
Reference:

J.Nocedal and S.J.Wright, “Numerical Optimization,” 2006. Chapter 3

Unconstrained nonlinear optimization

Unconstrained nonlinear optimization methods

• For an arbitrary smooth function f : Rn → Rwewant to to solve the

unconstrained nonlinear programming problem

min
x

f(x)

• There are fundamentally two classes of iterativemethods:

– line-searchmethods choose a descent direction pk , search a suitable scalarαk > 0

such that f(xk + αkpk) < f(xk), and set xk+1 = xk + αkpk

– trust-regionmethods compute a quadratic approximation q(x) of f around xk ,

solve

pk = arg min
p: ∥p∥2≤∆

q(xk + p)

where the size∆ of the “trust region” of themodel is shrunk until

f(xk + pk) < f(xk), and set and set xk+1 = xk + pk

• The abovemethods converge to a local minimum (a global one if f convex)

``Numerical Optimization'' - ©2023 A. Bemporad. All rights reserved. 1/51

Line search methods: Steepest descent

• Steepest descent is themost obviousmethod, as it picks up pk orthogonal to

the level sets of f

pk = −∇f(xk)

xk+1 = xk − αk∇f(xk)

• From Taylor’s theorem

f(xk + αpk) = f(xk)− α∥∇f(xk)∥22 + α2p′k∇2f(xk + tαpk)pk, t ∈ (0, 1)

• Note that the Hessian of f is not required to compute pk

• Themethod can be very slow to converge

``Numerical Optimization'' - ©2023 A. Bemporad. All rights reserved. 2/51

Line search methods: Newton's method

• Newton’s method chooses pk = −(∇2f(xk))
−1∇f(xk) (Newton’s direction)

xk+1 = xk−αk(∇2f(xk))
−1∇f(xk)

• Newton’s direction provides theminimum of the quadratic Taylor’s

approximation q of f at xk:

q(xk + p) = f(xk) +∇f(xk)
′p+

1

2
p′∇2f(xk)p

• If∇2f(xk) ≻ 0 then for some σk > 0

∇f(xk)
′pk = −∇f(xk)

′(∇2f(xk))
−1∇f(xk) ≤ −σk∥pk∥22

so from Taylor’s theoremwe have f(xk + αpk) < f(xk) forα small enough

``Numerical Optimization'' - ©2023 A. Bemporad. All rights reserved. 3/51

Line search methods: Newton's method

• Themethod converges very fast, especially close to x∗, where the function f

and its quadratic approximation tend to coincide

• Forαk ≡ 1we have pure Newton’s method. However line search overα is

required to ensure convergence

• In case∇2f(xk) is not positive definite, a possibility is to use instead

∇2f(xk) + diag(δk).

For example δk can be computed during a Cholesky factorization tomake

intermediate diagonal entries≥ ϵ for some ϵ > 0

``Numerical Optimization'' - ©2023 A. Bemporad. All rights reserved. 4/51

Line search methods: quasi Newton methods

• Newton’s method requires computing∇2f(xk), which could be expensive

• Quasi-Newtonmethods replace∇2f(xk)with amatrixBk which is easier to

compute, satisfying the secant equation

Bk+1sk = yk, where sk = xk+1 − xk, yk = ∇f(xk+1)−∇f(xk)

and set pk = −B−1k ∇f(xk)

• TheBFGS formula (Broyden, Fletcher, Goldfarb, and Shanno) updates

Bk+1 = Bk −
Bksks

′
kBk

s′kBksk
+

yky
′
k

y′ksk

whereBk ≻ 0 ifB0 ≻ 0 and s′kyk > 0 for all k

``Numerical Optimization'' - ©2023 A. Bemporad. All rights reserved. 5/51

Line search methods: quasi-Newton methods

• SinceBk+1 differs fromBk by two one-rank updates, we can update a

factorization ofBk recursively.

