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Abstract. Formal languages with semantics based on ordinary differential equa-
tions (ODEs) have emerged as a useful tool to reason about large-scale distributed
systems. We present differential bisimulation, a behavioral equivalence devel-
oped as the ODE counterpart of bisimulations for languages with probabilistic or
stochastic semantics. We study it in the context of a Markovian process algebra.
Similarly to Markovian bisimulations yielding an aggregated Markov process in
the sense of the theory of lumpability, differential bisimulation yields a parti-
tion of the ODEs underlying a process algebra term, whereby the sum of the
ODE solutions of the same partition block is equal to the solution of a single
(lumped) ODE. Differential bisimulation is defined in terms of two symmetries
that can be verified only using syntactic checks. This enables the adaptation to a
continuous-state semantics of proof techniques and algorithms for finite, discrete-
state, labeled transition systems. For instance, we readily obtain a result of com-
positionality, and provide an efficient partition-refinement algorithm to compute
the coarsest ODE aggregation of a model according to differential bisimulation.

1 Introduction

There has been increasing attention to models of computation based on ordinary differ-
ential equations (ODEs). This has been mainly prompted by a line of research which in-
terprets an ODE as the deterministic (called fluid or mean-field) approximation [16,17]
of a continuous time Markov chain (CTMC) underlying languages with Markovian se-
mantics [6,11,24]. The ODE semantics provides the behavior of a (concurrent) program
as a continuous trajectory representing the concentration of processes over time.

In this paper we consider the following problem: How to compare programs with
ODE semantics? Our main contribution is to lift the notion of bisimulation to languages
with ODE semantics. To put it in context, let us draw a parallel with established results
of aggregation of CTMCs obtained from a Markovian semantics of a high-level lan-
guage such as process algebra (e.g., [2,14,4]). This involved finding behavioural rela-
tions that induce a partition of the CTMC states which satisfies the property of ordinary
lumpability [3]: a smaller CTMC can be constructed where each state (a macro-state)
is the representative of the states in a block; the probability of being in a macro-state is
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equal to the sum of those of being in the block’s states. Here we proceed analogously.
We introduce differential bisimulation (DB), an equivalence relation that captures sym-
metries in the ODE semantics according to the well-known theory of ODE lumpabil-
ity [23]: the solution to each ODE representing an equivalence class is equal at all time
points to the sum of the solutions of the ODEs of the states in that equivalence class.

We study DB for Fluid Extended Process Algebra (FEPA) [25], a fragment of
PEPA [14] with ODE semantics, extended to also capture the product-based synchro-
nisation mechanism of [4,12]. A FEPA model is a composition of fluid atoms, each
representing a population of identical copies in parallel of the same sequential process,
describing its evolution over its set of local states. The interaction between fluid atoms
occurs via shared channels. A FEPA model encodes a family of systems, parametric
in the population sizes of each fluid atom. Under appropriate scaling conditions each
member is represented by the same ODEs, one for each local state of each fluid atom,
giving the evolution of the number of sequential processes exhibiting that local state.

Differential bisimulation is an equivalence relation over local states of a process.
This is in contrast to Markovian bisimulations, which are defined over states of a
CTMC. However, DB can be seen as a natural generalization. Indeed it consists of two
conditions, the first of which is essentially a Larsen-Skou style bisimulation (cf. [18])
over local states. When a process consists of a fluid atom with one replica (i.e., a single
sequential process), the ODE and the CTMC semantics coincide, and DB collapses onto
strong equivalence, PEPA’s Markovian bisimulation. In the CTMC case such a condi-
tion suffices to imply lumpability, informally because the CTMC transition diagram of
a process term with an arbitrary synchronization tree structure is isomorphic to the tran-
sition system of a single sequential process (by mapping each CTMC state to a named
choice term). In the ODE semantics, instead, the synchronization structure is encoded
in the function governing the ODE evolution. This is taken into account with the second
condition of DB: we introduce the novel concept of structural interface, an equivalence
relation for local states with same capability to interact with the environment. Both
conditions can be checked statically, i.e., syntactically over the process term. Due to the
relation with Markovian bisimulation, it is possible to adapt partition-refinement algo-
rithms available for discrete-state labeled transition systems (e.g. [20,13,1]), offering an
efficient way to compute the coarsest ODE aggregation of a model up to DB.

