Reference:

For an arbitrary smooth function $f : \mathbb{R}^n \to \mathbb{R}$ we want to solve the unconstrained nonlinear programming problem

$$\min_x f(x)$$

There are fundamentally two classes of iterative methods:

- **line search methods** choose a descent direction p_k, search a suitable scalar $\alpha_k > 0$ such that $f(x_k + \alpha_k p_k) < f(x_k)$, and set $x_{k+1} = x_k + \alpha_k p_k$

- **trust region methods** compute a quadratic approximation $q(x)$ of f around x_k, solve

$$p_k = \arg \min_{p : \|p\|_2 \leq \Delta} q(x_k + p)$$

where the size Δ of the “trust-region” of the model is shrunk until $f(x_k + p_k) < f(x_k)$, and set $x_{k+1} = x_k + p_k$

The above methods converge to a local minimum (a global one if f convex)
Line Search Methods: Steepest Descent

- **Steepest descent** is the most obvious method, as it picks up p_k orthogonal to the level sets of f

 $$p_k = -\nabla f(x_k)$$

 $$x_{k+1} = x_k - \alpha_k \nabla f(x_k)$$

- From Taylor’s theorem

 $$f(x_k + \alpha p_k) = f(x_k) - \alpha \|\nabla f(x_k)\|^2 + \alpha^2 p_k' \nabla^2 f(x_k + tp_k)p_k, \ t \in (0, \alpha)$$

- Note that the Hessian of f is not required to compute p_k

- The method can be very slow to converge
• **Newton’s method** chooses $p_k = - (\nabla^2 f(x_k))^{-1} \nabla f(x_k)$ (*Newton’s direction*)

\[
x_{k+1} = x_k - \alpha_k (\nabla^2 f(x_k))^{-1} \nabla f(x_k)
\]

• Newton’s direction provides the minimum of the quadratic Taylor’s approximation q of f at x_k:

\[
q(x_k + p) = f(x_k) + \nabla f(x_k)' p + \frac{1}{2} p' \nabla^2 f(x_k) p
\]

• If $\nabla^2 f(x_k) \succ 0$ then for some $\sigma_k > 0$

\[
\nabla f(x_k)' p_k = - \nabla f(x_k)' (\nabla^2 f(x_k))^{-1} \nabla f(x_k) \leq - \sigma_k \|p_k\|^2
\]

so from Taylor’s theorem we have $f(x_k + \alpha p_k) < f(x_k)$ for α small enough
The method converges very fast, especially close to x^*, where the function f and its quadratic approximation tend to coincide.

For $\alpha_k \equiv 1$ we have pure Newton's method. However line search over α is required to ensure convergence.

In case $\nabla^2 f(x_k)$ is not positive definite, a possibility is to use instead $\nabla^2 f(x_k) + \text{diag}(\delta_k)$.

For example δ_k can be computed during a Cholesky factorization to make intermediate diagonal entries $\geq \epsilon$ for some $\epsilon > 0$.
LINE SEARCH METHODS: QUASI NEWTON METHODS

- Newton’s method requires computing $\nabla^2 f(x_k)$, which could be expensive.

- **Quasi-Newton methods** replace $\nabla^2 f(x_k)$ with a matrix B_k which is easier to compute, satisfying the secant equation

 $$B_{k+1} s_k = y_k, \text{ where } s_k = x_{k+1} - x_k, \ y_k = \nabla f(x_{k+1}) - \nabla f(x_k)$$

 and set $p_k = -B_k^{-1} \nabla f(x_k)$

- The **BFGS formula** (Broyden, Fletcher, Goldfarb, and Shanno) updates

 $$B_{k+1} = B_k - \frac{B_k s_k s_k' B_k}{s_k' B_k s_k} + \frac{y_k y_k'}{y_k' s_k}$$

 where $B_k \succ 0$ if $B_0 \succ 0$ and $s_k' y_k \succ 0$ for all k
Since B_{k+1} differs from B_k by two one-rank updates, we can update a factorization of B_k recursively.

In alternative, one can avoid B_k and directly update $H_k = B_k^{-1}$

$$H_{k+1} = H_k + \frac{s_k' y_k + y_k' H_k y_k}{(s_k' y_k)^2} s_k s_k' - \frac{H_k y_k s_k' + s_k H_k y_k}{s_k' y_k}$$

For large-scale problems, **limited-memory BFGS** only stores a finite number m of past values of (s_k, y_k) (usually $m < 10$) and directly computes the descent direction $p_k = -H_k \nabla f(x_k)$ without storing H_k
The nonlinear conjugate gradient (CG) method\(^1\) updates \(p_k\) as follows:

\[
\beta_k = \frac{\|\nabla f(x_{k+1})\|^2_2}{\|\nabla f(x_k)\|^2_2}
\]

\[
p_{k+1} = -\nabla f(x_{k+1}) + \beta_k p_k, \text{ with } p_0 = -\nabla f(x_0)
\]

The method does not require the storage of matrices.

The method is almost as simple as steepest descent but usually more efficient, although it does not converge as fast as (quasi-)Newton methods.

As for steepest descent, nonlinear CG may be sensitive to problem scaling.