• In alternative, one can avoidBk and directly updateHk = B−1k

Hk+1 = Hk +
s′kyk + y′kHkyk

(s′kyk)
2

sks
′
k −

Hkyks
′
k + sky

′
kHk

s′kyk

• For large-scale problems, limited-memory BFGS only stores a finite numberm

of past values of (sk , yk) (usuallym < 10) and directly computes the descent

direction pk = −Hk∇f(xk)without storingHk

``Numerical Optimization'' - ©2023 A. Bemporad. All rights reserved. 6/51

Line search methods: nonlinear conjugate-gradient
(Fletcher, Reeves, 1964)

• The nonlinear conjugate gradient (CG) method1 updates pk as follows:

βk =
∥∇f(xk+1)∥22
∥∇f(xk)∥22

pk+1 = −∇f(xk+1) + βkpk, with p0 = −∇f(x0)

• Themethod does not requires the storage of matrices

• Themethod is almost as simple as steepest descent but usually more efficient,

although it does not converge as fast as (quasi-)Newtonmethods

• As for steepest descent, nonlinear CGmay be sensitive to problem scaling

1Vectors s1, . . . , sn ̸= 0 ofRn are conjugate to amatrixG ≻ 0 if s′iGsj = 0, ∀ i ̸= j

``Numerical Optimization'' - ©2023 A. Bemporad. All rights reserved. 7/51

Line search

• Given a descent direction pk , ideally one should choose xk+1 = xk + αkpk with

αk = argmin
α>0

f(xk + αpk)

• Such a scalar nonlinear optimizationmay be difficult to solve and require a lot

of evaluations of f , so we look for simpler methods

• Simply imposing f(xk + αkpk) < f(xk)may not work, as the improvement

may become smaller and smaller as k grows

• Sufficient decrease is provided by satisfyingArmijo condition

f(xk+αpk) ≤ f(xk)+c1α∇f(xk)
′pk c1 ∈ (0, 1)

where usually c1 is small (e.g., c1 = 10−4)

``Numerical Optimization'' - ©2023 A. Bemporad. All rights reserved. 8/51

Backtracking line search

• The following is a simple practical algorithm for selecting a step sizeαk

satisfying Armijo formula:

Choose ᾱ > 0, ρ ∈ (0, 1), c ∈ (0, 1). Setα = ᾱ.

Repeat until f(xk + αpk) ≤ f(xk) + cα∇f(xk)
′pk

α← ρα

end repeat

Setαk = α.

• Possible choices are ᾱ = 1 (e.g., in Newton’s method) and ρ = 1
2 (bisection)

``Numerical Optimization'' - ©2023 A. Bemporad. All rights reserved. 9/51

acceptable

values

Line search

• Wolfe conditions include Armijo condition + the curvature condition

df(xk + αpk)

dα
= ∇f(xk+αpk)

′pk ≥ c2∇f(xk)
′pk c2 ∈ (c1, 1)

(the condition is strong if |∇f(xk + αpk)
′pk| ≤ c2|∇f(xk)

′pk| is imposed)

• The curvature condition avoid values ofα that are too small, when f is still

decaying fast (=very negative derivative)

• Usually c2 = 0.9 in (quasi-)Newtonmethods

and c2 = 0.1 in the nonlinear CGmethod

• It is possible to prove that if f is continuously differentiable and f bounded

below along the descent direction xk + αpk ,α ≥ 0, the (strong)Wolfe

conditions can be satisfied

``Numerical Optimization'' - ©2023 A. Bemporad. All rights reserved. 10/51

Line search - Convergence result

Theorem (Zoutendijk)
Let f : Rn → R be bounded below and differentiable in an open setN containing
the level setL = {x : f(x) ≤ f(x0)}, and let∇f Lipschitz continuous onN , that
is

∥∇f(x1)−∇f(x2)∥ ≤ L∥x1 − x2∥, ∀x1, x2 ∈ N

for someL > 0. Any line search method with pk a descent direction andαk

satisfying theWolfe conditions is such that

∞∑
k=0

cos2(θk)∥∇f(xk)∥2 <∞, cos(θk) =
−∇f(xk)

′pk
∥∇f(xk)∥∥pk∥

• If we choose pk such that cos θk ≥ δ > 0, ∀k ≥ 0, then limk→∞ ∥∇f(xk)∥ = 0.

