UNCONSTRAINED NONLINEAR OPTIMIZATION

Reference:

J.Nocedal and S.J. Wright, “Numerical Optimization,” 2006. Chapter 3



UNCONSTRAINED NONLINEAR OPTIMIZATION METHODS

e For an arbitrary smooth function f : R™ — R we want to to solve the
unconstrained nonlinear programming problem

min f (z)

e There are fundamentally two classes of iterative methods:
- line-search methods choose a descent direction py, search a suitable scalar i, > 0
suchthat f(zr + arpr) < f(zk),and set zpr1 = z + Qrpr

- trust-region methods compute a quadratic approximation ¢(z) of f around x,
solve

= ar min Tr +
Pk gp:l\pl\zﬁﬁ\q( e +p)

where the size A of the “trust region” of the model is shrunk until
flzr 4+ pr) < f(xk),and setand set xx+1 = zk + Pi
e The above methods converge to a local minimum (a global one if f convex)
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LINE SEARCH METHODS: STEEPEST DESGENT

Steepest descent is the most obvious method, as it picks up p; orthogonal to
the level sets of f

pr = —V f(x)

Tpy1 = T — iV f(x)

From Taylor’s theorem

Flar+ape) = fan) — ol Vf (@) |3 + o®p V2 f (@, + tapi)pr, ¢ € (0,1)

Note that the Hessian of f is not required to compute pj

The method can be very slow to converge
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LINE SEARCH METHODS: NEWTON'S METHOD

e Newton’s method chooses p, = —(V? f(z)) "'V f(z1) (Newton’s direction)

Tpp1 = 2 —ap(V2 f (k) 'V f (2k)

e Newton'’s direction provides the minimum of the quadratic Taylor’s
approximation g of f at z:

1
a(wk +p) = flax) + Vf(@n)p+ 50"V (20)p
e If V2f(x1) = 0then for some oy > 0

Vf(zr)'pe ==V f(@r) (V2 f(2x) "'V fzr) < —okllprll3

so from Taylor’s theorem we have f(x + api) < f(xy) for a small enough
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LINE SEARCH METHODS: NEWTON'S METHOD

e The method converges very fast, especially close to z*, where the function f
and its quadratic approximation tend to coincide

e For a;, = 1 we have pure Newton’s method. However line search over a is
required to ensure convergence

e Incase V2 f(x},) is not positive definite, a possibility is to use instead
V2 f(xr) + diag(dp)-

For example d;, can be computed during a Cholesky factorization to make
intermediate diagonal entries > ¢ for somee > 0
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LINE SEARCH METHODS: QUASI NEWTON METHODS

e Newton’s method requires computing V2 f (x;,), which could be expensive

e Quasi-Newton methods replace V? f () with a matrix By, which is easier to
compute, satisfying the secant equation

Bit15k = yk, Wheresp, = xp41 — 2, Y = Vf(2p41) — Vf(ag)
andsetpy = — B 'V f(x)

e The BFGS formula (Broyden, Fletcher, Goldfarb, and Shanno) updates

Bysksi, By yry,
s} By si, Yr Sk

By11 = By —

where By, >~ 0if By > 0and s}y > 0forall k
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LINE SEARCH METHODS: QUASI-NEWTON METHODS

e Since By differs from By, by two one-rank updates, we can update a
factorization of By, recursively.

e In alternative, one can avoid By, and directly update Hy, = Bk_1

sk Ty Heyr  , Hrywsy + spyp Hi
7 2 SkSk — 7
(Skyk) SpYk

Hy11 = Hy +

o For large-scale problems, limited-memory BFGS only stores a finite number m
of past values of (sg, yx) (usually m < 10) and directly computes the descent
direction py, = —H},V f(x},) without storing Hj,
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LINE SEARCH METHODS: NONLINEAR CONJUGATE-GRADIENT

The nonlinear conjugate gradient (CG) method? updates pj, as follows:

IV f(zrq1)]I3
IV f(zx)l3
—V f(@r41) + Brpr, Withpy = =V f(x0)

Br

P41

The method does not requires the storage of matrices

The method is almost as simple as steepest descent but usually more efficient,
although it does not converge as fast as (quasi-)Newton methods