\(^{1}\)Vectors \(s_1, \ldots, s_n \neq 0\) of \(\mathbb{R}^n\) are conjugate to a matrix \(G > 0\) if \(s_i' G s_j = 0, \forall i \neq j\)
• Given a descent direction p_k, ideally one should choose $x_{k+1} = x_k + \alpha_k p_k$ with

$$\alpha_k = \arg \min_{\alpha > 0} f(x_k + \alpha p_k)$$

• Such a scalar nonlinear optimization may be difficult to solve and require a lot of evaluations of f, so we look for simpler methods

• Simply imposing $f(x_k + \alpha_k p_k) < f(x_k)$ may not work, as the improvement may become smaller and smaller as k grows

• Sufficient decrease is provided by satisfying Armijo condition

$$f(x_k + \alpha p_k) \leq f(x_k) + c_1 \alpha \nabla f(x_k)' p_k$$

where usually c_1 is small (e.g., $c_1 = 10^{-4}$)
The following is a simple practical algorithm for selecting a step size α_k satisfying Armijo formula:

Choose $\bar{\alpha} > 0$, $\rho \in (0, 1)$, $c \in (0, 1)$. Set $\alpha = \bar{\alpha}$.

Repeat until $f(x_k + \alpha p_k) \leq f(x_k) + c\alpha \nabla f(x_k)' p_k$

$\alpha \leftarrow \rho \alpha$

end repeat

Set $\alpha_k = \alpha$.

Possible choices are $\bar{\alpha} = 1$ (e.g., in Newton’s method) and $\rho = \frac{1}{2}$ (bisection)
• **Wolfe conditions** include Armijo condition + the curvature condition

\[
\frac{df(x_k + \alpha p_k)}{d\alpha} = \left[\nabla f(x_k + \alpha p_k)' p_k \geq c_2 \nabla f(x_k)' p_k \right] \quad c_2 \in (c_1, 1)
\]

(the condition is **strong** if \(|\nabla f(x_k + \alpha p_k)' p_k| \leq c_2 |\nabla f(x_k)' p_k|\) is imposed)

• The curvature condition avoid values of \(\alpha\) that are too small, when \(f\) is still decaying fast (=very negative derivative)

• Usually \(c_1 = 0.9\) in (quasi-)Newton methods and \(c_1 = 0.1\) in the nonlinear CG method

• It is possible to prove that if \(f\) is continuously differentiable and \(f\) bounded below along the descent direction \(x_k + \alpha p_k, \alpha \geq 0\), the (strong) Wolfe conditions can be satisfied
THEOREM (ZOUTENDIJK)

Let \(f : \mathbb{R}^n \to \mathbb{R} \) be bounded below and differentiable in an open set \(\mathcal{N} \) containing the level set \(\mathcal{L} = \{ x : f(x) \leq f(x_0) \} \), and let \(\nabla f \) Lipschitz continuous on \(\mathcal{N} \), that is

\[
\| \nabla f(x_1) - \nabla f(x_2) \| \leq L \| x_1 - x_2 \|, \quad \forall x_1, x_2 \in \mathcal{N}
\]

for some \(L > 0 \). Any line search method with \(p_k \) a descent direction and \(\alpha_k \) satisfying the Wolfe conditions is such that

\[
\sum_{k=0}^{\infty} \cos^2(\theta_k) \| \nabla f(x_k) \|^2 < \infty, \quad \cos(\theta_k) = \frac{-\nabla f(x_k)'p_k}{\| \nabla f(x_k) \| \| p_k \|}
\]

- If we choose \(p_k \) such that \(\cos \theta_k \geq \delta > 0, \forall k \geq 0 \), then \(\lim_{k \to \infty} \| \nabla f(x_k) \| = 0. \)
• The condition $\cos \theta_k \geq \delta > 0, \forall k \geq 0$, holds for the steepest descent method.

• It also holds for (quasi-)Newton methods when $B_k \succ 0$ with uniformly bounded condition number.

• The convergence result show that the algorithm converges to a stationary point $\nabla f(x) = 0$.
In analyzing the speed of convergence of iterative algorithms, we refer to convergence rates. Let \(x_k : \mathbb{N} \rightarrow \mathbb{R}^n \) be a converging sequence, \(\lim_{k \to \infty} x_k = x^* \). We define

\[
\lim_{k \to \infty} \frac{\|x_{k+1} - x^*\|}{\|x_k - x^*\|} = r, \quad r \in (0, 1)
\]

linear convergence

\[
\frac{\|x_{k+1} - x^*\|}{\|x_k - x^*\|} = r_k, \quad \lim_{k \to \infty} r_k = 0
\]

superlinear convergence

\[
\lim_{k \to \infty} \frac{\|x_{k+1} - x^*\|}{\|x_k - x^*\|^2} > 0
\]

quadratic convergence

Convergence only relates to the asymptotic behavior of the algorithm. The transient is often more relevant, especially stopping tolerances are not small.
When \(f \) is twice differentiable and \(\nabla^2 f(x^*) \succ 0 \) we can show that **steepest descent** has the **linear convergence rate**

\[
f(x_{k+1}) - f(x^*) \leq r^2 (f(x_k) - f(x^*)), \quad \frac{\lambda_{\text{max}} - \lambda_{\text{min}}}{\lambda_{\text{max}} + \lambda_{\text{min}}} < r < 1
\]

where \(\lambda_{\text{max}}, \lambda_{\text{min}} \) are the max/min eigenvalues of \(\nabla^2 f(x^*) \)

When \(f \) is twice differentiable and \(\nabla^2 f(x^*) \succ 0 \) and \(x_0 \) is sufficiently close to \(x^* \) **Newton’s method** has the **quadratic convergence rate**

\[
\|x_{k+1} - x^*\| \leq \tilde{L}\|x_k - x^*\|^2, \quad \|\nabla f(x_{k+1})\| \leq 2L\|\nabla^2 f(x^*)^{-1}\|^2 \|\nabla f(x_k)\|^2
\]

while **quasi-Newton methods** have a **superlinear convergence rate**
Line Search Methods: Coordinate Descent

- **Coordinate descent** consists of successively optimizing only one coordinate x_{i_k} at each step k, $i_k \in \{1, \ldots, n\}$.