``Numerical Optimization'' - ©2023 A. Bemporad. All rights reserved. 11/51

Line search - Convergence rate

• The condition cos θk ≥ δ > 0, ∀k ≥ 0, holds for the steepest descent method

• It also holds for (quasi-)Newtonmethods whenBk ≻ 0with uniformly bounded

condition number

• The convergence result show that the algorithm converges to a stationary point

∇f(x) = 0

``Numerical Optimization'' - ©2023 A. Bemporad. All rights reserved. 12/51

Convergence rates

• In analyzing the speed of convergence of iterative algorithms, we refer to

convergence rates. Let xk : N→ Rn be a converging sequence,

limk→∞ xk = x∗. We define

lim
k→∞

∥xk+1 − x∗∥
∥xk − x∗∥

= r, r ∈ (0, 1) linear convergence

∥xk+1 − x∗∥
∥xk − x∗∥

= rk, lim
k→∞

rk = 0 superlinear convergence

lim
k→∞

∥xk+1 − x∗∥
∥xk − x∗∥2

> 0 quadratic convergence

• Convergence only relates to the asymptotic behavior of the algorithm. The

transient is oftenmore relevant, especially stopping tolerances are not small

``Numerical Optimization'' - ©2023 A. Bemporad. All rights reserved. 13/51

Line search - Convergence rate

• When f is twice differentiable and∇2f(x∗) ≻ 0we can show that steepest

descent has the linear convergence rate

f(xk+1)− f(x∗) ≤ r2(f(xk)− f(x∗)),
λmax− λmin

λmax + λmin
< r < 1

where λmax, λmin are themax/min eigenvalues of∇2f(x∗)

• When f is twice differentiable and∇2f(x∗) ≻ 0 and x0 is sufficiently close to

x∗ Newton’s method has the quadratic convergence rate

∥xk+1 − x∗∥ ≤ L̃∥xk − x∗∥2, ∥∇f(xk+1)∥ ≤ 2L∥∇2f(x∗)−1∥2∥∇f(xk)∥2

while quasi-Newtonmethods have a superlinear convergence rate

``Numerical Optimization'' - ©2023 A. Bemporad. All rights reserved. 14/51

Line search methods: Coordinate descent

• Coordinate descent consists of successively optimizing only one coordinate

xik at each step k, ik ∈ {1, . . . , n}

• The index ik can be selected cyclically ik+1 = [ik mod n] + 1 or randomly

• In case f is differentiable, the update is

xk+1 = xk − αk
∂f(xk)

∂xik

eik , αk > 0, ei = ith column of I

• In case of perfect line search xk+1 = argminα f(xk + αeik)

• Themethod can be applied even if f is nonsmooth and some xi discrete

• Although f(xk+1) ≤ f(xk) themethodmay not converge to a local minimum

• Themethod stops if there is no improvement in f(xk) after one full cycle

``Numerical Optimization'' - ©2023 A. Bemporad. All rights reserved. 15/51

Nonlinear least squares and Gauss-Newton method
• Wewant to solve the nonlinear least-squares problem

min
x

1

2

m∑
j=1

r2j (x) =
1

2
∥r(x)∥22

where each residual rj : Rn → R is smooth, ∀j = 1, . . . ,m (assumem ≥ n)

• Let J(x) be the Jacobian associated with r(x)

J(x) =

[∇r1(x)
′

...
∇rm(x)′

]

• The gradient∇f(x) =
∑m

j=1 rj(x)∇rj(x) = J(x)′r(x), the Hessian is

∇2f(x) =

m∑
j=1

∇rj(x)∇rj(x)′ + rj(x)∇2rj(x) = J(x)′J(x) +

m∑
j=1

rj(x)∇2rj(x)

• Gauss-Newtonmethod approximates∇2f(xk) ≈ J(xk)
′J(xk)

``Numerical Optimization'' - ©2023 A. Bemporad. All rights reserved. 16/51

Nonlinear least squares and Gauss-Newton method
• Gauss-Newton does not require computing the Hessianmatrices∇2rj(xk)

xk+1 = xk + αkpk, pk = −(J(xk)
′J(xk))

−1J(xk)
′r(xk)

• Inmany problems J(xk)
′J(xk) dominates over the neglected term∑m

j=1∇rj(xk)∇2rj(xk) close to x∗, so convergence speed can get very close

to Newtonmethod

• When J(xk) is full rank, pk is a descent direction:

p′k∇f(xk) = p′kJ(xk)
′r(xk) = −p′k(J(xk)

