
LearningQueuing Networks via Linear Optimization
Emilio Incerto

emilio.incerto@imtlucca.it
IMT School for Advanced Studies

Lucca
Lucca, Italy

Annalisa Napolitano
annalisa.napolitano@imtlucca.it
IMT School for Advanced Studies

Lucca
Lucca, Italy

Mirco Tribastone
mirco.tribastone@imtlucca.it

IMT School for Advanced Studies
Lucca

Lucca, Italy

ABSTRACT
The automatic derivation of analytical performance models is an
essential tool to promote a wider adoption of performance engineer-
ing techniques in practice. Unfortunately, despite the importance
of such techniques, the attempts pursuing that goal in the literature
either focus on the estimation of service demand parameters only or
suffer from scalability issues and sub-optimality due to the intrinsic
complexity of the underlying optimization methods.

In this paper, we propose an efficient linear programming ap-
proach that allows to derive queuing network (QN) models from
sampled execution traces. For doing so, we rely on a determin-
istic approximation of the average dynamic of QNs in terms of
a compact system of ordinary differential equations. We encode
these equations into a linear optimization problem whose decision
variables can be directly related to the unknown QN parameters,
i.e., service demands and routing probabilities. Using models of
increasing complexity, we show the efficiency and the effectiveness
of our technique in yielding models with high prediction power.

CCS CONCEPTS
• Software and its engineering→ Software performance; Soft-
ware system models; •Mathematics of computing→ Linear
programming.

KEYWORDS
Software performance, Queuing networks, Automated model ex-
traction, Linear programming

ACM Reference Format:
Emilio Incerto, Annalisa Napolitano, and Mirco Tribastone. 2021. Learn-
ing Queuing Networks via Linear Optimization. In Proceedings of the 2021
ACM/SPEC International Conference on Performance Engineering (ICPE ’21),
April 19–23, 2021, Virtual Event, France. ACM, New York, NY, USA, 10 pages.
https://doi.org/10.1145/3427921.3450245

1 INTRODUCTION
Queuing networks (QNs) are a well-known method in performance
engineering to gain insights about non-functional properties of
computing systems such as throughput, utilization, and response

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICPE ’21, April 19–23, 2021, Virtual Event, France
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8194-9/21/04. . . $15.00
https://doi.org/10.1145/3427921.3450245

time [5, 30]. Unfortunately, a major problem affecting their wide-
spread adoption in the practice of software engineering is the gap
between the mathematical formulation of the model and the real
system, which requires significant expertise both in the problem
domain and in the techniques and tools used for the analysis [36].
Such a gap widens as the real system becomes more mature, while
for early stages of the software development process several meth-
ods have been proposed for the derivation of performance models
from higher-level designs (see, e.g., the surveys [3, 22]).

In this paper we propose a new method based on linear program-
ming to learn the parameters of a QN. For each station representing
a shared resource in the system, we assume that the server multiplic-
ities are already known. This assumption corresponds, for instance,
to knowing the number of cores when the shared resource is a CPU;
or the thread-pool size when the shared resource is a software en-
tity. Instead, the parameters to be learned are instead the service
demands, i.e., the amount of time spent by a job at a service station;
and the routing matrix, specifying the probability with which a job
visits a new station upon receiving service.

These two kinds of parameters are more difficult to obtain in
practice without intrusive instrumentation of the actual system
under consideration [33]. This has motivated a line of research on
service demand estimation from queue-length data only [29, 33, 34],
since this information is more readily available using operating-
system facilities, in that, compared to response time measurements,
queue lengths can be collected by looking at incoming and out-
coming events only. Our method shares the same approach but,
differently from most of the literature on this subject, is able to esti-
mate both service demands and the routing matrix at the same time.
Formally, this makes the problem nonlinear in general, because
the parameters for service demands and the routing probabilities
feature as multiplicative factors in the differential equations that
give the stochastic dynamics of the QN [5]. In addition, this set-
ting is computationally intractable exactly, since the number of
states of a QN’s underlying continuous-time Markov process grows
combinatorially with the population levels in the network.

These observations have led to treating the estimation of QN pa-
rameters as a nonlinear optimization problemwheremore compact—
albeit approximate—dynamical equations are used as constraints
and the objective function is to minimize the distance between
queue-length observations and their predictions. In [13] this has
been recently done by encoding such nonlinear problem as a recur-
rent neural network which encodes the QN dynamics based on the
well-known mean-field (or fluid) approximation. It essentially con-
sists of one ordinary differential equation (ODE) for each station,
which estimates its average queue length [23].

In this paper we show how the same problem—namely, learn-
ing routing probabilities and service demands of a QN—can be

https://doi.org/10.1145/3427921.3450245
https://doi.org/10.1145/3427921.3450245


achieved by linear optimization, thus considerably reducing the
computational cost of the estimation. Our method is still based on
the equations derived by the fluid approximation, but it exploits
a different interpretation. In most applications to the domain of
software performance engineering (e.g., [17–21]), these equations
are taken, roughly speaking, as the asymptotically correct deter-
ministic dynamics of the (average) queue lengths in the limiting
regime when the population of jobs goes to infinity. Therefore, for
any (real) finite situation the fluid equations introduce estimation
errors that are rather difficult to bound theoretically (e.g., [12]).
The source of error for finite population comes from estimating
the expectation of a function of a random variable as the function
of the expectations. This is only true when these functions are
linear, but, unfortunately, QN equations do feature nonlinearities.
In our approach, the constraints used in our linear program involve
functions of the random variables (i.e., the queue lengths) of the
process. Although closed form ODEs for their expectations cannot
be derived, samples of these random variables can be estimated
from queue-length data. In other words, our linear program is such
that the constraints represent the correct relationship between the
random variables as opposed to the approximate ones by a more
straightforward encoding of the fluid equations.

We evaluate our method on randomly generated QNmodels with
queue-length observations produced by stochastic simulation. An
extensive validation of more than 8000 instances gives prediction
errors for queue lengths less than 10%, with runtimes of at most 5
minutes on an ordinary laptop.

Paper organization. Section 2 discusses related works. We pro-
vide some background about QNs and the corresponding fluid ap-
proximation in Section 3. The linear QNs estimator is presented
in Section 4, which discusses how to encode a time-discretized
version of the fluid approximation into a linear program whose
decision variables represent the model parameters to identify. Sec-
tion 5 presents the numerical evaluation of the proposed approach
on the selected benchmarks. Section 6 concludes.

2 RELATEDWORK
This work extends the one presented in the previous paper [17].
Here, we do not settle only for finding service rates but we esti-
mate also the entire network topology, i.e., the connections among
stations with the corresponding routing probabilities. Many other
service demand estimators rely on Utilization Law [29], using differ-
ent statistical inference approaches such as linear regression [26],
non-linear optimization [24], clustering regression [10], indepen-
dent component analysis [28], pattern matching [11] and Gibbs
sampling [31, 33] based on measured steady-state values of utiliza-
tion and/or throughput. They require knowledge of measures that
could be difficult to precisely obtain, as utilization values of stations.
For example in some cloud environments as platform-as-a-service,
the developer does not have complete control over the underlying
physical or virtual layer and cannot directly measure utilization.
We are outperforming all the mentioned approaches by focusing on
three key aspects at once: (i) being not-intrusive in the instrumenta-
tion, measuring only the queue lengths; (ii) being fast in producing
estimations and thus able to be applied with online adaptations if
needed; (iii) widening the set of the identified parameters with a

topology estimator, able to recover the entire network structure
through routing probabilities.