2 Preliminaries: FEPA

The grammar of FEPA has two levels. The first level specifies a fluid atom, i.e. a
sequential process evolving over a discrete state space. Let A denote the set of ac-
tions and K the set of constants. Each P 2 K is a sequential component, defined as
P
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definition of P . We now define the second level of the grammar. The parallel operator is
parameterised by a binary synchronisation function, denoted by H(·, ·). As discussed,
we support two such functions, H = min and H = · (product). According to the cho-



sen interpretation, fluid atoms may correspond to, e.g., jobs and servers in a computing
system, or to molecular species in a chemical reaction network.

Definition 1 (FEPA Model). A FEPA model M is generated by

M ::= P :: M kH
L

M , with L ✓ A and P 2 K
Let G(M) be the set of fluid atoms of a FEPA model M, recursively defined as

G(P ) = {P}, and G(M1 kH
L

M2) = G(M1) [ G(M2). For P 2 G(M), the local
states of P , denoted B(P ), are the smallest set such that P 2B(P ) and if P 02B(P ) and

P 0 (↵,r)���! P 00 2 out(P 0
), then P 002 B(P ). We use B(M) for

S
P2G(M)B(P ). For any

two P,Q 2 G(M), we assume B(P ) \ B(Q) = ;. This is without loss of generality
(e.g., by renaming with fresh variables). For P 2 B(M) we use A(P ) for the set of
actions labeling transitions from P . The compositional operator kH

L

, parametrized by an
action set and by the function H, specifies the type of synchronisation and the channels
used for interaction. Notably, different instantiations of H can appear in a FEPA model.

Example 1. Let MF , P1 kH{↵} Q1, with P1, Q1 defined as

P1
def
= (�, r).P2 + (�, r).P3, P2

def
= (↵, s).P1, P3

def
= (↵, s).P1

Q1
def
= (�, 2r).Q2, Q2

def
= (↵, s).Q1

We now move to the semantics of FEPA, starting from two quantities specifying local
states’ dynamics, independently from their possible interaction with other local states.

Definition 2 (Apparent and total conditional rate). Let M be a FEPA model, P 2
B(M), B ✓ B(M) and ↵ 2 A. The ↵-apparent rate of P and the total ↵-conditional
transition rate from P to B are defined, respectively, as

r
↵

(P ) ,
X

P

(↵,r)���!P

02out(P )

r q[P,B,↵] ,
X

P

02B

X

P

(↵,r)���!P

02out(P )

r

The ↵-apparent rate of a local state P can be understood as a normalized capacity, i.e.,
the capacity at which a unitary concentration of P -processes performs ↵-transitions.
The total ↵-conditional transition rate restricts the former with respect to a set of target
local states; e.g., for MF of Example 1 we have r

�

(P1) = 2r, and q[P1, {P2},�] = r.
Since a fluid atom is a representative of a group of sequential components of the

same type, the specification is completed by fixing the group size.
Definition 3 (Concentration function). Let M be a FEPA model. We define an initial
population function for M as ⌫0 : B(M) ! N0, and a concentration function for M
as ⌫ : B(M) ! R�0.

Definition 4 (Population-dependent apparent rate). Let M be a FEPA model, ⌫ a
concentration function, and ↵2A. The apparent rate of ↵ in M with respect to ⌫ is

r
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L
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(
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⌫
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(P 0
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The ↵-apparent rate in M is the total rate at which ↵ can be performed, for some
⌫. It is affected by synchronisations, e.g., in MF of Example 1 we have r

↵

(MF, ⌫) =
min(s ⌫

P2 + s ⌫
P3 , s ⌫Q2), or r

↵

(MF, ⌫) = (s ⌫
P2 + s ⌫

P3)s ⌫Q2 , depending on the
chosen synchronisation function H. The ↵-apparent rate in M is intended as the overall
speed at which ↵ is performed in the model; e.g., it is zero if ⌫

Q2 is zero, capturing the
blocking effect of synchronisation for both choices of H.