′J(xk))pk = −∥J(xk)pk∥22

• Note that pk can be obtained by solving the least-squares problem

pk = argmin
p

1

2
∥J(xk)p+ r(xk)∥22

which is the linearized version of the problem at xk , r(x) ≈ r(xk) + J(xk)p

``Numerical Optimization'' - ©2023 A. Bemporad. All rights reserved. 17/51

Nonlinear least squares and Gauss-Newton method
• Any technique can be used to solve each least-squares problem

• TheGauss-Newton (GN)method converges undermild assumptions

(Nocedal,Wright, 2006, Th. 10.1)

lim
k→∞

∇f(xk) = lim
k→∞

J(xk)
′r(xk) = 0

• The Levenberg-Marquardt (LM)method is a damped version of GN, based on

selecting pk by solving the regularized system

pk = −(ρkI + J(xk)
′J(xk))

−1J(xk)
′r(xk)

The parameter ρk can be selected at each iteration by simple rules.

Note that LM≈GN for ρk ≪ 1, LM≈ gradient descent for ρk ≫ 1.

The LMmethod can be reinterpreted also as a trust-regionmethod.

``Numerical Optimization'' - ©2023 A. Bemporad. All rights reserved. 18/51

0 2 4 6 8

-2

-1

0

1

2

3

Gauss-Newton method - Example

• We have a data set ofN = 10000 samples (uk, yk)

yk = x2
1u1k + x1x2u2k − x2u

2
3k + nk

where x1 = 0.5, x2 = −1 are unknown and noise nk ∼ N(0, σ2), σ = 0.01

• Wewant to estimate the parameter vector x byminimizing

min
x

1

2

N∑
i=1

∥yk − x2
1u1k + x1x2u2k − x2u

2
3k∥22

• Gauss-Newtonmethod converges in 6ms2

after 8 iterations, with stopping tolerance

∥∇f(xk)∥ ≤ 10−4

2Macbook 3GHz Intel Core i7, MATLAB R2016b

``Numerical Optimization'' - ©2023 A. Bemporad. All rights reserved. 19/51

Nonlinear least squares - Fitting an epidemic model

• The spread of Coronavirus COVID-19 can bemodeled by the logistic model3

n(t) =
K

1 +Ae−rt

where n(t) = number of confirmed infected at time t andK = final epidemic size

• Wewant to fit (K, r,A) to data available for different countries4,5

min
K,r,A

1

2

m∑
j=1

∥∥∥∥n(tj)− K

1 +Ae−rtj

∥∥∥∥2
2

nonlinear least squares

• Here rj = n(tj)− K
1+Ae−rtj

,∇rj = 1
(1+Ae−rtj)2

[
1+Ae−rtj

−Ke−rtj

KAtje
−rtj

]
3See also (Batista, 2020) https://www.researchgate.net/publication/339240777
4World data available at https://github.com/CSSEGISandData/COVID-19/raw/master/csse_covid_19_data/csse_
covid_19_time_series/time_series_19-covid-Confirmed.csv
5Data for Italy available at https://github.com/pcm-dpc/COVID-19

``Numerical Optimization'' - ©2023 A. Bemporad. All rights reserved. 20/51

https://www.researchgate.net/publication/339240777
https://github.com/CSSEGISandData/COVID-19/raw/master/csse_covid_19_data/csse_covid_19_time_series/time_series_19-covid-Confirmed.csv
https://github.com/CSSEGISandData/COVID-19/raw/master/csse_covid_19_data/csse_covid_19_time_series/time_series_19-covid-Confirmed.csv
https://github.com/pcm-dpc/COVID-19

Nonlinear least squares - Fitting an epidemic model

1/
22

1/
23

1/
24

1/
25

1/
26

1/
27

1/
28

1/
29

1/
30

1/
31 2/
1

2/
2

2/
3

2/
4

2/
5

2/
6

2/
7

2/
8

2/
9

2/
10

2/
11

2/
12

2/
13

2/
14

2/
15

2/
16

2/
17

2/
18

2/
19

2/
20

2/
21

2/
22

2/
23

2/
24

2/
25

2/
26

2/
27

2/
28

2/
29 3/
1

3/
2

3/
3

3/
4

3/
5

3/
6

3/
7

3/
8

3/
9

3/
10

3/
11

3/
12

3/
13

3/
14

3/
15

3/
16

3/
17

0

10000

20000

30000

40000

50000

60000

70000

80000

co
n

fir
m

ed
in

fe
ct

ed

COVID-19 - China

0

1000

2000

3000

4000

n
ew

in
fe

ct
ed

p
er

d
ay

Results for China:

K = 80917.6142

r = 0.2221

A = 51.6394

02
-2

4
02

-2
5

02
-2

6
02

-2
7

02
-2

8
02

-2
9

03
-0

1
03

-0
2

03
-0

3
03

-0
4

03
-0

5
03

-0
6

03
-0

7
03

-0
8

03
-0

9
03

-1
0

03
-1

1
03

-1
2

03
-1

3
03

-1
4

03
-1

5
03

-1
6

03
-1

7

0

10000

20000

30000

40000

50000

60000

co
n

fir
m

ed
in

fe
ct

ed

COVID-19 - Italy

0

500

1000

1500

2000

2500

3000

3500

n
ew

in
fe

ct
ed

p
er

d
ay

Results for Italy:

K = 59939.3989

r = 0.2344

A = 157.5456

5Problem solved using derivative-free Particle SwarmOptimization (Eberhart, Kennedy, 1995)
via the pyswarm interface https://pythonhosted.org/pyswarm/

``Numerical Optimization'' - ©2023 A. Bemporad. All rights reserved. 21/51

https://pythonhosted.org/pyswarm/

Reference:

J.Nocedal and S.J.Wright, “Numerical Optimization,” 2006. Chapter 18

Sequential quadratic programming

Equality-constrained NLP
• We consider the equality-constrainedNLP problem

min f(x)

s.t. h(x) = 0

with f : Rn → R and h : Rn → Rm smooth functions.

• The Lagrangian function and its derivatives are

L(x, ν) = f(x) + ν′h(x)

∇xL(x, ν) = ∇f(x) +A′(x)ν, A′(x) = [∇h1(x) ... ∇hm(x)]

∇2
xxL(x, ν) = ∇2f(x) +

m∑
i=1

νi∇2hi(x)

• AssumeA(x) full row rank, d′∇2
xxL(x, ν)d > 0, ∀d ̸= 0 such thatA(x)d = 0

``Numerical Optimization'' - ©2023 A. Bemporad. All rights reserved. 22/51

Quadratic approximation
• For all ν ∈ Rm, the original problem is equivalent to solving

min f(x) + ν′h(x) = L(x, ν)
s.t. h(x) = 0

• Consider a pair (xk, νk) and the quadratic approximation of the problem

around xk

min f(xk) + ν′kh(xk) + (∇f(xk) +A′(xk)νk)
′p+ 1

2p
′∇2

xxL(xk, νk)p

s.t. h(xk) +A(xk)p = 0

• By exploiting ν′k(h(xk) +A(xk)p) = 0, the QP is equivalent to

minp
1
2p
′∇2

xxL(xk, νk)p+∇f(xk)
′p

s.t. h(xk) +A(xk)p = 0

``Numerical Optimization'' - ©2023 A. Bemporad. All rights reserved. 23/51

SQP for equality-constrained NLP

• The optimality conditions for theQP are[
∇2

xxL(xk, νk) A′(xk)

A(xk) 0

][
pk

νk+1

]
=

[
−∇f(xk)

−h(xk)

]

• From the solution pk we set xk+1 = xk + αkpk (Newton’s step)

• Also, we decided to update νk+1 as the vector of Lagrangemultipliers of the

approximatedQP

• Sequential quadratic programming (SQP) for equality-constrainedNLP’s

iterates the above steps from an initial pair (x0, ν0) until convergence

• Note that in case h(x) = Ax− bwe have∇2
xxL(x, ν) = ∇2f(x)

``Numerical Optimization'' - ©2023 A. Bemporad. All rights reserved. 24/51

SQP for NLP with equality and inequality constraints

• A similar reasoning applies to general NLP problems

min f(x)

s.t. gi(x) ≤ 0, i ∈ I

gj(x) = 0, j ∈ E

with f : Rn → R, gi : Rn → R smooth functions, ∀i = 1, . . . ,m.

