
Combined Vertical and Horizontal Autoscaling
through Model Predictive Control

Emilio Incerto1, Mirco Tribastone1, Catia Trubiani2

1 IMT School for Advanced Studies, Piazza San Francesco 19, Lucca, Italy
emilio.incerto@imtlucca.it, mirco.tribastone@imtlucca.it

2 Gran Sasso Science Institute, Viale Francesco Crispi 7, L’Aquila, Italy
catia.trubiani@gssi.it

Abstract. Meeting performance targets of co-located distributed appli-
cations in virtualized environments is a challenging goal. In this context,
vertical and horizontal scaling are promising techniques; the former varies
the resource sharing on each individual machine, whereas the latter deals
with choosing the number of virtual machines employed. State-of-the-art
approaches mainly apply vertical and horizontal scaling in an isolated
fashion, in particular assuming a fixed and symmetric load balancing
across replicas. Unfortunately this may result unsatisfactory when repli-
cas execute in environments with different computational resources.
To overcome this limitation, we propose a novel combined runtime tech-
nique to determine the resource sharing quota and the horizontal load
balancing policy in order to fulfill performance goals such as response
time and throughput of co-located applications. Starting from a perfor-
mance model as a multi-class queuing network, we formulate a model-
predictive control problem which can be efficiently solved by linear pro-
gramming. A validation performed on a shared virtualized environment
hosting two real applications shows that only a combined vertical and
horizontal load balancing adaptation can efficiently achieve desired per-
formance targets in the presence of heterogeneous computational re-
sources.

Keywords: Performance, Queuing Networks, Control, Resource Shar-
ing, Load Balancing

1 Introduction

Performance adaptation of co-located distributed applications consists in sat-
isfying quality-of-service agreements expressed as response-time or throughput
requirements for multiple applications that share common resources. It is con-
sidered a challenging activity [12]. Indeed, current resource schedulers blindly
operate in a performance unaware fashion, both at the level of the hypervisor of
virtual machines (VMs) or of the operating system [20,19]. As a consequence, the
expected performance isolation, i.e., the behavior of one VM should not nega-
tively impact performance of other running VMs (e.g., [11]), must be guaranteed
by the computing platform providers [18,17,1].

2 Emilio Incerto et al.

Here we focus on CPU-intensive applications running on a virtualized envi-
ronment. To effectively allocate resources at runtime and in an adaptive manner,
vertical and horizontal scaling are promising techniques; the former varies the
resource shares on each individual machine, whereas the latter deals with choos-
ing the number of virtual machines employed [23]. Unfortunately, state-of-the-art
approaches mainly apply vertical and horizontal scaling in an isolated fashion.
According to a recent survey on this topic [23], among the 87 surveyed approaches
only two have explored optimization techniques to search for combined vertical
and horizontal scaling [8,9]. However, in both cases horizontal scaling assumes
a fixed symmetric load balancing toward all the horizontal replicas. This may
not be appropriate when machines have different hardware characteristics (i.e.,
due to uncertain runtime disruptive events such as software ageing or hardware
degradation), since a symmetric load distribution may worsen performance.

To overcome this limitation, we propose a novel technique combining hori-
zontal and vertical scaling that can efficiently determine the load distribution
policy to continuously fulfill performance goals of distributed co-located applica-
tions (Section 2). We consider a model-based approach using queuing networks
(QNs) [3]. In particular, we employ multi-class QNs, where each class represents
an application with its own demand on the CPU and specific performance tar-
gets. Our analysis is based on a compact, approximate representation of QNs
based on ordinary differential equations (ODEs) [16,5]. This avoids the state
space explosion problem arising from the exact transient analysis of the Markov
chain underlying the QN, thus enabling an effective runtime adaptation.

We formulate the question of finding a combined horizontal and vertical scal-
ing strategy as a Model Predictive Control (MPC) problem [10]. MPC performs
runtime optimization which uses the ODE model to predict the future evolution
of the system given the currently measured state; the output is an allocation of
the resource-sharing quotas on each machine and the routing probabilities across
replicas that steer the model toward the reference set points for each application.