Definition 5 (Model influence). Let M be a FEPA model, ⌫ a concentration function
for M, ↵ 2 A, and P 2 B(M). The model influence on P due to ↵ in M is defined as

F
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F
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1 if P 0 2 B(P ),

0 otherwise,

where r↵(M1kH
L M2,⌫)

r↵(Mi,⌫)
is defined as 0 when r

↵

(M
i

, ⌫) = 0.

Model influence captures the effect exerted by the model M on the rate at which a
local state P performs an action. In other words, the actual ↵-component rate of P in
M with concentration ⌫ is given by the rate at which P would evolve on its own, i.e.,
⌫
P

· r
↵

(P ), weighted by the influence of the model on it, i.e., F
↵

(M, ⌫, P ).
We are now ready to define the ODE semantics of a FEPA model.

Definition 6 (ODE semantics). Let M be a FEPA model, E ✓ RB(M) and f : E !
RB(M) the vector field whose components are defined for each P 2 B(M) as:

f
P

(⌫) ,
X

↵2A

X

P

02B(M)

⌫
P

0q(P 0, P,↵)F
↵

(M, ⌫, P 0
)�

X

↵2A
⌫
P

r
↵

(P )F
↵

(M, ⌫, P )

The ODE system ⌫̇=f(⌫) with initial condition ⌫0 governs the evolution of ⌫ over time.

The rate of change in the concentration of a local state P depends on the actual rate
at which each local state P 0 performs transitions towards P , minus the actual rate at
which P performs any transition. For instance, the ODEs of MF of Example 1 are:

⌫̇
P1 = sH(⌫

P2 + ⌫
P3 , ⌫Q2)� 2r ⌫

P1 ⌫̇
Q1 = sH(⌫

P2 + ⌫
P3 , ⌫Q2)� 2r ⌫

Q1

⌫̇
P2 = r ⌫

P1 � s ⌫
P2

H(⌫
P2 + ⌫

P3 , ⌫Q2)

⌫
P2 + ⌫

P3

⌫̇
Q2 = 2r ⌫

P1 � sH(⌫
P2 + ⌫

P3 , ⌫Q2)

⌫̇
P3 = r ⌫

P1 � s ⌫
P3

H(⌫
P2 + ⌫

P3 , ⌫Q2)

⌫
P2 + ⌫

P3

(1)

3 Differential Bisimulation and ODE Lumpability

The second level of the FEPA grammar defines a tree-like structure which strongly
affects the ODE semantics. To take this into account in our differential bisimulation, we
introduce the notion of interface actions, which intuitively captures all actions which
affect the dynamics of a local state as a result of an interaction.



Definition 7 (Bound and interface actions). Let M be a FEPA model, and P 2
B(M). The set of bound actions of P in M is defined as

D(P,M) ,
(
L [D(P,M

i

) , if M = M1 kH
L

M2 and P 2 B(M
i

),

; , otherwise .

Also, the interface actions of P in M are I(P,M) , D(P,M)\A(P ). Lastly, for any
B ✓ B(M), we use D(B,M) for

S
P2B

D(P,M), and I(B,M) for
S

P2B

I(P,M).

The following notion of structural interface captures symmetries among the states
of a FEPA model with respect to the rigid tree-like structure of the model.

Definition 8 (Structural interface). Let M be a FEPA model, and P,Q 2 B(M).
Then P and Q have the same structural interface in M, written P

s.i.

=M Q, iff

(i) A(P ) = A(Q), and
(ii) if there exists an M = M1 kH

L

M2 within M with P 2 B(M1), and Q 2
B(M2) (or vice versa), then I(P,M) = I(Q,M) = ;.

Proposition 1. For M a FEPA model, s.i.

=M is an equivalence relation. 4

Considering Example 1 we have D(P1,MF)=D(P2,MF)={↵}, I(P1,MF) =

;, and I(P2,MF) = {↵}. Also, we have P2
s.i.

=MF P3, P3 6s.i.=MF Q2, and P2 6s.i.=MF Q2

(capturing, for instance, that ↵ is used by P2 and Q2 to interact in a specific fashion).
We can now provide the notion of differential bisimulation for FEPA models.

Definition 9 (Differential bisimulation). Let M be a FEPA model, R an equivalence
relation over B(M), and P = B(M)/R. We say that R is a differential bisimulation
for M (DB) iff for all (P, P 0

) 2 R and ↵ 2 A we have:

(i) q[P,B,↵] = q[P 0, B,↵], for all B 2 P ,
(ii) P

s.i.