• We still use the quadratic approximation

min 1
2p
′∇2

xxL(xk, νk)p+∇f(xk)
′p

s.t. gi(xk) +∇gi(xk)
′p ≤ 0, i ∈ I

gj(xk) +∇gj(xk)
′p = 0, j ∈ E

• We solve theQP, get the primal-dual solution (pk, νk+1), and update

xk+1 = xk + αkpk

• Several variants of the SQPmethod exist (including quasi-Newtonmethods)

``Numerical Optimization'' - ©2023 A. Bemporad. All rights reserved. 25/51

References:

S. Boyd, “ConvexOptimization,” lecture notes, http://ee364a.stanford.edu

J. Nocedal and S.J.Wright, “Numerical Optimization,” 2006. Chapter 19

Interior-point methods

http://ee364a.stanford.edu

Interior-point methods for convex programs

• Consider the convex programming problem

min f(x)

s.t. gi(x) ≤ 0, i = 1, . . . ,m

Ax = b

• Assumptions:

– f , gi convex and twice continuously differentiable

– A ∈ Rp×n has rankA = p

– an optimizer x∗ exists and f∗ = f(x∗) ∈ R

– the problem is strictly feasible

∃x dom f : gi(x) < 0, ∀i = 1, . . . ,m, Ax = b

which ensures strong duality, i.e., f(x∗) = q(λ∗, ν∗), q = dual function

``Numerical Optimization'' - ©2023 A. Bemporad. All rights reserved. 26/51

-3 -2.5 -2 -1.5 -1 -0.5 0

-2

0

2

4

6

8

t = 2

t = 5

t = 10

t = 50

Logarithmic barrier

• Denote by I : R→ R ∪ {+∞} the indicator function of the negative reals
(I(α) = 0 ifα ≤ 0, I(α) = +∞ ifα > 0). The problem can be rewritten as

min f(x) +

m∑
i=1

I(gi(x))

s.t. Ax = b

• If we approximate I(α)with the smooth logarithmic barrier function

− 1
t log(−α), t > 0, we get

min f(x)− 1

t

m∑
i=1

log(−gi(x))

s.t. Ax = b

• The larger t the better the approximation

``Numerical Optimization'' - ©2023 A. Bemporad. All rights reserved. 27/51

Logarithmic barrier function

• The logarithmic barrier function

ϕ(x) = −
m∑
i=1

log(−gi(x))

has the following properties:

– domϕ = {x : gi(x) < 0, i = 1, . . . ,m}

– ϕ is convex, since− log is monotonic and gi is convex

– ϕ is twice continuously differentiable and

∇ϕ(x) = −
m∑
i=1

1

gi(x)
∇gi(x)

∇2ϕ(x) =

m∑
i=1

1

gi(x)2
∇gi(x)∇gi(x)′ −

m∑
i=1

1

gi(x)
∇2gi(x)

``Numerical Optimization'' - ©2023 A. Bemporad. All rights reserved. 28/51

Central path

• For t ≥ 0 let x∗(t) be the optimizer of the approximated problem

min tf(x) + ϕ(x)

s.t. Ax = b

(assume for now that x∗(t) is unique for all t)

• We call central path the curve {x∗(t)}t>0

• Example: central path for the linear program

min c′x

s.t. Gx ≤ g, g ∈ R5

and level sets of ϕ(x)