- The index i_k can be selected cyclically $i_{k+1} = [i_k \mod n] + 1$ or randomly.

- In case f is differentiable, the update is:

 $$x_{k+1} = x_k - \alpha_k \frac{\partial f(x_k)}{\partial x_{i_k}} e_{i_k}, \quad \alpha_k > 0, \quad e_i = \text{ith column of } I$$

- In case of perfect line search $x_{k+1} = \arg\min_\alpha f(x_k + \alpha e_{i_k})$.

- The method can be applied even if f is nonsmooth and some x_i discrete.

- Although $f(x^{k+1}) \leq f(x^k)$ the method may not converge to a local minimum.

- The method stops if there is no improvement in $f(x^k)$ after one full cycle.
We want to solve the **nonlinear least-squares** problem

\[
\min_x \frac{1}{2} \sum_{j=1}^{m} r_j^2(x) = \frac{1}{2} \|r(x)\|_2^2
\]

where each residual \(r_j : \mathbb{R}^n \rightarrow \mathbb{R} \) is smooth, \(\forall j = 1, \ldots, m \) (assume \(m \geq n \))

Let \(J(x) \) be the **Jacobian** associated with \(r(x) \)

\[
J(x) = \begin{bmatrix}
\nabla r_1(x)' \\
\vdots \\
\nabla r_m(x)'
\end{bmatrix}
\]

The gradient \(\nabla f(x) = \sum_{j=1}^{m} r_j(x) \nabla r_j(x) = J(x)'r(x) \), the Hessian is

\[
\nabla^2 f(x) = \sum_{j=1}^{m} \nabla r_j(x) \nabla r_j(x)' + r_j(x) \nabla^2 r_j(x) = J(x)'J(x) + \sum_{j=1}^{m} r_j(x) \nabla^2 r_j(x)
\]

Gauss-Newton method approximates \(\nabla^2 f(x_k) \approx J(x_k)'J(x_k) \)
Nonlinear least squares and Gauss-Newton method

- Gauss-Newton does not require computing the Hessian matrices $\nabla^2 r_j(x_k)$

\[
x_{k+1} = x_k + \alpha_k p_k, \quad p_k = -(J(x_k)' J(x_k))^{-1} J(x_k)' r(x_k)
\]

- In many problems $J(x_k)' J(x_k)$ dominates over the neglected term $\sum_{j=1}^{m} \nabla r_j(x_k) \nabla^2 r_j(x_k)$ close to x^*, so convergence speed can get very close to Newton method

- When $J(x_k)$ is full rank, p_k is a descent direction:

\[
p_k' \nabla f(x_k) = p_k' J(x_k)' r(x_k) = -p_k' (J(x_k)' J(x_k)) p_k = -\| J(x_k) p_k \|^2
\]

- Note that p_k can be obtained by solving the least-squares problem

\[
p_k = \arg \min_p \frac{1}{2} \| J(x_k) p + r(x_k) \|^2
\]

which is the linearized version of the problem at x_k, $r(x) \approx r(x_k) + J(x_k) p$
• Any technique can be used to solve each least-squares problem
• The Gauss-Newton (GN) method converges under mild assumptions
 \(\lim_{k \to \infty} \nabla f(x_k) = \lim_{k \to \infty} J(x_k)'r(x_k) = 0 \)

(Nocedal, Wright, 2006, Th. 10.1)

• The Levenberg-Marquardt (LM) method is a damped version of GN, based on selecting \(p_k \) by solving the regularized system

\[
p_k = -\left(\rho_k I + J(x_k)'J(x_k) \right)^{-1}J(x_k)'r(x_k)
\]

The parameter \(\rho_k \) can be selected at each iteration by simple rules. Note that LM \(\approx \) GN for \(\rho_k \ll 1 \), LM \(\approx \) gradient descent for \(\rho_k \gg 1 \).

The LM method can be reinterpreted also as a trust-region method.
• We have a data set of $N = 10000$ samples (u_k, y_k)

$$y_k = x_1^2 u_{1k} + x_1 x_2 u_{2k} - x_2 u_{3k}^2 + n_k$$

where $x_1 = 0.5$, $x_2 = -1$ are unknown and noise $n_k \sim N(0, \sigma^2)$, $\sigma = 0.01$

• We want to estimate the parameter vector x by minimizing

$$\min_x \frac{1}{2} \sum_{i=1}^{N} \left\| y_k - x_1^2 u_{1k} + x_1 x_2 u_{2k} - x_2 u_{3k}^2 \right\|_2^2$$

• Gauss-Newton method converges in 6 ms^2 after 8 iterations, with stopping tolerance

$$\left\| \nabla f(x_k) \right\| \leq 10^{-4}$$

Macbook 3 GHz Intel Core i7, MATLAB R2016b
The spread of Coronavirus COVID-19 can be modeled by the **logistic model**\(^3\)

\[
n(t) = \frac{K}{1 + Ae^{-rt}}
\]

where \(n(t)\) = number of confirmed infected at time \(t\) and \(K\) = final epidemic size