As for steepest descent, nonlinear CG may be sensitive to problem scaling

LVectors s, . . ., sp, # 00f R™ are conjugate to a matrix G > 0 if siGs; =0,Vi#j
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LINE SEARCH

e Given adescent direction py, ideally one should choose x; 11 = x) + agpy with

o) = argmin f(zy + apy)
a>0

e Such ascalar nonlinear optimization may be difficult to solve and require a lot
of evaluations of f, so we look for simpler methods

o Simply imposing f(xx + agpr) < f(zx) may not work, as the improvement
may become smaller and smaller as k grows

o Sufficient decrease is provided by satisfying Armijo condition
flzrtape) < f(zp)+aaVf(zy) pe 1€ (0,1)

where usually ¢; is small (e.g.,c; = 1074)
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BACKTRACKING LINE SEARCH

o The following is a simple practical algorithm for selecting a step size oy,
satisfying Armijo formula:

Choose @ > 0,p € (0,1),c € (0,1).Seta = a.

Repeat until f(zx + apk) < f(zk) + caV f(zx) pr
a + pa

end repeat

Setar = a.

e Possible choices are @ = 1 (e.g., in Newton’s method) and p = % (bisection)
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LINE SEARCH

¢ Wolfe conditions include Armijo condition + the curvature condition
df (zr + «
V2P g oy tap)pe > V) e € (e1,)
(the condition is strong if |V f (z1, + apk)'pr| < c2|V f(x) pk| is imposed)

e The curvature condition avoid values of « that are too small, when f is still
decaying fast (=very negative derivative) (@ +apy)

eV f(zk)pe = — f(zr) + 1oV f(zr) pr
e Usually ¢; = 0.9 in (quasi-)Newton methods T

and co = 0.1 inthe nonlinear CG method

T ~ 1
acceptable
values

o |tis possible to prove that if f is continuously differentiable and f bounded
below along the descent direction z;, + apg, a > 0, the (strong) Wolfe
conditions can be satisfied

" Numerical Optimization" - ©2023 A. Bemporad. All rights reserved 10/51



LINE SEARCH - CONVERGENCE RESULT

SUPPLEMENTARY

THEOREM (ZOUTENDUK)
Let f : R™ — R be bounded below and differentiable in an open set N containing

thelevelset L = {x : f(x) < f(xo)}, andletV f Lipschitz continuous on \V, that
is

IV f(x1) = Vf(x2)|| < Ll|zy — 22|, Vo, 22 € N

for some L > 0. Any line search method with p;. a descent direction and o,
satisfying the Wolfe conditions is such that

> cos? 2 _ Vi
I;Jcos OV f(zp)||? < 00, cos(Bg) = % F o el

e If we choose py, such that cos 8, > ¢ > 0,Vk > 0, thenlimy_, o ||V f(z1)|| = 0.
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LINE SEARCH - CONVERGENCE RATE

e The conditioncos 8, > § > 0,Vk > 0, holds for the steepest descent method

e |t also holds for (quasi-)Newton methods when B, = 0 with uniformly bounded
condition number

e The convergence result show that the algorithm converges to a stationary point
Vf(x)=0
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CONVERGENCE RATES

¢ Inanalyzing the speed of convergence of iterative algorithms, we refer to
convergence rates. Let z;, : N — R be a converging sequence,
limy_, oo 21 = z*. We define

_ *
klim M =r,re(0,1) linear convergence
—00 T — X
_ *
M =rE, lim r, =0 superlinear convergence
||1‘k —x* || k—o0
- wk — 2| .
lim ———— >0 quadratic convergence

k—oo ||z — x*||?

e Convergence only relates to the asymptotic behavior of the algorithm. The
transient is often more relevant, especially stopping tolerances are not small
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LINE SEARCH - CONVERGENCE RATE

e When f is twice differentiable and V2 f (z*) = 0 we can show that steepest
descent has the linear convergence rate