The use of MPC with an ODE model to control performance-related indices
of a distributed application has been studied in [13], but for queuing models with
a single class of users only. In this paper we present two significant extensions:

1. A multi-class model that enables an accurate representation of the capped
allocation paradigm [4]. This is a CPU-sharing mechanism available in most
modern off-the-shelf hypervisors (e.g., [2,22]), which defines the maximum
share that a VM can receive from the CPU.

2. The specification of latency-based response-time requirements, enriching [13],
which was limited to queue-length and throughput requirements only.

A positively surprising side effect of our new multi-class MPC formulation is
the reduced computational cost, since the whole control problem is now encoded
as a linear programming problem (LP, see e.g., [6]) as opposed to the mixed-
integer program of the single class formulation of [13]. This is due to the fact
that in [13] the control was acting on an integer variable representing the number
of CPUs in each machine, whereas here we control a continuous variable that
represents the CPU share allocated to each application.

Combined Vertical and Horizontal Autoscaling 3

We conducted the evaluation of the proposed approach on a real shared
virtualized environment hosting two load-balanced applications (Section 3) by
showing that only a combined vertical and horizontal load balancing adaptation
can efficiently achieve desired performance targets when heterogeneous compu-
tational resources are considered.

2 Combined Vertical and Horizontal Autoscaling

N0

N1

N2

<μ0,1, μ0,2, s0=∞>

<μ1,1, α1,1, μ1,2, α1,2 , s1>Adaptation knobs

<p0,1,1, p0,1,2>

<p0,2,1, p0,2,2>

<μ2,1, α2,1, μ2,2, α2,2 , s2>

Fig. 1: Sample QN model.

A Running Example: Figure 1
shows a QN model of a prototypal
system on which to perform com-
bined autoscaling. There are two
processing nodes represented by
the queuing stations N1 and N2.
Each node serves two application
classes; each class may have dif-
ferent service demands and per-
formance requirements. The de-
mands are expressed as expo-
nential distributions; for instance,
1/µ1,2 is the average service time
of class-2 application on node 1. Node N0 represents a dispatcher that sub-
mits user’s requests (the jobs circulating in the QN) to either computational
node. Horizontal scaling is achieved by choosing the routing probability with
which the dispatcher selects the actual processing node. For example, setting
p0,1,1 = p0,2,1 = p0,1,2 = p0,2,2 = 0.5 induces a symmetric load balancing pol-
icy according to which requests are evenly distributed across all the processing
nodes. Vertical scaling is achieved by choosing the CPU quotas assigned to the
applications in each machine. For example, fixing α1,2 = 0.3 assigns a share of
30% of computational resources to class-2 jobs. The parameter s1 indicates the
total number of CPU cores available in node 1. We note that the shares need
not to sum up to one at a node—in which case the computation resources are
not fully utilized. The adaptation knobs, i.e., the values that can be changed at
runtime are indicated in red. In the following we formally define all the different
components of the proposed approach.

Multi Class Parametric QN: Formally, let us consider a set of stations S
and a set of service classes C. A Multi-class parametric QN is described by a
set of parameters, denoted by P , as follows:

– si ∈ P is the concurrency level of station i, with i ∈ S;
– µi,c ∈ P is the service rate of station i for the jobs of service class c, with
i ∈ S, c ∈ C;

– pi,j,c ∈ P is the routing probability, i.e., the probability that a request of
class c from station i goes to j, with i, j ∈ S and c ∈ C;

4 Emilio Incerto et al.

– αi,c is the processing share assigned to jobs of class c at station i such that∑
c∈C αi,c ≤ 1 and αi,c ≥ 0, with i ∈ S, c ∈ C.

Finally, to formally justify the ODE approximation, the service rates µi,c are
assumed to be exponentially distributed. However, using [15] our framework can
be extended to the nonexponential case with phase-type distributions [3].

Moreover in order to formally define the adaptation, we denote by V ⊆ P
the subset of adaptation knobs. For each parameter that is fixed, i.e., p ∈ P −V ,
p̂ is its given value. Finally we denote by xi,c(0), i ∈ S the initial condition, i.e.,
the initial number of jobs of class c assigned to station i.