``Numerical Optimization'' - ©2023 A. Bemporad. All rights reserved. 29/51

Optimality conditions

• The original problem satisfies the optimality conditions

∇f(x∗) +
m∑
i=1

λ∗i∇gi(x∗) +A′ν∗ = 0

λ∗ ≥ 0, Ax∗ = b, gi(x
∗) ≤ 0, λ∗i gi(x

∗) = 0

• The approximated optimizer x∗(t) satisfies the optimality conditions

∇f(x∗(t))−
m∑
i=1

1

tgi(x∗(t))
∇gi(x∗(t)) +

1

t
A′w∗(t) = 0

Ax∗(t) = b

wherew∗(t) is the corresponding vector of Lagrangemultipliers

``Numerical Optimization'' - ©2023 A. Bemporad. All rights reserved. 30/51

Optimality conditions

• If we set λ∗i (t) ≜ −
1

tgi(x∗(t))
, ν∗(t) = 1

tw
∗(t), for all t > 0we have

∇f(x∗(t)) +
m∑
i=1

λ∗i (t)∇gi(x∗(t)) +A′ν∗(t) = 0, Ax∗(t) = b

gi(x
∗(t) < 0, λ∗i (t) ≥ 0, λ∗i (t)gi(x

∗(t)) = −1

t

• These are the same KKT conditions of the original problem, except for the

relaxation of the complementary slackness condition to λ∗i (t)gi(x
∗(t)) = − 1

t

``Numerical Optimization'' - ©2023 A. Bemporad. All rights reserved. 31/51

Optimality conditions
• The dual function q of the original problem evaluated at λ∗(t), ν∗(t) is

q(λ∗(t), ν∗(t)) = min
x

L(x, λ∗(t), ν∗(t))︷ ︸︸ ︷{
f(x) +

m∑
i=1

λ∗i (t)gi(x) + (Ax− b)′ν∗(t)

}
= f(x∗(t))− m

t

as x∗(t) also satisfies the optimality condition∇xL(x, λ∗(t), ν∗(t)) = 0

• Since q(λ∗(t), ν∗(t)) ≤ f(x∗), and since f(x∗) ≤ f(x∗(t)) as x∗(t) is feasible,

we get

f(x∗(t))− m

t
≤ f(x∗) ≤ f(x∗(t))

which confirms the intuition f(x∗(t))→ f(x∗) as t→ +∞

``Numerical Optimization'' - ©2023 A. Bemporad. All rights reserved. 32/51

Finding a feasibile point (Phase I)

• Consider the feasibility problem

find x such that gi(x) ≤ 0, i = 1, . . . ,m, Ax = b

• The basic phase I method consists of solving the following convex problemwith

n+ 1 variables

(x∗0, s
∗
0) = argminx,s s

s.t. gi(x)− s ≤ 0, i = 1, . . . ,m

Ax = b

from any initial guess x0 such thatAx0 = b, s0 > max gi(x0)

• If s∗0 < 0 then x∗0 is strictly feasible for the original problem

``Numerical Optimization'' - ©2023 A. Bemporad. All rights reserved. 33/51

Barrier method

• Barrier method: Given an initial strictly feasible x, execute:

0. Let t0 > 0, t = t0, β > 1, tolerance ϵ > 0

1. Compute x← argmin tf(x) + ϕ(x)

s.t. Ax = b

(centering step)

2. If m
t
≤ ϵ stop

3. Otherwise increase t← βt and go to 1

• Newton’s method solves the centering step, with the last x as initial guess

• Tradeoff: a large β makes fewer centering steps but more Newton iterations at

each step. Typically β = 10÷ 20

• The algorithm terminates with f(x)− f∗(x) ≤ m
t ≤ ϵ in exactly

⌈
log m

ϵt0

log β

⌉
centering steps + computation of initial x∗(t0)

``Numerical Optimization'' - ©2023 A. Bemporad. All rights reserved. 34/51

Primal-dual interior-point methods

• Consider the general NLP problem

min f(x)

s.t. g(x) ≤ 0

h(x) = 0

with f : Rn → R, g : Rn → Rm, h : Rn → Rp smooth functions.

• The optimality condition for the NLPwith slacks can bewritten as

∇f(x) +∇g(x)′z +∇h(x)′y = 0

g(x) + s = 0

h(x) = 0

SZe = 0

s, z ≥ 0

S = diag(s)

Z = diag(z)

e = [1 . . . 1]′

``Numerical Optimization'' - ©2023 A. Bemporad. All rights reserved. 35/51

Primal-dual interior-point methods

• Let us now relax the optimality conditions as

∇f(x) +∇g(x)′z +∇h(x)′y = 0

g(x) + s = 0

h(x) = 0

SZe = µe

s, z ≥ 0

µ ≥ 0

• Let x∗(µ), s∗(µ), y∗(µ), z∗(µ) be the solution of the relaxed KKT equations

• Forµ > 0 the curve (x∗(µ), s∗(µ), y∗(µ), z∗(µ)) is the primal-dual central path