Amax — Amin

Flarer) = f@) < (f(e) = £(27), S <r <1

Amax + Amin

where Amax, Amin are the max/min eigenvalues of V2 f(z*)

e When f is twice differentiable and V2 f (z*) > 0 and x, is sufficiently close to
z* Newton’s method has the quadratic convergence rate

ks — || < Lller — |12, V£ (@rea)ll < 2L V2 (@) 7PV F ()12

while quasi-Newton methods have a superlinear convergence rate
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LINE SEARCH METHODS: COORDINATE DESCENT

e Coordinate descent consists of successively optimizing only one coordinate
x;, ateachstepk,ix € {1,...,n}

e Theindex iy can be selected cyclically iy = [ix, mod n] + 1 or randomly
e Incase f is differentiable, the update is

17}
Thyl = Tk — ak%eik, ai >0, e; =ithcolumnof ]

i
e Incase of perfect line search x; 1 = argmin, f(zx + ae;,)
e The method can be applied even if f is nonsmooth and some z; discrete

e Although f(z**1) < f(z*) the method may not converge to a local minimum

e The method stops if there is no improvement in f(z*) after one full cycle
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NONLINEAR LEAST SQUARES AND GAUSS-NEWTON METHOD

¢ We want to solve the nonlinear least-squares problem

1 & 1
: 2 _ 2
ming Y ri@) = glr()3
Jj=1
where each residual ; : R™ — Rissmooth,Vj =1,...,m (assumem > n)

o Let J(z) be the Jacobian associated with r(x)

Vri(z)
o

Vrm',(:t)/

e Thegradient Vf(x) = Z;"zl ri(z)Vr;(x) = J(z)'r(z), the Hessian is
ZVTJ z)Vri(x) +r;i(z )Vzrj(:c) )+ er V ri(z

o Gauss-Newton method approximates V2 f (zy) ~ J ()" J (xk)

* " Numerical Optimization" - ©2023 A. Bemporad. Al rights reserved 16/51



NONLINEAR LEAST SQUARES AND GAUSS-NEWTON METHOD

e Gauss-Newton does not require computing the Hessian matrices VQTj(mk)
Thy1 = Tk + arpr,  pe = —(J(@r) T (zr) " T (@) r(z)
e Inmany problems J(x)’J(z)) dominates over the neglected term

Z;ﬁ:l Vrj(z)V?r;j(zy) close to z*, so convergence speed can get very close

to Newton method
o When J(xy) is full rank, py, is a descent direction:
PV flzr) = phd (wn)'r(2) = =i (J (@) I (21))px = I (21)px 3
¢ Note that p;. can be obtained by solving the least-squares problem
pi = argmin 2 (a)p -+ (o)
which is the linearized version of the problem at zy, r(z) = r(zx) + J(x)p

17/51
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NONLINEAR LEAST SQUARES AND GAUSS-NEWTON METHOD

e Any technique can be used to solve each least-squares problem
e The Gauss-Newton (GN) method converges under mild assumptions

lim Vf(x) = kli_)nolo J(z) r(xg) =0

k—o0

e The Levenberg-Marquardt (LM) method is a damped version of GN, based on
selecting py. by solving the regularized system

pe = —(pe + J (i)' J (x1) " (k) r(2k)

The parameter p;, can be selected at each iteration by simple rules.
Note that LM ~GN for p;, < 1,LM ~ gradient descent for p;, > 1.

The LM method can be reinterpreted also as a trust-region method.

" Numerical Optimization" - ©2023 A. Bemporad. All rights reserved 18/51



GAUSS-NEWTON METHOD - EXAMPLE

e We have adata set of N = 10000 samples (ug, yx)
Yp = x%ulk + X1T2U2k — xgugk + ng
where z; = 0.5, 25 = —1 are unknown and noise nj, ~ N(0,02),0 = 0.01

o We want to estimate the parameter vector a by minimizing

N 3
mwinﬁg lye — #Fuir + 2122u2e — T2udy 3,
|
o Gauss-Newton method converges in 6 ms? ’ \\
after 8 iterations, with stopping tolerance Ap- "‘"*""\"3———
IV f (2wl <10~ >
0 2 4 6 8

