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Abstract— Differential-algebraic equations (DAEs) are a
widespread dynamical model that describes continuously evolv-
ing quantities defined with differential equations, subject to
constraints expressed through algebraic relationships. As such,
DAEs arise in many fields ranging from physics, chemistry, and
engineering. In this paper we focus on linear DAEs, and develop
a theory for their minimization up to an equivalence relation.
We present backward invariance, which relates DAE variables
that have equal solutions at all time points (thus requiring them
to start with equal initial conditions) and extends the line of
research on backward-type bisimulations developed for Markov
chains and ordinary differential equations. We apply our results
to the electrical engineering domain, showing that backward
invariance can explain symmetries in certain networks as well
as analyze DAEs which could not be originally treated due to
their size.

I. INTRODUCTION

Differential-algebraic equations (DAEs) are a popular
model of dynamical systems across many branches of science
and engineering. They often arise when describing physical
quantities that evolve continuously and deterministically
according to an ordinary differential equation (ODE), together
with constraints that express properties such as conservation
of energy. An example is RLC electric circuits, where
components such as capacitors and inductors are associated
with first-order linear differential equations while the algebraic
constraints impose Kirchhoff’s conservation laws for voltages
in closed loops and currents at each junction [1]. A more
general approach that leads to DAEs as the underlying
dynamics is that of bond graphs (e.g., [2]), a unifying model
for networked physical systems such as electrical, mechanical,
and hydraulic networks.

Solving DAEs is difficult [3]. Compared to ODEs, the
initial condition may not be chosen arbitrarily (provided that
the solution exists), but it has to be consistent, i.e. it has
to satisfy the algebraic constraints. This leads to expensive
implicit schemes that require the solution of a system of
equations at each time step, thus motivating a large body of
literature on model reduction techniques for DAEs (cf. [4],
[5], [6] and references therein). Such techniques are appealing
for numerical purposes since they were proven to be effective
for reducing models of real large-scale systems. However,
the reduction is approximate in general and the reduced
model may not carry physical intelligibility (because its
variables represent a linear transformation of the original
state space). This limits their use when the modeler strives
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to gain mechanistic insights from the model, for example to
explain symmetric behavior in a design [7], [8].

In this paper we present a technique for reducing linear
DAE systems which is both exact and structure-preserving, in
the sense that the reduction is obtained through a quotienting
up to an equivalence that relates variables that have the same
solutions at all time points. Our line of research can be
related to aggregation of Markov chains [9], [10] and back-
ward differential equivalence (BDE) for ODE systems [11].
Unfortunately, while the notion of BDE can be generalized
to algebraic backward invariance (ABI) by working on the
equivalent linear ODE system into which a linear DAE system
can be transformed (see Section III), ABI requires the solution
of an ill-conditioned problem [12], [13].

We circumvent this issue by developing in Section IV a
criterion for backward equivalence over the numerical solution
scheme of the DAE system, instead of the DAE system itself.
The idea is to find a numeric ABI by relating numerical
solutions of variables that are equal at all steps, through
inspection of the explicit law that updates the solution at
each time step. Using the popular backward differentiation
formulae as the numerical solver [14], we prove that a numeric
ABI is an ABI of the original DAE system, independently
of the discretization time step used in the numerical solver.
Moreover, we show that computing the coarsest numeric ABI
through a partition refinement algorithm reduces to computing
the coarsest BDE of a linear ODE system that is related to
the explicit update law of the numerical solver (hence, it can
be computed in polynomial time [15], [16]).

We apply our theory to benchmark DAEs from electric
circuit theory by showing that numeric ABI is i) effective
in discovering symmetries in the topology of the electrical
networks and ii) allows one to analyze circuits that would
otherwise issue out-of-memory errors.

Further related work. In [17], the author proposes a
technique for the minimization of polynomial ODE systems
in the spirit of BDE but which does not apply to DAE systems.
Instead, the recent work [18] extends classic bisimulation
relations for linear systems [19], [20], [21] to linear DAE
systems. While similar in style, [18] is not comparable to
ABI. This is because [18] cannot be used to show that
certain variables enjoy identical solutions at all time points;
conversely, unlike [18], ABI cannot be used to show that
a linear observation map (i.e., y = Cx for some matrix C)
coincides the solution of the reduced system. The symmetry
property underlying ABI and BDE can be related to Φ-related
vector fields [22]. However, ABI and BDE impose constraints
on initial conditions and establish a reduction of a system
instead of relating two given systems, see Section VI.



