UNGONSTRAINED NONLINEAR OPTIMIZATION

Reference:

J.Nocedal and S.J. Wright, "Numerical Optimization," 2006. Chapter 3

UNCONSTRAINED NONLINEAR OPTIMIZATION METHODS

- For an arbitrary smooth function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ we want to to solve the unconstrained nonlinear programming problem

```
min
```

- There are fundamentally two classes of iterative methods:
- line-search methods choose a descent direction p_{k}, search a suitable scalar $\alpha_{k}>0$ such that $f\left(x_{k}+\alpha_{k} p_{k}\right)<f\left(x_{k}\right)$, and set $x_{k+1}=x_{k}+\alpha_{k} p_{k}$
- trust-region methods compute a quadratic approximation $q(x)$ of f around x_{k}, solve

$$
p_{k}=\arg \min _{p:\|p\|_{2} \leq \Delta} q\left(x_{k}+p\right)
$$

where the size Δ of the "trust region" of the model is shrunk until $f\left(x_{k}+p_{k}\right)<f\left(x_{k}\right)$, and set and set $x_{k+1}=x_{k}+p_{k}$

- The above methods converge to a local minimum (a global one if f convex)

LINE SEARCH METHODS: STEEPEST DESGENT

- Steepest descent is the most obvious method, as it picks up p_{k} orthogonal to the level sets of f

$$
\begin{gathered}
p_{k}=-\nabla f\left(x_{k}\right) \\
x_{k+1}=x_{k}-\alpha_{k} \nabla f\left(x_{k}\right)
\end{gathered}
$$

- From Taylor's theorem

$$
f\left(x_{k}+\alpha p_{k}\right)=f\left(x_{k}\right)-\alpha\left\|\nabla f\left(x_{k}\right)\right\|_{2}^{2}+\alpha^{2} p_{k}^{\prime} \nabla^{2} f\left(x_{k}+t \alpha p_{k}\right) p_{k}, t \in(0,1)
$$

- Note that the Hessian of f is not required to compute p_{k}
- The method can be very slow to converge

LINE SEARCH METHODS: NEWTON'S METHOD

- Newton's method chooses $p_{k}=-\left(\nabla^{2} f\left(x_{k}\right)\right)^{-1} \nabla f\left(x_{k}\right)$ (Newton's direction)

$$
x_{k+1}=x_{k}-\alpha_{k}\left(\nabla^{2} f\left(x_{k}\right)\right)^{-1} \nabla f\left(x_{k}\right)
$$

- Newton's direction provides the minimum of the quadratic Taylor's approximation q of f at x_{k} :

$$
q\left(x_{k}+p\right)=f\left(x_{k}\right)+\nabla f\left(x_{k}\right)^{\prime} p+\frac{1}{2} p^{\prime} \nabla^{2} f\left(x_{k}\right) p
$$

- If $\nabla^{2} f\left(x_{k}\right) \succ 0$ then for some $\sigma_{k}>0$

$$
\nabla f\left(x_{k}\right)^{\prime} p_{k}=-\nabla f\left(x_{k}\right)^{\prime}\left(\nabla^{2} f\left(x_{k}\right)\right)^{-1} \nabla f\left(x_{k}\right) \leq-\sigma_{k}\left\|p_{k}\right\|_{2}^{2}
$$

so from Taylor's theorem we have $f\left(x_{k}+\alpha p_{k}\right)<f\left(x_{k}\right)$ for α small enough

LINE SEARCH METHODS: NEWTON'S METHOD

- The method converges very fast, especially close to x^{*}, where the function f and its quadratic approximation tend to coincide
- For $\alpha_{k} \equiv 1$ we have pure Newton's method. However line search over α is required to ensure convergence
- In case $\nabla^{2} f\left(x_{k}\right)$ is not positive definite, a possibility is to use instead $\nabla^{2} f\left(x_{k}\right)+\operatorname{diag}\left(\delta_{k}\right)$.

For example δ_{k} can be computed during a Cholesky factorization to make intermediate diagonal entries $\geq \epsilon$ for some $\epsilon>0$

LINE SEARCH METHODS: QUASI NEWTON METHODS

- Newton's method requires computing $\nabla^{2} f\left(x_{k}\right)$, which could be expensive
- Quasi-Newton methods replace $\nabla^{2} f\left(x_{k}\right)$ with a matrix B_{k} which is easier to compute, satisfying the secant equation

$$
B_{k+1} s_{k}=y_{k}, \text { where } s_{k}=x_{k+1}-x_{k}, y_{k}=\nabla f\left(x_{k+1}\right)-\nabla f\left(x_{k}\right)
$$

and set $p_{k}=-B_{k}^{-1} \nabla f\left(x_{k}\right)$

- The BFGS formula (Broyden, Fletcher, Goldfarb, and Shanno) updates

$$
B_{k+1}=B_{k}-\frac{B_{k} s_{k} s_{k}^{\prime} B_{k}}{s_{k}^{\prime} B_{k} s_{k}}+\frac{y_{k} y_{k}^{\prime}}{y_{k}^{\prime} s_{k}}
$$

where $B_{k} \succ 0$ if $B_{0} \succ 0$ and $s_{k}^{\prime} y_{k}>0$ for all k

LINE SEARCH METHODS: QUASI-NEWTON METHODS

- Since B_{k+1} differs from B_{k} by two one-rank updates, we can update a factorization of B_{k} recursively.
- In alternative, one can avoid B_{k} and directly update $H_{k}=B_{k}^{-1}$

$$
H_{k+1}=H_{k}+\frac{s_{k}^{\prime} y_{k}+y_{k}^{\prime} H_{k} y_{k}}{\left(s_{k}^{\prime} y_{k}\right)^{2}} s_{k} s_{k}^{\prime}-\frac{H_{k} y_{k} s_{k}^{\prime}+s_{k} y_{k}^{\prime} H_{k}}{s_{k}^{\prime} y_{k}}
$$

- For large-scale problems, limited-memory BFGS only stores a finite number m of past values of $\left(s_{k}, y_{k}\right)$ (usually $m<10$) and directly computes the descent direction $p_{k}=-H_{k} \nabla f\left(x_{k}\right)$ without storing H_{k}

LINE SEARCH METHODS: NONLINEAR CONJUGATE-GRADIENT

- The nonlinear conjugate gradient (CG) method ${ }^{1}$ updates p_{k} as follows:

$$
\begin{aligned}
\beta_{k} & =\frac{\left\|\nabla f\left(x_{k+1}\right)\right\|_{2}^{2}}{\left\|\nabla f\left(x_{k}\right)\right\|_{2}^{2}} \\
p_{k+1} & =-\nabla f\left(x_{k+1}\right)+\beta_{k} p_{k}, \text { with } p_{0}=-\nabla f\left(x_{0}\right)
\end{aligned}
$$

- The method does not requires the storage of matrices
- The method is almost as simple as steepest descent but usually more efficient, although it does not converge as fast as (quasi-)Newton methods
- As for steepest descent, nonlinear CG may be sensitive to problem scaling

$$
{ }^{1} \text { Vectors } s_{1}, \ldots, s_{n} \neq 0 \text { of } \mathbb{R}^{n} \text { are conjugate to a matrix } G \succ 0 \text { if } s_{i}^{\prime} G s_{j}=0, \forall i \neq j
$$