2Macbook 3 GHz Intel Core i7, MATLAB R2016b
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NONLINEAR LEAST SQUARES - FITTING AN EPIDEMIC MODEL

e The spread of Coronavirus COVID-19 can be modeled by the logistic model®

(t) — L
mey = 1+ Ae—"t

where n(t) = number of confirmed infected at time ¢ and K = final epidemic size

e Wewant tofit (K, r, A) to data available for different countries*:>

K 2
min — E _ nonlinear least squares
K,r,A2 1 + Ae—Tti

ot

) 1 1+Ae 3J

e Herer; =n(t;) — Vrj= ————— | —Ke ™

J 7 —rt ’ = =7t
1+Ae (1+Ae~"%)2 KAtye ™
3See also https://www.researchgate.net/publication/339240777

4World data available at https://github.com/CSSEGISandData/COVID-19/raw/master/csse _covid 19 data/csse
covid_19_time_series/time_series_l9-covid-Confirmed.csv

5Data for Italy available at nttps: //github. con/pen-dpe/covIp-19
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NONLINEAR LEAST SQUARES - FITTING AN EPIDEMIC MODEL

Results for China:

K =80917.6142
r = 0.2221
A =51.6394

Results for Italy:

K = 59939.3989
r =0.2344
A = 157.5456

5Problem solved using derivative-free Particle Swarm Optimization (Eberhart, Kennedy, 1995)
via the pyswarm interface nttps://pythonhosted.org/pyswarm /
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SEQUENTIAL QUADRATIC PROGRAMMING

Reference:

J.Nocedal and S.J. Wright, “Numerical Optimization,” 2006. Chapter 18



EQUALITY-CONSTRAINED NLP

o We consider the equality-constrained NLP problem

min  f(z)
st. h(x)=0

with f : R™ — Rand h : R® — R™ smooth functions.

e The Lagrangian function and its derivatives are

o
—~
8
<

|

f(@) +v'h(x)
Vf(z)+ A(z), Al(z) = [Vhi(z) ... Vhm(x)]

<
8
5
&
S
I

V2 L(x,v) = Vf(x)+ Y viVhi(x)
i=1

e Assume A(z) full rowrank,d'V2, L(z,v)d > 0,Vd # 0such that A(z)d = 0
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QUADRATIC APPROXIMATION

e Forallv € R™, the original problem is equivalent to solving

min  f(z) + v'h(z) = L(z,v)
st. h(z)=0

e Consider a pair (zy, 1) and the quadratic approximation of the problem
around xy,

min  f(zy) + vph(ey) + (VF(xr) + A (@r)ve)'p + 50’ Ve L(xr, vi)p
s.t. h(:ck) + A(:ck)p =0

o By exploiting v, (h(z)) + A(xr)p) = 0, the QP is equivalent to

min, $p'V2 Lz, vi)p+ Vf(zk)p
st. h(zg) + A(zp)p =0
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SQP FOR EQUALITY-CONSTRAINED NLP

The optimality conditions for the QP are

Vi Lk, vi) A'(xk)] [ Pk ] —

A(l’k) 0 V41 —h(:rk)

—ww]

e From the solution p, we set x11 = x) + agpr (Newton’s step)

o Also, we decided to update v 1 as the vector of Lagrange multipliers of the
approximated QP

e Sequential quadratic programming (SQP) for equality-constrained NLP’s
iterates the above steps from an initial pair (z, 1) until convergence

e Notethatincase h(z) = Az — bwe have V2, L(z,v) = V2 f(z)
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SQP FOR NLP WITH EQUALITY AND INEQUALITY CONSTRAINTS

e Asimilar reasoning applies to general NLP problems

min  f(z)
st. gi(x) <0,iel
gj(z) =0,j€E

with f : R™ = R, g; : R — R smooth functions,Vi =1,...,m.
o We still use the quadratic approximation
min %p’Vixﬁ(xk, vi)p+ Vf(zr)'p
st. gi(zr) +Vi(ve)p <0,i €l
gj(zr) +Vgj(azr)'p=0,j€ E

e We solve the QP, get the primal-dual solution (p, vk-1), and update
Th+1 = Tk + QkPk

e Several variants of the SQP method exist (including quasi-Newton methods)

" Numerical Optimization" - ©2023 A. Bemporad. All rights reserved 25/51



INTERIOR-POINT METHODS

References:
S. Boyd, “Convex Optimization,” lecture notes, http: //ee364a.stanford.edu