Paper outline. Section II sets the scene by presenting
background knowledge on BDE and linear DAEs. Building on
that, Section III introduces ABI, while Section IV introduces
numeric ABI and presents an efficient algorithm for its
computation. A thorough evaluation of numeric ABI follows
in Section V where it is applied to benchmark models from
practice. After providing further discussion on related work
in Section VI, the paper concludes in Section VII.

II. PRELIMINARIES

Notation. The time derivative of a variable xi is denoted
by ẋi. The set of variables is given by {xi | i ∈ S}, where
S is some finite index set; partitions of S are denoted by
H and G. A partition H of S refines a partition G if and
only if each block of H is a subset of some block of G. We
write BA for the set of functions from A to B. Following
the standard notation, C and xT denote the complex numbers
and the transpose of a vector x ∈ CS , respectively; instead,
for an i ∈ S, ei ∈ RS is such that ei(j) = 1 if i = j
and 0 otherwise. For a given function f : A → B and a
set C ⊆ A, f(C) defines the image of f under C, i.e.,
f(C) = {f(x) | x ∈ C}. The subspace spanned by the
columns of C ∈ RS×S is denoted by 〈C〉.

Backward Differential Equivalence. The following no-
tion has been introduced in [11].

Definition 1. Fix a linear ODE system ẋ = Ax + b with
A∈RS×S and b∈RS . We call
• x ∈ RS uniform on H when xi = xj for all i, j ∈ H

and H ∈ H;
• UH the subspace of all vectors that are uniform on H;
• H a BDE partition if, for any initial condition x(0) ∈
UH, the ODE solution yields x(t) ∈ UH for all t > 0.

Informally, a partition H of ODE variables S is a BDE
if any initial condition x(0) ∈ RS which is uniform on H
gives rise to a solution that is uniform on H. For the sake of
presentation, we recast it now to linear ODE systems using
the concept of invariant spaces as has been done in [23].

BDE can be characterized in terms of backward invariance.

Theorem 1 (Backward Invariance). Given an ODE system
ẋ = Ax+b, a partition H of S is called backward invariance
(BI) whenever A(UH) + b ⊆ UH. It holds that H is a BDE
if and only if H is a backward invariance.

The following result follows from [15], [16] and allows for
an efficient computation of the coarsest backward invariance.

Theorem 2. Fix a linear ODE system ẋ = Ax+ b and let
G be some partition of S . Then, the coarsest BI partition H
that refines G exists and can be computed in polynomial time
via a partition refinement algorithm.

Linear DAEs. Systems of linear differential algebraic
equations (DAEs) satisfy the form Eẋ = Ax + b where
E,A ∈ RS×S and b ∈ RS . In case E is invertible, a linear
DAE system can be directly recast into a linear ODE system
via ẋ = E−1Ax + E−1b. If E is not invertible, however,
the transformation corresponds to the computation of the

Kronecker normal form, an instance of index reduction [14],
[24], which is ill-conditioned in general [13], unless additional
assumptions [12] are imposed.

We summarize several facts from the theory of DAEs [14].

Definition 2. A DAE system Eẋ = Ax+ b is called regular
if, for every initial condition x(0) ∈ RS , there exists either
a unique solution or no solution at all.

Theorem 3. A DAE system Eẋ = Ax+ b is regular if and
only if A−λE is invertible for at least one λ ∈ C. The set of
initial conditions for which a regular DAE admits solutions,
D, is an affine subspace of RS . For any regular DAE system
Eẋ = Ax + b, there exist Â ∈ RS×S and b̂ ∈ RS such
that for any x(0) ∈ D, the solutions of ˙̂x = Âx̂ + b̂ and
Eẋ = Ax+ b coincide when subject to x(0).

The above results ensure that any linear DAE system Eẋ =
Ax+b can be expressed as a linear ODE system ẋ = Âx+ b̂.
As mentioned before, the computation of Â, b̂ and the domain
D relies on the Kronecker normal form [12], [13].