LINE SEARCH

- Given a descent direction p_{k}, ideally one should choose $x_{k+1}=x_{k}+\alpha_{k} p_{k}$ with

$$
\alpha_{k}=\arg \min _{\alpha>0} f\left(x_{k}+\alpha p_{k}\right)
$$

- Such a scalar nonlinear optimization may be difficult to solve and require a lot of evaluations of f, so we look for simpler methods
- Simply imposing $f\left(x_{k}+\alpha_{k} p_{k}\right)<f\left(x_{k}\right)$ may not work, as the improvement may become smaller and smaller as k grows
- Sufficient decrease is provided by satisfying Armijo condition

$$
f\left(x_{k}+\alpha p_{k}\right) \leq f\left(x_{k}\right)+c_{1} \alpha \nabla f\left(x_{k}\right)^{\prime} p_{k} \quad c_{1} \in(0,1)
$$

where usually c_{1} is small (e.g., $c_{1}=10^{-4}$)

BAGKTRACKING LINE SEARCH

- The following is a simple practical algorithm for selecting a step size α_{k} satisfying Armijo formula:

```
Choose \(\bar{\alpha}>0, \rho \in(0,1), c \in(0,1)\). Set \(\alpha=\bar{\alpha}\).
Repeat until \(f\left(x_{k}+\alpha p_{k}\right) \leq f\left(x_{k}\right)+c \alpha \nabla f\left(x_{k}\right)^{\prime} p_{k}\)
    \(\alpha \leftarrow \rho \alpha\)
end repeat
Set \(\alpha_{k}=\alpha\).
```

- Possible choices are $\bar{\alpha}=1$ (e.g., in Newton's method) and $\rho=\frac{1}{2}$ (bisection)

LINE SEARCH

- Wolfe conditions include Armijo condition + the curvature condition

$$
\frac{d f\left(x_{k}+\alpha p_{k}\right)}{d \alpha}=\left|\nabla f\left(x_{k}+\alpha p_{k}\right)^{\prime} p_{k} \geq c_{2} \nabla f\left(x_{k}\right)^{\prime} p_{k}\right| \quad c_{2} \in\left(c_{1}, 1\right)
$$

(the condition is strong if $\left|\nabla f\left(x_{k}+\alpha p_{k}\right)^{\prime} p_{k}\right| \leq c_{2}\left|\nabla f\left(x_{k}\right)^{\prime} p_{k}\right|$ is imposed)

- The curvature condition avoid values of α that are too small, when f is still decaying fast (=very negative derivative)
- Usually $c_{2}=0.9$ in (quasi-)Newton methods and $c_{2}=0.1$ in the nonlinear CG method

- It is possible to prove that if f is continuously differentiable and f bounded below along the descent direction $x_{k}+\alpha p_{k}, \alpha \geq 0$, the (strong) Wolfe conditions can be satisfied

LINE SEARCH - CONVERGENGE RESULT

THEOREM [ZOUTENDIJK]

Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be bounded below and differentiable in an open set \mathcal{N} containing the level set $\mathcal{L}=\left\{x: f(x) \leq f\left(x_{0}\right)\right\}$, and let ∇f Lipschitz continuous on \mathcal{N}, that is

$$
\left\|\nabla f\left(x_{1}\right)-\nabla f\left(x_{2}\right)\right\| \leq L\left\|x_{1}-x_{2}\right\|, \forall x_{1}, x_{2} \in \mathcal{N}
$$

for some $L>0$. Any line search method with p_{k} a descent direction and α_{k} satisfying the Wolfe conditions is such that

$$
\sum_{k=0}^{\infty} \cos ^{2}\left(\theta_{k}\right)\left\|\nabla f\left(x_{k}\right)\right\|^{2}<\infty, \quad \cos \left(\theta_{k}\right)=\frac{-\nabla f\left(x_{k}\right)^{\prime} p_{k}}{\left\|\nabla f\left(x_{k}\right)\right\|\left\|p_{k}\right\|}
$$

- If we choose p_{k} such that $\cos \theta_{k} \geq \delta>0, \forall k \geq 0$, then $\lim _{k \rightarrow \infty}\left\|\nabla f\left(x_{k}\right)\right\|=0$.

LINE SEARCH - CONVERGENCE RATE

- The condition $\cos \theta_{k} \geq \delta>0, \forall k \geq 0$, holds for the steepest descent method
- It also holds for (quasi-)Newton methods when $B_{k} \succ 0$ with uniformly bounded condition number
- The convergence result show that the algorithm converges to a stationary point $\nabla f(x)=0$

CONVERGENGE RATES

- In analyzing the speed of convergence of iterative algorithms, we refer to convergence rates. Let $x_{k}: \mathbb{N} \rightarrow \mathbb{R}^{n}$ be a converging sequence, $\lim _{k \rightarrow \infty} x_{k}=x^{*}$. We define

$$
\begin{aligned}
\lim _{k \rightarrow \infty} \frac{\left\|x_{k+1}-x^{*}\right\|}{\left\|x_{k}-x^{*}\right\|}=r, r \in(0,1) & \text { linear convergence } \\
\frac{\left\|x_{k+1}-x^{*}\right\|}{\left\|x_{k}-x^{*}\right\|}=r_{k}, \lim _{k \rightarrow \infty} r_{k}=0 & \text { superlinear convergence } \\
\lim _{k \rightarrow \infty} \frac{\left\|x_{k+1}-x^{*}\right\|}{\left\|x_{k}-x^{*}\right\|^{2}}>0 & \text { quadratic convergence }
\end{aligned}
$$

- Convergence only relates to the asymptotic behavior of the algorithm. The transient is often more relevant, especially stopping tolerances are not small

LINE SEARCH - CONVERGENGE RATE

- When f is twice differentiable and $\nabla^{2} f\left(x^{*}\right) \succ 0$ we can show that steepest descent has the linear convergence rate

$$
f\left(x_{k+1}\right)-f\left(x^{*}\right) \leq r^{2}\left(f\left(x_{k}\right)-f\left(x^{*}\right)\right), \quad \frac{\lambda \max -\lambda \min }{\lambda \max +\lambda \min }<r<1
$$

where $\lambda \max , \lambda$ min are the $m a x / m i n$ eigenvalues of $\nabla^{2} f\left(x^{*}\right)$

- When f is twice differentiable and $\nabla^{2} f\left(x^{*}\right) \succ 0$ and x_{0} is sufficiently close to x^{*} Newton's method has the quadratic convergence rate

$$
\left\|x_{k+1}-x^{*}\right\| \leq \tilde{L}\left\|x_{k}-x^{*}\right\|^{2}, \quad\left\|\nabla f\left(x_{k+1}\right)\right\| \leq 2 L\left\|\nabla^{2} f\left(x^{*}\right)^{-1}\right\|^{2}\left\|\nabla f\left(x_{k}\right)\right\|^{2}
$$

while quasi-Newton methods have a superlinear convergence rate

LINE SEARCH METHODS: COORDINATE DESGENT

- Coordinate descent consists of successively optimizing only one coordinate $x_{i_{k}}$ at each step $k, i_{k} \in\{1, \ldots, n\}$
- The index i_{k} can be selected cyclically $i_{k+1}=\left[i_{k} \bmod n\right]+1$ or randomly
- In case f is differentiable, the update is

$$
x_{k+1}=x_{k}-\alpha_{k} \frac{\partial f\left(x_{k}\right)}{\partial x_{i_{k}}} e_{i_{k}}, \quad \alpha_{k}>0, \quad e_{i}=i \text { th column of } I
$$