ODE Model: The ODE model is systematically derived from the parametric
QN and it gives estimate of the average queue lengths xi,c(t) as a function of
time. The evolution of the multi-class QN under a cap share resource allocation
policy is described by the following ODE system:

dxi,c(t)

dt
= −µi,c(t) min{xi,c(t), αi,c(t)si(t)}

+
∑
j∈S

pj,i,c(t)µj,c(t) min{xj,c(t), αj,csj(t)} (1)

with initial condition xi,c(0), for all i ∈ S, c ∈ C.
Here the term Ti,c(t) = µi,c(t) min{xi,c(t), αi,c(t)si(t)} represents the over-

all nonlinear instantaneous average throughput of station i for jobs of class c:
when the queue length xi,c(t) in station i is less than the reserved fraction of
servers αi,c(t)si(t), then the xi,c(t) jobs are served in parallel; otherwise some
of the jobs are enqueued and only αi,c(t)si(t) of them are processed at once.
The throughputs may be weighted by the class-dependent routing probabilities
pj,i,c(t), because a station may receive only a fraction of the jobs elsewhere. Us-
ing the instantaneous average queue length xi,c(t) and the throughput Ti,c(t),
we define Ri,c(t) = xi,c(t)/Ti,c(t) as the instantaneous average response time for
jobs of class c at station i; this is the time spent by the last job of class c while
competing for service at station i.

Basically, assuming a cap share resource allocation policy is equivalent to
assuming that si,c = αi,c(t)si(t) is the fraction of the original physical station
capacity si(t) assigned to the service class c, scaled by the sharing factor αi,c,
such that

∑
c∈C αi,c(t)si(t) ≤ si(t). In Section 3 we validate this ODE model by

comparing prediction results against real measurements taken from a multi-class
system hosted in a shared virtualized environment.

LP Performance Adaptation Formulation: In [13] we showed how employ-
ing MPC for performance runtime adaptation of single class queuing network
could be reduced to the solution of a mixed-integer program (MIP). This formu-
lation relies on a linear time-varying system with auxiliary, “virtual” adaptation
knobs which will be then related to the original ones. Here we extend this formu-
lation for controlling the multi-class QN under the cap allocation sharing. The

Combined Vertical and Horizontal Autoscaling 5

linear time-varying system that we consider is defined as:

dxi,c(t)

dt
= γi,c(t) +

∑
j∈S

(−γj,c(t) + ζj,i,c(t)), i ∈ S, c ∈ C (2)

where γi,c(t) represents the virtual throughput of station i of class c and ζj,i,c(t)
is a virtual routing probability (which will be related to pj,i,c).

We show how (2), augmented with appropriate constraints, can be used for
building an LP problem suitable for controlling systems whose performance dy-
namics can be described by the discrete time version of (1).

Discrete Time Model: In order to employ MPC, we rely on a time discretization
of the ODE model with a finite step size ∆t. MPC finds the optimal values of the
adaptation knobs over a time horizon of H steps. Simple algebraic manipulations
of (2) yield a formulation that reads:

xi,c(k + 1) = xi,c(k) + γi,c(k) +
∑
j∈S

(−γj,c(k) + ζj,i,c(k)), i ∈ S, c ∈ C. (3)

Unfolding (3) over H time steps allows us to embed the dynamics of the model
as a discrete set of constraints in the optimization problem:

xi,c(1) = xi,c(0) + γi,c(0) +
∑
j∈S

(−γj,c(0) + ζj,i,c(0))

xi,c(2) = xi,c(1) + γi,c(1) +
∑
j∈S

(−γj,c(1) + ζj,i,c(1))

. . .

xi,c(H) = xi,c(H − 1) + γi,c(H − 1) +
∑
j∈S

(−γj,c(H − 1) + ζj,i,c(H − 1))

for all i ∈ S, c ∈ C.

Virtual Knobs Constraints: In order to relate the virtual adaptation knobs, i.e.,
γi,c(k), ζi,j,c(k), to the original ones, i.e., αi,c(k), pj,i,c(k), respectively, we add
specific constraints to the optimization problem. Hereafter we focus only on
establishing a formal correspondence between the γi,c(k) and the actual shares
since the equivalence between the virtual routing probabilities and the actual
ones is analogous to what discussed in [13].