Example 1. Consider the DAE system Eẋ = Ax where

E =

 0 0 1
1 0 2
−3 0 −9

 A =

 −1 0 0
1 −1 0
0 2 −2

 (1)

Then, it can be proven that Eẋ = Ax admits a unique
solution only when x(0) ∈ D = 〈(1, 0, 0)T , (0,−2, 1)T 〉.
Moreover, it can be shown that the corresponding solution
satisfies the linear ODE system ẋ = Âx, where Â =
((3, 2,−1)T , (0, 0, 0)T , (2, 0, 0)T ).

III. ALGEBRAIC BACKWARD INVARIANCE

We start by lifting the notion of BDE to linear DAEs.

Definition 3. Let Eẋ = Ax+b be a regular DAE. A partition
H of S is called a BDAE of Eẋ = Ax + b if UH ∩ D 6= ∅
and, for any initial condition x(0) ∈ UH ∩ D, it holds that
x(t) ∈ UH ∩ D for all t > 0.

It is interesting to note that, in contrast to BDE, the notion
of BDAE has to account for the domain D. This is because
only initial conditions x(0) from D induce a unique solution
of Eẋ = Ax + b. Moreover, it already suffices to ask for
x(t) ∈ UH for all t > 0 instead of x(t) ∈ UH ∩ D for all
t > 0. This is because any solution x of a regular DAE system
Eẋ = Ax+ b has to be contained in D, see Theorem 3.

Example 2. Consider the running example (1) and let H =
{{1, 2}, {3}}. Then, for any initial condition (2α, 2α,−α) ∈
UH∩D = 〈(2, 2,−1)T 〉, where D is as in Example 1, the so-
lution of the DAE system is given by x(t) = e2t(2α, 2α,−α).
This can be verified by plugging x into Eẋ = Ax. Hence, H
is a BDAE of (1).

Since a linear DAE Eẋ = Ax + b can be expressed in
terms of the underlying ODE system ẋ = Âx + b̂, it is
tempting to call a partition H of Eẋ = Ax + b algebraic
backward invariance whenever H is a backward invariance
of ẋ = Âx+ b̂. While this can be shown to be a sufficient



condition for BDAE, however, we next observe that it does
not characterize BDAE.

Example 3. Consider the running example (1). From Exam-
ple 2, we know that H = {{1, 2}, {3}} is a BDAE. With Â
being as in Example 1, however, it can be easily seen that
Â(UH) 6⊆ UH. At the same time, it is interesting to note that
Â(UH ∩ D) ⊆ UH.

We hence define algebraic backward invariance as follows.

Definition 4. Let Eẋ = Ax + b be a regular DAE and let
ẋ = Âx + b̂ be the corresponding ODE system. We call
H algebraic backward invariance (ABI) of Eẋ = Ax + b
whenever Â(UH ∩ D) + b̂ ⊆ UH and UH ∩ D 6= ∅.

The following generalization of Theorem 1 states that ABI
characterizes BDAE.

Theorem 4. Let Eẋ = Ax+ b be a regular DAE and let
ẋ=Âx+b̂ be the underlying ODE system. A partition H is
an ABI if and only if it is a BDAE.

Note that the constraint UH∩D 6= ∅ in Definition 4 ensures
that there actually exist initial conditions to which an ABI
partition can be applied.

We proceed by providing the notion of a reduced model
underlying an ABI.

Definition 5. Given a regular DAE system Eẋ = Ax + b,
let ẋ = Âx+ b̂ be the underling ODE system and let H =
{H1, . . . ,Hm} be a BDAE partition. For H ∈ H, let iH ∈ H
be the representative of H and S0 = {iH | H ∈ H}. Set
further eH ∈ RS by eH(i) = 1 if i ∈ H and zero otherwise.

Then, the reduced DAE system E ẋ = Ax + b and the
reduced ODE system ẋ = Â x+ b̂ are given by E = SlESr,
A = SlASr, b = Slb, Â = SlÂSr and b̂ = Slb̂, where
E,A, Â ∈ RS0×S0 and b, b̂ ∈ RS0 and the transformation
matrices Sl ∈ RS0×S , Sr ∈ RS×S0 are defined via Sl =
(eiH1

, . . . , eiHm
)T and Sr = (eH1 , . . . , eHm). The domain of

the reduced DAE system is D = {Slx | x ∈ UH ∩ D}.

The following can be shown.