- In case of perfect line search $x_{k+1}=\arg \min _{\alpha} f\left(x_{k}+\alpha e_{i_{k}}\right)$
- The method can be applied even if f is nonsmooth and some x_{i} discrete
- Although $f\left(x^{k+1}\right) \leq f\left(x^{k}\right)$ the method may not converge to a local minimum
- The method stops if there is no improvement in $f\left(x^{k}\right)$ after one full cycle

NONLINEAR LEAST SQUARES AND GAUSS-NEWTON METHOD

- We want to solve the nonlinear least-squares problem

$$
\min _{x} \frac{1}{2} \sum_{j=1}^{m} r_{j}^{2}(x) \quad=\frac{1}{2}\|r(x)\|_{2}^{2}
$$

where each residual $r_{j}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is smooth, $\forall j=1, \ldots, m$ (assume $m \geq n$)

- Let $J(x)$ be the Jacobian associated with $r(x)$

$$
J(x)=\left[\begin{array}{c}
\nabla r_{1}(x)^{\prime} \\
\vdots \\
\nabla r_{m}(x)^{\prime}
\end{array}\right]
$$

- The gradient $\nabla f(x)=\sum_{j=1}^{m} r_{j}(x) \nabla r_{j}(x)=J(x)^{\prime} r(x)$, the Hessian is

$$
\nabla^{2} f(x)=\sum_{j=1}^{m} \nabla r_{j}(x) \nabla r_{j}(x)^{\prime}+r_{j}(x) \nabla^{2} r_{j}(x)=J(x)^{\prime} J(x)+\sum_{j=1}^{m} r_{j}(x) \nabla^{2} r_{j}(x)
$$

- Gauss-Newton method approximates $\nabla^{2} f\left(x_{k}\right) \approx J\left(x_{k}\right)^{\prime} J\left(x_{k}\right)$

NONLINEAR LEAST SQUARES AND GAUSS-NEWTON METHOD

- Gauss-Newton does not require computing the Hessian matrices $\nabla^{2} r_{j}\left(x_{k}\right)$

$$
x_{k+1}=x_{k}+\alpha_{k} p_{k}, \quad p_{k}=-\left(J\left(x_{k}\right)^{\prime} J\left(x_{k}\right)\right)^{-1} J\left(x_{k}\right)^{\prime} r\left(x_{k}\right)
$$

- In many problems $J\left(x_{k}\right)^{\prime} J\left(x_{k}\right)$ dominates over the neglected term $\sum_{j=1}^{m} \nabla r_{j}\left(x_{k}\right) \nabla^{2} r_{j}\left(x_{k}\right)$ close to x^{*}, so convergence speed can get very close to Newton method
- When $J\left(x_{k}\right)$ is full rank, p_{k} is a descent direction:

$$
p_{k}^{\prime} \nabla f\left(x_{k}\right)=p_{k}^{\prime} J\left(x_{k}\right)^{\prime} r\left(x_{k}\right)=-p_{k}^{\prime}\left(J\left(x_{k}\right)^{\prime} J\left(x_{k}\right)\right) p_{k}=-\left\|J\left(x_{k}\right) p_{k}\right\|_{2}^{2}
$$

- Note that p_{k} can be obtained by solving the least-squares problem

$$
p_{k}=\arg \min _{p} \frac{1}{2}\left\|J\left(x_{k}\right) p+r\left(x_{k}\right)\right\|_{2}^{2}
$$

which is the linearized version of the problem at $x_{k}, r(x) \approx r\left(x_{k}\right)+J\left(x_{k}\right) p$

NONLINEAR LEAST SQUARES AND GAUSS-NEWTON METHOD

- Any technique can be used to solve each least-squares problem
- The Gauss-Newton (GN) method converges under mild assumptions
(Nocedal, Wright, 2006, Th. 10.1)

$$
\lim _{k \rightarrow \infty} \nabla f\left(x_{k}\right)=\lim _{k \rightarrow \infty} J\left(x_{k}\right)^{\prime} r\left(x_{k}\right)=0
$$

- The Levenberg-Marquardt (LM) method is a damped version of GN, based on selecting p_{k} by solving the regularized system

$$
p_{k}=-\left(\rho_{k} I+J\left(x_{k}\right)^{\prime} J\left(x_{k}\right)\right)^{-1} J\left(x_{k}\right)^{\prime} r\left(x_{k}\right)
$$

The parameter ρ_{k} can be selected at each iteration by simple rules.
Note that $\mathrm{LM} \approx \mathrm{GN}$ for $\rho_{k} \ll 1, \mathrm{LM} \approx$ gradient descent for $\rho_{k} \gg 1$.
The LM method can be reinterpreted also as a trust-region method.

GAUSS-NEWTON METHOD - EXAMPLE

- We have a data set of $N=10000$ samples $\left(u_{k}, y_{k}\right)$

$$
y_{k}=x_{1}^{2} u_{1 k}+x_{1} x_{2} u_{2 k}-x_{2} u_{3 k}^{2}+n_{k}
$$

where $x_{1}=0.5, x_{2}=-1$ are unknown and noise $n_{k} \sim N\left(0, \sigma^{2}\right), \sigma=0.01$

- We want to estimate the parameter vector x by minimizing

$$
\min _{x} \frac{1}{2} \sum_{i=1}^{N}\left\|y_{k}-x_{1}^{2} u_{1 k}+x_{1} x_{2} u_{2 k}-x_{2} u_{3 k}^{2}\right\|_{2}^{2}
$$

- Gauss-Newton method converges in $6 \mathrm{~ms}^{2}$ after 8 iterations, with stopping tolerance $\left\|\nabla f\left(x_{k}\right)\right\| \leq 10^{-4}$
${ }^{2}$ Macbook 3 GHz Intel Core i7, MATLAB R2016b

NONLINEAR LEAST SQUARES - FITTING AN EPIDEMIC MODEL

- The spread of Coronavirus COVID-19 can be modeled by the logistic model ${ }^{3}$

$$
n(t)=\frac{K}{1+A e^{-r t}}
$$

where $n(t)=$ number of confirmed infected at time t and $K=$ final epidemic size

- We want to fit (K, r, A) to data available for different countries ${ }^{4,5}$

$$
\min _{K, r, A} \frac{1}{2} \sum_{j=1}^{m}\left\|n\left(t_{j}\right)-\frac{K}{1+A e^{-r t_{j}}}\right\|_{2}^{2} \quad \text { nonlinear least squares }
$$