The term −γi,c(k) represents the throughput of station i for service of class
c at discrete time step k, i.e., µi,c(k) min{xi,c(k), αi,c(k)si(k)}. Since the shares
can be chosen as close to 0 as desired, this consistency is given by adding the
following constraints to the optimization problem:

−γi,c(k) ≥ 0, −γi,c(k) ≤ µi,csi∆t (4)

−γi,c(k) ≤ µi,cxi,c(k)∆t, −
∑
c∈C

γi,c(k)

µi,c
≤ si∆t (5)

6 Emilio Incerto et al.

with i ∈ S, c ∈ C. In (4),(5) we consider a time invariant service rate µi,c(k) =
µi,c for each station i of service class c and a time invariant parallelism level
si(k) = si. Indeed differently from [13] in the new LP control formulation the
number of cores assigned to each machine is statically determined and only the
share parameters are used to control the runtime performance of the system.
However we remark that this formulation can be easily extended to those cases
in which the number of virtual machines need to be computed at runtime (i.e.,
by considering a time variant si).

Objective Function: We define the objective function of the optimization prob-
lem. We consider R performance metrics to be optimized. For each time step
k = 0, 1, . . . ,H − 1, in the vector m(k) =

(
m1(k), . . . ,mR(k)

)
each component

mr(k) represents the variable associated with the r-th performance metric, with
1 ≤ r ≤ R. We specify the values that this can take according to the type of
instantaneous average index to optimize: throughput, queue length, or response
time. For all k we set:

mr(k) =

−
γi,c(k)

∆t
if the r-th metric is the class-c throughput at station i,

xi,c(k) if the r-th metric is the class-c queue length at station i.

For the encoding of response time, the treatment is different because we need to

handle the nonlinear expression Ri,c(k) =
xi,c(k)
Ti,c(k) =

xi,c(k)∆t
−γi,c(k) . We linearize this

problem as follows. We let βi,c denote the desired response time requirement for
class c in station i at time step k. Then, the idea is to minimize the quantity
|xi,c(k)∆t + βi,c(k)γi,c(k)|. In order to do so, we consider auxiliary variables
x̃i,c(k) and let mr(k) = x̃i,c(k) if the r-th metric is the class-c response time at
station i. Then, we can observe that by adding the following constraints to the
LP problem

x̃i,c(k) ≥ 0 (6)

x̃i,c(k) ≥ xi,c(k)∆t+ βi,cγi,c(k) (7)

−x̃i,c(k) ≤ xi,c(k)∆t+ βi,cγi,c(k) (8)

minimizing x̃i,c(k) results in finding the value for the adaptation knobs such that
the response time at time k for station i and class c is as close as possible to the
desired value βi,c(k).

Thus, overall we can collect the set points in vectors o(k) = (o1(k), . . . , oR(k)).
Each component of this vector, or(k), is equal to the desired set point if the r-th
requirement is throughput or a queue length, or 0 if the r-th requirement is a
response time.

Our goal is to minimize the error between the performance indices and their
reference values, i.e., e(k) = m(k) − o(k), across all time steps in the horizon
k = 0, 1, . . . ,H−1. Thus, overall the LP formulation can be specified as follows:

minimize{γi,c(k),ζi,j,c(k),x̃i,c(k)}

H−1∑
k=0

e(k)T e(k) (9)

Combined Vertical and Horizontal Autoscaling 7

Fig. 2: Experiment system architecture

subject to constraints Eqs. (3), (4), (6), (7), (8)

ζi,j,c(k) ≥ γi,c(k) if pi,j,c ∈ V∑
j∈S

ζi,j,c(k) = γi,c(k)(|S| − 1),

ζi,j,c(k) = γi,c(k)(1− p̂i,j,c) if pi,j,c ∈ P − V (10)

for all k = 0, . . . ,H − 1, i ∈ S, c ∈ C, where with (10) we set the values for all
the parameters of the QN that are fixed.

Following [13], it is possible to define a nonlinear MPC formulation built on
a discrete-time representation of the model (1). With the following result, we
can recover the shares and routing probabilities for the original nonlinear model
from the LP formulation above.

Theorem 1 Denoting by S = {α∗i,c(k), p∗i,j,c(k)} an optimal solution to the non-
linear MPC formulation built on (1) based on [13], there exists an MPC problem
based on an LP formulation with dynamics (3) such that its optimal solution
S ′ = {γ′i,c(k), x′i,c(k), ζ ′i,j,c(k)} satisfies:

α∗i,c(k) =
γ′i,c(k)

si∆t
, p∗i,j,c(k) =

γ′i,c(k)− ζ ′i,j,c(k)

γ′i,c(k)

for all k = 0, . . . ,H − 1.