Theorem 5. Given a regular DAE system Eẋ = Ax + b
and let ẋ = Âx + b̂ be the underlying ODE system. Then,
for a BDAE H, the reduced models E ẋ = Ax + b and
ẋ = Â x+ b̂ can be computed in polynomial time. Moreover,
for any x(0) ∈ UH ∩ D, the solution of Eẋ = Ax + b
is uniquely related to the solution of E ẋ = Ax + b and
ẋ = Â x+ b̂ via x(0) = Slx(0). In particular, x(t) = Slx(t)
and x(t) = Srx(t) for all t ≥ 0.

Example 4. From Example 2, we know that H={H1, H2}=
{{1, 2}, {3}} is a BDAE of (1). Together with iH1

= 1 and
iH2

= 3, we conclude that

E =
(

0 1
−3 −9

)
A =

( −1 0
2 −2

)
Â =

(
3 2
−1 0

)
Sr =

( 1 0 0
0 0 1

)
Sr =

( 1 0
1 0
0 1

)
D = 〈

(
2

−1

)
〉

Since the solution of the running example is given by x(t) =
e2t(2α, 2α,−α)T for all (2α, 2α,−α)T ∈ UH ∩ D, it holds
that Slx(t) = e2t(2α,−α)T = x(t). A direct computation
confirms that x solves E x = Ax and x = Â x for all
x(0) = (2α,−α)T ∈ D. Moreover, it can be easily seen that
x(t) = Srx(t) for all x(0) ∈ D.

IV. NUMERIC ALGEBRAIC BACKWARD INVARIANCE

While ABI provides a generalization of BI to linear DAEs,
it has to be noted that checking whether a given partition is
ABI requires the knowledge of D. Since the computation of
D relies on the solution of an ill-conditioned problem [13],
this section introduces numeric ABI. Numeric ABI focusses
on numerical solutions of linear DAE systems.

Backward Differentiation Formulae. A popular family
of numerical schemes to solve linear DAE systems are the
so-called backward differential formulae (BDF) [14]. The
general idea is, as in the case of all numerical schemes, to
approximate the true solution of a given linear DAE system
Eẋ = Ax+ b on an interval [0;T ] by a sequence of points
x[0], x[1], . . . , x[M ] such that x[i] approximates x(ti), where
∆t = T/M and ti = i∆t for all 0 ≤ i ≤M .

The next result [14, Theorem 5.24] ensures 1) that the
BDF solution (x[i])i is well-defined if the time step ∆t is
sufficiently small and; 2) that the numeric solution (x[i])i
converges to the solution of Eẋ = Ax+b if x(0) = x[0] ∈ D.

Theorem 6. Given a regular linear DAE system Eẋ=Ax+b
and an initial condition x(0) ∈ RS , fix 1 ≤ k ≤ 6 and
set x[−6] = x[−5] = . . . = x[−1] = 0. Then, there exist
∆t0 > 0 and C > 0 that do not depend on ∆t > 0 and
which satisfy the following.
1) For all 0<∆t≤∆t0 there exists a unique x[i] solving

the linear system of equations

(A− α(k,0)
∆t E)x[i] = E

( k∑
l=1

α(k,l)
∆t x[i− l]

)
− b

for all 1 ≤ i ≤M , where the k-BDF coefficients α(k, ·)
are given in [14];

2) if x denotes the solution subject to a consistent initial
condition x(0) ∈ D, then it holds that max0≤i≤M‖x(ti)−
x[i]‖∞ ≤ C∆tk for all 0 < ∆t ≤ ∆t0.

Remark 1. The BDF schemes apply an auto-correction in
the case an inconsistent initial condition x(0) is provided.
In particular, if x(0) /∈ D and ν ≥ 1 denotes the DAE
index [14] of Eẋ = Ax+ b, Theorem 6 remains true and it
holds [14, Remark 5.25] that x[i] ∈ D for all ν ≤ i ≤M .

Armed with the BDF scheme and the convergence result of
Theorem 6, we introduce numeric BDAE and numeric ABI.
Intuitively, numeric BDAE and numeric ABI take the roles
of BDAE and ABI, respectively, if ∆t is sufficiently small.
This is because the ground truth given in terms of the DAE
system Eẋ = Ax+b and the underlying analytical solution x
is replaced, in practical computations, with the BDF scheme
of Theorem 6 and the numerical solution (x[i])i.