- We want to fit \((K, r, A)\) to data available for different countries\(^4\)\(^5\)

\[
\min_{K,r,A} \frac{1}{2} \sum_{j=1}^{m} \left\| n(t_j) - \frac{K}{1 + Ae^{-rt_j}} \right\|^2
\]

nonlinear least squares

- Here \(r_j = n(t_j) - \frac{K}{1 + Ae^{-rt_j}}\), \(\nabla r_j = \frac{1}{(1 + Ae^{-rt_j})^2} \left[\begin{array}{c} 1 + Ae^{-rt_j} \\ -Ke^{-rt_j} \\ KAte^{-rt_j} \end{array} \right] \)

\(^3\)See also (Batista, 2020) https://www.researchgate.net/publication/339240777

\(^5\)Data for Italy available at https://github.com/pcm-dpc/COVID-19
Results for China:

\[K = 80917.6142 \]
\[r = 0.2221 \]
\[A = 51.6394 \]

Results for Italy:

\[K = 59939.3989 \]
\[r = 0.2344 \]
\[A = 157.5456 \]

Problem solved using derivative-free Particle Swarm Optimization (Eberhart, Kennedy, 1995) via the pyswarm interface https://pythonhosted.org/pyswarm/
Reference:

• We consider the equality-constrained NLP problem

\[
\begin{align*}
\min & \quad f(x) \\
\text{s.t.} & \quad h(x) = 0
\end{align*}
\]

with \(f : \mathbb{R}^n \to \mathbb{R} \) and \(h : \mathbb{R}^n \to \mathbb{R}^m \) smooth functions.

• The Lagrangian function and its derivatives are

\[
\begin{align*}
\mathcal{L}(x, \nu) &= f(x) + \nu^t h(x) \\
\nabla_x \mathcal{L}(x, \nu) &= \nabla f(x) + A'(x) \nu, \quad A'(x) = [\nabla h_1(x) \ldots \nabla h_m(x)] \\
\nabla_{xx} \mathcal{L}(x, \nu) &= \nabla^2 f(x) + \sum_{i=1}^{m} \nu_i \nabla^2 h_i(x)
\end{align*}
\]

• Assume \(A(x) \) full row rank, \(d^t \nabla_{xx} \mathcal{L}(x, \nu) d > 0, \forall d \neq 0 \) such that \(A(x)d = 0 \)
• For all $\nu \in \mathbb{R}^m$, the original problem is equivalent to solving

$$
\begin{align*}
\min & \quad f(x) + \nu' h(x) = \mathcal{L}(x, \nu) \\
\text{s.t.} & \quad h(x) = 0
\end{align*}
$$

• Consider a pair (x_k, ν_k) and the quadratic approximation of the problem around x_k

$$
\begin{align*}
\min & \quad f(x_k) + \nu_k' h(x_k) + (\nabla f(x_k) + A'(x_k)\nu_k)' p + \frac{1}{2} p' \nabla^2_{xx} \mathcal{L}(x_k, \nu_k) p \\
\text{s.t.} & \quad h(x_k) + A(x_k)p = 0
\end{align*}
$$

• By exploiting $\nu_k' (h(x_k) + A(x_k)p) = 0$, the QP is equivalent to

$$
\begin{align*}
\min & \quad \frac{1}{2} p' \nabla^2_{xx} \mathcal{L}(x_k, \nu_k) p + \nabla f(x_k)' p \\
\text{s.t.} & \quad h(x_k) + A(x_k)p = 0
\end{align*}
$$
The optimality conditions for the QP are

\[
\begin{bmatrix}
\nabla^2_{xx} \mathcal{L}(x_k, \nu_k) & A'(x_k) \\
A(x_k) & 0
\end{bmatrix}
\begin{bmatrix}
p_k \\
\nu_{k+1}
\end{bmatrix}
=
\begin{bmatrix}
-\nabla f(x_k) \\
-h(x_k)
\end{bmatrix}
\]

From the solution \(p_k\) we set \(x_{k+1} = x_k + \alpha_k p_k\) (Newton’s step).

Also, we decided to update \(\nu_{k+1}\) as the vector of Lagrange multipliers of the approximated QP.

Sequential quadratic programming (SQP) for equality-constrained NLP’s iterates the above steps from an initial pair \((x_0, \nu_0)\) until convergence.

Note that in case \(h(x) = Ax - b\) we have \(\nabla^2_{xx} \mathcal{L}(x, \nu) = \nabla^2 f(x)\).
SQP FOR NLP WITH EQUALITY AND INEQUALITY CONSTRAINTS

- A similar reasoning applies to general NLP problems

\[
\begin{align*}
\min & \quad f(x) \\
\text{s.t.} & \quad g_i(x) \leq 0, \; i \in I \\
& \quad g_j(x) = 0, \; j \in E
\end{align*}
\]

with \(f : \mathbb{R}^n \to \mathbb{R}, \; g_i : \mathbb{R}^n \to \mathbb{R} \) smooth functions, \(\forall i = 1, \ldots, m \).