3 Numerical Evaluation

In this section we evaluate the effectiveness of the proposed adaptation approach
on a real multi class load-balanced system. The code needed for setting up the
experimental infrastructure is publicly available at https://goo.gl/6bNR23.

https://goo.gl/6bNR23

8 Emilio Incerto et al.

System Description and Implementation: For running our evaluation we
relied on an in-house developed web application, namely HAT (Heavy Task Pro-
cessing application), specifically designed for resembling the behavior of CPU-
intensive systems [7,21]. We conducted our study on a single Virtual Private
Server (VPS) equipped with 32 cores and 6 GB of memory. As a vertically
scalable virtualized environment we used the OpenVz hypervisor [22], while the
horizontal scaling has been enabled through a load balancer implemented in
NodeJS. In order to validate our control approach in a resource contention sce-
nario, we ran two instances of the same load balanced HAT deployment, each
consisting of two OpenVz virtual machines.

Figure 2 depicts the architecture of the considered system. There are two
classes of applications and two processing nodes. We emulated a distributed sce-
nario by partitioning the available CPU cores into two Logical Machines LM
with 6 cores each. The remaining cores are used for running the monitoring
infrastructure and the controller. Component Ci,j is the instance of the com-
putational service for class j running on logical machine LMi; LBj is the dis-
patcher for class j; CTRL is the runtime controller. Component Wj represents
the workload generator which injects requests of class-j service into the system.
With these settings, LBj dispatches user requests for class j to processing node
i with routing probability pi,j , while the resource share of class j executing at
node i is αi,j . These values are adapted at runtime by the CTRL component,
in a MAPE-K [14] fashion, through operating system signals (see Figure 2) and
the OpenVz interface.

CTRL ran the LP optimizations using the academic version of CPLEX tool.
We implemented each Wj as a multi-process Python based workload generator
running independent concurrent users that iteratively issue requests, waiting an
exponentially distributed delay (i.e., the think time given by 1/µ0,i ≥ 0) between
successive requests. Components Ci,j and LBj have been implemented as multi-
threaded NodeJs servers using the NAPA library.

Model Parametrization and Validation: We modeled the system under
study with a multi-class QN as depicted in Figure 1. The QN processing node
N0 represents the W1 and W2 workload generators, while nodes N1 and N2

model the logical machines LM1 and LM2.
For model validation, we set think times 1/µ0,1 = 1/µ0,2 = 1 s, and popula-

tion levels X1 = X2 = 200 users (i.e., we assumed a closed workload). We as-
signed s1 = s2 = 2 cores to each processing node and service rates µi,j = 20.5 s−1

for i, j = 1, 2. These rates were estimated by measuring the maximum through-
put on the actual hardware platform. Finally we deployed the system in its
symmetric configuration, i.e., pi,j = 0.5 for i, j = 1, 2. To exercise the system
under different conditions we considered 10 different resource share allocations.

Table 1 reports the validation results in terms of the measured and predicted
throughputs for class-j application, denoted by Tmj and Tpj , respectively, as
well as their relative percentage errors Erj . For each resource share assignment,
the throughputs were measured by averaging 10 independent executions, each
lasting 2 minutes. The results show that the model can predict the trends of

Combined Vertical and Horizontal Autoscaling 9

Table 1: Model validation results. The errors Er1 and Er2 between the measured
and predicted throughputs for class 1 and class 2, respectively, are measured as
absolute relative percentage errors.

α1,1, α2,1 0.15 0.30 0.40 0.50 0.60 0.65 0.70 0.75 0.80 0.85

α1,2, α2,2 0.85 0.70 0.60 0.50 0.40 0.35 0.30 0.25 0.20 0.15

Tm1 10.85 22.47 29.85 40.85 45.90 50.10 54.57 57.73 62.50 65.06
Tp1 12.00 24.00 32.00 39.99 48.00 52.00 56.00 60.00 63.99 67.97
Er1 10.53 6.78 7.21 2.12 4.56 3.80 2.61 3.93 2.39 4.48

Tm2 65.94 53.40 44.54 40.80 30.67 26.83 22.90 18.72 14.79 10.84
Tp2 67.97 56.00 48.00 39.99 32.00 28.00 24.00 20.00 16.00 12.00
Er2 3.08 4.87 7.75 2.00 4.34 4.34 4.79 6.82 8.18 10.62

the real system adequately. We consider the errors acceptable, since a simple
deterministic model omits many low-level interactions between the operating
system and the virtualization environment.