Definition 6. Fix a regular DAE system Eẋ = Ax+ b, time
step ∆t > 0 and 1 ≤ k ≤ 6 such that (A− α(k,0)

∆t E) is invert-
ible, set Φ(x) := (A− α(k,0)

∆t E)−1Ex− (A− α(k,0)
∆t E)−1b.

A partition H is called
• numeric BDAE if, for any x[0] ∈ UH, it holds that
x[i] ∈ UH for all 1 ≤ i ≤M ;

• numeric ABI if Φ(UH) ⊆ UH.

Note that x[i] = Φ(
∑k
l=1

α(k,l)
∆t x[i− l]) for all 1 ≤ i ≤M .

As for the algebraic notions, the following result can be stated
for the numeric ones.

Theorem 7. Given a regular DAE system Eẋ = Ax + b,
1 ≤ k ≤ 6 and ∆t > 0 such that (A− α(k,0)

∆t E) is invertible,
let Φ be as in Definition 6.
• H is numeric BDAE if and only if H is numeric ABI.
• For any partition G, the coarsest numeric ABI H which

refines G is the coarsest BI of ẋ = Φ(x) that refines G;
H can be computed in polynomial time.

Theorem 7 states that a numeric ABI of the DAE system
Eẋ = Ax+ b is a BI of the ODE system ẋ = Φ(x). Hence,
for any partition G of S, we can use the polynomial time
algorithm of Theorem 2 to compute the coarsest numeric
ABI that refines G.

Numeric ABI allows to speed up numerical computations
by invoking the reduced numerical mapping.

Definition 7. Given a regular DAE system Eẋ = Ax + b,
1 ≤ k ≤ 6 and ∆t > 0 such that (A− α(k,0)

∆t E) is invertible,
assume thatH is a numeric ABI. Then, the underlying reduced
mapping Φ : RS0 → RS0 is defined via

x 7→
(
Sl(A− α(k,0)

∆t E)−1ESr
)
x− Sl(A− α(k,0)

∆t E)−1b

with Sl, Sr and S0 as in Definition 5.

Similarly to ABI and BDAE, the following can be shown.

Theorem 8. Given a regular DAE system Eẋ = Ax + b,
1 ≤ k ≤ 6, ∆t > 0 such that (A − α(k,0)

∆t E) is invertible
and some partition G, the coarsest numeric ABI H refining
G and the underlying reduced numerical mapping Φ from
Definition 7 can be computed in polynomial time. Moreover,
with x[i] = Φ(

∑k
l=1

α(k,l)
∆t x[i−l]), it holds that x[i] = Srx[i]

for all 1 ≤ i ≤M , provided that x[0] = Srx[0].

On the Relation of Numeric and Algebraic Notions.
Despite numeric BDAE and numeric ABI provide an efficient
model reduction technique for practical computations, it is
interesting to ask whether the convergence of the BDF scheme
toward the true analytical solution, ensured by Theorem 6,
can be used to tie ABI to numeric ABI.

The following auxiliary result is pivotal.

Proposition 1. Given a regular DAE system Eẋ = Ax+ b
and 1≤ k ≤ 6, let ∆t0 > 0 be such that (A − α(k,0)

∆t E) is
invertible for all 0<∆t≤∆t0. Then, for all λ≥λ0 = α(k,0)

∆t0
,

the matrices Rλ=(A−λE)−1E and Sλ=(A−λE)−1 are well-
defined and satisfy the Riccati matrix differential equations
Ṙλ = R2

λ and Ṡλ = RλSλ on [λ0;∞).

With this, we are in a position to show the following.

Proposition 2. Given a regular DAE system Eẋ = Ax+ b
and 1 ≤ k ≤ 6, let ∆t0 > 0 be such that (A− α(k,0)

∆t E) is
invertible for all 0 < ∆t ≤ ∆t0. Then, H is numeric ABI for
all 0 < ∆t ≤ ∆t0 whenever H is numeric ABI for ∆t0.

Proposition 2 states that the variable equivalences identified
in the BDF scheme by a numeric ABI do not depend on the
chosen time step ∆t. Armed with this, the next major result
establishes that numeric ABI implies ABI.

Theorem 9. Given a regular DAE system Eẋ = Ax + b
and 1 ≤ k ≤ 6, let ∆t0 > 0 be such that (A− α(k,0)

∆t E) is
invertible for all 0 < ∆t ≤ ∆t0. If H is a numeric ABI, then
it is also an ABI.