=M P 0.

We define differential bisimilarity for M, denoted by ⇧⇠ , as the union of all DBs for
M, and we say that P, P 0 2 B(M) are differential bisimilar iff s ⇧⇠ s0.

As usual, we are interested in the largest differential bisimulation. We now show
that differential bisimilarity is a DB, and thus it is the largest one. To do this, we prove
that the transitive closure of the union of DBs is a differential bisimulation.

Proposition 2. Let M be a FEPA model, I be a set of indices, and R
i

a DB for M, for
all i 2 I . The transitive closure of their union R=(

S
i2I

R
i

)

⇤ is a DB for M.

The next theorem states that DB is preserved under composition of FEPA models.

Theorem 1 (Differential bisimulation is a congruence). Let M1, M2 be two FEPA
models, and R1, R2 be two differential bisimulations for M1 and M2, respectively.
Then R1[R2 is a differential bisimulation for M1 kH

L

M2, for any L✓A.
4 All proofs are provided in the extended technical report [15].



Remark 1. An interesting connection between differential bisimulation and its Marko-
vian analogues, like Markovian bisimulation [13] and PEPA’s strong equivalence [14]
arises: condition (i) of DB corresponds to the condition required by Markovian bisim-
ulation and by strong equivalence. However, in the Markovian cases states of the un-
derlying labelled transition system (semantic elements) are related, while DB relates
the states of the fluid atoms (syntactic elements). This requires to explicitly treat the
influence exerted by the model on each local state (condition (ii)). Such information is
instead implicitly present in the transition systems considered in the Markovian cases.

We now show that DB induces an ODE aggregation in the sense of the theory of
ODE lumpability (e.g., [23]). We first exemplify it considering Example 1, for which
it can be shown that P2

⇧⇠P3. Using the variable renaming ⌫
P23 = ⌫

P2 + ⌫
P3 , by the

linearity of the differential operator we can aggregate Equation (1) as

⌫̇
P1 = sH(⌫

P23 , ⌫Q2)� 2r ⌫
P1 ⌫̇

Q1 = sH(⌫
P23 , ⌫Q2)� 2r ⌫

Q1

⌫̇
P23 = 2r ⌫

P1 � sH(⌫
P23 , ⌫Q2) ⌫̇

Q2 = 2r ⌫
P1 � sH(⌫

P23 , ⌫Q2)

If the initial conditions are such that ⌫0P23 = ⌫0P2+⌫0P3 , the solutions satisfy ⌫
P23(t) =

⌫
P2(t)+ ⌫

P3(t) for all t. As discussed, this is analogous to ordinary lumpability in
CTMCs, where the probability of being in a state of the aggregated chain is equal to the
sum of the probabilities of being in the states of the related equivalence class [3].

Noteworthy, condition (i) of DB does not capture ODE aggregation if ignoring
structural interface. Assuming � = �, {{P1, Q1},{P2, P3, Q2}} satisfies condition (i).
Yet, P2 6s.i.=MF Q2 and P3 6s.i.=MF Q2. This results in ODEs with nonlinear terms in ⌫

P2 and
⌫
Q2 , such as H(⌫

P2+⌫
P3 , ⌫Q2), which cannot be written in terms of ⌫

P2 + ⌫
Q2 .

We formalize such ODE aggregation in terms of ODE lumpability by an aggregation
matrix. Given a FEPA model M and a partition P of B(M), the aggregation matrix of
P has |P|⇥|B(M)| components given as (MP)i,j=1 if P

j

2B
i

, and (MP)i,j=0 oth-
erwise, where B

i

2P and P
j

2B(M), with i2{1, . . . , |P|} and j2{1, . . . , |B(M)|}.

Definition 10 (ODE lumpability). Let M be a FEPA model, f its vector field, and P
a partition of B(M). The ODE system ⌫̇ = f(⌫) is lumpable by MP if and only if

MPf(⌫) = MPf(MPMP⌫) , for all ⌫ , (2)

where MP is any generalized right inverse of MP , i.e., a matrix satisfying MPMP = I.