J. Nocedal and S.J. Wright, “Numerical Optimization,” 2006. Chapter 19


http://ee364a.stanford.edu

INTERIOR-POINT METHODS FOR CONVEX PROGRAMS

e Consider the convex programming problem

min  f(z)
st. gi(x)<0,i=1,...,m
Az =b

e Assumptions:

- f,gi convex and twice continuously differentiable
- AeRP*"hasrank A = p
- anoptimizer z* existsand f* = f(z*) € R
- the problem is strictly feasible
Jrdom f: ¢gi(z) <0,Vi=1,...,m, Az =b

which ensures strong duality, i.e., f(z*) = g(A\*, ™), ¢ = dual function
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LOGARITHMIC BARRIER

e Denoteby I : R — R U {+oo} the indicator function of the negative reals
(I(e) =0ifa < 0,1(c) = +0if &« > 0). The problem can be rewritten as

m

min f(2)+ > H(g:(x))

=1

st. Az =2b

o If we approximate I () with the smooth logarithmic barrier function
—1log(—a),t > 0,we get

min  f(z) — %Zlog(—gi(x)) s
i=1

—1t=50

st. Az =0b

e The larger t the better the approximation
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LOGARITHMIC BARRIER FUNCTION

e The logarithmic barrier function
$(x) = =Y _log(—gi(x))
i=1

has the following properties:
- dom¢={z: gi(x)<0,i=1,...,m}

- ¢ is convex, since — log is monotonic and g; is convex

- ¢ istwice continuously differentiable and

m

Vo) = -3 _5Va)
Vola) = Y Ve Vel - Y =)
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CENTRAL PATH

e Fort > 0let z*(t) be the optimizer of the approximated problem

min ¢f(2) + 6(x)
st. Az =0b

(assume for now that 2*(t) is unique for all ¢)

o We call central path the curve {z*(¢) }+~0

e Example: central path for the linear program . )

min cz
st. Gr<g, geR’

and level sets of ¢(z)
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OPTIMALITY CONDITIONS

e The original problem satisfies the optimality conditions

—l—Z/\*ng + AV =0

A >0, Ax =b, gi(z*) <0,A[gi(z*) =0

o The approximated optimizer =*(¢) satisfies the optimality conditions

0) = 32 oy VO )+ 4w (0 =0

1=

Az*(t) =b

where w*(t) is the corresponding vector of Lagrange multipliers
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OPTIMALITY CONDITIONS

1
e Ifweset \!(t) = —

——_ v*(t) = Lw* (), forallt > 0 we have
TG

e These are the same KKT conditions of the original problem, except for the
relaxation of the complementary slackness condition to A; (t)g; (z*(t)) = —+
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OPTIMALITY CONDITIONS

e The dual function g of the original problem evaluated at \*(¢t), v*(t) is

Lz, A (t),v*(t))

g(A*(t),v"(t)) = min {f(x) + Y A (gi(x) + (Az — b)'V*(t)}

=1

= fa®) -

as xz*(t) also satisfies the optimality condition VL (z, \*(¢t),v*(t)) = 0

e Since g(A\*(t),v*(t)) < f(x*),andsince f(x*) < f(z*(t)) as z*(¢) is feasible,
we get

f (@) -

m
t

< fla") < f(a"(t))

which confirms the intuition f(z*(¢t)) — f(z*) ast — +oo
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FINDING A FEASIBILE POINT (PHASE )

e Consider the feasibility problem
find x suchthatg;(z) <0,i=1,...,m, Az =10

e The basic phase | method consists of solving the following convex problem with
n + 1 variables

(x§,s5) =argming ;s
st. gi(r)—s<0,i=1,...,m
Az =b

from any initial guess x such that Azg = b, 59 > max g;(xo)

o If s§ < 0then xj is strictly feasible for the original problem
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BARRIER METHOD

e Barrier method: Given an initial strictly feasible x, execute:
0. Letto > 0,t = to, B > 1,tolerancee > 0
1. Compute z < argmin tf(z)+ ¢(x) (centeringstep)
st. Ax=0b
2. If 7 < estop
3. Otherwiseincreaset <— Standgoto 1

