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Abstract—Accurate estimation of resource demands is one of
the key challenges to be able to use queuing networks (QNs) for
performance prediction, especially in cases where the profiling is
to be performed through a non-intrusive system instrumentation.
This problem is worsened when one needs to obtain a continu-
ously updated model (e.g., for control and adaptation purposes)
because it becomes crucial to use fast estimation methods that
do not interfere with the behavior of the running system. A
crucial limitation in the state of the art is the assumption that
the measurement are taken from a system in the steady state
regime. To the best of our knowledge, this paper presents the first
approach—here developed for single-class QNs—that does not
make such assumption. Our service-demand estimation technique
relies on a deterministic approximation of the QN where the
transient evolution of the queue lengths is modeled by means
of a compact analytical representation based on a system of
coupled nonlinear ordinary differential equations. We set up
a moving-horizon estimation problem whereby the governing
equations of the model, appropriately unfolded over a given
time horizon, represent the constraints of a quadratic program
that seeks to find the optimal choice of service demands that
minimize the error between the measured queue lengths and the
predicted ones. An extensive numerical evaluation demonstrates
the efficiency and the effectiveness of our approach against the
state-of-the-art techniques for service demands estimation.

I. INTRODUCTION

Accurately predicting the performance of a computing
system hinges on the availability of a model with well
calibrated parameters. When the system under consideration
can be satisfactorily modeled as a queuing network (QN),
key quantities to estimate are the service demands, i.e., the
parameters that uniquely characterize the distributions of the
service times that govern each node of the network. Recent
trends in software engineering advocate the use of quantitative
models at runtime to perform (self-)adaptation to continuously
meet given performance-related quality-of-service goals [1]–
[7]. Such a context calls for efficient techniques that can
provide frequent up-to-date estimates of service demands in
a minimally intrusive manner so as not to alter the running
system significantly. The new perspective of online estimation
brings about two main challenges:

i) It may not be appropriate to assume that the system is in
the steady-state regime, in particular when it is subjected to
control actions that update its parameters frequently enough.
The steady-state assumption is important because it allows

the use of many well-known relationships and/or analytical
results for QNs (see e.g., [8], [9]). Importantly, none of
techniques reported in the recent survey on service demand
estimation [10] is applicable to systems in a transient regime.

ii) It is not possible to intrude into the running system
by, for instance, injecting measurement traffic to exercise the
system under different utilization levels (e.g., [11]). Regression
techniques that involve different quantities (e.g., throughput
and utilization) may introduce instrumentation overheads and
may cause inaccuracies and bias in the estimation due to
multicollinearity [12]. This has motivated the development
of techniques that make use of queue-length information
only [13], [14], which in some cases may be accessible
externally (i.e., from the operating system) without the need
for direct instrumentation of the application.

In this paper we present the first estimation method that, to
the best of our knowledge, does not make the steady-state as-
sumption, using low-overhead measurements of queue lengths
only for systems that can be modeled as single-class QNs with
exponentially distributed service times and load-dependent
(i.e., multiple-server) service rates. The key intuition behind
our approach is to consider a dynamical model of the QN that
provides an estimate of its transient evolution approximately,
thus avoiding the well-known state space explosion problem
of the exact description based on the forward equations of
a continuous-time Markov chain (CTMC, see e.g., [8]). In
particular, we use a mean-field (or fluid) approximation of the
QN (see [15] for an exhaustive review), where the time course
of the queue length at each station is described by a single
(non-linear) ordinary differential equation (ODE), which can
be used as an estimate of the true mean.

By appropriately discretizing time, the mean-field ODEs of
the QN are turned into difference equations; starting from
some known initial condition that gives the queue length at
each station in the QN, it is then possible to unfold the discrete
dynamics over H steps, obtaining explicit equations for the
queue lengths at such subsequent steps. This unfolding can be
interpreted as a set of constraints for an optimization problem
where the decision variables are the service demands to be
estimated, with the objective of minimizing the error between
the predicted queue lengths and the measured ones across the
whole observation horizon H . Naturally, this set-up is agnostic



to the knowledge of the measured system being in steady state
since it involves dynamical equations that can be used over
any given fixed time horizon. In addition, it allows for an
on-line estimation of the service demands through a moving
horizon strategy, by shifting forward the time window at each
step in order to continuously obtain updated estimates. This
represents a novel approach to service demands estimation
which is fundamentally due to the availability of a simple (ap-
proximating) ODE system, unleashing the adaptation of ideas
on system identification based on moving-horizon estimation
that are originally rooted in control theory (e.g., [16]–[18]).