The vector ⌫ has |B(M)| components, each being the concentration of a local
state of M at a certain time. For P a partition of B(M), MP⌫ has |P| components,
each equal to the sum of the components of ⌫ in the corresponding block. The vector
MPMP⌫ has again |B(M)| components, obtained by first summing the components
of ⌫ in each block (MP⌫) and subsequently redistributing it to the local states of the
block. Equation (2) demands that the sum of the dynamics of local states of a block,
i.e., MPf(⌫), can be expressed as a function of the aggregated vector, i.e., MP⌫, only.

Theorem 2 (Differential bisimulation and lumpability). Let M be a FEPA model,R
a differential bisimulation, and P=B(M)/R. The ODEs of M are lumpable by MP .



Proof (sketch). We have to show that Equation (2) holds. The proof uses Proposition 4
and Lemma 4 given in [15], and here discussed. For ⌫ a concentration function for M
and P a partition of B(M), we define [⌫]P , the P-redistribution of ⌫, as

[⌫]P = MPMP⌫ . (3)

Thus, we have to show that for any ⌫ it holds MPf(⌫) = MPf([⌫]P). Recalling the
definition of the aggregation matrix MP , it is enough to show that for any B 2 P and ⌫

X

P2B

f
P

(⌫) =
X

P2B

f
P

(MPMP⌫) =
X

P2B

f
P

([⌫]P) ,

i.e., we verify Equation (2) componentwise. Summing over P 2 B both sides of f of
Definition 6, and using that

P
P2B

q(P 0, P,↵) = q[P 0, B,↵], as well as a decomposi-
tion of the sum over states, i.e.,

P
P

02B(M)(·) =
P

B2P
P

P

02B

(·), we obtain

X

P2B

f
P

(⌫) =
X

↵2A

X

P

02B(M)

⌫
P

0 q[P 0, B,↵]F
↵

(M, ⌫, P 0
)

�
X

P2B

⌫
P

X

B̃2P

X

↵2A
q[P, ˜B,↵]F

↵

(M, ⌫, P )

=

X

B̃2P

X

P

02B̃

X

↵2A
q[P 0, B,↵]F

↵

(M, ⌫, P 0
)⌫

P

0

�
X

P2B

X

B̃2P

X

↵2A
q[P, ˜B,↵]F

↵

(M, ⌫, P )⌫
P

(4)

We are left with showing that for any ⌫ Equation (4) does not change if we replace
⌫ with [⌫]P . This corresponds to saying that it can be expressed as a function of the
sums of the concentrations in each block of P only. For any P and any B 2 P we can
write

P
↵2A q[P,B,↵]F

↵

(M, ⌫, P ) =

P
↵2A(P )q[P,B,↵]F

↵

(M, ⌫, P ), which fol-
lows from observing that any ↵ 62A(P ) brings 0-contribution to the equation (because
↵ /2A(P ) =) r

↵

(P ) = 0 =) q[P,B,↵] = 0, 8B). We now exploit the fact that P is
induced by a DB on B(M), as sketched below in the following three points.

(i) We have that for all B 2 P , for all Q,Q0 2 B, q[Q, ˜B,↵] = q[Q0, ˜B,↵] for all
˜B 2 P and all ↵ 2 A, which, in turn, implies A(Q) = A(Q0

).
(ii) We show, in Proposition 4, that for all B 2 P , and all Q,Q0 2 B, F

↵

(M, ⌫, Q) =

F
↵

(M, ⌫, Q0
) for all ⌫ and all ↵2A(Q)=A(Q0

). Thus, it holds that for all B, ˜B 2 P ,
all P,P 02B, and all ⌫,

P
↵2A q[P, ˜B,↵]F

↵

(M, ⌫,P ) =

P
↵2A q[P 0, ˜B,↵]F

↵

(M, ⌫,P 0
).

That is, the summation is equal for all local states of block B. Proposition 4 establishes a
relation between structural interface (Definition 8) and model influence (Definition 5),
essentially saying that if two local states have the same structural interface within a
model, then they receive the same influence from the model.