- Here $r_{j}=n\left(t_{j}\right)-\frac{K}{1+A e^{-r t_{j}}}, \nabla r_{j}=\frac{1}{\left(1+A e^{-r t_{j}}\right)^{2}}\left[\begin{array}{c}1+A e^{-r t_{j}} \\ -K e^{-r t_{j}} \\ K A t_{j} e^{-r t_{j}}\end{array}\right]$

[^0]
NONLINEAR LEAST SQUARES - FITTING AN EPIDEMIC MODEL

Results for China:
$K=80917.6142$
$r=0.2221$
$A=51.6394$

Results for Italy:

$K=59939.3989$
$r=0.2344$
$A=157.5456$
${ }^{5}$ Problem solved using derivative-free Particle Swarm Optimization (Eberhart, Kennedy, 1995) via the pyswarm interface https ://pythonhosted.org/pyswarm/

SEQUENTIAL QUADRATIC PROGRAMMING

Reference:

J.Nocedal and S.J. Wright, "Numerical Optimization," 2006. Chapter 18

EQUALITY-CONSTRAINED NLP

- We consider the equality-constrained NLP problem

$$
\begin{array}{cl}
\min & f(x) \\
\text { s.t. } & h(x)=0
\end{array}
$$

with $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ and $h: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ smooth functions.

- The Lagrangian function and its derivatives are

$$
\begin{aligned}
\mathcal{L}(x, \nu) & =f(x)+\nu^{\prime} h(x) \\
\nabla_{x} \mathcal{L}(x, \nu) & =\nabla f(x)+A^{\prime}(x) \nu, \quad A^{\prime}(x)=\left[\nabla h_{1}(x) \ldots \nabla h_{m}(x)\right] \\
\nabla_{x x}^{2} \mathcal{L}(x, \nu) & =\nabla^{2} f(x)+\sum_{i=1}^{m} \nu_{i} \nabla^{2} h_{i}(x)
\end{aligned}
$$

- Assume $A(x)$ full row rank, $d^{\prime} \nabla_{x x}^{2} \mathcal{L}(x, \nu) d>0, \forall d \neq 0$ such that $A(x) d=0$

QUADRATIC APPROXIMATION

- For all $\nu \in \mathbb{R}^{m}$, the original problem is equivalent to solving

$$
\begin{array}{cl}
\min & f(x)+\nu^{\prime} h(x)=\mathcal{L}(x, \nu) \\
\text { s.t. } & h(x)=0
\end{array}
$$

- Consider a pair $\left(x_{k}, \nu_{k}\right)$ and the quadratic approximation of the problem around x_{k}

$$
\begin{array}{cl}
\min & f\left(x_{k}\right)+\nu_{k}^{\prime} h\left(x_{k}\right)+\left(\nabla f\left(x_{k}\right)+A^{\prime}\left(x_{k}\right) \nu_{k}\right)^{\prime} p+\frac{1}{2} p^{\prime} \nabla_{x x}^{2} \mathcal{L}\left(x_{k}, \nu_{k}\right) p \\
\text { s.t. } & h\left(x_{k}\right)+A\left(x_{k}\right) p=0
\end{array}
$$

- By exploiting $\nu_{k}^{\prime}\left(h\left(x_{k}\right)+A\left(x_{k}\right) p\right)=0$, the QP is equivalent to

$$
\begin{aligned}
\min _{p} & \frac{1}{2} p^{\prime} \nabla_{x x}^{2} \mathcal{L}\left(x_{k}, \nu_{k}\right) p+\nabla f\left(x_{k}\right)^{\prime} p \\
\text { s.t. } & h\left(x_{k}\right)+A\left(x_{k}\right) p=0
\end{aligned}
$$

SQP FOR EQUALITY-GONSTRAINED NLP

- The optimality conditions for the QP are

$$
\left[\begin{array}{cc}
\nabla_{x x}^{2} \mathcal{L}\left(x_{k}, \nu_{k}\right) & A^{\prime}\left(x_{k}\right) \\
A\left(x_{k}\right) & 0
\end{array}\right]\left[\begin{array}{c}
p_{k} \\
\nu_{k+1}
\end{array}\right]=\left[\begin{array}{c}
-\nabla f\left(x_{k}\right) \\
-h\left(x_{k}\right)
\end{array}\right]
$$

- From the solution p_{k} we set $x_{k+1}=x_{k}+\alpha_{k} p_{k}$ (Newton's step)
- Also, we decided to update ν_{k+1} as the vector of Lagrange multipliers of the approximated QP
- Sequential quadratic programming (SQP) for equality-constrained NLP's iterates the above steps from an initial pair $\left(x_{0}, \nu_{0}\right)$ until convergence
- Note that in case $h(x)=A x-b$ we have $\nabla_{x x}^{2} \mathcal{L}(x, \nu)=\nabla^{2} f(x)$

SQP FOR NLP WITH EQUALITY AND INEQUALITY CONSTRAINTS

- A similar reasoning applies to general NLP problems

$$
\begin{array}{cl}
\min & f(x) \\
\mathrm{s.t.} & g_{i}(x) \leq 0, i \in I \\
& g_{j}(x)=0, j \in E
\end{array}
$$

with $f: \mathbb{R}^{n} \rightarrow \mathbb{R}, g_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ smooth functions, $\forall i=1, \ldots, m$.

- We still use the quadratic approximation

$$
\begin{array}{cl}
\min & \frac{1}{2} p^{\prime} \nabla_{x x}^{2} \mathcal{L}\left(x_{k}, \nu_{k}\right) p+\nabla f\left(x_{k}\right)^{\prime} p \\
\mathrm{s.t.} & g_{i}\left(x_{k}\right)+\nabla g_{i}\left(x_{k}\right)^{\prime} p \leq 0, i \in I \\
& g_{j}\left(x_{k}\right)+\nabla g_{j}\left(x_{k}\right)^{\prime} p=0, j \in E
\end{array}
$$

- We solve the QP, get the primal-dual solution (p_{k}, ν_{k+1}), and update $x_{k+1}=x_{k}+\alpha_{k} p_{k}$
- Several variants of the SQP method exist (including quasi-Newton methods)

NTERIOR-POINTMETHOOS

References:

S. Boyd, "Convex Optimization," lecture notes, http: //ee364a.stanford.edu
J. Nocedal and S.J. Wright, "Numerical Optimization," 2006. Chapter 19

INTERIOR-PONT METHODS FOR CONVEX PROGRAMS

- Consider the convex programming problem

$$
\begin{aligned}
\min & f(x) \\
\text { s.t. } & g_{i}(x) \leq 0, i=1, \ldots, m \\
& A x=b
\end{aligned}
$$

- Assumptions:
- f, g_{i} convex and twice continuously differentiable
- $A \in \mathbb{R}^{p \times n}$ has rank $A=p$
- an optimizer x^{*} exists and $f^{*}=f\left(x^{*}\right) \in \mathbb{R}$
- the problem is strictly feasible

$$
\exists x \operatorname{dom} f: g_{i}(x)<0, \forall i=1, \ldots, m, A x=b
$$

which ensures strong duality, i.e., $f\left(x^{*}\right)=q\left(\lambda^{*}, \nu^{*}\right), q=$ dual function