The ODEs have piecewise-linear derivatives due to the pres-
ence of minimum functions that encode the load-dependent
rates in a multi-server queue [19]–[21]. However, we avoid to
explicitly model this nonlinearity in the optimization problem
since it is naturally encoded in the measured queue-length
dynamics. Indeed, in this paper we show how to formulate
the moving horizon estimation (MHE) into a quadratic pro-
gram (QP) which can be efficiently used for the estimation.
Then, only after the solution of each optimization problem
the explicit throughput non linear relation is considered for
computing the actual system service demands. Our approach
is somewhat dual to that in [7], where a mixed integer linear
optimization (for the same class of QNs) was obtained for
the purposes of model predictive control [22]. In [7] similar
constraints as in this paper are used, but the objective function
represents a quality-of-service requirement (i.e., throughput,
response time, or queue length) that can be achieved using
decision variables related to the routing probabilities and num-
ber of servers at each station; here, as discussed, the objective
function is the prediction error, while routing probabilities and
server multiplicities are assumed to be known.

The accuracy of the service-demand estimates ultimately
depends on the accuracy of the approximation of the mean-
field model. In general, it affords two related interpretations.
The first is that the ODE solutions coincide with a sample path
of the underlying CTMC under appropriate limiting and scal-
ing conditions [23]; these, in our case, correspond to having
QNs of increasing size where the server multiplicities at each
queue grow proportionally with the workload [20]. The second
interpretation is a first-order moment-closure approximation of
a given fixed CTMC representing a population process [15];
in this paper’s setting, this corresponds to replacing the ex-
pectation of a nonlinear function of random variables with the
function of the expectation of the random variables, which
introduces an error in general [24], [25].

The main implication is that the ODEs incur approximation
errors which depend on the parameters of the QN, but which
tend to become more negligible as the number of jobs and
server multiplicities increase. With a substantial numerical
assessment using both controlled and randomized experiments,
we show that our service demand technique is efficient and
yield accurate estimates, with an average error of 3.82% and
a maximum average runtime of 0.52s on QNs with over 20
stations, thus promoting our approach as effective technique
for on-line estimation of service demands.

Related work: When applied to a system in the steady
state, our technique can be compared with many approaches
that rely on fluid model [26] or on a corollary of Little’s Law,
the Utilization Law [10], using different statistical inference
approaches such as linear regression [27], non-linear optimiza-
tion [28], clustering regression [29], independent component
analysis [30], pattern matching [31] and Gibbs sampling [13],
[32] based on measured values of utilization and/or through-
put. A main drawback of these techniques is that they require
observations of quantities that are difficult to obtain: indeed,
utilization is not available when there is no complete control
of the underlying physical layer (e.g., when using a Platform-
as-a-Service environment).

Most approaches require active probing, i.e., observing the
system in different configurations (e.g., at different utilization
levels). For example, the technique in [33], which is related to
ours since it is based on a QP optimization, measures the uti-
lization of every station under different system configurations
(i.e., different load combinations, load intensity, and so on),
and it estimates demands only relying on a steady-state closed
equation for the QN. However, active probing at runtime
induces extra interfering traffic. This is necessarily intrusive
and the observed metrics will differ from those that would
have been generated by the regular traffic only (see [34]).
This difference makes the identification problem more difficult
since reconstructing the original metric (i.e. the ground-truth)
from the measured one is not straightforward.

The approach presented in [11] is non-intrusive since it
measures only the end-to-end response time and throughput
of the transactions submitted to the system, modeled as a QN.
The service demands of all network stations are estimated
by means of a nonlinear optimization problem that fits the
computed performance metrics with the measured ones. The
technique requires active probing for the collection of several
steady-state observations at different utilization levels of the
network. In addition, because it relies only on end-to-end
measurements taken where the workload is generated, the
method can only yield a feasible assignment for the service
demands; for example it cannot distinguish service demands
that differ up to a permutation in a series of queuing stations.

Most closely related to ours are two recent techniques that
consider queue-length measurements only [13], [14]. In [13],
the authors develop an estimation method based on Gibbs
sampling. However, the computational cost of the algorithm is
high already for networks of small/moderate size, making it
not applicable online. Instead, in [14] a closed-form expression
to evaluate all the network’s stations service demands for a
multiclass application is presented for the load-independent
case. The load-dependent case is approximated in closed form
by an appropriate scaling of the estimated service demands.
We postpone a more detailed comparison to Section IV.