(iii) We show, in Lemma 4, that for any P 2 B(M), ↵ and ⌫ it holds F
↵

(M, ⌫, P ) =

F
↵

(M, [⌫]P , P ). This is used to infer that for any B, ˜B2P , any P 2B and any ⌫:
X

↵2A
q[P, ˜B,↵]F

↵

(M, ⌫, P ) =

X

↵2A
q[P, ˜B,↵]F

↵

(M, [⌫]P, P ).



1 DifferentialBisimilarity(M,P) :=

2 RefineSI(M,P) //Refine P wrt condition (ii)
3 RefineQ(M,P) //Iteratively refines P wrt condition (i)
4 RefineSI(M,P) :=

5 f o r a l l (↵ 2 A(M))
6 refineAccordingToComp(↵,P) //Refine P wrt comp[↵], for all ↵

7
8 RefineQ(M,P) :=

9 Spls = A(M) ⇥ P //All (↵, B) are considered as candidate splitters

10 whi le(Spls 6= ;)
11 (↵, Bspl) = pop(Spls) //choose and remove a candidate splitter

12 Split(↵, Bspl,P,Spls) //split all blocks of P wrt (↵, Bspl)

Algorithm 1. An algorithm for computing differential bisimilarity

That is, the summation can be expressed as a function of the sums of the concentra-
tion in each block of P . In other words, the model influence received by a local state
depends on the concentration of the other local states only through the sum of the con-
centrations within blocks of P , thus a change in the concentrations which preserves the
total concentrations of each block does not affect the model influence.

Now that all the proof ingredients have been provided, we can rewrite Equation (4)
as follows, where we use that for any B 2 P,

P
P2B

[⌫]
P
P

=

P
P2B

⌫
P

, which arises
from Equation (3) and the fact that the matrix MP must satisfy MPMP = I:

X

P2B

f
P

(⌫) =
X

B̃2P

X

↵2A
q[P 0, B,↵]F

↵

(M, ⌫, P 0
)

X

P

02B̃

⌫
P

0

�
X

B̃2P

X

↵2A
q[P, ˜B,↵]F

↵

(M, ⌫, P )

X

P2B

⌫
P

=

X

B̃2P

X

↵2A
q[P 0, B,↵]F

↵

(M, [⌫]
P
, P 0

)

X

P

02B̃

[⌫]
P
P

0

�
X

B̃2P

X

↵2A
q[P, ˜B,↵]F

↵

(M, [⌫]
P
, P )

X

P2B

[⌫]
P
P

=

X

P2B

f
P

([⌫]
P
) ut

4 Computing Differential Bisimilarity

We now provide an efficient algorithm for computing differential bisimilarity obtained
by extending and reusing well-known partition refinement algorithms, e.g. [20,13,1].

In order to apply partition refinement to differential bisimilarity, let us first note that
condition (ii) of DB can be dealt with as an initialization step that pre-partitions the local
states according to their structural interface. Instead, condition (i) requires the usual
partition-refinement treatment: starting from the partition obtained after initialization,
the blocks are iteratively split until there exists a block and an action (i.e., a candidate
splitter) for which condition (i) does not hold. The algorithm takes in input any initial
partition P , useful e.g. to specify local states that should not be equated, and terminates
giving the largest differential bisimilarity which refines P for the considered model.



Overview. DifferentialBisimilarity, our algorithm, is given in Algorithm 1,
where M is the input FEPA model and P the initial partition. We use A(M) for the set

of actions in M, and T (M), {[P 0 (↵,r)���!P 00 2 out(P 0
) |P 0 2B(M)]} for its multi-set

of transitions. Note that |A(M)|  |T (M)|. Also, we use tM for |T (M)|, and sM for
|B(M)|, and we do not distinguish an equivalence relation from its induced partition.
RefineSI implements the initialization step, yielding the coarsest refinement of P
with respect to condition (ii). RefineQ iteratively computes the coarsest refinement
satisfying condition (i). Overall, the algorithm is correct, as the iterative refinements
preserve condition (ii). It is assumed that M is stored as the list T (M), requiring
O(tM) space. In order to represent partitions P , B(M) is stored as a list, while a block
of P is a list of pointers to its states, requiring in total O(tM + sM) to store M.

RefineSI. This procedure is based on a simple rephrasing of Definition 8: given a
FEPA model M and P1, P2 2 B(M) with A(P1) = A(P2), we have P1

s.i.