LOGARITHMIC BARRIER

- Denote by $I: \mathbb{R} \rightarrow \mathbb{R} \cup\{+\infty\}$ the indicator function of the negative reals ($I(\alpha)=0$ if $\alpha \leq 0, I(\alpha)=+\infty$ if $\alpha>0$). The problem can be rewritten as

$$
\begin{array}{ll}
\min & f(x)+\sum_{i=1}^{m} I\left(g_{i}(x)\right) \\
\text { s.t. } & A x=b
\end{array}
$$

- If we approximate $I(\alpha)$ with the smooth logarithmic barrier function $-\frac{1}{t} \log (-\alpha), t>0$, we get

$$
\begin{array}{ll}
\min & f(x)-\frac{1}{t} \sum_{i=1}^{m} \log \left(-g_{i}(x)\right) \\
\text { s.t. } & A x=b
\end{array}
$$

- The larger t the better the approximation

LOGARITHMIC BARPIER FUNCTION

- The logarithmic barrier function

$$
\phi(x)=-\sum_{i=1}^{m} \log \left(-g_{i}(x)\right)
$$

has the following properties:
$-\operatorname{dom} \phi=\left\{x: g_{i}(x)<0, i=1, \ldots, m\right\}$

- ϕ is convex, since $-\log$ is monotonic and g_{i} is convex
- ϕ is twice continuously differentiable and

$$
\begin{aligned}
\nabla \phi(x) & =-\sum_{i=1}^{m} \frac{1}{g_{i}(x)} \nabla g_{i}(x) \\
\nabla^{2} \phi(x) & =\sum_{i=1}^{m} \frac{1}{g_{i}(x)^{2}} \nabla g_{i}(x) \nabla g_{i}(x)^{\prime}-\sum_{i=1}^{m} \frac{1}{g_{i}(x)} \nabla^{2} g_{i}(x)
\end{aligned}
$$

CENTRAL PATH

- For $t \geq 0$ let $x^{*}(t)$ be the optimizer of the approximated problem

$$
\begin{array}{cl}
\min & t f(x)+\phi(x) \\
\text { s.t. } & A x=b
\end{array}
$$

(assume for now that $x^{*}(t)$ is unique for all t)

- We call central path the curve $\left\{x^{*}(t)\right\}_{t>0}$
- Example: central path for the linear program

$$
\begin{aligned}
\min & c^{\prime} x \\
\text { s.t. } & G x \leq g, g \in \mathbb{R}^{5}
\end{aligned}
$$

and level sets of $\phi(x)$

OPTIMALITY CONDITIONS

- The original problem satisfies the optimality conditions

$$
\begin{aligned}
& \nabla f\left(x^{*}\right)+\sum_{i=1}^{m} \lambda_{i}^{*} \nabla g_{i}\left(x^{*}\right)+A^{\prime} \nu^{*}=0 \\
& \lambda^{*} \geq 0, A x^{*}=b, g_{i}\left(x^{*}\right) \leq 0, \lambda_{i}^{*} g_{i}\left(x^{*}\right)=0
\end{aligned}
$$

- The approximated optimizer $x^{*}(t)$ satisfies the optimality conditions

$$
\begin{aligned}
& \nabla f\left(x^{*}(t)\right)-\sum_{i=1}^{m} \frac{1}{t g_{i}\left(x^{*}(t)\right)} \nabla g_{i}\left(x^{*}(t)\right)+\frac{1}{t} A^{\prime} w^{*}(t)=0 \\
& A x^{*}(t)=b
\end{aligned}
$$

where $w^{*}(t)$ is the corresponding vector of Lagrange multipliers

OPTIMALITY CONDITIONS

- If we set $\lambda_{i}^{*}(t) \triangleq-\frac{1}{t g_{i}\left(x^{*}(t)\right)}, \nu^{*}(t)=\frac{1}{t} w^{*}(t)$, for all $t>0$ we have

$$
\begin{aligned}
& \nabla f\left(x^{*}(t)\right)+\sum_{i=1}^{m} \lambda_{i}^{*}(t) \nabla g_{i}\left(x^{*}(t)\right)+A^{\prime} \nu^{*}(t)=0, \quad A x^{*}(t)=b \\
& g_{i}\left(x^{*}(t)<0, \quad \lambda_{i}^{*}(t) \geq 0, \quad \lambda_{i}^{*}(t) g_{i}\left(x^{*}(t)\right)=-\frac{1}{t}\right.
\end{aligned}
$$

- These are the same KKT conditions of the original problem, except for the relaxation of the complementary slackness condition to $\lambda_{i}^{*}(t) g_{i}\left(x^{*}(t)\right)=-\frac{1}{t}$

OPTIMALITY CONDITIONS

- The dual function q of the original problem evaluated at $\lambda^{*}(t), \nu^{*}(t)$ is

$$
\begin{aligned}
q\left(\lambda^{*}(t), \nu^{*}(t)\right) & =\min _{x} \overbrace{\left\{f(x)+\sum_{i=1}^{m} \lambda_{i}^{*}(t) g_{i}(x)+(A x-b)^{\prime} \nu^{*}(t)\right\}}^{\mathcal{L}\left(x, \lambda^{*}(t), \nu^{*}(t)\right)} \\
& =f\left(x^{*}(t)\right)-\frac{m}{t}
\end{aligned}
$$

as $x^{*}(t)$ also satisfies the optimality condition $\nabla_{x} \mathcal{L}\left(x, \lambda^{*}(t), \nu^{*}(t)\right)=0$

- Since $q\left(\lambda^{*}(t), \nu^{*}(t)\right) \leq f\left(x^{*}\right)$, and since $f\left(x^{*}\right) \leq f\left(x^{*}(t)\right)$ as $x^{*}(t)$ is feasible, we get

$$
f\left(x^{*}(t)\right)-\frac{m}{t} \leq f\left(x^{*}\right) \leq f\left(x^{*}(t)\right)
$$

which confirms the intuition $f\left(x^{*}(t)\right) \rightarrow f\left(x^{*}\right)$ as $t \rightarrow+\infty$

FINDING A FEASIBILE POINT CPHASE I]

- Consider the feasibility problem

$$
\text { find } x \text { such that } g_{i}(x) \leq 0, i=1, \ldots, m, \quad A x=b
$$

- The basic phase I method consists of solving the following convex problem with $n+1$ variables

$$
\begin{array}{rl}
\left(x_{0}^{*}, s_{0}^{*}\right)=\arg \min _{x, s} & s \\
\text { s.t. } & g_{i}(x)-s \leq 0, i=1, \ldots, m \\
& A x=b
\end{array}
$$

from any initial guess x_{0} such that $A x_{0}=b, s_{0}>\max g_{i}\left(x_{0}\right)$

- If $s_{0}^{*}<0$ then x_{0}^{*} is strictly feasible for the original problem

BARRIER METHOD

- Barrier method: Given an initial strictly feasible x, execute:

0. Let $t_{0}>0, t=t_{0}, \beta>1$, tolerance $\epsilon>0$
1. Compute $x \leftarrow \arg \min \quad t f(x)+\phi(x)$ (centering step)

$$
\text { s.t. } \quad A x=b
$$

2. If $\frac{m}{t} \leq \epsilon$ stop
3. Otherwise increase $t \leftarrow \beta t$ and go to 1

- Newton's method solves the centering step, with the last x as initial guess
- Tradeoff: a large β makes fewer centering steps but more Newton iterations at each step. Typically $\beta=10 \div 20$
- The algorithm terminates with $f(x)-f^{*}(x) \leq \frac{m}{t} \leq \epsilon$ in exactly $\left\lceil\frac{\log \frac{m}{\epsilon t_{0}}}{\log \beta}\right\rceil$ centering steps + computation of initial $x^{*}\left(t_{0}\right)$

PRIMAL-DUAL INTERIOR-POINT METHODS

- Consider the general NLP problem

$$
\begin{array}{cl}
\min & f(x) \\
\text { s.t. } & g(x) \leq 0 \\
& h(x)=0
\end{array}
$$

with $f: \mathbb{R}^{n} \rightarrow \mathbb{R}, g: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}, h: \mathbb{R}^{n} \rightarrow \mathbb{R}^{p}$ smooth functions.