Remark 2. Numeric ABI is only a sufficient condition for ABI
in general. Indeed, for (1), the matrix (A− λE) is invertible
if and only if λ2−3λ+ 2 6= 0. Hence, (A−λE) is invertible
for all λ ≥ 3, meaning that λ0 and ∆t0 can be set to 3 and 1

3 ,
respectively. A computation of (A− 1

3E)−1E reveals that the
coarsest numeric ABI for ∆t0 (hence, by Theorem 2, for all
0 < ∆t ≤ ∆t0) is the trivial partition {{1}, {2}, {3}}. At the
same time, however, Example 2 establishes that {{1, 2}, {3}}
is an ABI of (1).

Even though we expect numeric ABI to coincide with ABI
for most practical models, the above remark demonstrates
that numeric ABI is in general stricter than ABI. At the same
time, the coarsest numeric ABI partition can be computed
in polynomial time, while ABI relies on the solution of an
ill-conditioned problem [13].

V. EVALUATION

We hereby apply numeric ABI to DAE benchmarks from
the electrical engineering literature using a Matlab prototype.
We compare the solution runtimes of the original model
against those of the reduced model (including minimization
runtime) using the ode15s solver, which is capable of
processing linear (and nonlinear) DAE systems with DAE
index at most one. Experiments have been performed on a
2.6 GHz Intel 2016b; the Matlab command ode15s have
been invoked with standard settings.

H-tree model. We consider a power distribution network
from [25] which has been adapted by removing inductances.
The network has a hierarchical tree topology (H-tree), de-
picted in Figure 1. At each depth i, all branches have equal
resistances and capacitances Ri and Ci, respectively, whose
values are given in Table II. For depths i ≤ 4, the values were
taken from [25], while values for depths i ≥ 5 have been
extrapolated. An H-tree model of depth N results in a DAE
system with 2N + 1 variables, given by the voltages across
each capacitor and by the voltage Vin. Here, we assume that
Vin has constant value 5.0V.

Table I considers H-tree networks with increasing depth
N (column |S| gives the state space size). Numeric ABI
confirms the symmetry discussed in [25], namely that the
voltages across the capacitors of same depth are equal at all
time points, resulting in N + 2 partition blocks (column |H|).
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Fig. 1: H-tree network adapted from [25].

Model Num. ABI

N |S| Sol. (s) |H| Time (s)

3 9 8.86.E–2 5 1.01E–2
4 17 1.44E–1 6 1.12E–2
5 33 1.61E–1 7 1.30E–2
6 65 1.72E–1 8 1.47E–2
7 129 1.77E–1 9 1.63E–2
8 257 2.39E–1 10 3.31E–2
9 513 2.86E–1 11 8.73E–2

10 1 025 1.04E+0 12 2.93E–1
11 2 049 5.05E+0 13 6.46E–1
12 4 097 3.77E+1 14 2.45E+0
13 8 193 6.27E+2 15 8.89E+0
14 16 385 O.M. 16 4.34E+1

TABLE I: Numerical results for H-trees.

i 2 3 4 5 6 7 8 9 10 11 12 13 14

Ri 6.37 12.75 25.50 50 100 200 400 800 1 600 3 200 6 400 12 800 25 600
Ci 0.300 0.130 0.140 0.070 0.070 0.035 0.035 0.018 0.018 0.009 0.009 0.005 0.005

TABLE II: Resistances and capacitances of the H-tree networks at depths i.

Vin

1 2

3

1

2

3

Fig. 2: Mesh networks adapted
from [26].

Model Num. ABI

N |S| |H| Time (s)

4 106 56 2.48E–1
5 157 82 3.06E–1
6 218 113 3.51E–1
7 289 149 6.41E–1
8 370 190 1.05E+0
9 461 236 1.70E+0

10 561 287 4.26E+0

TABLE III: Numerical re-
sults for meshes.

Column Sol. provides the computation time of the original
model via ode15s in the case where the time horizon was
set to 2 time units. To allow for a fair comparison, column
Time provides the cumulative runtime for the computation of
the coarsest numeric ABI and the solution of the underlying
reduced DAE system via ode15s. Numeric ABI always led
to better performance. In addition, it allowed us to analyze
the case N = 14, whose full model could not be solved by
ode15s due to out of memory errors.