= P2 if and
only if for all ↵ 2 A(P1) and for all occurrences M = M1 k

L

M2 within M with
↵ 2 L\A(P1) we have that P1 and P2 either belong to the same M

i

, or do not belong
to any of the two (i.e., P1, P2 62 B(M)). Also, if two states have the same innermost
compositional operator binding ↵, then they share all outers too. No further information
is required about compositional operators, and thus we assume that each P 2B(M) has
a list comp containing an entry per action in A(P ), each being a triple storing the action,
the (identifier of the) innermost compositional operator affecting P and binding the key
action, and the side of the operator to which P belongs. Also, each comp is assumed
to be sorted with respect to a total oderdering on A. We use comp[↵] for the values
associated with ↵ in comp. For instance, for M = M1 k

L

M2, id⇤ the identifier of
k
L

, P12B(M1) and ↵ 2 A(P1) \ L, we have P1.comp[↵] = (id

⇤, left) if no further
compositional operators binding ↵ appear in the syntax-tree path leading to P1. All
comp require O(tM) space in total: each P.comp has at most one entry per transition
with source P , and thus at most tM entries appear in all comp. By defining a total
ordering on comp’s values, RefineSI reduces to iteratively sorting all P 2 B(M)

according to P.comp[↵] for all ↵ 2 A(M) (Line 6). 5 The sorting for each ↵ can be
performed in O(sM · logsM), and if we scan A(M) according to the ordering of A
we can access the elements of the lists in constant time, requiring O(tM · sM · logsM)

time to perform the sorting. Overall, this yields O(tM · sM · logsM) time complexity.

Theorem 3. Let M be a FEPA model and P a partition of B(M). RefineSI com-
putes the coarsest refinement of P satisfying condition (ii). It can be implemented with
time and space complexities O(tM · sM · logsM) and O(tM + sM), respectively.

RefineQ. Condition (i) ignores compositional operators. Thus, RefineQ treats M
as a stochastic labeled transition system (STLS), i.e. a transition system (with a root
per fluid atom) where transitions are labeled by an action and a real. This allows us to
use the algorithm for Markovian bisimilarity of SLTSs presented in [13,9]. In fact, as
discussed, condition (i) corresponds to Markovian bisimulation. Indeed, RefineQ is

5 P.comp[↵] is nil if ↵ 62 A(P ), and free if ↵ 2 A(P ) and ↵ 62 D(P,M), so to tell apart
states performing different actions.



a straightforward rephrasing of the algorithm of [13,9] to FEPA notation. An in-depth
discussion of the algorithm can be found in [13,9], while we hereby give a high-level
description. We start recalling the algorithm’s complexities.

Theorem 4 (Adapted from [13]). For M a FEPA model and P a partition of B(M),
RefineQ gives the coarsest refinement of P satisfying condition (i) of DB. It can be
realized with time and space complexities O(tM ·logsM) and O(tM+sM), respectively.

Refinements are based on splitters (↵,B
spl

), with ↵2A(M) and B
spl

2P: a block
B 2 P is split with respect to (↵, B

spl

) in disjoint sub-blocks, each containing states
with same total ↵-conditional transition rate towards B

spl

. RefineQ starts (Line 9)
generating a set Spls of initial potential splitters (↵, B) for each ↵ 2 A(M) and
B 2 P . Then, Lines 10-12 iterate until there are potential splitters to be considered: a
splitter is selected and removed from Spls, and the procedure Split is invoked to
refine each block of P according to the selected splitter, and to generate new candidate
splitters. Due to space constraints we do not detail the Split procedure.

Summary. Theorems 3, 4 allow us to conclude that DifferentialBisimilarity
has time and space complexities O

�
tM · sM · logsM

�
and O(tM + sM), respectively.

5 Related Work

The label equivalence presented in [26] captures exact fluid lumpability, a different no-
tion of ODE lumpability than the one captured by DB, where processes are equivalent
whenever their ODE solutions are equal at all time points, provided they have same
initial conditions. Label equivalence works at a coarser level of granularity than DB, as
it relates whole fluid atoms, and not their individual local states, essentially requiring
an isomorphism between them. Further, the conditions for equivalence in [26] include
universal quantifiers over the uncountable set of concentration functions which are dif-
ficult to check automatically. Indeed, no algorithm for computing the coarsest partition
was developed for label equivalence. In contrast, DB is given in terms of syntactic ele-
ments only, allowing us to provide an efficient algorithm to compute the largest one of
a model. In [25] the same authors extended the framework of [26] to the notion of ODE
lumpability considered in this paper, for which, however, the same limitations as those
of label equivalence apply.