- The optimality condition for the NLP with slacks can be written as

$$
\begin{aligned}
\nabla f(x)+\nabla g(x)^{\prime} z+\nabla h(x)^{\prime} y & =0 \\
g(x)+s & =0 \\
h(x) & =0 \\
S Z e & =0 \\
s, z & \geq 0
\end{aligned}
$$

PRIMAL-DUAL INTERIOR-POINT METHODS

- Let us now relax the optimality conditions as

$$
\begin{array}{rlll}
\nabla f(x)+\nabla g(x)^{\prime} z+\nabla h(x)^{\prime} y & =0 & \\
g(x)+s & =0 & \\
h(x) & =0 & \mu \geq 0 \\
S Z e & =\mu e & \\
s, z & \geq 0 & &
\end{array}
$$

- Let $x^{*}(\mu), s^{*}(\mu), y^{*}(\mu), z^{*}(\mu)$ be the solution of the relaxed KKT equations
- For $\mu>0$ the curve $\left(x^{*}(\mu), s^{*}(\mu), y^{*}(\mu), z^{*}(\mu)\right)$ is the primal-dual central path
- Note that $\mu=s_{i}^{*}(\mu) z_{i}^{*}(\mu)=-g_{i}\left(x^{*}(\mu)\right) z_{i}^{*}(\mu)=\frac{1}{t}$
- For $\mu \rightarrow 0$, under suitable assumptions, the central path converges to the primal/dual optimizer $\left(x^{*}, s^{*}, y^{*}, z^{*}\right)$

PRIMAL-DUAL INTERIOR-POINT METHODS

- Primal-dual interior point methods apply a Newton step to solve the system of relaxed KKT equations with decreasing values of μ
- They are more efficient than barrier method when high accuracy is needed
- Often exhibit superlinear asymptotic convergence
- They can start at infeasible points

PRIMAL-DUAL INTERIOR-POINT METHOD FOR LP

- Let us consider the LP

$$
\begin{aligned}
\min _{x} & c^{\prime} x \\
\text { s.t. } & A x \leq b \\
& E x=f
\end{aligned}
$$

- By introducing the slack vector $s=b-A x$, the KKT conditions

$$
\begin{aligned}
c+A^{\prime} z+E^{\prime} y & =0 \\
A x+s & =b \\
E x & =f \\
z_{i} s_{i} & =0, i=1, \ldots, m \\
z, s & \geq 0
\end{aligned}
$$

can be rewritten as

$$
F(x, z, y, s)=\left[\begin{array}{c}
A^{\prime} z+E^{\prime} y+c \\
A x+s-b \\
E x-f \\
Z S e
\end{array}\right]=0, \quad z, s \geq 0
$$

$$
\text { where } Z=\operatorname{diag}\left(z_{1}, \ldots, z_{m}\right), S=\operatorname{diag}\left(s_{1}, \ldots, s_{m}\right), e=[1 \ldots 1]^{\prime}
$$

PRIMAL-DUAL INTERIOR-POINT METHOD FOR LP

- We want to solve the nonlinear system $F(x, z, y, s)=0$ by Newton's method
- Starting from a candidate solution $z>0, s>0, x, y$, Newton's step $\Delta x, \Delta z, \Delta y$, Δs is given by solving the linear system

$$
0=F(x, z, y, s)+\nabla F(x, z, y, s)\left[\begin{array}{c}
\Delta x \\
\Delta z \\
\Delta y \\
\Delta s
\end{array}\right]
$$

- Let $\left[\begin{array}{c}r^{c} \\ r^{b} \\ r^{f}\end{array}\right]=\left[\begin{array}{c}A^{\prime} z+E^{\prime} y+c \\ A x+s-b \\ E x-f\end{array}\right]$. The linear system to solve is

$$
\left[\begin{array}{cccc}
0 & A^{\prime} & E^{\prime} & 0 \\
A & 0 & 0 & I \\
E & 0 & 0 & 0 \\
0 & S & 0 & Z
\end{array}\right]\left[\begin{array}{c}
\Delta x \\
\Delta z \\
\Delta \\
\Delta y \\
\Delta s
\end{array}\right]=\left[\begin{array}{c}
-r^{c} \\
-r^{b} \\
-r^{f} \\
-Z S e
\end{array}\right]
$$

- To preserve $z, s \geq 0$ we set $\left[\begin{array}{l}x \\ z \\ y\end{array}\right] \leftarrow\left[\begin{array}{l}x \\ z \\ y \\ s\end{array}\right]+\alpha\left[\begin{array}{c}\Delta x \\ \Delta z \\ \Delta y \\ \Delta s\end{array}\right]$ with α sufficiently small

PRIMAL-DUAL INTERIOR-POINT METHOD FOR LP

- To prevent excessively small α, given the current $x_{k}, z_{k}, s_{k}, y_{k}$, with $z_{k}, s_{k}>0$, primal-dual interior-point method solve instead the relaxed system

$$
\left[\begin{array}{cccc}
0 & A^{\prime} & E^{\prime} & 0 \\
A & 0 & 0 & I \\
E & 0 & 0 & 0 \\
0 & S_{k} & 0 & Z_{k}
\end{array}\right]\left[\begin{array}{c}
\Delta x_{k} \\
\Delta z_{k} \\
\Delta y_{k} \\
\Delta s_{k}
\end{array}\right]=\left[\begin{array}{c}
-r_{k}^{c} \\
-r_{k}^{b} \\
-r_{k}^{f} \\
-Z_{k} S_{k} e+\sigma_{k} \mu_{k} e
\end{array}\right]
$$

where $\mu_{k}=\frac{1}{m} z_{k}^{\prime} s_{k}$ is the current duality measure and $\sigma_{k} \in[0,1]$ is the centering parameter, that is the factor we want to reduce the current μ_{k}

- The performance of the method depends on how α_{k} and σ_{k} are chosen
- Mehrotra's predictor-corrector algorithm is one of the most used IP methods for LP (Mehrotra, 1992)
- Homogeneous and self-dual formulations are useful to easily recognize infeasibility and unboundedness (Yu, Todd, Mizuno, 1994) (Xu, Hung, Ye, 1996)