Paper structure: The remainder of this paper is orga-
nized as follows. Section II provides an overview of single-
class QNs and their approximation by means of mean-field
ODEs. Section III presents our QP-based estimation method.
Section IV discusses the results of our numerical evaluation,
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Fig. 1: Queuing network for the load balancer running example

while Section V concludes with perspectives on future work.

II. BACKGROUND

In this section all the steps briefly discussed in Section I
are formally defined by means of a simple running example.

A. Running Example

Load balancing is an established design technique in per-
formance engineering [35] and it is considered a building
block for scalable and reliable distributed systems. Figure 1
shows a closed single class QN model for a load balancing
system with two replicas M2, M3 and a workload generator
M1 (i.e., users terminals). Each station in the network is
characterized by an exponentially distributed service demand
1/µi (i.e., time required by station i for completing one single
job) and a parallelism level si (i.e., maximum number of
requests processable by parallel equivalent servers at station i).
User requests are distributed across the computational nodes
according to the probabilities p1,2 and p1,3.

Typically, designers employ such model for studying the
performance of systems in a “what-if” analysis fashion (i.e.,
combining different workload and queuing parameters) so as
to identify the most suitable hardware/software configuration
satisfying requirements under worst-case or average execution
conditions. Clearly, in order to conduct meaningful design-
time or runtime analysis, model parameters need to be ac-
curately discovered otherwise the computed predictions will
significantly deviate from the real system behavior.

In this setting, our goal is to identify the unknown service
demands 1/µ2, 1/µ3 at runtime, relying only on queue-length
traces collected without altering the normal operational behav-
ior of the system. For doing so we assume that the remaining
system parameters, i.e., µ1, s1, s2, s3, p1,2, p1,3 are known;
indeed, they can be easily derived from system logs [36].

In the following the definition of a QN model, its ODEs
based representation and the QP encoding are formalized.

B. Single Class Queuing Networks

We consider closed QNs where we assume that a fixed
population of jobs circulate in the system; the extension to
an open QN, admitting exogenous arrivals, is straightforward.

A single-class QN is described by the following quantities:
• M is the number of queuing stations;
• s = (s1, . . . , sM ) is the vector of server multiplicities,

where si denotes the number of servers at station i, with
1≤ i≤M ;

• µ=(µ1, . . . , µM ) is the exponentially distributed service
rate at station i, with 1 ≤ i ≤ M , hence 1/µi is the
corresponding service demand;

• P = (pi,j)1≤i,j≤M is the routing probability matrix, i.e.,
a stochastic matrix where each element pi,j gives the
probability that a job goes to station j upon completion
at station i;

• x(0) = (x1(0), . . . , xM (0)) is the initial condition, i.e.,
the number of jobs assigned to each station at time 0.

C. ODE Model

The mean-field ODEs for the QN model can be derived from
a stochastic description of the system in terms of a Markov
Population Process which tracks the queue-length processes
at each station. Similarly to what presented in [7], the ODE
system is as follows:

ẋi(t)=−µi min{xi(t), si}+

M∑
j=1

pj,iµj min{xj(t), sj} (1)

for 1 ≤ i ≤M . Considering the initial value problem where
each variable xi is given initial condition xi(0), the solution
x(t) = (x1(t), . . . , xM (t)) gives an estimate of the average
queue length at each station.

A key aspect of the ODE formulation is the nonlin-
ear instantaneous average throughput of station i, given by
µi min{xi(t), si}: when the queue length xi(t) in station i is
less than the available number of servers si, then the xi(t)
jobs are served in parallel; otherwise some of the jobs are
enqueued and only si of them are processed simultaneously.
Network topologies are represented in the model by weighting
throughputs with the routing probabilities pj,i.

In our running example, the following ODE system gives
the mean-field approximation for the load balancer depicted
in Figure 1:

ẋ1(t) = −µ1 min{x1(t), s1}+
∑2

i=1
µi min{xi(t), si}

ẋ2(t) = −µ2 min{x2(t), s2}+ p1,2µ1 min{x1(t), s1}
ẋ3(t) = −µ3 min{x3(t), s3}+ p1,3µ1 min{x1(t), s1}

(2)

where we use the dot notation in the left-hand sides to denote
derivative with respect to time. In [7] we validated the ODE
model in (2) by comparing prediction results against real
measurements taken from a running load balanced system,
assuming that all model parameters (including the service
demands) were known. In this paper, from the dynamics of (1)
we extract a set of constraints which will be used in an
optimization problem where decision variables are given by
the vector of service rates µ.