The relationship between formal languages and ODEs induced by their semantics
has been studied also in other contexts, with complementary approaches. In [7] it is pre-
sented a model-order reduction technique for  [8], a rule-based language for chemical
systems representing bindings between molecules in an explicit graph-based way. The
aggregation method, called fragmentation, identifies a linear transformation of the state
space yielding a subspace with a closed dynamics, i.e., whose ODEs depend only on the
variables of that subspace. This may give an improper lumping (see [19]), as the same
state may appear in more than one aggregate, and thus it is not necessarily induced by
a partition of the state space. More practically, it can be shown that MF of Example 1
can be encoded in  in case H = ·, but it is not reduced by fragmentation. (Dually,
there exist ’s models which can be encoded in FEPA that are reduced by fragmenta-
tion but not by DB). However, clearly, the two target languages are different;  is based



on the law of mass action, where the rate of interaction is proportional to the product of
the participants’ concentrations, similarly to FEPA’s H = ·. Instead, FEPA is process-
based, with the rule of interaction implicit in the rigid compositional structure, while a
chemical system is an unstructured set of interacting species. Also, FEPA allows for a
synchronisation semantics based on capacity-sharing arguments (in the case H = min).

More closely related is the bisimulation in [5], which induces both ODE lumpabil-
ities of Definition 10 and [26]. The difference is again in the language-specific defini-
tions of equivalence. While DB is a relation over process algebra terms, in [5] symme-
tries are exploited between binding sites of  agents. Also, [5] requires stronger symme-
tries than DB, as the latter considers those specific to the notion of lumpabilty of Defini-
tion 10 only. For example, it can be shown that the DB {{P1}, {P2, P3}, {Q1}, {Q2}}
of MF of Example 1 does not satisfy the notion of lumpability of [26].

The combination of the notion of bisimulation and ODEs has been explored also
by the control theory community, most notably in the work of Pappas and co-authors
(e.g., [21,10]) and van der Schaft [22]. However, the setting is different. When studied
for model reduction, they essentially deal with a state space representation with an
explicit output map, e.g., the matrix C in the linear dynamical system ẋ = Ax + Bu,
y = Cx. A bisimulation is thus related to unobservability subspaces (cf. [21, Section
8.1] and [22, Corollary 6.4]). By contrast, in this paper we work with a nonlinear system
in the form ẋ = A(x) (with A a nonlinear vector field) where bisimulation is related
to aggregation; in the aggregated model only a linear combination of the original state
space variables can be recovered. More in general, the bisimulations in [21,10,22] are
defined directly at the level of the dynamical system (either in discrete or continuous
time) whereas DB is defined at the language level, as a relation between process terms.

6 Conclusion

We presented differential bisimulation, a behavioral relation for process calculi with
ordinary differential equation (ODE) semantics. This study follows the line of research
on equivalence relations for quantitative models of computation. In particular, differen-
tial bisimulation is defined as a relation over a discrete set of process terms inducing an
aggregation of the ODEs, analogously to Markovian bisimulations for process calculi
which lead to the lumping of the underlying Markov process. Differential bisimula-
tion allows relating local states of somewhat heterogenous processes instead of essen-
tially isomorphic ones, as required in previous work. In addition, it is given in terms of
syntactic conditions and it does not involve universal quantifiers over the expressions
determining the ODE system. This, together with a conceptual similarity with Marko-
vian bisimulations, allowed for the development of a partition-refinement algorithm for
computing differential bisimilarity, largely reusing available results in the Markovian
setting. As with its Markovian counterparts, differential bisimulation provides only suf-
ficient conditions for ODE lumping. In this respect, an interesting line of investigation
will be how to relax the current assumptions to obtain coarser aggregations. Another
interesting problem is whether differential bisimulation implies lumpability also of the
underlying Markov chain obtained when considering a Markovian semantics.
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