Another comparison is against profilers, as PerfPlotter [8], which
exploits symbolic execution to generate performance distributions
of the program best, worst, and average case, and Gprof [16], which
samples the program counter in a program run with a certain work-
load and counts the number of calls and execution times of each
procedure. The advantage of profiling is that they are not mak-
ing assumptions on the distribution of the service rates, while we
are assuming them to be exponentially distributed. However, the
models that they generate are often a set of metrics [4] or call
graphs [2] and lack descriptive and predicting power. The QN in-
stead, once all parameters are well estimated, can predict all future
time instants queue lengths at each station. Furthermore, most pro-
filers [15, 35] require active probing, i.e., observing the system with
different load-tests at different utilization levels. This approach is
intrusive because requires extra traffic to be injected in the network,
hindering its usage during system runtime.

Most closely related to this paper is the work by Garbi et al. [13].
The authors focus on the same problem of topology and service
rates estimation but from another perspective: instead of using
the ODEs to solve an optimization problem and to get the value
searched basing on some constraints, they train with real traces
a recurrent neural network that can learn the values of rates and
routing probabilities. In Section 5, we extensively compare with
this approach by showing that, thanks to the linear formulation,
our proposal sharply outperforms theirs in terms of efficiency and
accuracy.

3 BACKGROUND
To make the paper self-contained, in this section we briefly recall
QNs definitions. We use the ODEs of the fluid approximation as an
estimator of queue-lengths in the optimization problem.

3.1 Queuing Networks
We deal with single-class closed QNs, which have a fixed population
of jobs circulating in the system. The extension of this approach to
open networks, where there are arrivals and departures of jobs, is
straightforward.

Key quantities to describe a single-class closed QN are:

• 𝑁 is the number of clients in the network;
• 𝑀 is the number of queuing stations;
• s = (𝑠1, . . . , 𝑠𝑀 ) is the vector of server multiplicities, where
𝑠𝑖 gives the number of independent servers at station 𝑖 , with
1 ≤ 𝑖 ≤ 𝑀 ;

• 𝝁 = (𝜇1, . . . , 𝜇𝑀 ) is the vector of exponentially distributed
service rates, i.e., 1/𝜇𝑖 > 0 is the mean service demand at
station 𝑖 , with 1 ≤ 𝑖 ≤ 𝑀 ;

• P = (P𝑖, 𝑗 )1≤𝑖, 𝑗≤𝑀 is the routing probability matrix, whose
elements P𝑖, 𝑗 ≥ 0 give the probability that a client upon com-
pletion of service at station 𝑖 goes to station 𝑗 . The routing
probability matrix is a stochastic matrix, meaning that the
sum across each row sums up to one;

• x (0) = (x1 (0) , . . . , x𝑀 (0)): the initial condition, i.e., x𝑖 (0)
is the number of clients assigned to station 𝑖 at time 0.



M3

M2

M1

<μ1,	s1>

<μ2,	s2>

<μ3,	s3>

p1,2

p1,3

Figure 1: Load balancing example

0 0.2 0.4 0.6 0.8 1

Time(s)

0

10

20

30

40

50

60

R
e
la

ti
v
e
 Q

u
e
u
e
 l
e
n
g
th

(%
)

0 0.2 0.4 0.6 0.8 1

Time(s)

0

10

20

30

40

50

60

R
e
la

ti
v
e
 Q

u
e
u
e
 l
e
n
g
th

(%
)

(a) k=1

0 0.2 0.4 0.6 0.8 1

Time(s)

0

10

20

30

40

50

60

R
e
la

ti
v
e
 Q

u
e
u
e
 l
e
n
g
th

(%
)

0 0.2 0.4 0.6 0.8 1

Time(s)

0

10

20

30

40

50

60

R
e
la

ti
v
e
 Q

u
e
u
e
 l
e
n
g
th

(%
)

(b) k=10

0 0.2 0.4 0.6 0.8 1

Time(s)

0

10

20

30

40

50

60

R
e
la

ti
v
e
 Q

u
e
u
e
 l
e
n
g
th

(%
)

0 0.2 0.4 0.6 0.8 1

Time(s)

0

10

20

30

40

50

60

R
e
la

ti
v
e
 Q

u
e
u
e
 l
e
n
g
th

(%
)

(c) k=20

0 0.2 0.4 0.6 0.8 1

Time(s)

0

10

20

30

40

50

60

R
e
la

ti
v
e
 Q

u
e
u
e
 l
e
n
g
th

(%
)

0 0.2 0.4 0.6 0.8 1

Time(s)

0

10

20

30

40

50

60

R
e
la

ti
v
e
 Q

u
e
u
e
 l
e
n
g
th

(%
)

(d) k=50

Figure 2: Comparison between the simulated queue lengths
evolution (i.e., solid lines) of the CTMC of the QN of Fig-
ure 1, averaged over 2000 statistically independent runs, with
those obtained by the solution of (2) (i.e., dashed lines) with
parameters as in (3)–(6). In each subplot the x-axis denotes
the continuous time instants while the y-axis reports the
fraction of the total population present at each station.

An example is the load balancer in Fig. 1, where there are𝑀 = 3
stations: the workload generator 𝑀1 (i.e. user terminals) and the
two replicas𝑀2 and𝑀3. Replicas in a load balancer system provide
the same kind of service and they are distributed so that requests
are sent to one replica or the other with the aim of maintaining
a balance among queue lengths. Load balancing is a well-known
technique in performance engineering to build scalable distributed
systems [32]. Here, jobs are distributed among the two stations𝑀2
and 𝑀3 according to the routing probabilities 𝑝1,2 and 𝑝1,3; after
service completion they return back to station𝑀1.

3.2 Fluid Approximation
The fluid approximation allows us to consider only a set of𝑀 ODEs
for a system that can be modeled as a continuous-time Markov
chain (CTMC) [6]. It provides an approximation to the average

queue lengths instead of specifically tracking every discrete state
according to the following equation:

¤𝑥𝑖 (𝑡) = −𝜇𝑖 min{𝑥𝑖 (𝑡), 𝑠𝑖 } +
𝑀∑︁
𝑗=1

𝑝 𝑗,𝑖𝜇 𝑗 min{𝑥 𝑗 (𝑡), 𝑠 𝑗 }, (1)

with 1 ≤ 𝑖 ≤ 𝑀 , where we use the dot notation to denote time deriv-
ative. The nonlinear factor min{𝑥𝑖 (𝑡), 𝑠𝑖 } of the instant throughput
at station 𝑖 , given by 𝜇𝑖 min{𝑥𝑖 (𝑡), 𝑠𝑖 }, is due to the fact that if the
station is idle and the queue length 𝑥𝑖 (𝑡) is less than the number
of servers 𝑠𝑖 then 𝑥𝑖 (𝑡) = min{𝑥𝑖 (𝑡), 𝑠𝑖 } jobs are served in parallel
with instant throughput 𝜇𝑖𝑥𝑖 (𝑡). Instead, when the station 𝑖 is busy
and 𝑠𝑖 ≤ 𝑥𝑖 (𝑡) then 𝑠𝑖 jobs are served in parallel and the instant
throughput is 𝜇𝑖𝑠𝑖 .