- The quadratic approximation is

\[
\begin{align*}
\min & \quad \frac{1}{2} p' \nabla^2_{xx} \mathcal{L}(x_k, \nu_k) p + \nabla f(x_k)'p \\
\text{s.t.} & \quad g_i(x_k) + \nabla g_i(x_k)'p \leq 0, \; i \in I \\
& \quad g_j(x_k) + \nabla g_j(x_k)'p = 0, \; j \in E
\end{align*}
\]

- We solve the QP, get the primal-dual solution \((p_k, \nu_{k+1})\), and update

\[x_{k+1} = x_k + \alpha_k p_k \]

- Several variants of the SQP method exist (including quasi-Newton methods)
References:

• Consider the **convex programming** problem

\[
\begin{align*}
\min & \quad f(x) \\
\text{s.t.} & \quad g_i(x) \leq 0, \ i = 1, \ldots, m \\
& \quad Ax = b
\end{align*}
\]

• Assumptions:
 - \(f, g_i \) convex and twice continuously differentiable
 - \(A \in \mathbb{R}^{p \times n} \) has \(\text{rank} \ A = p \)
 - an optimizer \(x^* \) exists and \(f^* = f(x^*) \in \mathbb{R} \)
 - the problem is strictly feasible

\[
\exists x \text{ dom } f : g_i(x) < 0, \ \forall i = 1, \ldots, m, \ Ax = b
\]

which ensures strong duality, i.e., \(f(x^*) = q(\lambda^*, \nu^*) \), \(q = \) dual function
• Denote by $I : \mathbb{R} \rightarrow \mathbb{R} \cup \{+\infty\}$ the **indicator function** of the negative reals ($I(\alpha) = 0$ if $\alpha \leq 0$, $I(\alpha) = +\infty$ if $\alpha > 0$). The problem can be rewritten as

$$\min f(x) + \sum_{i=1}^{m} I(g_i(x))$$

s.t. $Ax = b$

• If we approximate $I(\alpha)$ with the smooth **logarithmic barrier** function $-\frac{1}{t} \log(-\alpha), t > 0$, we get

$$\min f(x) - \frac{1}{t} \sum_{i=1}^{m} \log(-g_i(x))$$

s.t. $Ax = b$

• The larger t the better the approximation
The logarithmic barrier function

\[
\phi(x) = - \sum_{i=1}^{m} \log(-g_i(x))
\]

has the following properties:

- \(\text{dom } \phi = \{ x : g_i(x) < 0, \ i = 1, \ldots, m \} \)
- \(\phi \) is convex, since \(- \log\) is monotonic and \(g_i\) is convex
- \(\phi \) is twice continuously differentiable and

\[
\nabla \phi(x) = - \sum_{i=1}^{m} \frac{1}{g_i(x)} \nabla g_i(x)
\]

\[
\nabla^2 \phi(x) = \sum_{i=1}^{m} \frac{1}{g_i(x)^2} \nabla g_i(x) \nabla g_i(x)' - \sum_{i=1}^{m} \frac{1}{g_i(x)} \nabla^2 g_i(x)
\]
For \(t \geq 0 \) let \(x^*(t) \) be the optimizer of the approximated problem

\[
\min \quad tf(x) + \phi(x) \\
\text{s.t.} \quad Ax = b
\]

(assume for now that \(x^*(t) \) is unique for all \(t \))

We call **central path** the curve \(\{x^*(t)\}_{t>0} \)

Example: central path for the linear program

\[
\min \quad c'x \\
\text{s.t.} \quad Gx \leq g, \ g \in \mathbb{R}^5
\]

and level sets of \(\phi(x) \)
• The original problem satisfies the optimality conditions

\[\nabla f(x^*) + \sum_{i=1}^{m} \lambda_i^* \nabla g_i(x^*) + A' \nu^* = 0 \]

\[\lambda^* \geq 0, \ Ax^* = b, \ g_i(x^*) \leq 0, \lambda_i^* g_i(x^*) = 0 \]

• The approximated optimizer \(x^*(t) \) satisfies the optimality conditions

\[\nabla f(x^*(t)) - \sum_{i=1}^{m} \frac{1}{tg_i(x^*(t))} \nabla g_i(x^*(t)) + \frac{1}{t} A' w^*(t) = 0 \]

\[Ax^*(t) = b \]

where \(w^*(t) \) is the corresponding vector of Lagrange multipliers
• If we set $\lambda^*_i(t) \triangleq -\frac{1}{tg_i(x^*(t))}$, $\nu^*(t) = \frac{1}{t}w^*(t)$, for all $t > 0$ we have

$$\nabla f(x^*(t)) + \sum_{i=1}^{m} \lambda^*_i(t) \nabla g_i(x^*(t)) + A'\nu^*(t) = 0, \quad Ax^*(t) = b$$

$$\lambda^*_i(t) \geq 0, \quad \lambda^*_i g_i(x^*(t)) = -\frac{1}{t}$$

• These are the same KKT conditions of the original problem, except for the relaxation of the complementary slackness condition to $\lambda^*_i g_i(x^*(t)) = -\frac{1}{t}$
The dual function \(q \) of the original problem evaluated at \(\lambda^*(t), \nu^*(t) \) is

\[
q(\lambda^*(t), \nu^*(t)) = \min_x \mathcal{L}(x, \lambda^*(t), \nu^*(t))
\]

\[
= \min_x f(x) + \sum_{i=1}^m \lambda_i^*(t) g_i(x) + (Ax - b)' \nu^*(t)
\]

\[
= f(x^*(t)) - \frac{m}{t}
\]

as \(x^*(t) \) also satisfies the optimality condition \(\nabla_x \mathcal{L}(x, \lambda^*(t), \nu^*(t)) = 0 \)

Since \(q(\lambda^*(t), \nu^*(t)) \leq f(x^*) \), and since \(f(x^*) \leq f(x^*(t)) \) as \(x^*(t) \) is feasible, we get

\[
f(x^*(t)) - \frac{m}{t} \leq f(x^*) \leq f(x^*(t))
\]

which confirms the intuition \(f(x^*(t)) \to f(x^*) \) as \(t \to +\infty \)
• Consider the **feasibility problem**

$$\text{find } x \text{ such that } g_i(x) \leq 0, \ i = 1, \ldots, m, \ Ax = b$$