PRIMAL-DUAL INTERIOR-POINT METHOD FOR QP

- Consider the convex QP

$$
\begin{aligned}
\min _{x} & \frac{1}{2} x^{\prime} Q x+c^{\prime} x \\
\text { s.t. } & A x \leq b \quad Q=Q^{\prime} \succeq 0 \\
& E x=f
\end{aligned}
$$

- By introducing the slack vector $s=b-A x$, the KKT conditions

$$
\begin{aligned}
Q x+c+E^{\prime} y+A^{\prime} z & =0 \\
E x & =f \\
A x+s & =b \\
z_{i} s_{i} & =0, i=1, \ldots, m \\
z, s & \geq 0
\end{aligned}
$$

can be rewritten as

$$
0=F(x, z, y, s)=\left[\begin{array}{c}
Q x+E^{\prime} y+A^{\prime} z+c \\
E x-f \\
A x+s-b \\
Z S e
\end{array}\right] \triangleq\left[\begin{array}{c}
r_{Q} \\
r_{E} \\
r_{A} \\
r_{S}
\end{array}\right], \quad z, s \geq 0
$$

PRIMAL-DUAL INTERIOR-POINT METHOD FOR QP

- Start from a candidate solution $z>0, s>0, x, y$
- As for LP, we want to solve $F(x, z, y, s)=0$ by Newton's method
- We use a variant of Mehrotra's predictor-corrector algorithm (Mehrotra, 1992)
- First, we solve the linear system (predictor step)

$$
\underbrace{\left[\begin{array}{cccc}
Q & E^{\prime} & A^{\prime} & 0 \\
E & 0 & 0 & 0 \\
A & 0 & 0 & I \\
0 & 0 & S & Z
\end{array}\right]}_{\nabla F}\left[\begin{array}{c}
\Delta x_{\mathrm{aff}} \\
\Delta y_{\mathrm{aff}} \\
\Delta z_{\mathrm{aff}} \\
\Delta s_{\mathrm{aff}}
\end{array}\right]=\underbrace{\left[\begin{array}{c}
-r_{Q} \\
-r_{E} \\
-r_{A} \\
-r_{S}
\end{array}\right]}_{-F}
$$

PRIMAL-DUAL INTERIOR-POINT METHOD FOR QP

- Next, we solve the linear system (centering-corrector step)

$$
\left[\begin{array}{cccc}
Q & E^{\prime} & A^{\prime} & 0 \\
E & 0 & 0 & 0 \\
A & 0 & 0 & I \\
0 & 0 & S & Z
\end{array}\right]\left[\begin{array}{c}
\Delta x_{\mathrm{cc}} \\
\Delta y_{\mathrm{cc}} \\
\Delta z_{\mathrm{cc}} \\
\Delta s_{\mathrm{cc}}
\end{array}\right]=\left[\begin{array}{c}
0 \\
0 \\
0 \\
-\Delta S_{\mathrm{aff}} \Delta Z_{\mathrm{aff}} e+\sigma \mu e
\end{array}\right]
$$

where the centering parameter $\sigma \in[0,1)$ is chosen as

$$
\begin{aligned}
\alpha_{\mathrm{aff}} & =\arg \max _{\alpha}\left\{\alpha \in[0,1]:\left[\begin{array}{l}
z+\alpha \Delta z_{\text {aff }} \\
s+\alpha \Delta s_{\text {aff }}
\end{array}\right] \geq 0\right\} \\
\mu_{\mathrm{aff}} & =\left(z+\alpha_{\text {aff }} \Delta z_{\text {aff }}\right)^{\prime}\left(s+\alpha_{\text {aff }} \Delta s_{\text {aff }} / m\right. \\
\mu & =z^{\prime} s / m \quad \leftarrow \text { duality gap } \\
\sigma & =\left(\mu_{\text {aff }} / \mu\right)^{3}
\end{aligned}
$$

- Note: the same left-hand-side matrix is used to solve both linear systems. So such a matrix can be factorized just once at each IP iteration

PRIMAL-DUAL INTERIOR-POINT METHOD FOR QP

- Now set

$$
\begin{array}{ll}
\Delta x=\Delta x_{\mathrm{aff}}+\Delta x_{\mathrm{cc}}, & \Delta y=\Delta y_{\mathrm{aff}}+\Delta y_{\mathrm{cc}} \\
\Delta z=\Delta z_{\mathrm{aff}}+\Delta z_{\mathrm{cc}}, & \Delta s=\Delta s_{\mathrm{aff}}+\Delta s_{\mathrm{cc}}
\end{array}
$$

and choose $\alpha_{\text {max }}=\arg \max \left\{\alpha \in[0,1]:\left[\begin{array}{c}z+\alpha \Delta z \\ s+\alpha \Delta s\end{array}\right] \geq 0\right\}$, so that z, s remain nonnegative

- The actual step-length is chosen as $\alpha=\gamma \alpha_{\max }$, with the step-factor $\gamma \in(0,1)$ close to 1, see (Mehrotra, 1992)
- For even better choices of the step-length α see (Curtis, Nocedal, 2007)
- For reducing the number of factorizations, execute multiple corrections steps
(Gondzio, 1996)
- Given a starting point $\bar{x}, \bar{y}, \bar{z}, \bar{s}$, a good initial guess is to solve for $\Delta z_{\text {aff }}, \Delta s_{\text {aff }}$ and set $x_{0}=\bar{x}, y_{0}=\bar{y}, z_{0}=\max \left\{1,\left|\bar{z}+\Delta z_{\text {aff }}\right|\right\}, s_{0}=\max \left\{1,\left|\bar{s}+\Delta s_{\text {aff }}\right|\right\}$

PRIMAL-DUAL INTERIOR-POINT METHOD FOR QP

- Let $\Delta \tilde{z}=Z^{-1} \Delta z$. We can eliminate $\Delta s=Z^{-1} r_{S}-S \Delta \tilde{z}$ and get the system

$$
\left[\begin{array}{ccc}
Q & E^{\prime} & A^{\prime} Z \\
E & 0 & 0 \\
A & 0 & -S
\end{array}\right]\left[\begin{array}{c}
\Delta x \\
\Delta y \\
\Delta \tilde{z}
\end{array}\right]=\left[\begin{array}{c}
-r_{Q} \\
-r_{E} \\
Z^{-1} r_{S}-r_{A}
\end{array}\right]
$$

- The above system can be made symmetric by multiplying the last rows by Z
- We can further easily eliminate $Z^{-1} \Delta z=S^{-1}\left(A \Delta x+r_{A}-Z^{-1} r_{S}\right)$ and get

$$
\left[\begin{array}{cc}
Q+A^{\prime} Z S^{-1} A & E^{\prime} \\
E & 0
\end{array}\right]\left[\begin{array}{l}
\Delta x \\
\Delta y
\end{array}\right]=\left[\begin{array}{c}
-r_{Q}+A^{\prime} S^{-1}\left(r_{S}-Z r_{A}\right) \\
-r_{E}
\end{array}\right]
$$

- Note that $Z^{-1} S$ is positive and diagonal.