For example, the fluid approximation for the load balancer de-
picted in Figure 1 is the following system of ODEs:

¤𝑥1 (𝑡) = −𝜇1min{𝑥1 (𝑡), 𝑠1} + 𝜇2min{𝑥2 (𝑡), 𝑠2}
+ 𝜇3min{𝑥3 (𝑡), 𝑠3}

¤𝑥2 (𝑡) = −𝜇2min{𝑥2 (𝑡), 𝑠2} + 𝑝1,2𝜇1min{𝑥1 (𝑡), 𝑠1}
¤𝑥3 (𝑡) = −𝜇3min{𝑥3 (𝑡), 𝑠3} + 𝑝1,3𝜇1min{𝑥1 (𝑡), 𝑠1}

(2)

The estimations of the average queue lengths tend to the exact
values of the expectations of the random variables describing queue
lengths, as the populations of jobs and servers grow to infinity,
according to Kurtz’s theorem [23]. In practice, for finite systems,
Eq. 1 will provide only an approximation to the ground-truth sto-
chastic behavior of the model. To graphically visualize the overall
accuracy this deterministic QNs representation, Figure 2 depicts the
comparison between the simulated queue lengths evolution of the
CTMC of the QN of Figure 1, averaged over 2000 statistically inde-
pendent runs (achieving an error of at most 5% with respect to the
true average value with 95% of confidence), with those obtained by
the numeric integration of (2) using the following parameters (we
set the following values since they represent a randomly generated
case in which the approximation errors become more influential):

𝝁 =
(
21.91, 57.20, 10.49

)
(3)

P =
©«
0.38, 0.50, 0.12
0.33, 0.36, 0.31
0.15, 0.73, 0.12

ª®¬ (4)

s = 𝑘
(
33, 24, 44

)
(5)

x (0) = 𝑘
(
82, 96, 95

)
(6)

The parameter 𝑘 ∈ {1, 10, 20, 50} is a scaling factor that determines
the total population of jobs and servers in the network. Figure 2
confirms that, in accordance with Kurtz’s theorem, the approxima-
tion error of the ODE does tend to vanish with increasing values
of total population and concurrency levels while it becomes more
evident with lower values of the scaling factor 𝑘 .

The source of error is attributable to the nonlinearities in (2)
due to the presence of the minimum function. Indeed, it is well
known that the true average queue lengths, denoted by E[𝑋𝑖 ], for
1 ≤ 𝑖 ≤ 𝑀 satisfy the equations:

¤E[𝑋𝑖 (𝑡)] = −𝜇𝑖E[min{𝑋𝑖 (𝑡), 𝑠𝑖 }] +
𝑀∑︁
𝑗=1

𝑝 𝑗,𝑖𝜇 𝑗E[min{𝑋 𝑗 (𝑡), 𝑠 𝑗 }] (7)



0 0.2 0.4 0.6 0.8 1

Time(s)

0

10

20

30

40

50

60

R
e
la

ti
v
e
 Q

u
e
u
e
 l
e
n
g
th

(%
)

0 0.2 0.4 0.6 0.8 1

Time(s)

0

10

20

30

40

50

60
R

e
la

ti
v
e
 Q

u
e
u
e
 l
e
n
g
th

(%
)

(a) not self-consistent ODE

0 0.2 0.4 0.6 0.8 1

Time(s)

0

10

20

30

40

50

60

R
e
la

ti
v
e
 Q

u
e
u
e
 l
e
n
g
th

(%
)

0 0.2 0.4 0.6 0.8 1

Time(s)

0

10

20

30

40

50

60

R
e
la

ti
v
e
 Q

u
e
u
e
 l
e
n
g
th

(%
)

(b) self-consistent ODE

Figure 3: Comparison between the simulated queue lengths
evolution (i.e., solid lines) of the CTMC of the QN of Figure 1,
averaged over 2000 statistically independent runs, with those
obtained by the solution of (2) (i.e., dashed lines) with param-
eters as in (3)–(6) and scaling factor 𝑘 = 1 with or without the
self-consistent expectation of the minimum function, i.e., b)
and a) respectively.

However, these equations are not self-consistent because the
expectation of the minimum function in the right-hand side cannot
be exactly written in terms of the variables in the left-hand side
in general. The approximation leading to (2) essentially consists
in the replacement of the expected value of the minimum of two
random variables, i.e., E[min{𝑋𝑖 (𝑡), 𝑠𝑖 }], with minimum of the two
expectations, i.e, min{E[𝑋𝑖 (𝑡)], 𝑠𝑖 }, which is now self-consistent.
Although we proved that is error is negligible for self-adaptation
purposes [19], it becomes more disturbing in the context of parame-
ter estimation. A strategy for mitigating such an issue is proposed in
Section 4 but its beneficial effects, on the case of Figure 2 reporting
the maximum errors, are illustrated in Figure 3.

4 LINEAR PROGRAMMING ESTIMATION OF
QUEUING NETWORKS

4.1 Discrete-time model
Our learning method is built on a time-discretized version of (1)
through the well-known Euler numerical integration schema which
approximates time derivatives as ¤𝑥𝑖 (𝑡) ≈ (𝑥𝑖 (𝑡 +Δ𝑡)−𝑥𝑖 (𝑡))/Δ𝑡 , for
a given fixed time step Δ. We denote by 𝑥𝑖 (𝑘) the approximation
at the 𝑘-th step, i.e., 𝑥𝑖 (𝑘) ≈ 𝑥𝑖 (𝑘Δ𝑡), for 𝑘 ≥ 0. It follows that
the estimations of the average queue length trajectories can be
computed by solving the following system of difference equations:

𝑥𝑖 (𝑘 + 1) = 𝑥𝑖 (𝑘) − Δ𝑡𝜇𝑖 min{𝑥𝑖 (𝑘), 𝑠𝑖 } +

+ Δ𝑡
𝑀∑︁
𝑗=1

𝑝 𝑗,𝑖𝜇 𝑗 min{𝑥 𝑗 (𝑘), 𝑠 𝑗 } (8)

with 𝑘 ≥ 0 and 1 ≤ 𝑖 ≤ 𝑀 with initial conditions 𝑥𝑖 (0) = 𝑥𝑖 (0).