III. MOVING HORIZON ESTIMATION OF SERVICE
DEMANDS FOR QUEUING NETWORKS

A. Discrete-time model

Our estimation procedure is based on discretization of time
for (1), by considering the usual approximation of the time
derivative as ẋi(t)≈(xi(t+ ∆t)−xi(t))/∆t. Then, assuming



a fixed time step, we denote by xi(k) the approximation at the
k-th step, i.e., xi(k)≈xi(k∆t), for k≥0. The approximation
can be computed by solving the following system of equations:

xi(k + 1)=xi(k)−∆tµi min{xi(k), si}+

+ ∆t

M∑
j=1

pj,iµj min{xj(k), sj} (3)

with k≥0 and 1≤ i≤M , starting fro xi(0)=xi(0).

B. Nonlinear service demand estimator

We use (3) as constraints in an optimization problem which
seeks to minimize the error between the predicted queue
lengths xi(k) and the measured ones over a given time horizon
H . Denoting by x̃i(k) the measured queue length at time step
k, we can write the optimization problem as follows:

minimize
H∑

k=1

M∑
i=1

(xi(k)− x̃i(k))2

subject to:
Eq. (3), xi(0) = x̃i(0) for 0≤k≤H−1, 1≤ i≤M

(4)

In other words, we search for the optimal vector of service
rates µ that minimizes the difference between the measure-
ments and the model predictions across all stations and all
discrete time points over the horizon H , when the model
dynamics is initialized with the measured queue lengths. In
this general formulation we assume that all service rates are
unknown since known service rates can be encoded by simply
adding further equalities to the optimization problem.

C. Quadratic programming formulation

The main drawback of the optimization problem (4) is the
presence of the nonlinear terms appearing in (3). We now
consider a formulation in terms of a quadratic programming
problem. The key point is to replace each nonlinear term with
an auxiliary variable which linearizes the constraints. We do
this by setting

Ti(k) := ∆tµi min{xi(k), si}, k≥0, 1≤ i≤M. (5)

Essentially, Ti(k) represents the instantaneous discretized
throughput at station i. Then, the constraints (3) become:

xi(k + 1) = xi(k)− Ti(k) +

M∑
j=1

pj,iTj(k) (6)

Overall, the optimization problem (4) is rewritten thus:

minimize
H∑

k=1

M∑
i=1

(xi(k)− x̃i(k))2,

subject to:
Eq. (6), xi(0)= x̃i(0) for 0≤k≤H−1, 1≤ i≤M

(7)
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Fig. 2: Simulation and mean-field solution for the queue
lengths of the running example.
N µ1 µ2 µ3 s1 s2, s3 p1,2, p1,3 p2,1, p3,1

5500 1.0 68.97 73.80 ∞ 20 0.5 1.0

TABLE I: Model parameters for the load balancer of Fig. 1

We denote by x∗i (k) and T ∗
i (k), with 0≤ k ≤H − 1 and

1≤ i≤M , the solution found by the above optimization prob-
lem. Using (5), we can define our service demand estimator
as follows:

µ∗
i :=

∑H−1
k=0 T

∗
i (k)∑H−1

k=0 min {x∗i (k), si}
, 1 ≤ i ≤M. (8)

This essentially estimates the average service demand at
station i, i.e., 1/µ∗

i , across the entire observation window.

D. Application to the load balancer case study

Let us now apply the moving-horizon estimation introduced
in the previous paragraphs to our running example. We con-
sider a parametrization as in Table I, where we assume that the
service demands at stations 2-3 (here chosen at random) must
be estimated, while the demand at station 1 is known and fixed
to 1.0. In order to model station 1 as a delay we encoded the
infinite-server semantics by simply choosing a value s1≥N .

Queue-length traces for each station were generated from
the simulation of one sample path of the CTMC underlying the
QN model for 20 time units, starting from an initial condition
where all jobs are located in station 1. Then, we resampled the
obtained queue-length traces with a time step ∆t=0.01, hence
for a total of 2000 time steps. Figure 2 depicts the simulated
trace against the numerical solution of the ODE (2).