¢ Newton's method solves the centering step, with the last x as initial guess

o Tradeoff: alarge 5 makes fewer centering steps but more Newton iterations at
each step. Typically 8 = 10 + 20

log -
e The algorithm terminates with f(z) — f*(x) < 7 < einexactly { Ogg“ﬁow
centering steps + computation of initial * (¢o)
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PRIMAL-DUAL INTERIOR-POINT METHODS

e Consider the general NLP problem

min  f(x)
st. g(x) <0
h(z)=0

with f : R" = R, g : R = R™, h : R™ — RP smooth functions.

e The optimality condition for the NLP with slacks can be written as

V(@) + Vg(a)z+ VhizYy = 0
glx)+s = 0 S = diag(s)
h(z) = 0 Z = diag(z)
SZe 0 e = [1...1)
s,z >0
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PRIMAL-DUAL INTERIOR-POINT METHODS

Let us now relax the optimality conditions as

Vf(x)+Vg(x)z+ Vh(z)'y 0
glxy+s = 0
h(z) = 0 w=>0
SZe = e
s,z >0

Letz*(u), s* (1), y* (1), 2* (1) be the solution of the relaxed KKT equations

For ;v > Othe curve (z*(u), s* (1), y* (1), 2* (1)) is the primal-dual central path

Note that p = s7 (1) 2] (1) = —gi(2* ()2 (1) = 1

For ;x — 0, under suitable assumptions, the central path converges to the
primal/dual optimizer (x*, s*, y*, 2*)
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PRIMAL-DUAL INTERIOR-POINT METHODS

Primal-dual interior point methods apply a Newton step to solve the system of
relaxed KKT equations with decreasing values of p

They are more efficient than barrier method when high accuracy is needed

Often exhibit superlinear asymptotic convergence

They can start at infeasible points
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PRIMAL-DUAL INTERIOR-POINT METHOD FOR LP

e Letus consider the LP

min, cz
st. Az <b
Ex=f
e By introducing the slack vector s = b — Ax, the KKT conditions
c+Az+FEy = 0
Ar+s = b
Ex = f
zisi = 0,1=1, ,m
z,s > 0
can be rewritten as
Az+Ey+c
F(z,z,y,8) = Az+s—b =0, 2z,s>0
Ex—f
ZSe

where Z = diag(z1,...,2m), S = diag(s1,...,sm)e =[1 ... 1]
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PRIMAL-DUAL INTERIOR-POINT METHOD FOR LP

e We want to solve the nonlinear system F'(x, z,y, s) = 0 by Newton’s method

e Starting from a candidate solution z > 0, s > 0, z, y, Newton’s step Az, Az, Ay,
As is given by solving the linear system

Azx
0= F(z,2y.5) + VF(z, 2,,5) {ﬁ]
As

re A'z4+E' y+c . .
o Let r; = | Az+s—b |.Thelinear systemtosolveis

r Ex—f
Az —r’
Az | b
Ay | — _pf
As —ZSe

x x Azx
e Topreserve z,s > Owe set [;] — [;} + « [ﬁ;} with a sufficiently small
S S AS

[ —]
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PRIMAL-DUAL INTERIOR-POINT METHOD FOR LP

o To prevent excessively small o, given the current zy, zx, sk, yr, with zx, sp > 0,
primal-dual interior-point method solve instead the relaxed system

0 A E 0 Axy, -y
A 0 0 I Az | frz
E 0 0 0/||Ay]| —r!
0 S, 0 Z Asy, —ZpSke + ok ke

where pp, = %z,’csk is the current duality measure and o}, € [0, 1] is the
centering parameter, that is the factor we want to reduce the current pi,

e The performance of the method depends on how «;, and o}, are chosen

e Mehrotra’s predictor-corrector algorithm is one of the most used IP methods
for LP

e Homogeneous and self-dual formulations are useful to easily recognize
infeasibility and unboundedness
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PRIMAL-DUAL INTERIOR-POINT METHOD FOR QP

e Consider the convex QP
min, $2'Q+cx
st. Ax <b Q=Q =0
Ex=f

e By introducing the slack vector s = b — Ax, the KKT conditions

Qr+ct+Ey+Az
Ex
Az + s

Z2iS4i

[V | (R (R

z, 8
can be rewritten as

Qr+Ey+Az+c rQ

Ex— f

Az +s—0b ra

ZSe rs

1>
<
&

OZF('T’Z7y’S) =
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PRIMAL-DUAL INTERIOR-POINT METHOD FOR QP

Start from a candidate solution z > 0,s > 0,x,y

As for LP, we want to solve F'(z, z,y, s) = 0 by Newton’s method

e We use a variant of Mehrotra’s predictor-corrector algorithm

First, we solve the linear system (predictor step)