EXAMPLE: NLP SOLUTION VIA IPOPT \& CASADI

- IPOPT (Interior Point OPTimizer ${ }^{6}$) is a software package based an IP method to solve the NLP (Wächter, Biegler, 2006)

$$
\begin{array}{rl}
\min _{x} & f(x) \\
\mathrm{s.t.} & g_{\ell} \leq g(x) \leq g_{u} \\
& x_{\ell} \leq x \leq x_{u}
\end{array}
$$

- CasADi ${ }^{7}$ is a modeling language for NLP problems. It implements automatic differentiation for computing gradients (Andersson, Gillis, Horn, Rawlings, Diehl, 2019)
- CasADi + IPOPT greatly simplifies formulating and solving nonlinear optimization problems via interior-point methods in MATLAB, ${ }^{\text {e }}$ python, or $\mathrm{C}++$

```
6}\mathrm{ https://coin-or.github.io/Ipopt/
7}\mathrm{ https://web.casadi.org/
```


EXAMPLE: NLP SOLUTION VIA IPOPT \& CASADI

- Let us minimize the course-logo function

$$
f(x, y)=-e^{-\left(x^{2}+y^{2}\right)}+0.3 \sin \left(\frac{1}{10} x^{3}+y^{2}\right)+1.2
$$


```
import casadi.*
x=SX.sym('x');
y=Sx.sym('y');
f=-exp(-(x^2+y^2))+.3*\operatorname{sin}(\mp@subsup{x}{}{\wedge}3/10+\mp@subsup{y}{}{\wedge}2)+1.2;
P=struct('f',f,'x',[x;y]);
F=nlpsol('F','ipopt',P);
r=F('x0',[-1;-1]);
xopt=full(r.x);
fopt=full(r.f);
```

```
from casadi import *
x=SX.sym('x')
y=Sx.sym('y')
f=-exp(-(x**2+y**2))+.3*\operatorname{sin}(x**3/10+y**2)+1.2
P=\operatorname{dict}(x=\operatorname{vertcat}(x,y),f=f)
F=nlpsol('F','ipopt',P)
r=F}(x0=[-1,-1]
xopt=r['x'].full()
fopt=r['f'].full()
```


? python
 百

MATLAB

- Optimizer $x^{*}=0, y^{*}=0$, optimum $f^{*}=0.2$

EXAMPLE: NLP SOLUTION VIA IPOPT \& CASADI

```
Number of objective function evaluations = 18
Number of objective gradient evaluations
= 11
Number of equality constraint evaluations
Number of inequality constraint evaluations = 0
= O
Number of equality constraint Jacobian evaluations = 0
Number of inequality constraint Jacobian evaluations = 0
Number of Lagrangian Hessian evaluations = 10
```

- Let's add the constraint

$$
1 \leq(x+2)^{2}-\frac{1}{2} y^{3} \leq 3
$$

```
g=(x+2)^2-y^3/2;
P=struct('f',f,'x',[x;y],'g',g);
F=nlpsol('F','ipopt',P);
r=F('x0',[-1;-1],'ubg',3,'lbg', 1);
xopt=full(r.x);
fopt=full(r.f);
lam_g_opt = full(r.lam_g);
```

```
g=(x+2)**2-y**3/2
P=dict(x=vertcat (x,y), f=f,g=g)
F=nlpsol('F','ipopt',P)
r=F(x0=[-1,-1],ubg=3,lbg=1))
xopt=r['x'].full()
fopt=r['f'].full()
lam_g_opt=r['lam_g'].full()
```


MATLAB

2 python

- New optimizer $x^{*}=-0.2679, y^{*}=0$, optimum $f^{*}=0.2687$

EXAMPLE: NLP SOLUTION VIA JAX/JAXOPT

- Use JAX for autodiff and JAXopt (https : / /jaxopt. github.io)

```
import jax
import jax.numpy as jnp
import jaxopt
def f(z):
    return -jnp.exp(-(z[0]**2+z[1]**2))+
    .3*jnp.sin(z[0]**3/10+z[1]**2)+1.2
z0=jnp.array([-1.,-1.])
solver=jaxopt.ScipyMinimize(fun=f,method="L-BFGS-B")
zopt,status=solver.run(z0)
fopt=status.fun_val
    z*}(0,0),\mp@subsup{f}{}{*}=0.
```

```
\(\min _{z, t} \quad f(z)+1000(t-g(z))^{2}\)
s.t. \(1 \leq t \leq 3\)
```

```
def g(z):
    return (z[0]+2.)**2-z[1]**3/2.
def ft(zt):
    z=zt[0:2]; t=zt[2]
    return f(z)+1.e3*(t-g(z))**2
```

solver=jaxopt.ScipyBoundedMinimize(fun=ft,
tol=1.e-10)
$z t 0=j n p . h s t a c k((z 0, g(z 0)))$
z topt, status=solver. run $(z t 0$,
bounds=([-jnp.inf,-jnp.inf,1.],
[jnp.inf,jnp.inf,3.]))
zopt=ztopt[0:2]
fopt=status.fun_val
$z^{*}(-0.2679,0), f^{*}=0.2687$

EXAMPLE: NLP SOLUTION IN JULIA

- Use Nonconvex.jl package and IPopt in juliå (https://julianonconvex.github.io/Nonconvex.jl)

```
using Nonconvex
```

Nonconvex. @load Ipopt

```
f(z)=- exp(-(z[1\mp@subsup{]}{}{\wedge}2+z[2\mp@subsup{]}{}{\wedge}2))+
    . 3* sin(z[1]^3/10+z[2]^2)+1.2
z0}=[-1.,-1.
model = Model(f)
u}=[\operatorname{Inf},Inf
\ell = - u
addvar!(model,\ell,u)
r = optimize(model, IpoptAlg(), z0)
zopt = r.minimizer
fopt = r.minimum
```

$$
z^{*}(0,0), f^{*}=0.2
$$

$\min _{z} \quad f(z)$
s.t. $1 \leq g(z) \leq 3$

```
g(z)=(z[1] + 2.)^ 2 - z[2]^ 3 / 2.
add_ineq_constraint!(model, z-> g(z)-3)
add_ineq_constraint!(model, z-> -g(z)+1)
r = optimize(model, IpoptAlg(), z0)
zopt = r.minimizer
fopt = r.minimum
```

 \(z^{*}(-0.2679,0), f^{*}=0.2687\)

EXAMPLE: DEPENDENGE ON INITIAL GUESS

- Caveat: the NLP is non convex.
- If we start from $x_{0}=-2, y_{0}=-2$ we get the
 different local minimum
$x^{*}=-1.5078, y^{*}=-1.7668$, optimum $f^{*}=1.3019!$
- If function/constraints are not convex, one may need to test different initial conditions, or switch to global optimization methods

[^0]: ${ }^{3}$ See also (Batista, 2020) https://www.researchgate.net/publication/339240777
 ${ }^{4}$ World data available at https://github.com/CSSEGISandData/Covid-19/raw/master/csse_covid_19_data/csse_ covid_19_time_series/time_series_19-covid-Confirmed.csv
 ${ }^{5}$ Data for Italy available at https://github.com/pcm-dpc/Covid-19

