species remain
unchanged in the two model variants considered in the main text.

1 ẋDAG = xPLCg_a ≠ xDAG
2 ẋIP3 = xPLCg_a ≠ xIP3
3
4 ẋPKCth = xDAG ≠ xPKCth
5 ẋCa = xIP3 ≠ xCa
6
7 ẋSEK = xPKCth ≠ xSEK
8 ẋIKK = xPKCth ≠ xIKK
9 ẋCalcin = xCa ≠ xCalcin

10
11 ẋJNK = xSEK ≠ xJNK
12 ẋNFAT = xCalcin ≠ xNFAT

Listing S10. Excerpt of the BoolCube encoding of the Boolean model for T-
cell receptor signaling studied in (37, 38) depicted in Fig. 6 from the main text.
We provide the ODEs of the variables considered in Listing S9.
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Fig. S2. Graphical representation, using the Ginsim tool (36), of a Boolean model of the Fc‘RI signaling pathway during mast cell activation in wild type and mutant conditions
from (58). Using the BoolCube encoding, we fixed an initial partition where the input variables are singletons. Each non-trivial backward equivalence class is represented
with colored nodes with the same background.

forward equivalence classes, as shown below:
ẋ

Rsk

+ ẋ
Ca

= x
ERK

+ x
IP3

≠ (x
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+ x
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)
ẋ

CREB

+ ẋ
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= (x
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+ x
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) ≠ (x
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+ x
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) [SE28]
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)
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Fig. S3. Graphical representation, using (36), of the Boolean model for T-cell receptor signaling studied in (37, 38). Using the BoolCube encoding, we computed the largest
forward equivalence of the network. Each non-trivial forward equivalence class is represented with colored nodes with the same background. The condition of forward
equivalence holds in both model variants discussed in the main text. The equivalence class {CRE, AP1, NFKB, NFAT} consists of all the outputs of the network. Hence, in
this case forward equivalence can be used for studying properties regarding the full activation/deactivation of the network, as done in (38).

1 Rsk = ERK

2 Ca = IP3

3
4 CREB = Rsk

5 Calcin = Ca

6
7 CRE = CREB

8 NFAT = Calcin

9 AP1 = Fos · Jun

10 NFKB = ¬IKB

Listing S11. Excerpt of the Boolean model for T-cell receptor signaling studied
in (37, 38) depicted in Fig. 6 from the main text. Fig. S3 depicts the non-trivial
forward equivalence classes of the model. We provide the Boolean update
functions of the species collapsing in non-trivial equivalence classes. These
are the same in the two variants of the model considered in the main text.

1 ẋRsk = xERK ≠ xRsk
2 ẋCa = xIP3 ≠ xCa
3
4 ẋCREB = xRsk ≠ xCREB
5 ẋCalcin = xCa ≠ xCalcin
6
7 ẋCRE = xCREB ≠ xCRE
8 ẋNFAT = xCalcin ≠ xNFAT
9 ẋAP1 = xFos · xJun ≠ xAP1

10 ẋNFKB = 1 ≠ xIkB ≠ xNFkB

Listing S12. Excerpt of the BoolCube encoding of the Boolean model for T-cell
receptor signaling studied in (37, 38), showing only the variables in Listing S11.
The output variables appear only (with negative sign) in their own derivative.
This is because output variables do not affect the dynamics of other species,
meaning that they do not appear in other update functions. This guarantees
that we can rewrite the original ODE system in a self-consistent one where only
one variable provides cumulative information about all outputs. This allows
the study of full activation/deactivation of the network outputs, as performed
in (38).

The reduced ODE system can be used to replicate an experiment done in (38) where the authors study: (a) full
activation, when all the outputs of the network get activated without the feedback loops (dashed lines in Fig. 6 from
the main text and in Fig S3); (b) full deactivation, when the outputs tend to zero when in presence of the feedback
loops. In this case the variables of interest consist of all outputs; in the reduced model, full activation (respectively,
full deactivation) will then be indicated by the variable representing the equivalence class of the outputs approaching
4.0 (respectively, 0.0). The results are shown in Fig. S4.

For completeness, we report on the reductions up to forward equivalence for the other networks examined in this
section. Specifically, the Boolean model for tyrosine kinase ERBB2 from (57) (Fig. S1) could not be reduced. The
network of the Fc‘RI signaling pathway of Fig. S2 has a non-trivial forward equivalence class for the six outputs
(AP-1, Elk-1, PLA, NK-kN, NFAT, and Akt), and a singleton block for every other variable.
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Fig. S4. Analysis regarding full activation and full deactivation of the two variants of the T-cell model in Fig. 6 from the main text using the BoolCube encoding reduced with
forward equivalence. (a) Feedback loops deactivated. Following (38) we set all inputs to 1 and all other variables to 0. In this case the network gets fully activated (aggregated
output approaching 4.0). (b) Feedback loops activated. As in (38) we set all inputs and outputs to 1, and all other variables to 0. In this case th network gets fully deactivated
(aggregated output approaching 0.0).
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