• The **basic phase I method** consists of solving the following convex problem with $n + 1$ variables

$$(x_0^*, s_0^*) = \arg \min_{x,s} \quad s$$

s.t. $$g_i(x) - s \leq 0, \ i = 1, \ldots, m$$

$$Ax = b$$

from any initial guess x_0 such that $Ax_0 = b, s_0 > \max g_i(x_0)$

• If $s_0^* < 0$ then x_0^* is strictly feasible for the original problem
• **Barrier method**: Given an initial strictly feasible x, execute:

0. Let $t_0 > 0$, $t = t_0$, $\beta > 1$, tolerance $\epsilon > 0$

1. Compute $x \leftarrow \text{arg min}_{x} \ t f(x) + \phi(x)$ (centering step)
 \[\text{s.t. } Ax = b \]

2. If $\frac{m}{t} \leq \epsilon$ stop

3. Otherwise increase $t \leftarrow \beta t$ and go to 1

• Newton’s method solves the **centering step**, with the last x as initial guess

• Tradeoff: a large β makes fewer centering steps but more Newton iterations at each step. Typically $\beta = 10 \div 20$

• The algorithm terminates with $f(x) - f^*(x) \leq \frac{m}{t} \leq \epsilon$ in exactly $\left\lceil \frac{\log \frac{m}{\epsilon t_0}}{\log \beta} \right\rceil$ centering steps + computation of initial $x^*(t_0)$
• Consider the general NLP problem

\[
\begin{aligned}
\min & \quad f(x) \\
\text{s.t.} & \quad g(x) \leq 0 \\
& \quad h(x) = 0
\end{aligned}
\]

with \(f : \mathbb{R}^n \rightarrow \mathbb{R} \), \(g : \mathbb{R}^n \rightarrow \mathbb{R}^m \), \(h : \mathbb{R}^n \rightarrow \mathbb{R}^p \) smooth functions.

• The optimality condition for the NLP with slacks can be written as

\[
\begin{align*}
\nabla f(x) + \nabla g(x)'z + \nabla h(x)'y &= 0 \\
g(x) + s &= 0 \\
h(x) &= 0 \\
SZe &= 0 \\
s, z &\geq 0
\end{align*}
\]

\(S = \text{diag}(s) \)

\(Z = \text{diag}(z) \)

\(e = [1 \ldots 1]' \)
Let us now relax the optimality conditions as

\[\nabla f(x) + \nabla g(x)^t z + \nabla h(x)^t y = 0 \]
\[g(x) + s = 0 \]
\[h(x) = 0 \quad \mu \geq 0 \]
\[SZe = \mu e \]
\[s, z \geq 0 \]

Let \(x^*(\mu), s^*(\mu), y^*(\mu), z^*(\mu) \) be the solution of the relaxed KKT equations.

For \(\mu > 0 \) the curve \((x^*(\mu), s^*(\mu), y^*(\mu), z^*(\mu)) \) is the primal-dual central path.

Note that \(\mu = s^*_i(\mu)z^*_i(\mu) = -g_i(x^*(\mu))z^*_i(\mu) = \frac{1}{t} \)

For \(\mu \to 0 \), under suitable assumptions, the central path converges to the primal/dual optimizer \((x^*, s^*, y^*, z^*) \)
• Primal-dual interior point methods apply a Newton step to solve the system of relaxed KKT equations with decreasing values of μ.

• They are more efficient than barrier method when high accuracy is needed.

• Often exhibit superlinear asymptotic convergence.

• They can start at infeasible points.
Let us consider the LP

$$\begin{align*}
\min_x & \quad c'x \\
\text{s.t.} & \quad Ax \leq b \\
& \quad Ex = f
\end{align*}$$

By introducing the slack vector $s = b - Ax$, the KKT conditions

$$\begin{align*}
c + A'z + E'y &= 0 \\
Ax + s &= b \\
Ex &= f \\
z_i s_i &= 0, \ i = 1, \ldots, m \\
z, s &\geq 0
\end{align*}$$

can be rewritten as

$$F(x, z, y, s) = \begin{bmatrix}
A'z + E'y + c \\
Ax + s - b \\
Ex - f \\
ZSe
\end{bmatrix} = 0, \quad z, s \geq 0$$

where $Z = \text{diag}(z_1, \ldots, z_m)$, $S = \text{diag}(s_1, \ldots, s_m)$, $e = [1 \ldots 1]'$
• We want to solve the nonlinear system \(F(x, z, y, s) = 0 \) by Newton’s method

• Starting from a candidate solution \(z > 0, s > 0, x, y, \) Newton’s step \(\Delta x, \Delta z, \Delta y, \Delta s \) is given by solving the linear system

\[
0 = F(x, z, y, s) + \nabla F(x, z, y, s) \begin{bmatrix} \Delta x \\ \Delta z \\ \Delta y \\ \Delta s \end{bmatrix}
\]

• Let \(\begin{bmatrix} r^c \\ r^b \\ r^f \end{bmatrix} = \begin{bmatrix} A'z + E'y + c \\ Ax + s - b \\ Ex - f \end{bmatrix} \). The linear system to solve is

\[
\begin{bmatrix} 0 & A' & E' & 0 \\ A & 0 & 0 & I \\ E & 0 & 0 & 0 \\ 0 & S & 0 & Z \end{bmatrix} \begin{bmatrix} \Delta x \\ \Delta z \\ \Delta y \\ \Delta s \end{bmatrix} = \begin{bmatrix} -r^c \\ -r^b \\ -r^f \\ -ZSe \end{bmatrix}
\]