Q E A 0 JAVN: —rQ

E 0 0 0 Ayt | | —7E

A 0 0 I Azgg | | =ra

o o S Z Asaf —Trs
——

VF —F
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PRIMAL-DUAL INTERIOR-POINT METHOD FOR QP

¢ Next, we solve the linear system (centering-corrector step)

Q E A 0 AZee 0
E 0 0 O Ayee | 0
A 0 0 T||Az| 0
o 0 S Z Asee —AS, g AZ ge + oue

where the centering parameter ¢ € [0, 1) is chosen as

ang = argmaxy{a € [0,1]: [iigﬁ;:ﬁ] >0}
fafi = (2 + CagAzag) (5 + Qar Asag) /m

pw = 2's/m « duality gap

o = (pag/p)’

e Note: the same left-hand-side matrix is used to solve both linear systems.
So such a matrix can be factorized just once at each IP iteration
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PRIMAL-DUAL INTERIOR-POINT METHOD FOR QP

Now set

Ax = Axag + Dxee, Ay = Ayagr + Ayec
Az = Azag + Dzee, As = Asag + Asec

ztalz

and choose amax = argmax{a € [0,1] : [Z1o27

nonnegative

| > 0}, sothat z, s remain

e The actual step-length is chosen as &« = yayax, With the step-factor v € (0, 1)
closeto 1, see

e For even better choices of the step-length « see

e For reducing the number of factorizations, execute multiple corrections steps

o Givenastarting point Z, , Z, 5, a good initial guess is to solve for Az, Asag
andsetzo = Z,yo = §, 20 = max{l, |Z + Azag|}, so = max{1l, |5 + Asaa|}
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PRIMAL-DUAL INTERIOR-POINT METHOD FOR QP

o Let AZ = Z 1Az Wecaneliminate As = Z~'rg — SAZ and get the system

Q E AZ Ax -rQ
E 0 0 Ay | = —rg
A 0 -5 AZ Z_lTs —7TA

e The above system can be made symmetric by multiplying the last rows by Z
e We can further easily eliminate Z 1Az = S~ (AAz +ra — Z rg) and get

Q+AZS'A E || Az |
Ay |

E 0

—rqQ + A/S_l(’l“s — ZTA)

-rE

¢ Note that Z~1S is positive and diagonal.

* " Numerical Optimization" - ©2023 A. Bemporad. Al rights reserved 45/51



EXAMPLE: NLP SOLUTION VIA IPOPT & CASADI

o IPOPT (Interior Point OPTimizer? ) is a software package based an IP method
to solve the NLP

min, f(x)
st. g <g(x) < gy
Tp ST <@y

e CasADi’ is amodeling language for NLP problems. It implements automatic
differentiation for computing gradients

e CasADi + IPOPT greatly simplifies formulating and solving nonlinear

optimization problems via interior-point methods in MATLAB, @ puthon or C++

Shttps://coin-or.github.io/Ipopt/
’https://web.casadi.org/
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EXAMPLE: NLP SOLUTION VIA IPOPT & CASADI

e Let us minimize the course-logo function

1
f(.’l?,y) = _e—(x2+y2) +0.3sin (10953 + yz) +1.2

import casadi.* from casadi import *
x=SX.sym('x"); x=SX.sym('x")
y=SX.sym('y'); y=SX.sym('y")
f=-exp(-(x"2+y"~2))+.3*sin(x"3/10+y"2)+1.2; f=-exXp(-(xX**2+y**2))+.3*%sin(x**3/10+y**2)+1.2
P=struct('f',£f,'x"',[x;¥]); P=dict(x=vertcat(x,y), f=f)
F=nlpsol('F', 'ipopt',P); F=nlpsol('F','ipopt',P)
r=F('x0',[-1;-11); r=F(x0=[-1,-1])
xopt=full(r.x); xopt=r['x'].full()
fopt=full(r.£f); fopt=r['f'].full()
MATLAB & puthon

e Optimizer z* = 0,y* = 0, optimum f* = 0.2
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EXAMPLE: NLP SOLUTION VIA IPOPT & CASADI