Adaptation Evaluation: We evaluate the effectiveness of our approach by
showing that the combined vertical and horizontal load balancing adaptation
can efficiently meet performance targets when either of the two techniques alone
cannot. We focus on a scenario of hardware degradation. Starting from a sym-
metric set-up where the service rates of nodes Ci,j are identical and equal to
20.5 (as in the validation set-up), we inject a degradation event where the service
rate at node LM1 becomes 3 times smaller.

For both the symmetric and the degraded case, the objective of the adap-
tation was to maintain the following set points: instantaneous average response
time of the class-1 application equal to 2 s; and class-2 instantaneous average
throughput equal to 50 requests per second.

We controlled the performance of the system under a workload of X1 =
X2 = 200 concurrent users with a think rate µ0,1 = µ0,2 = 1 s−1. According to
the system description (see Figure 2), we assigned s1 = s2 = 6 to each logical
machine. For the vertical scaling control we fixed the symmetric distribution
pi,j = 0.5, with i, j = 1, 2, while the controller could change all resource shares
αi,j in an isolated fashion. When the combined control approach is applied also
the routing probabilities are changed at runtime.

We evaluated both the control approaches, i.e., vertical and combined, in
two separated sessions, i.e., symmetric and degraded, each of which was 20-
minutes long. We fixed an ODE sampling interval ∆t = 0.1 s, an activation loop
rate= 0.1 s, and control horizon H = 10.

Figures 3a and 3b report the class-1 instantaneous average response time dis-
tributions in the symmetric set-up (i.e., no degradation) when vertical scaling
only and the combined approaches are applied, respectively. In this case both
the control approaches are able to fulfill the requirements. This is due to the
fact that the performance target is locally achievable on each logical machine

10 Emilio Incerto et al.

0.5 1 1.5 2 2.5 3
Time(s)

0

500

1000

1500

2000

2500

3000

3500

#O
cc

ur
en

ce
s

Response Time Distribution
Mean Value
Requirement

(a) Vertical scaling only

0.5 1 1.5 2 2.5 3
Time(s)

0

500

1000

1500

2000

2500

3000

3500

#O
cc

ur
en

ce
s

Response Time Distribution
Mean Value
Requirement

(b) Combined vertical & horizontal scaling

0 2 4 6 8 10 12
Time(s)

0

1000

2000

3000

4000

5000

#O
cc

ur
en

ce
s

Response Time Distribution
Mean Value
Requirement

(c) Vertical scaling only

0.5 1 1.5 2 2.5 3 3.5 4 4.5
Time(s)

0

1000

2000

3000

4000

5000

#O
cc

ur
en

ce
s

Response Time Distribution
Mean Value
Requirement

(d) Combined vertical & horizontal scaling

Fig. 3: Class-1 instantaneous average response time distribution without degra-
dation (a-b) and with degradation (c-d).

by varying the allocation shares only. Under degradation, the advantage of the
combined control (i.e., vertical plus dynamic load distribution policy) becomes
evident. Indeed, Figure 3c depicts the class-1 response time distribution when
the vertical scaling is applied under the degradation scenario. Since the joint
requirements for class-1 and class-2 are no longer satisfiable locally, all the users
sent to LM2 will still experience the intended response time, while the ones
sent to LM1 will be served by a saturated system characterized by poor perfor-
mance. Figure 3d, instead, depicts the class-1 response time distribution when
the combined vertical and horizontal load balancing autoscaling is applied. In
this case the routing probabilities of both classes are properly adjusted, steering
the system toward the requirements fulfillment regardless of the differences in
the service rates. We remark how, under the same scenario, applying a state-of-
the-art horizontal scaling technique (i.e., [8,9]) would lead to a system with a
larger number of provisioned virtual machines, thus incurring higher costs and
adaptation delays.

Regarding class-2 throughput adaptation, when the system works in the sym-
metric case both the control approaches are able to fulfill the requirements (see
Figures 4a, 4b). With degradation, only the combined approach is able to steer
the system toward the desired set points (see Figures 4c,4d).