• To preserve \(z, s \geq 0 \) we set \(\begin{bmatrix} x \\ z \\ y \\ s \end{bmatrix} \leftarrow \begin{bmatrix} x \\ z \\ y \\ s \end{bmatrix} + \alpha \begin{bmatrix} \Delta x \\ \Delta z \\ \Delta y \\ \Delta s \end{bmatrix} \) with \(\alpha \) sufficiently small
• To prevent excessively small α, given the current $x_k, s_k, \lambda_k, x_k, s_k > 0$, primal-dual interior-point method solve instead the relaxed system

$$\begin{bmatrix}
0 & A' & E' & 0 \\
A & 0 & 0 & I \\
E & 0 & 0 & 0 \\
0 & S_k & 0 & Z_k
\end{bmatrix}
\begin{bmatrix}
\Delta x_k \\
\Delta z_k \\
\Delta y_k \\
\Delta s_k
\end{bmatrix}
=
\begin{bmatrix}
-r_c^k \\
-r_b^k \\
-r_f^k \\
-Z_k S_k e + \sigma_k \mu_k e
\end{bmatrix}$$

where $\mu_k = \frac{1}{m} \pi_k' s_k$ is the current duality measure and $\sigma_k \in [0, 1]$ is the centering parameter, that is the factor we want to reduce the current μ_k

• The performance of the method depends on how α_k and σ_k are chosen

• Mehrotra’s predictor-corrector algorithm is one of the most used IP methods for LP (Mehrotra, 1992)

• Homogeneous and self-dual formulations are useful to easily recognize infeasibility and unboundedness (Yu, Todd, Mizuno, 1994) (Xu, Hung, Ye, 1996)
• Consider the convex QP

\[
\begin{align*}
\min_x & \quad \frac{1}{2} x' Q x + c' x \\
\text{s.t.} & \quad A x \leq b \quad Q = Q' \succeq 0 \\
& \quad E x = f
\end{align*}
\]

• By introducing the slack vector \(s = b - A x \), the KKT conditions

\[
Q x + c + E' y + A' z = 0 \\
E x = f \\
A x + s = b \\
z_i s_i = 0, \ i = 1, \ldots, m \\
z, s \geq 0
\]

can be rewritten as

\[
0 = F(x, z, y, s) = \begin{bmatrix}
Q x + E' y + A' z + c \\
E x - f \\
A x + s - b \\
Z S e
\end{bmatrix} \triangleq \begin{bmatrix}
r_Q \\
r_E \\
r_A \\
r_S
\end{bmatrix}, \quad z, s \geq 0
\]
PRIMAL-DUAL INTERIOR-POINT METHOD FOR QP

(Nocedal, Wright, 2006) (Rao, Wright, Rawlings, 1998)

• Start from a candidate solution $z > 0$, $s > 0$, x, y

• As for LP, we want to solve $F(x, z, y, s) = 0$ by Newton’s method

• We use a variant of Mehrotra’s predictor-corrector algorithm (Mehrotra, 1992)

• First, we solve the linear system (predictor step)

$$\begin{bmatrix}
Q & E' & A' & 0 \\
E & 0 & 0 & 0 \\
A & 0 & 0 & I \\
0 & 0 & S & Z
\end{bmatrix}
\begin{bmatrix}
\Delta x_{\text{aff}} \\
\Delta y_{\text{aff}} \\
\Delta z_{\text{aff}} \\
\Delta s_{\text{aff}}
\end{bmatrix}
=
\begin{bmatrix}
-rQ \\
-rE \\
-rA \\
-rS
\end{bmatrix}
$$

\[\nabla F\]
• Next, we solve the linear system (centering-corrector step)

\[
\begin{bmatrix}
Q & E' & A' & 0 \\
E & 0 & 0 & 0 \\
A & 0 & 0 & I \\
0 & 0 & S & Z \\
\end{bmatrix}
\begin{bmatrix}
\Delta x_{cc} \\
\Delta y_{cc} \\
\Delta z_{cc} \\
\Delta s_{cc} \\
\end{bmatrix} =
\begin{bmatrix}
0 \\
0 \\
0 \\
-\Delta S_{aff} \Delta Z_{aff} e + \sigma \mu e \\
\end{bmatrix}
\]

where the centering parameter \(\sigma \in [0, 1) \) is chosen as

\[
\alpha_{aff} = \arg \max_\alpha \left\{ \alpha \in [0, 1] : \begin{bmatrix} z + \alpha \Delta z_{aff} \\ s + \alpha \Delta s_{aff} \end{bmatrix} \geq 0 \right\}
\]

\[
\mu_{aff} = (z + \alpha_{aff} \Delta z_{aff})' (s + \alpha_{aff} \Delta s_{aff}) / m
\]

\[
\mu = z' s / m \quad \leftarrow \text{duality gap}
\]

\[
\sigma = (\mu_{aff} / \mu)^3
\]

• Note: the same left-hand-side matrix is used to solve both linear systems. So such a matrix can be factorized just once at each IP iteration.
Now set

\[\Delta x = \Delta x_{\text{aff}} + \Delta x_{\text{cc}}, \quad \Delta y = \Delta y_{\text{aff}} + \Delta y_{\text{cc}} \]
\[\Delta z = \Delta z_{\text{aff}} + \Delta z_{\text{cc}}, \quad \Delta s = \Delta s_{\text{aff}} + \Delta s_{\text{cc}} \]

and choose \(\alpha_{\text{max}} = \arg \max \{ \alpha \in [0, 1] : \left[\frac{z + \alpha \Delta z}{s + \alpha \Delta s} \right] \geq 0 \} \), so that \(z, s \) remain nonnegative.