4.2 Nonlinear QNs estimator
In the most direct estimation approach, (8) are used as constraints
in an optimization problem which looks for a solution minimizing
the error between the predicted queue lengths, i.e., 𝑥𝑖 (𝑘), and the
measured ones over a given observation window 𝐻 . Denoting by
𝑥𝑖 (𝑘) the measured queue length of station 𝑖 at time step 𝑘 , the

non-linear estimation problem can be written as follows:

minimize
𝑥,𝜇,𝑃

𝑀∑︁
𝑖=1

𝐻−1∑︁
𝑘=0

| (𝑥𝑖 (𝑘) − 𝑥𝑖 (𝑘)) |

subject to:
Eq. (8), for 0 ≤ 𝑘 ≤ 𝐻 − 1, 1 ≤ 𝑖 ≤ 𝑀,

𝑥𝑖 (0) = 𝑥𝑖 (0), 1 ≤ 𝑖 ≤ 𝑀.

(9)

In other words, we search for the optimal vector of service rates
𝜇 and routing probabilities matrix 𝑃 that minimizes the difference
between the measurements and the model predictions over all
stations and all discrete-time instants of the observation window𝐻 ,
when the model dynamics is initialized with the measured queue
lengths 𝑥 (0).

4.3 Linear programming formulation
Although viable, in principle, the non-linear QNs estimation suffers
from well-known scalability issues hampering its usage in practice.
In [19], we shown that the runtime of the solution of a globally op-
timal non-linear program similar to (9) can be orders of magnitude
bigger with respect to the solution of the corresponding mixed-
integer formulation. In particular, the main difficulties of (9) reside
in the nonlinearities of (8), i.e, the multiplicative relation between
𝝁 and P and the presence of the minimum function. The major
technical contribution of this work is to provide an exact linear
programming formulation of (9) under the assumption that queue
lengths and concurrency levels observations are available for each
station of the QN at each considered discrete time instant. Overall,
when these conditions are met, the optimization problem (9) admits
the following linear formulation.

minimize
𝜇𝑖 , 𝑔𝑖,𝑗 , 𝐸𝑖,𝑘 , 𝐸𝑖,𝑘

𝑀∑︁
𝑖=1

𝐻−1∑︁
𝑘=0

𝐸𝑖,𝑘 (10)

subject to:

𝐸𝑖,𝑘 = −𝜇𝑖𝛾𝑖 (𝑘) +
𝑀∑︁
𝑗=1

𝑔 𝑗,𝑖𝛾 𝑗 (𝑘) − Δ𝑥 (𝑘), (11)

𝜇𝑖 =

𝑀∑︁
𝑗=1

𝑔𝑖, 𝑗 , 𝑔𝑖, 𝑗 ≥ 0, (12)

𝐸𝑖,𝑘 ≥ 𝐸𝑖,𝑘 , 𝐸𝑖,𝑘 ≥ −𝐸𝑖,𝑘 , (13)
1 ≤ 𝑖, 𝑗 ≤ 𝑀, 0 ≤ 𝑘 ≤ 𝐻 − 1,

with Δ𝑥 (𝑘) = �̃�𝑖 (𝑘+1)−�̃�𝑖 (𝑘)
Δ𝑡 and𝛾𝑖 (𝑘) = E[min{𝑠𝑖 , 𝑥𝑖 (𝑘)}]. The for-

mer is just a syntactic abbreviation for a more compact writing of
(11). Instead, the introduction of𝛾𝑖 (𝑘) brings a substantial benefit to
the estimation process since, using only the data already available,
it enables to account for the error introduced by the fluid approx-
imation, thus increasing the accuracy of the learned parameters
(see Section 3.2 for a more detailed discussion about this error).

The key intuition enabling this linear programming formulation
is twofold. i) Instead of integrating (8) over the whole observation
window—as it would be in (9)—each integration step is conducted
individually whilst the whole trajectory of the QN is reconstructed
by minimizing the absolute value of the single step prediction errors
𝐸𝑖,𝑘 , see (10), (11), and (13). ii) A change of variables that allows to



replace each nonlinear term, i.e., 𝑝𝑖, 𝑗 𝜇𝑖 , with a fresh new variable
𝑔𝑖, 𝑗 . Then, after the optimization takes place, the estimated routing
probabilities can be computed as 𝑝∗

𝑖, 𝑗
= 𝑔∗

𝑖, 𝑗
/𝜇∗

𝑖
,with 1 ≤ 𝑖, 𝑗 ≤ 𝑀

where 𝑔∗
𝑖, 𝑗
, 𝜇∗

𝑖
are the optimal 𝑔𝑖, 𝑗 and 𝜇𝑖,, respectively.

Concretely, the relation 𝑔𝑖, 𝑗 = 𝜇𝑖𝑝𝑖, 𝑗 is enforced by (12). This is
because, if (12) holds, then 0 ≤ 𝑔𝑖, 𝑗 ≤ 𝜇𝑖 ; hence 𝑔𝑖, 𝑗 = 𝑝𝑖, 𝑗 𝜇𝑖 with
0 ≤ 𝑝𝑖, 𝑗 ≤ 1 necessarily. Then by considering that

∑𝑀
𝑗=1 𝑝𝑖, 𝑗 𝜇𝑖 = 𝜇𝑖

implies that
∑𝑀

𝑗=1 𝑝𝑖, 𝑗 = 1, the matrix P = (𝑝𝑖, 𝑗 )1≤𝑖, 𝑗≤𝑀 is a valid
routing probability matrix. Finally, (13) completes the optimization
problem by enforcing 𝐸𝑖,𝑘 ≥ |𝐸𝑖,𝑘 |, which is the standard linear
programming formulation for the minimization of the absolute
value of a decision variable [7].

5 NUMERICAL EVALUATION
In this section we evaluate the efficiency and effectiveness of the
proposed QNs estimation method by considering randomly gener-
ated models of increasing complexity. In particular, we generated
our dataset by simulating each of the considered QN through the
Gillespie’s exact simulation algorithm [14], available in the stochas-
tic simulation framework Stochkit [27]. We then used the collected
queue length trajectories as inputs of the optimization problem (10)-
(13) solved using the well-known CPLEX optimization engine [9].
All the data generation process were performed on an Intel Xeon
machine with 48 cores and 60 GB RAM while the learning process
has been conducted on a laptop equipped with a 2.8 GHz Intel i7
quad-core processor and 16GB RAM.

5.1 Experimental set-up
For our tests we considered randomly generated closed QNs of dif-
ferent sizes𝑀 ∈ {5, 10, 15, 20}. For each case, we generated 10 QNs
by picking uniformly at random the entries of the routing probabil-
ity matrices, the service rates in the interval [1.0, 100.0], and the
concurrency levels in the interval [1, 64] except for the reference
station for which we ensured to assign a number of servers that
were greater than or equal to the total number of clients circulating
in the network (i.e., in all of the considered models the reference
station is an infinite server).