Number
Number
Number
Number
Number
Number
Number

e Let’s add the constraint

of
of
of
of
of
of
of

objective function evaluations =18
objective gradient evaluations =11
equality constraint evaluations =0
inequality constraint evaluations =0
equality constraint Jacobian evaluations =0
inequality constraint Jacobian evaluations = 0
Lagrangian Hessian evaluations =10

1< (@422 —3y°<3

g=(x+2)"2-y"3/2; g= (X+2)**2-y**3/2
P=struct('f',£f,'x',[x;¥]1,'9',9); P=dict(x=vertcat(x,y), f=f, g=q)
F=nlpsol('F', 'ipopt',P); F=nlpsol('F','ipopt',P)
r=F('x0',[-1;-1], 'ubg',3,"'1lbg',1); r=F(x0=[-1,-1],ubg=3,1bg=1))
xopt=full(r.x); xopt=r['x'].full()
fopt=full(r.£f); fopt=r['f'].full()

lam g _opt = full(r.lam g); lam g opt=r['lam g'].full()

MATLAB

@ python

o New optimizer z* = —0.2679, y* = 0, optimum f* = 0.2687
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EXAMPLE: NLP SOLUTION VIA JAX/JAXO0PT

e Use JAX for autodiff and JAXopt (https://jaxopt.github.io)

import jax

import jax.numpy as jnp mil’lzyt f(Z) + 1000(t — g(Z))2
import jaxopt s.t. 1 <t< 3
def f(z): def g(z):
return -jnp.exp(-(z[0]**2+z[1]**2))+ return (z[0]+2.)**2-2[1]**3/2.
.3*jnp.sin(z[0]**3/10+z[1]**2)+1.2 def ft(zt):
z0=jnp.array([-1.,-1.]) z=zt[0:2]; t=zt[2]
solver=jaxopt.ScipyMinimize (fun=f,method="L-BFGS-B") return f(z)+l.e3*(t-g(z))**2
zopt, status=solver.run(z0) solver=jaxopt.ScipyBoundedMinimize (fun=£ft,
fopt=status.fun_val tol=1l.e-10)
Z*(O, 0)‘ f* =0.2 zt0=jnp.hstack((z0,g(z0)))

ztopt,status=solver.run(zt0,
bounds=([-jnp.inf,-jnp.inf,1.],
[jnp.inf, jnp.inf,3.]1))
zopt=ztopt[0:2]

fopt=status.fun_val

2*(—0.2679,0), f* = 0.2687

" Numerical Optimization" - € Bempor.
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e Use Nonconvex.jl package and IPopt in juli.é

(https://julianonconvex.github.io/Nonconvex.jl)

using Nonconvex

Nonconvex.@load Ipopt

f(z) = - exp(-(2[1]"2+2[2]"2))+
.3*sin(z[1]73/10+2[2]"2)+1.2

20 = [-1.,-1.]

model = Model(f)

u = [Inf,Inf]

£ = -u

addvar! (model, £,u)

r = optimize(model, IpoptAlg(), z0)

zopt = r.minimizer

fopt = r.minimum

2°(0,0), f* = 0.2

" Numerical Optimization" - € Bempor.

min,; f(2)
st. 1<g(z)<3

g(z) = (z[1] + 2.) "2 - z[2] ~ 3/ 2.
add_ineq_constraint!(model, z-> g(z)-3)
add_ineq_constraint!(model, z-> -g(z)+1)
r = optimize(model, IpoptAlg(), z0)
zopt = r.minimizer

fopt = r.minimum

2*(—0.2679,0), f* = 0.2687
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EXAMPLE: DEPENDENCE ON INITIAL GUESS

e Caveat: the NLP is non convex.

o If westartfromxzy = —2,y9 = —2 we get the
different local minimum

z* = —1.5078,y* = —1.7668, optimum f* = 1.3019 !

e If function/constraints are not convex, one may need to test different initial
conditions, or switch to global optimization methods
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