We then applied the moving horizon estimator iteratively
over fixed observation windows with H = 100, obtaining
average percentage errors of the service demand estimates
equal to 1.4% and 2.6% for station 2 and station 3 respectively.
Moreover, we measured an average solution time of 0.01 s on
a ordinary laptop.

IV. NUMERICAL EVALUATION

In this section we evaluate the effectiveness and the scala-
bility of our MHE approach, on simulated queuing networks
of different sizes and topologies. The replication package is
publicly available at https://goo.gl/zNdr5f.

A. Methodology

In Section IV-B we assess the effectiveness of our MHE
approach against the recent Queue Length Maximum Like-
lihood Estimation (QMLE) method proposed in [14]. As

https://goo.gl/zNdr5f
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Fig. 3: Queuing network topology used in the comparison
experiments against QMLE.
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Fig. 4: Comparison between a sample path of the CTMC
and the discretized ODE solution for the QN described in
Fig. 3 with parameters: x(0)=K(48, 0, 0), µ=(1, 27, 48), s=
K(∞, 1, 1).

discussed in Section I, QMLE estimates service demands
from queue-length data only. In Section IV-C we carry out
an analysis of the scalability of MHE, by measuring runtime
statistics on networks with an increasing number of stations.
In both cases the queue length traces, i.e., the inputs of the
estimation experiments, have been collected by simulating
the underlying CTMC of the QN using stochastic simulation
based on Gillespie’s algorithm [37]. Moreover, we ran the QP
optimization problems underlying MHE by using the Julia [38]
interface of the CPLEX optimization tool [39].We executed all
the experiments on a laptop equipped with an Intel dual-core
i5 processor operating at a 2.6 GHz with 8 GB of memory.

B. Comparison with QMLE

In [14] QMLE is presented in two variants. The first uses
nonlinear optimization on an exact closed-form expression
based on the BCMP theorem. The second relies on a formula
derived from the Bard-Schweitzer approximate mean value
analysis (BS-AMVA) [40], [41], for both load-independent
(i.e., single-server) and load-dependent (i.e., multi-server)
queuing centers. In this paper we propose a comparison with
the latter approach because the exact one is not suitable
for online estimation purposes in real-world systems due to
its computational complexity: indeed, in [14] are reported
execution times of the order of 104 s for tandem networks.

In order to conduct as fair a comparison as possible, we
considered synthetic networks, with topology given in Fig. 3,
that stress known sources of approximation errors by both
methods. MHE is essentially derived from a deterministic
dynamical system, i.e., equations (1), that approximates the
true stochastic behavior of the QN. Thus, we expect the
estimation error to depend on that approximation.

The precision of the ODE approximation ultimately depends
on the system size, intended as the number of jobs and the
server multiplicities of the QN. More precisely, for a given
network topology one can fix a sequence of QNs where
both the initial job population x(0) and the vector of server

multiplicities K are scaled by the same factor K∈N. The limit
result of Kurtz [23], applied to the QNs of this paper, states
that, in the limit when K goes to infinity, a sample path of
the Markov chain becomes indistinguishable from the ODE
solution (under an appropriate normalization that tracks the
density process, i.e., the total number of jobs in each queue
divided by the scaling factor K). Thus, for larger values of
K one may expect increasingly high accuracy of the ODE
solution with respect to a sample queue-length path. Figure 4
provides an graphical illustration of this effect.

The precision of QMLE depends on the accuracy of BS-
AMVA and the normalization factor used in [14] to treat
load-dependent service rates. The accuracy of the former
tends to increase with the number of users circulating in
the network [40]. The latter approximation uses the closed-
form expression for a load-independent queue and scales it
by a factor equals to the minimum between the number of
servers in the queue and the average queue length, similarly
to the denominator in (8). This may introduce an error at low-
utilization regimes (i.e., when the queue length tends to be
less than the number of servers with higher probability).

In order to take into account all these potential sources of
approximation error, we generated our synthetic benchmarks
by controlling the system size as well as the utilization levels
of the QN. In order to do so, we considered 5 experiments
which spanned the steady-state utilization levels between 0.1
and 0.8. For each experiment we considered varying system
sizes K ∈{1, 2, 5, 10, 20, 50}; the case K = 1 corresponds to
a QN with a delay station at node M1 and two single-server
queues at nodes M2 and M3, i.e., s = (∞, 1, 1); we fixed
the service demands arbitrarily with µ1 = 1.0, µ2 = 27.0 and
µ3 =48.0. The experiments differed in the choice of the initial
condition x(0), which was fixed in order to achieve varying
steady-state utilizations of the queues.