For the generation of the training dataset we evaluated each
random QN starting from 100 distinct initial population vectors.
We chose the initial number of jobs at each station between 0
and 100 with its total population uniformly distributed between
50 and 100𝑀 . We fixed 50 as the minimum allowed workload to
avoid situations in which portions of the network were too little
stressed to be learned, i.e., to avoid a very small chance to visit some
particular stations making them irrelevant for the optimization; we
further comment on this issue later in this section. For each initial
condition we collected mean queue length trajectories averaged
over 2000 independent repetitions.

Other two important hyper-parameters of the estimation process
are the length of each trace, i.e., the time horizon𝑇 of the stochastic
simulations, and the choice of the discretization interval Δ𝑡 ; the
former is related to the amount of knowledge we accumulate from
the system, i.e., if longer time horizons lead to larger simulation and
optimization runtimes too short traces might not be representative
of the full dynamics of the system, the latter should be chosen
small enough such that no important events are lost across two

consecutive time steps [1]. For our case studies, we set 𝑇 = 2𝑠 and
Δ𝑡 = 0.01, thus collecting 𝐻 = 200 points per trace.

5.2 Predictive power evaluation
We assess the predictive power of the learned QNs by conducting
two distinct “what-if” analyses under unseen configurations (i.e.,
not included in the traces used for learning) by changing the total
number of clients and the concurrency levels of each station, re-
spectively. Similarly to [13], to formally quantify the accuracy of
the learned model with respect to the ground-truth QN we rely on
the following error function

err𝑖 =
max𝐻

ℎ=1 |𝑥𝑖 (ℎ) − 𝑥𝑖 (ℎ) |
2𝑁

· 100. (14)

It basically represents the maximum percentage error of station 𝑖

relative to the total population of clients circulating in the network
(since we are studying closed QNs 𝑁 con be considered constant
across the 𝐻 steps of a trace). We refer the reader to [13] for a more
detailed discussion on (14).

What-if analysis over client population. We tested each learned
QN with 200 new initial population vectors that were not used for
learning. For doing so, the initial number of jobs at each station
was chosen between 0 and 200 with its total population uniformly
distributed between 50 and 200𝑀 , discarding initial conditions that
were included in the learning configurations. We then compared
the averages over 2000 independent stochastic simulation of the
ground-truth queue-length dynamics with those produced by the
LP-learned QN starting from each unseen initial condition.

In the first row of Figure 4 are reported the scatter plots of the
prediction errors for each considered QN, for each network size
𝑀 . The results highlight the high prediction power of the learned
models by reporting prediction errors less than 10% in all cases. In
particular, there is no significant difference among the interpolation
region (i.e., between initial conditions used for learning) and the
extrapolation one (i.e., outside the range of initial conditions used
for learning) remarking the high accuracy of the learned QNs.

To visualize the impact of the reported errors on the whole queue
length evolution, the lowest row of Figure 4 reports the comparison
between the ground-truth queue lengths (i.e., dashed lines) and
those predicted by the LP-learned QN (i.e., solid lines) on the initial
population vector that provoked the maximum prediction errors
among the all the what-if over population for each network size (i.e.,
7.46%, 3.65%, 9.26%, 6.22% respectively). Even in this case, despite
the presence of small deviations, the ground-truth time course
evolutions are very well predicted by the corresponding LP-learned
QN for both the transient and the steady-state regimes.

Finally, the box-plots in Figure 5 report the summary statistics
of the scatter plots depicted in Figure 4. These charts do not seem
to show a statistically significant increase in the error as a function
of the size of the network; the averages decrease. We intuitively
attribute this behavior to the fact that, by enlarging the size of
the network, the optimization problem becomes implicitly more
constrained, thus increasing the precision of the learned models.
We leave as future work a targeted experimentation to give more
evidence of this.



0 200 400 600 800 1000

N

0

2

4

6

8

10

P
re

d
ic

ti
o
n
 E

rr
o
r(

%
)

In
te

rp
lo

la
ti
o
n
 R

e
g
io

n

E
x
tr

a
p
lo

la
ti
o
n
 R

e
g
io

n

0 0.5 1 1.5 2

time(s)

0

20

40

60

80

Q
u

e
u

e
 L

e
n

g
th

LP-learned
Ground-truth

0 0.5 1 1.5 2

time(s)

0

20

40

60

80

Q
u
e
u
e
 L

e
n
g
th

LP-learned
Ground-truth

(a) M=5

0 500 1000 1500 2000

N

0

2

4

6

8

10

P
re

d
ic

ti
o
n
 E

rr
o
r(

%
)

In
te

rp
lo

la
ti
o
n
 R

e
g
io

n

E
x
tr

a
p
lo

la
ti
o
n
 R

e
g
io

n

0 0.5 1 1.5 2

time(s)

0

20

40

60

80

100

Q
u
e
u
e
 L

e
n
g
th

LP-learned
Ground-truth

0 0.5 1 1.5 2

time(s)

0

20

40

60

80

100

Q
u

e
u

e
 L

e
n

g
th

LP-learned
Ground-truth

(b) M=10

0 500 1000 1500 2000 2500 3000

N

0

2

4

6

8

10

P
re

d
ic

ti
o
n
 E

rr
o
r(

%
)

In
te

rp
lo

la
ti
o
n
 R

e
g
io

n

E
x
tr

a
p
lo

la
ti
o
n
 R

e
g
io

n

0 0.5 1 1.5 2

time(s)

0

20

40

60

80

100

120

140

Q
u
e
u
e
 L

e
n
g
th

LP-learned
Ground-truth

0 0.5 1 1.5 2

time(s)

0

20

40

60

80

100

120

140

Q
u

e
u

e
 L

e
n

g
th

LP-learned
Ground-truth

(c) M=15

0 500 1000 1500 2000 2500 3000 3500 4000

N

0

2

4

6

8

10

P
re

d
ic

ti
o
n
 E

rr
o
r(

%
)

In
te

rp
lo

la
ti
o
n
 R

e
g
io

n

E
x
tr

a
p
lo

la
ti
o
n
 R

e
g
io

n

0 0.5 1 1.5 2

time(s)

0

20

40

60

80

100

Q
u
e
u
e
 L

e
n
g
th

LP-learned
Ground-truth

0 0.5 1 1.5 2

time(s)

0

20

40

60

80

100

Q
u

e
u

e
 L

e
n

g
th

LP-learned
Ground-truth

(d) M=20

Figure 4: Upper row) Prediction error of the what-if instances where each randomly generated QN is evaluated with 200 unseen
initial population vectors, indexed with respect to the network size 𝑀 . In each chart, the x-axis 𝑁 represents total number of
clients circulating in the network plotted against the prediction error defined in Eq. (14) while the dashed vertical line denotes
the boundary of the interpolation (i.e., between initial conditions used for learning) and the and extrapolation region (i.e.,
outside the range of initial conditions used for learning). Bottom row) Ground-truth queue lengths (dashed lines) and those
predicted by the LP-learned QN (solid lines) on the initial population vector that provoked the maximum prediction errors
among the what-if over population for each network size𝑀 (i.e., 7.46%, 3.65%, 9.26%, 6.22% respectively).