Mesh networks. Figure 2 shows a square transmission
line mesh, adapted from [26], where each line has N = 5
segments of 3 resistor/capacitor series each.1 The variables
of the underlying DAE system represent the voltages at each
capacitor.

Table III considers seven variants of the network for N
ranging from 4 to 10 for resistances and capacitances equal to
1 and 0.1, respectively. Columns |S| and |H| are as in Table I,
while Time accounts for the computation of the coarsest
numeric ABI only. This is because both the original and
the reduced DAE systems had index higher than one, which

1Every capacitor is connected to the ground, which is not explicitly drawn
to avoid clutter.

cannot be handled by ode15s. We wish to point out, however,
that the reduced numerical model from Theorem 8 could be,
in principle, derived. It is interesting to note that, for each N ,
the size of the largest numeric ABI is N + 1 + (|S| −N)/2.
This has a geometric interpretation in that it relates (voltages
of) capacitor nodes placed symmetrically with respect to the
main diagonal of the network (Figure 2 marks nodes within
representative equivalence classes with the same number).

Further benchmarks. Table IV considers further bench-
marks of real-world electrical circuits available at https://
sites.google.com/site/rommes/software. All
models are given in the form Eẋ(t) = Ax(t) + Bu(t)
where x(t) ∈ Rn is the system’s state, u(t) represents some
m-dimensional input and B ∈ Rn×m. In order to obtain
symmetries that are valid for any input signal u, we started
from an input partition G whose blocks of variables are
affected in the same way by the input, that is, two variable
indices i, j were put into the same block of G if and
only if eTi (Bu) = eTj (Bu) for all u (which is equivalent
to saying that i, j were put into the same block if and
only if eTi (Bek) = eTj (Bek) for all 1 ≤ k ≤ m). For the
experiments, we considered the input b = B1, with 1 being
the m-dimensional vector whose coordinates are all one. This
led to systems of the form Eẋ = Ax+ b.

As in the case of Table III, the column Time in Table IV
refers to the computation of the coarsest numeric ABI only
because the original and reduced DAE systems had index
greater than one. We remark that all instances could be
reduced to about 70% of their original size.

VI. FURTHER DISCUSSION

Since ABI is an extension of BDE, we next relate BDE
and bisimulation [19], [20], [21]. Essentially, BDE provides
a reduction of a single system, while bisimulation relates two
given systems. These two notions can be compared when



Model Num. ABI

Name Ref. |S| |H| Time (s)

bips98 606 [27] 7 135 5 656 5.29E+3
bips98 1142 [27] 9 735 7 225 1.08E+4
bips98 1450 [27] 11 305 8 115 1.73E+4
nopss 11k [28] 11 685 8 015 1.95E+4
mimo46x46 system [29] 13 250 9 132 5.35E+4
bips07 1693 [27] 13 275 9 073 7.59E+4
mimo8x8 system [30] 13 309 9 070 5.14E+4

TABLE IV: Further circuit benchmarks: numerical results.

the observation maps are not restricted to linear functions.
In this case, the original system and its BDE reduction can
be shown to be bisimilar. For instance, {{1, 2}} is a BDE
partition of ẋ1 = x1, ẋ2 = x2 because x1(t) = x2(t) for all
t > 0 if x1(0) = x2(0). The corresponding BDE reduction
from Definition 5 is ẋ1 = x1. By fixing the quotient system
ẏ1 = y1 and the observation maps (x1, x2) 7→ x1, y1 7→ y1,
it can be shown that B = {((x1, x2), y1) | x1 = x2 = y1} is
a bisimulation. However, for this comparison to be made, one
needs the appropriate observation maps, which are induced
by the BDE reduction. Moreover, the coarsest BDE reduction
can be computed in polynomial time also in the case of
nonlinear ODE systems [15], [16].

VII. CONCLUSION

In this paper we have developed a theory for the reduc-
tion of differential-algebraic equations (DAEs) based on a
notion of backward equivalence, relating variables when
they have equal solutions at all time points. Unlike related
work on Markov chains and ordinary differential equations,
equivalences on DAEs require a careful treatment of the
domain on which the DAE is defined. This led to a different
notion of equivalence called numerical algebraic backward
invariance (ABI). Model reductions underlying numeric ABI
can be computed in polynomial time and have been obtained
for a number of benchmark models of electrical circuits.
Developing approximate notions is part of future work.
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