In accordance with the experimental settings proposed
in [14], we executed QMLE with 105 steady-state queue-
length samples. MHE depends on the observation window H
and the discretization parameter ∆t. Here we used a different
value of H for each experiment (i.e., for each utilization level)
such that in the time window H∆t we observed a roughly
constant number of service events (i.e., approximately 1500)
while choosing a discretization step ∆t = 0.1 to ensure an
accurate enough ODE solution. For MHE we considered 100
non-overlapping intervals of length H∆t which were used as
input to the optimization problem (7), in order to compute
statistics about the estimation error.

Table II shows the results of the comparison. For each
experiment we report the value of H that was used, as well as
the utilizations at the station M2 (i.e., detailed results reporting
statistics about station M3 can be found in the replication
package of this paper), denoted by U2 (this utilization was
roughly constant at every system size K), and the initial
condition x(0). For each experiment, each station, and each
value of K we measured the accuracy of QMLE and MHE,
computed as the mean absolute percentage errors between the
estimate and the true service demands; for MHE, we report the



x(0) = (3, 0, 0) x(0) = (9, 0, 0) x(0) = (12, 0, 0) x(0) = (19, 0, 0) x(0) = (26, 0, 0)

H = 2347, U2 ≈ 0.10 H = 688, U2 ≈ 0.30 H = 521, U2 ≈ 0.40 H = 353, U2 ≈ 0.60 H = 262, U2 ≈ 0.80

K QMLE MHE QMLE MHE QMLE MHE QMLE MHE QMLE MHE

1 0.52 9.25 ± 1.03 1.37 9.63 ± 1.06 2.07 7.90 ± 1.01 3.40 6.58 ± 0.81 5.15 4.89 ± 0.69
2 448.30 4.13 ± 0.62 126.54 3.93 ± 0.58 67.18 4.20 ± 0.63 5.46 3.90 ± 0.56 2.33 3.59 ± 0.54
5 184.02 2.26 ± 0.33 60.41 3.02 ± 0.43 42.09 2.76 ± 0.38 8.78 2.07 ± 0.33 1.65 2.06 ± 0.34

10 92.29 1.65 ± 0.27 30.53 1.99 ± 0.31 23.18 1.82 ± 0.31 9.50 2.09 ± 0.30 3.89 1.50 ± 0.24
20 45.18 1.37 ± 0.21 15.01 1.13 ± 0.19 11.32 1.36 ± 0.18 6.41 1.36 ± 0.19 5.81 1.17 ± 0.18
50 18.67 0.74 ± 0.10 6.08 0.81 ± 0.14 4.57 0.78 ± 0.11 2.72 0.81 ± 0.12 5.17 0.73 ± 0.10

TABLE II: Comparison between QMLE and MHE.

Errors Runtimes (s)

M min avg 95-th max min avg 95-th max

5 1.60 2.53 4.12 4.50 0.03 0.03 0.03 0.04
10 1.63 2.46 3.28 3.56 0.08 0.08 0.09 0.09
15 1.59 2.63 3.48 4.56 0.18 0.18 0.19 0.19
20 1.62 2.52 3.19 3.82 0.34 0.38 0.48 0.52

TABLE III: Scalability analysis.

95% confidence intervals computed over the 100 independent
samples, and the average execution runtime. Relying on the
obtained results we make three main observations:
i) In the load-independent (i.e., K = 1) case, QMLE tends
to outperform MHE at low utilizations, while at higher uti-
lizations (U2 ≥ 0.60) the two techniques provide comparable
accuracy. Larger MHE errors at K = 1 can be explained
by the fact that this system size is considerably away from
a deterministic regime, as previously discussed. Conversely,
here QMLE does not feature the multi-server correction to
the BS-AMVA solution. Overall, the largest extremum of the
confidence interval for MHE is ca. 16%, still indicating an
acceptable performance even for small QNs.
ii) In the load-dependent scenarios, i.e., for all K > 1, MHE
consistently outperforms QMLE. We attribute this to the afore-
mentioned multi-server correction to BS-AMVA approach.
Indeed, for a fixed K the error tends to decrease for larger
utilizations, coherently with the fact that when the queue is
highly utilized the difference between the dynamics of a single
server (i.e., under BS-AMVA) and that of multiple servers with
the same overall maximum service rate (i.e., the multi-service
correction) become negligible.
iii) As expected for MHE, larger values of the system size K
tend to yield more accurate estimates. The results show that
this also holds for QMLE.