5 10 15 20

M

0

2

4

6

8

10

P
re

d
ic

ti
o
n
 E

rr
o
r(

%
)

(a)

Figure 5: a) Summary statistics on the prediction error for
the experiments of Fig. 4. In each box-plot, the line inside
the box represents the median error, the upper and lower
side of the box represent the first and the third quartiles of
the observed error distribution, while the upper and lower
limit of the dashed line represent the extreme points not to
be considered outliers. The red dots depict the outliers.

What-if analysis over concurrency levels. Here we test the predic-
tive power with respect to modifications to the concurrency levels.
For each generated QN we assigned a new concurrency level picked
uniformly at random in [1, 64] to each station except the first one,
which was left as a think station. Then we compared the dynamics
of the ground-truth model (i.e., simulated with the original rout-
ing probabilities and rates but with the new concurrency levels)
against those obtained by simulating the learned model with the
new concurrency levels. As initial conditions, we considered the

same points used for the what-if over population of Figure 4. Also
for this evaluation we considered the notion of prediction error as
shown in Equation (14).

In the first row of Figure 6 are reported the scatter plots of the
prediction errors for each considered QN, indexed by the network
size𝑀 . Also in this case the results highlight the high prediction
power of the learnedmodels by reporting predictions error less than
10% in all cases. The impact of the reported errors on the whole
queue length evolution is depicted in the lowest row of Figure 6. It
reports the comparison between the ground-truth queue lengths
(i.e., dashed lines) and those predicted by the LP-learned QNs (i.e.,
solid lines) on the initial population vector that caused the maxi-
mum prediction errors among all the what-if over concurrency level
for each network size (i.e., 10.49%, 5.18%, 7.89%, 8.53% respectively).
Despite the presence of slightly bigger deviations with respect to
Figure 4, the ground-truth time course evolutions are very well
predicted by the corresponding LP-learned QN for both transient
and steady-state regimes. We justify the small increase of prediction
errors by the fact that unlike the previous what-if study over client
populations, in this case we changed parameters, i.e., the number of
servers, that remained constant in all the traces used for learning.

The box-plots in Figure 7 report the summary statistics of the
scatter plots depicted in Figure 6. Analogously to the what-if over
population experiments, it does not show a statistically significant
increment of the prediction errors with network of increasing size.

Figure 8 depicts the summary statistics of the solution time of
the 40 optimization problems we used for our experimentation,
grouped by the size of the corresponding QN. Thanks to the linear
formulation, the average solution time follows an almost linear
growth law as a function of the size of the learned model.



0 200 400 600 800 1000

N

0

2

4

6

8

10

P
re

d
ic

ti
o
n
 E

rr
o
r(

%
)

In
te

rp
lo

la
ti
o
n
 R

e
g
io

n

E
x
tr

a
p
lo

la
ti
o
n
 R

e
g
io

n

0 0.5 1 1.5 2

time(s)

0

20

40

60

80

Q
u

e
u

e
 L

e
n

g
th

LP-learned
Ground-truth

0 0.5 1 1.5 2

time(s)

0

20

40

60

80

Q
u
e
u
e
 L

e
n
g
th

LP-learned
Ground-truth

(a) M=5

0 500 1000 1500 2000

N

0

2

4

6

8

10

P
re

d
ic

ti
o
n
 E

rr
o
r(

%
)

In
te

rp
lo

la
ti
o
n
 R

e
g
io

n

E
x
tr

a
p
lo

la
ti
o
n
 R

e
g
io

n

0 0.5 1 1.5 2

time(s)

0

10

20

30

40

50

60

70

Q
u

e
u

e
 L

e
n

g
th

LP-learned
Ground-truth

0 0.5 1 1.5 2

time(s)

0

10

20

30

40

50

60

70

Q
u
e
u
e
 L

e
n
g
th

LP-learned
Ground-truth

(b) M=10

0 500 1000 1500 2000 2500 3000

N

0

2

4

6

8

10

P
re

d
ic

ti
o
n
 E

rr
o
r(

%
)

In
te

rp
lo

la
ti
o
n
 R

e
g
io

n

E
x
tr

a
p
lo

la
ti
o
n
 R

e
g
io

n

0 0.5 1 1.5 2

time(s)

0

20

40

60

80

100

120

140

Q
u
e
u
e
 L

e
n
g
th

LP-learned
Ground-truth

0 0.5 1 1.5 2

time(s)

0

20

40

60

80

100

120

140

Q
u

e
u

e
 L

e
n

g
th

LP-learned
Ground-truth

(c) M=15

0 500 1000 1500 2000 2500 3000 3500 4000

N

0

2

4

6

8

10

P
re

d
ic

ti
o
n
 E

rr
o
r(

%
)

In
te

rp
lo

la
ti
o
n
 R

e
g
io

n

E
x
tr

a
p
lo

la
ti
o
n
 R

e
g
io

n

0 0.5 1 1.5 2

time(s)

0

20

40

60

80

100

Q
u
e
u
e
 L

e
n
g
th

LP-learned
Ground-truth

0 0.5 1 1.5 2

time(s)

0

20

40

60

80

100

Q
u

e
u

e
 L

e
n

g
th

LP-learned
Ground-truth

(d) M=20

Figure 6: Upper Row) Prediction error of the what-if instances over concurrently levels. For each of the LP-leaned QN we
generated a fresh new concurrency level vector 𝑆 = (𝑠𝑖 )1≤𝑖≤𝑀 where each 𝑠𝑖 , 𝑖 ≥ 1 is picked uniformly at random in [1, 64] while
𝑠1 is left unmodified. We then evaluated each of these QNs over the same initial population vectors of Fig. 4. Lowest row)
Comparison between the ground-truth queue lengths (i.e., dashed lines) and those predicted by the LP-learned QN (i.e., solid
lines) on the initial population vector that provoked the maximum prediction errors among the what-if over concurrency level
for each network size𝑀 (i.e., 10.49%, 5.18%, 7.89%, 8.53% respectively)

5 10 15 20

M

0

2

4

6

8

10

P
re

d
ic

ti
o
n
 E

rr
o
r(

%
)

Figure 7: a) Summary statistics on the prediction error for
the experiments of Fig. 6. In each box-plot, the line inside the
box represents the median error, the upper and lower side
of the box represent the first and the third quartiles of the
observed error distribution, while the upper and lower limit
of the dashed line represents the extreme points not to be
considered outliers. Finally, the red dots depict the outliers.

5.3 Comparison with state-of-the-art
For concluding the numerical evaluation, hereafter we compare the
predictive power of the proposed approach against that reported by
the recursive neural network-based (RNN) estimator recently pro-
posed in [13]. We chose the latter as the object of this comparison
since it represents the unique QNs estimator able to simultane-
ously learn service rates and routing probabilities of an unknown
QN relying on concurrency levels and queue lengths observations
only (see Section 2 for a more detailed discussion on the related
approaches).