Table 2 reports the average values for the control signals used during each
adaptation trace. We can observe that during the degradation case LM1 is satu-
rated since α1,1 +α1,2 ' 1. In this case the only way to satisfy the requirements

Combined Vertical and Horizontal Autoscaling 11

0 200 400 600 800 1000 1200
Time(s)

25

30

35

40

45

50

55

R
e
q
/s

Average Throughput
Requirement

(a) Vertical scaling only

0 200 400 600 800 1000 1200
Time(s)

25

30

35

40

45

50

55

R
e
q
/s

Average Throughput
Requirement

(b) Combined vertical & horizontal scaling

0 200 400 600 800 1000 1200
Time(s)

25

30

35

40

45

50

55

R
e
q
/s

Average Throughput
Requirement

(c) Vertical scaling only

0 200 400 600 800 1000 1200
Time(s)

25

30

35

40

45

50

55

R
e
q
/s

Average Throughput
Requirement

(d) Combined vertical & horizontal scaling

Fig. 4: Class-2 instantaneous average throughput without degradation (a-b) and
with degradation (c-d).

Table 2: Optimal control signals.

Scenario Ctrl type α1,1 α2,1 α1,2 α2,2 p1,1 p2,1 p1,2 p2,2

No Degradation
Vertical 0.26 0.26 0.25 0.27 0.50 0.50 0.50 0.50
Combined 0.25 0.28 0.29 0.25 0.50 0.50 0.62 0.38

Degradation
Vertical 0.46 0.13 0.53 0.28 0.50 0.50 0.50 0.50
Combined 0.46 0.37 0.32 0.38 0.27 0.73 0.24 0.76

of both classes is to operate at the load distribution level redirecting the major-
ity of the user requests on the faster machine LM2 while properly varying the
CPU shares, i.e., in a combined vertical and horizontal autoscaling fashion.

4 Conclusion

In this paper we have presented an efficient approach for the performance adap-
tation of distributed co-located applications using fluid multi class queuing net-
work (QN) and model predictive control (MPC). The main novelties lay in the
combined usage of vertical and horizontal load balancing autoscaling techniques
and the extension of the fluid model presented in [13] for modeling multiclass
distributed systems under a capped resources allocation scheduler. At each time
step during system evolution a linear programming problem is solved for comput-

12 Emilio Incerto et al.

ing the adaptation knobs (i.e., routing probability and allocation shares) suitable
to steer the system to throughput or response time set points. As future work
we aim to extend our adaptation problem formulation to explicitly model the
response time distribution instead of its instantaneous average only. Moreover,
we also plan to: i) study the scalability of the approach while varying the sys-
tem size, e.g., increasing the number of VMs; ii) extend our method to include
resource contention policies for network, memory, and I/O; iii) consider more
expressive resource schedulers and system performance interactions such as the
completely fair scheduler [20] and layered queuing networks [24].

Acknowledgement

Mirco Tribastone is partially funded by a DFG Mercator Fellowship (SPP 1593,
DAPS2 Project).

References

1. Adam, O., Lee, Y.C., Zomaya, A.Y.: Ctrlcloud: Performance-aware adaptive con-
trol for shared resources in clouds. In: International Symposium on Cluster, Cloud
and Grid Computing (CCGRID). pp. 110–119 (2017)

2. Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A., Neugebauer,
R., Pratt, I., Warfield, A.: Xen and the art of virtualization. In: ACM SIGOPS
operating systems review. vol. 37, pp. 164–177 (2003)

3. Bolch, G., Greiner, S., De Meer, H., Trivedi, K.S.: Queueing networks and Markov
chains: modeling and performance evaluation with computer science applications.
Wiley (2006)

4. Bolker, E., Ding, Y.: On the performance impact of fair share scheduling. In:
International CMG Conference. pp. 71–82 (2000)

5. Bortolussi, L., Hillston, J., Latella, D., Massink, M.: Continuous approximation
of collective system behaviour: A tutorial. Performance Evaluation 70, 317–349
(2013)