C. Scalability analysis

Here we further study the effectiveness and scalability
of MHE on QNs with randomly generated topologies and
parameters. We fixed total number of stations M equal to 5,
10, 15, 20. For each case we generated 20 QNs with random
parameters. In particular, the routing probability matrices were
randomly generated stochastic matrices (i.e., ensuring a closed
QN workload); the number of servers at each station was

picked uniformly at random in {20, . . . , 50} while the service
rates were chosen randomly from the interval [10, 50]. For each
such random QN, the initial number of jobs was chosen such
that the bottleneck queue attained a utilization of about 0.8,
using the approximate formulas presented in [19]. For each
random QN we computed the average service demand estimate
across all stations and with 100 non-overlapping observation
windows with H=200 taken from a sample path.

Table III shows the collected results. In particular for each
value of M we report the minimum, average, the 95-th quantile
and the maximum error across the 20 random QNs. We
observe that the number of stations M does not significantly
affect the accuracy of the estimation. As expected, the ex-
ecution time of MHE grows almost linearly with increasing
number of stations in the network. Moreover, for large systems
(i.e., M = 20) the average time needed for obtaining new
estimations by solving the QP optimization, does not exceed
the fraction of a second in the worst case (i.e., 0.52s).

V. CONCLUSION

We have presented a technique to service demand estimation
in queueing networks (QNs) using a moving horizon approach
which can be used both in the transient and in the steady-
state regime. Our method requires the solution of a quadratic
programming problem that fits the instantaneous throughputs
of each station to minimize the error between the measured
queue lengths and the estimated ones. The numerical results
demonstrate high accuracy across a wide range of operating
regimes and network sizes at a low computational cost, which
make it appealing for online use.

In this paper we have considered closed QNs supporting
both load independent and load independent stations with
exponentially distributed service times and with a single class
of jobs. Future work will be concerned with the development
of extensions for multi-class QNs with non-exponentially dis-
tributed service times, e.g., by fitting service demands against
phase-type distributions.
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[17] F. Allgöwer, T. A. Badgwell, J. S. Qin, J. B. Rawlings, and S. J.
Wright, “Nonlinear predictive control and moving horizon estimation—
an introductory overview,” in Advances in control. Springer, 1999, pp.
391–449.

[18] J. B. Rawlings and B. R. Bakshi, “Particle filtering and moving horizon
estimation,” Computers & Chemical Engineering, vol. 30, no. 10, pp.
1529–1541, 2006.

[19] M. Kowal, M. Tschaikowski, M. Tribastone, and I. Schaefer, “Scaling
size and parameter spaces in variability-aware software performance
models,” in International Conference on Automated Software Engineer-
ing (ASE), 2015, pp. 407–417.

[20] M. Tribastone, “A fluid model for layered queueing networks,” IEEE
Transactions on Software Engineering, vol. 39, no. 6, pp. 744–756, 2013.

[21] M. Tribastone, S. Gilmore, and J. Hillston, “Scalable differential analysis
of process algebra models,” IEEE Transactions on Software Engineering,
vol. 38, no. 1, pp. 205–219, 2012.

[22] C. E. Garcı́a, D. M. Prett, and M. Morari, “Model predictive control:
Theory and practice—a survey,” Automatica, vol. 25, no. 3, pp. 335–348,
1989.

[23] T. G. Kurtz, “Solutions of ordinary differential equations as limits of
pure Markov processes,” in J. Appl. Prob., vol. 7, no. 1, 1970, pp. 49–
58.

[24] A. Stefanek, M. C. Guenther, and J. T. Bradley, “Normal and in-
homogeneous moment closures for stochastic process algebras,” in
10th Workshop on Process Algebra and Stochastically Timed Activities
(PASTA), 2011.

[25] M. C. Guenther, A. Stefanek, and J. T. Bradley, “Moment closures
for performance models with highly non-linear rates,” in Computer
Performance Engineering — 9th European Workshop (EPEW) and 28th
UK Workshop (UKPEW), Revised Selected Papers, 2012, pp. 32–47.
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