5 10 15 20

M

50

100

150

200

250

300

C
o

m
p

u
ta

ti
o

n
 T

im
e

(s
)

Figure 8: a) Summary statistics on the computation time
needed for learning all the 40 QN models (i.e., 10 for each
model size) used for the experimentation in Figures 4 and 6.

For the sake of fairness, we repeated the same exact what-if
experiments that were conducted in [13] by learning the QNs
under study through the traces contained in the corresponding
replication package (i.e., 100 randomly generated initial conditions,
𝑇 = 10 𝑠,Δ𝑡 = 0.01). The only variation consisted in simulating
each QN model again for collecting the individual traces necessary
to compute each E[min{𝑠𝑖 , 𝑥𝑖 (𝑘)}] that cannot be derived by the
already averaged data.

Figure 9 and Figure 10 respectively report the comparison be-
tween the predictions errors of the RNN-leaned models and the LP-
learned ones, in the what-if over population and concurrency levels
scenarios indexed by the corresponding model sizes 𝑀 ∈ {5, 10}
(see [13] for a detailed discussion of the conducted experiment).
These numerical results highlight that the LP-based approach (blue
points) outperforms the RNN-based one (red points) for all the eval-
uated scenarios by reporting consistently smaller predictions errors.



0 100 200 300 400 500 600

N

0

2

4

6

8

10

P
re

d
ic

ti
o

n
 E

rr
o

r(
%

)

RNN-Learned

LP-Learned

(a) M=5

200 300 400 500 600 700 800 900

N

0

1

2

3

4

5

6

7

P
re

d
ic

ti
o

n
 E

rr
o

r(
%

)

RNN-Learned

LP-Learned

(b) M=10

Figure 9: Comparison between the predictions errors of the
RNN-learned models [13] and the LP-learned ones, in the
what-if over populations as described in [13] and indexed by
the corresponding model sizes𝑀 ∈ {5, 10}.

As expected, this fact is also confirmed by the summary statistics of
Figure 11. These results strengthen the effectiveness and generality
of the proposed approach as it proved able to produce more accurate
QNs models (i.e., with a higher prediction power) despite having
been learned in a less constrained setting, since in [13] the main
diagonal of the routing probabilities matrix is assumed to be known
while in our tests it was assumed to be completely unknown.

As a final remark, we empathize that making a reliable compar-
ison on the scalability of the two approaches is very delicate to
conduct. This is because of two fundamental aspects: i) the con-
ceptually different optimization methods (i.e., local versus global
optimization), ii) the computational aspects of both approaches
are strongly influenced by the choices made in the data collection
phase, i.e, number of initial populations, the temporal length of
the learning traces 𝑇 and the discretization step Δ𝑡 . The former is
an intrinsic characteristic that discriminates between non-linear
methods and linear programming ones which in general suggests
that local methods are more efficient than the global ones [25]. The
latter is dependent on many design decisions whose choice can
cause the prevalence of one approach over the other in terms of
scalability. We leave a definitive answer as to which approach is
more efficient for future work, even if we are aware of the fact that,

20 40 60 80 100 120 140 160 180

N

0

1

2

3

4

5

P
re

d
ic

ti
o

n
 E

rr
o

r(
%

)

RNN-Learned

LP-Learned

(a) M=5

50 100 150 200 250 300

N

0

1

2

3

4

5

P
re

d
ic

ti
o

n
 E

rr
o

r(
%

)

RNN-Learned

LP-Learned

(b) M=10

Figure 10: Comparison between the predictions errors of
the RNN-leaned models [13] and the LP-learned ones, in
the what-if over concurrency levels as described in [13] and
indexed by the corresponding model sizes𝑀 ∈ {5, 10}.

for the reported experimentations, the linear approach seems to
outperform even in terms of scalability the RNN based estimator
thanks to the fact that a global optimizer can work on shorter traces
to learn models with a high degree of accuracy (𝑇 = 2 𝑠 in place of
𝑇 = 10 𝑠 , as depicted in Figure 4 ).

Summarising, the results shown in this section substantially
support the fact that QN models of arbitrary topologies and chal-
lenging dimensions can be effectively learned by using the succinct
linear program (10). The accuracy of the learned models is testi-
fied by prediction errors consistently smaller than 10% across all
the conducted experiments. We remark the ability of the learned
QNs, to provide reliable predictions even in those what-if scenarios
in which the varying parameters have been given as constants in
the input traces. Strengthening our proposal, the comparison with
the state of the art further emphasizes the accuracy of the learned
models by reporting a higher degree of accuracy. In addition, the
favorable comparison with respect to the state of the art allows
us to reasonably expect to have the same accuracy results on real
cases as the ones studied in [13], even if the latter have not been
explicitly addressed in this work.



(a) RNN-Learned vs LP-Learned accuracy in the same exact what-if
over population (See Fig. 9)

(b) RNN-Learned vs LP-Learned accuracy in the same exact what-if
over concurrency levels (See Fig. 10)

Figure 11: Summary statistics on the prediction error for the
experiments of Fig. 9 and Fig. 10 distinguished by the differ-
ent model sizes 𝑀 ∈ {5, 10} and the used learning methods
, i.e., RNN and LP, respectively. In each box-plot, the line
inside the box represents the median error, the upper and
lower side of the box represent the first and the third quar-
tiles of the observed error distribution, while the upper and
lower limit of the dashed line represents the extreme points
not to be considered outliers. Finally, the red dots depict the
outliers.

6 CONCLUSIONS
We presented an efficient and effective methodology for learning
queuing networks (QN) models of software systems. The main
novelty lies in the formulation of the QN estimation problem as a
succinct linear program whose decision variables can be directly
related to standard queuing network parameters (i.e., service rates
and routing probabilities). We reported promising results on ran-
dom models of challenging dimensions with a maximum prediction
error (i.e., the distance between the dynamics predicted by the
learned models and those computed through the ground truth) less
than 10% even when the system is evaluated under configurations
that are not included in the training set. We plan to extend our
work for capturing the performance dynamics of more complex
systems, such as multi-class and layered QNs. Moreover, to further

enlarge the target systems, we plan to include load-dependent and
generally distributed service rates.

ACKNOWLEDGMENTS
This work has been partially supported by the PRIN project “SE-
DUCE” no. 2017TWRCNB.

REFERENCES
[1] U. Ascher and L. Petzold. 1998. Computer methods for ordinary differential equa-

tions and differential-algebraic equations. Vol. 61. Siam.
[2] T. Ball and J. Larus. 1996. Efficient path profiling. In Proceedings of the 29th Annual

IEEE/ACM International Symposium on Microarchitecture. (MICRO).
[3] S. Balsamo, A. Di Marco, P. Inverardi, and M. Simeoni. 2004. Model-Based

Performance Prediction in Software Development: A Survey. IEEE Transactions
on Software Engineering 30, 5 (2004), 295–310.

[4] P. Barham, R. Isaacs, R. Mortier, and D. Narayanan. 2003. Magpie: online mod-
elling and performance-aware systems. In Proceedings of the 9th conference on
Hot Topics in Operating Systems (HotOS).