6. Boyd, S., Vandenberghe, L.: Convex optimization. Cambridge university press
(2004)

7. Corp., I.: Linpack, https://software.intel.com/en-us/articles/intel-math-
kernel-library-linpack-download

8. Dutta, S., Gera, S., Verma, A., Viswanathan, B.: Smartscale: Automatic applica-
tion scaling in enterprise clouds. In: International Conference on Cloud Computing
(CLOUD). pp. 221–228 (2012)

9. Gandhi, A., Dube, P., Karve, A., Kochut, A., Zhang, L.: Modeling the impact
of workload on cloud resource scaling. In: International Symposium on Computer
Architecture and High Performance Computing (SBAC-PAD). pp. 310–317 (2014)

10. Garcia, C.E., Prett, D.M., Morari, M.: Model predictive control: Theory and
practice—a survey. Automatica 25, 335–348 (1989)

11. Gupta, D., Cherkasova, L., Gardner, R., Vahdat, A.: Enforcing performance iso-
lation across virtual machines in xen. In: International Conference on Distributed
Systems Platforms and Open Distributed Processing (IFIP/USENIX). pp. 342–362
(2006)

https://software.intel.com/en-us/articles/intel-math-kernel-library-linpack-download
https://software.intel.com/en-us/articles/intel-math-kernel-library-linpack-download

Combined Vertical and Horizontal Autoscaling 13

12. Huang, D., He, B., Miao, C.: A Survey of Resource Management in Multi-Tier Web
Applications. IEEE Communications Surveys & Tutorials 16, 1574–1590 (2014)

13. Incerto, E., Tribastone, M., Trubiani, C.: Software performance self-adaptation
through efficient model predictive control. In: International Conference on Auto-
mated Software Engineering (ASE). pp. 485–496 (2017)

14. Kephart, J.O., Chess, D.M.: The vision of autonomic computing. Computer 36,
41–50 (2003)

15. Kowal, M., Tschaikowski, M., Tribastone, M., Schaefer, I.: Scaling size and pa-
rameter spaces in variability-aware software performance models. In: International
Conference on Automated Software Engineering (ASE). pp. 407–417 (2015)

16. Kurtz, T.G.: Solutions of ordinary differential equations as limits of pure Markov
processes. In: J. Appl. Prob. vol. 7, pp. 49–58 (1970)

17. Lakew, E.B., Klein, C., Hernandez-Rodriguez, F., Elmroth, E.: Performance-based
service differentiation in clouds. In: International Symposium on Cluster, Cloud
and Grid Computing (CCGRID). pp. 505–514 (2015)

18. Lakew, E.B., Papadopoulos, A.V., Maggio, M., Klein, C., Elmroth, E.: Kpi-agnostic
control for fine-grained vertical elasticity. In: International Symposium on Cluster,
Cloud and Grid Computing (CCGRID). pp. 589–598 (2017)

19. Li, L., Franks, G.: Performance modeling of systems using fair share scheduling
with layered queueing networks. In: International Symposium on Modeling, Anal-
ysis & Simulation of Computer and Telecommunication Systems (MASCOTS). pp.
1–10 (2009)

20. Molnar, I.: This is the CFS scheduler (1999), https://www.kernel.org/doc/

Documentation/scheduler/sched-design-CFS.txt

21. NASA: Nas parallel benchmarks, http://www.nas.nasa.gov/Resources/

Software/npb.html

22. Parallels: OpenVz user guide (2016), https://docs.openvz.org/openvz_users_
guide.webhelp/

23. Qu, C., Calheiros, R.N., Buyya, R.: Auto-scaling web applications in clouds: A
taxonomy and survey. ACM Computing Surveys 9(4) (2017)

24. Tribastone, M.: A fluid model for layered queueing networks. IEEE Transactions
on Software Engineering 39, 744–756 (2013)

https://www.kernel.org/doc/Documentation/scheduler/sched-design-CFS.txt
https://www.kernel.org/doc/Documentation/scheduler/sched-design-CFS.txt
http://www.nas.nasa.gov/Resources/Software/npb.html
http://www.nas.nasa.gov/Resources/Software/npb.html
https://docs.openvz.org/openvz_users_guide.webhelp/
https://docs.openvz.org/openvz_users_guide.webhelp/

	Combined Vertical and Horizontal Autoscaling through Model Predictive Control
	Introduction
	Combined Vertical and Horizontal Autoscaling
	Numerical Evaluation
	Conclusion