The actual step-length is chosen as \(\alpha = \gamma \alpha_{\text{max}} \), with the step-factor \(\gamma \in (0, 1) \) close to 1, see (Mehrotra, 1992).

For even better choices of the step-length \(\alpha \) see (Curtis, Nocedal, 2007).

For reducing the number of factorizations, execute multiple corrections steps (Gondzio, 1996).

Given a starting point \(\bar{x}, \bar{y}, \bar{z}, \bar{s} \), a good initial guess is to solve for \(\Delta z_{\text{aff}}, \Delta s_{\text{aff}} \) and set

\[x_0 = \bar{x}, \quad y_0 = \bar{y}, \quad z_0 = \max\{1, |\bar{z} + \Delta z_{\text{aff}}|\}, \quad s_0 = \max\{1, |\bar{s} + \Delta s_{\text{aff}}|\} \]
- Let $\Delta \tilde{z} = Z^{-1} \Delta z$. We can eliminate $\Delta s = Z^{-1} r_S - S \Delta \tilde{z}$ and get the system

\[
\begin{bmatrix}
Q & E' & A' Z \\
E & 0 & 0 \\
A & 0 & -S
\end{bmatrix}
\begin{bmatrix}
\Delta x \\
\Delta y \\
\Delta \tilde{z}
\end{bmatrix}
=
\begin{bmatrix}
-r_Q \\
r_E \\
Z^{-1} r_S - r_A
\end{bmatrix}
\]

- The above system can be made symmetric by multiplying the last rows by Z

- We can further easily eliminate $Z^{-1} \Delta z = S^{-1} (A \Delta x + r_A - Z^{-1} r_S)$ and get

\[
\begin{bmatrix}
Q + A' Z S^{-1} A & E' \\
E & 0
\end{bmatrix}
\begin{bmatrix}
\Delta x \\
\Delta y
\end{bmatrix}
=
\begin{bmatrix}
-r_Q + A' S^{-1} (r_S - Z r_A) \\
r_E
\end{bmatrix}
\]

- Note that $Z^{-1} S$ is positive and diagonal.
EXAMPLE: NLP SOLUTION VIA IPOPT & CASADI

- **IPOPT** (Interior Point OPTimizer⁶) is a software package based on an IP method to solve the NLP (Wächter, Biegler, 2006)

 \[
 \min_x f(x) \\
 \text{s.t. } g_\ell \leq g(x) \leq g_u \\
 x_\ell \leq x \leq x_u
 \]

- **CasADi⁷** is a modeling language for NLP problems. It implements automatic differentiation for computing gradients (Andersson, Gillis, Horn, Rawlings, Diehl, 2019)

- CasADi + IPOPT greatly simplifies formulating and solving nonlinear optimization problems via interior-point methods in MATLAB, python, or C++

⁶https://coin-or.github.io/Ipopt/
⁷https://web.casadi.org/
Let us minimize the course-logo function

\[f(x, y) = -e^{-(x^2+y^2)} + 0.3 \sin \left(\frac{1}{10} x^3 + y^2 \right) + 1.2 \]

MATLAB

```matlab
import casadi.*
x=SX.sym('x');
y=SX.sym('y');
f=-exp(-(x^2+y^2))+.3*sin(x^3/10+y^2)+1.2;
P=struct('f',f,'x',vertcat(x,y));
F=nlpsol('F','ipopt',P);
r=F('x0',[-1;-1]);
xopt=full(r.x);
fopt=full(r.f);
```

Python

```python
from casadi import *
x=SX.sym('x')
y=SX.sym('y')
f=-exp(-(x**2+y**2))+.3*sin(x**3/10+y**2)+1.2
P=dict(x=vertcat(x,y), f=f)
F=nlpsol('F','ipopt',P)
r=F(x0=[-1,-1])
xopt=r['x'].full()
fopt=r['f'].full()
```

• Optimizer \(x^* = 0, y^* = 0 \), optimum \(f^* = 0.2 \)
Example: NLP Solution Via IPOPT & CasADi

Number of objective function evaluations = 18
Number of objective gradient evaluations = 11
Number of equality constraint evaluations = 0
Number of inequality constraint evaluations = 0
Number of equality constraint Jacobian evaluations = 0
Number of inequality constraint Jacobian evaluations = 0
Number of Lagrangian Hessian evaluations = 10

- Let’s add the constraint

\[1 \leq (x + 2)^2 - \frac{1}{2}y^3 \leq 3 \]

```matlab
% Let's add the constraint

function g = objective(x, y)
    g = (x+2)^2 - y^3/2;
end

P = struct('f', f, 'x', [x; y], 'g', g);
F = nlpsol('F', 'ipopt', P);
r = F('x0', [-1; -1], 'ubg', 3, 'lbg', 1);
xopt = full(r.x);
fopt = full(r.f);
lam_g_opt = full(r.lam_g);
```

MATLAB

- New optimizer \(x^* = -0.2679 \), \(y^* = 0 \), optimum \(f^* = 0.2687 \)
• **Caveat**: the NLP is non convex.

• If we start from $x_0 = -2, y_0 = -2$ we get the different local minimum

$$x^* = -1.5078, y^* = -1.7668, \text{ optimum } f^* = 1.3019!$$

• If function/constraints are not convex, one may need to test different initial conditions, or switch to **global optimization** methods