[5] G. Bolch, S. Greiner, H. de Meer, and K. Trivedi. 2005. Queueing networks and
Markov chains: modeling and performance evaluation with computer science appli-
cations. Wiley.

[6] L. Bortolussi, J. Hillston, Diego L., and M. Massink. 2013. Continuous approxi-
mation of collective system behaviour: A tutorial. Performance Evaluation 70, 5
(2013).

[7] S. Boyd, S. P. Boyd, and L. Vandenberghe. 2004. Convex optimization. Cambridge
university press.

[8] B. Chen, Y. Liu, and W. Le. 2016. Generating performance distributions via prob-
abilistic symbolic execution. In Proceedings of the 38th International Conference
on Software Engineering (ICSE).

[9] IBM ILOG Cplex. 2009. V12. 1: User’s Manual for CPLEX. International Business
Machines Corporation 46, 53 (2009), 157.

[10] P. Cremonesi, K. Dhyani, and A. Sansottera. 2010. Service time estimation with a
refinement enhanced hybrid clustering algorithm. In International Conference on
Analytical and Stochastic Modeling Techniques and Applications (ASMTA).

[11] P. Cremonesi and A. Sansottera. 2014. Indirect estimation of service demands in
the presence of structural changes. Performance Evaluation 73 (2014).

[12] R. W. R. Darling and J. R. Norris. 2008. Differential equation approximations for
Markov chains. Probability Surveys 5 (2008).

[13] G. Garbi, E. Incerto, and M. Tribastone. 2020. Learning Queuing Networks
by Recurrent Neural Networks. In Proceedings of the ACM/SPEC International
Conference on Performance Engineering (ICPE).

[14] D. T. Gillespie. 1977. Exact Stochastic Simulation of Coupled Chemical Reactions.
Journal of Physical Chemistry 81, 25 (1977).

[15] S. F. Goldsmith, A. S. Aiken, and D. S. Wilkerson. 2007. Measuring empirical
computational complexity. In Proceedings of the the 6th joint meeting of the Euro-
pean software engineering conference and the ACM SIGSOFT symposium on The
foundations of software engineering (ESEC/FSE).

[16] S. L. Graham, P. B. Kessler, and M. K. Mckusick. 1982. Gprof: A Call Graph
Execution Profiler. In Proceedings of the 1982 SIGPLAN Symposium on Compiler
Construction (SIGPLAN).

[17] E. Incerto, A. Napolitano, and M. Tribastone. 2018. Moving horizon estimation of
service demands in queuing networks. In 2018 IEEE 26th International Symposium
onModeling, Analysis, and Simulation of Computer and Telecommunication Systems
(MASCOTS).

[18] E. Incerto, M. Tribastone, and C. Trubiani. 2016. Symbolic Performance Adapta-
tion. In Proceedings of the 11th International Symposium on Software Engineering
for Adaptive and Self-managing Systems (SEAMS).

[19] E. Incerto, M. Tribastone, and C. Trubiani. 2017. Software performance self-
adaptation through efficient model predictive control. In 32nd IEEE/ACM Interna-
tional Conference on Automated Software Engineering (ASE).

[20] M. Kowal, I. Schaefer, and M. Tribastone. 2014. Family-Based Performance Anal-
ysis of Variant-Rich Software Systems. In Fundamental Approaches to Software
Engineering (FASE).

[21] M. Kowal, M. Tschaikowski, M. Tribastone, and I. Schaefer. 2015. Scaling size and
parameter spaces in variability-aware software performance models (t). In 30th
IEEE/ACM International Conference on Automated Software Engineering (ASE).

[22] H. Koziolek. 2010. Performance evaluation of component-based software systems:
A survey. Performance Evalutation 67, 8 (2010).

[23] T. G. Kurtz. 1970. Solutions of ordinary differential equations as limits of pure
Markov processes. In J. Appl. Prob., Vol. 7.

[24] Daniel A. M. 2008. Computing Missing Service Demand Parameters for Perfor-
mance Models. In International Computer Measurement Group Conference (CMG).

[25] J. Nocedal and S. Wright. 2006. Numerical optimization. Springer Science &
Business Media.



[26] G. Pacifici, W. Segmuller, M. Spreitzer, and A. Tantawi. 2008. CPU demand for web
serving: Measurement analysis and dynamic estimation. Performance Evaluation
65, 6-7 (2008).

[27] K. R. Sanft, S. Wu, M. Roh, J. Fu, R. K. Lim, and L. R. Petzold. 2011. StochKit2:
software for discrete stochastic simulation of biochemical systems with events.
Bioinformatics 27, 17 (2011).

[28] A. Sharma, R. Bhagwan, M. Choudhury, L. Golubchik, R. Govindan, and G. M.
Voelker. 2008. Automatic request categorization in internet services. ACM
SIGMETRICS Performance Evaluation Review 36, 2 (2008).

[29] S. Spinner, G. Casale, F. Brosig, and S. Kounev. 2015. Evaluating approaches to
resource demand estimation. Performance Evaluation 92 (2015).

[30] W. J. Stewart. 2007. Performance modelling and markov chains. In International
School on Formal Methods for the Design of Computer, Communication and Software
Systems (SFM).

[31] C. Sutton and M. I. Jordan. 2011. Bayesian inference for queueing networks and
modeling of Internet services. The Annals of Applied Statistics (2011).

[32] A. N. Tantawi and D. Towsley. 1985. Optimal Static Load Balancing in Distributed
Computer Systems. J. Acm 32, 2 (1985), 21.

[33] W. Wang and G. Casale. 2013. Bayesian service demand estimation using gibbs
sampling. In IEEE 21st International Symposium on Modelling, Analysis and Simu-
lation of Computer and Telecommunication Systems (MASCOTS).

[34] W. Wang, G. Casale, A. Kattepur, and M. Nambiar. 2016. Maximum likelihood
estimation of closed queueing network demands from queue length data. In
Proceedings of the 7th ACM/SPEC on International Conference on Performance
Engineering (ICPE).

[35] W. Wang, N. Tian, S. Huang, S. He, A. Srivastava, M. L. Soffa, and L. Pollock.
2018. Testing cloud applications under cloud-uncertainty performance effects. In
IEEE 11th International Conference on Software Testing, Verification and Validation
(ICST).

[36] M. Woodside, G. Franks, and D. C. Petriu. 2007. The future of software perfor-
mance engineering. In Proceedings of the Future of Software Engineering (FOSE).


	Abstract
	1 Introduction
	2 Related work
	3 Background
	3.1 Queuing Networks
	3.2 Fluid Approximation

	4 Linear Programming Estimation of Queuing Networks
	4.1 Discrete-time model
	4.2 Nonlinear QNs estimator
	4.3 Linear programming formulation

	5 Numerical Evaluation
	5.1 Experimental set-up
	5.2 Predictive power evaluation
	5.3 Comparison with state-of-the-art

	6 Conclusions
	Acknowledgments
	References