• Note that µ = s∗i (µ)z
∗
i (µ) = −gi(x∗(µ))z∗i (µ) = 1

t

• For µ→ 0, under suitable assumptions, the central path converges to the

primal/dual optimizer (x∗, s∗, y∗, z∗)

``Numerical Optimization'' - ©2023 A. Bemporad. All rights reserved. 36/51

Primal-dual interior-point methods

• Primal-dual interior point methods apply a Newton step to solve the system of

relaxed KKT equations with decreasing values of µ

• They aremore efficient than barrier methodwhen high accuracy is needed

• Often exhibit superlinear asymptotic convergence

• They can start at infeasible points

``Numerical Optimization'' - ©2023 A. Bemporad. All rights reserved. 37/51

Primal-dual interior-point method for LP
• Let us consider the LP

minx c′x

s.t. Ax ≤ b

Ex = f

• By introducing the slack vector s = b−Ax, the KKT conditions

c+A′z + E′y = 0

Ax+ s = b

Ex = f

zisi = 0, i = 1, . . . ,m

z, s ≥ 0

can be rewritten as

F (x, z, y, s) =

A′z + E′y + c

Ax+ s− b

Ex− f

ZSe

 = 0, z, s ≥ 0

whereZ = diag(z1, . . . , zm),S = diag(s1, . . . , sm), e = [1 . . . 1]′

``Numerical Optimization'' - ©2023 A. Bemporad. All rights reserved. 38/51

Primal-dual interior-point method for LP

• Wewant to solve the nonlinear systemF (x, z, y, s) = 0 byNewton’s method

• Starting from a candidate solution z > 0, s > 0, x, y, Newton’s step∆x,∆z,∆y,

∆s is given by solving the linear system

0 = F (x, z, y, s) +∇F (x, z, y, s)

[
∆x
∆z
∆y
∆s

]

• Let

[
rc

rb

rf

]
=

[
A′z+E′y+c
Ax+s−b
Ex−f

]
. The linear system to solve is

[
0 A′ E′ 0
A 0 0 I
E 0 0 0
0 S 0 Z

] [
∆x
∆z
∆y
∆s

]
=

[−rc
−rb
−rf
−ZSe

]

• To preserve z, s ≥ 0we set

[
x
z
y
s

]
←

[
x
z
y
s

]
+ α

[
∆x
∆z
∆y
∆s

]
withα sufficiently small

``Numerical Optimization'' - ©2023 A. Bemporad. All rights reserved. 39/51

Primal-dual interior-point method for LP

• To prevent excessively smallα, given the current xk, zk, sk, yk , with zk, sk > 0,

primal-dual interior-point method solve instead the relaxed system
0 A′ E′ 0

A 0 0 I

E 0 0 0

0 Sk 0 Zk

∆xk

∆zk
∆yk
∆sk

 =

−rck
−rbk
−rfk

−ZkSke+ σkµke

where µk = 1

mz′ksk is the current dualitymeasure and σk ∈ [0, 1] is the

centering parameter, that is the factor wewant to reduce the current µk

• The performance of themethod depends on howαk and σk are chosen

• Mehrotra’s predictor-corrector algorithm is one of themost used IPmethods

for LP (Mehrotra, 1992)

• Homogeneous and self-dual formulations are useful to easily recognize

infeasibility and unboundedness (Yu, Todd,Mizuno, 1994) (Xu, Hung, Ye, 1996)

``Numerical Optimization'' - ©2023 A. Bemporad. All rights reserved. 40/51

Primal-dual interior-point method for QP
• Consider the convexQP

minx
1
2x
′Qx+ c′x

s.t. Ax ≤ b Q = Q′ ⪰ 0

Ex = f

• By introducing the slack vector s = b−Ax, the KKT conditions

Qx+ c+ E′y +A′z = 0

Ex = f

Ax+ s = b

zisi = 0, i = 1, . . . ,m

z, s ≥ 0

can be rewritten as

0 = F (x, z, y, s) =

Qx+ E′y +A′z + c

Ex− f

Ax+ s− b

ZSe

 ≜

rQ

rE

rA

rS

 , z, s ≥ 0

``Numerical Optimization'' - ©2023 A. Bemporad. All rights reserved. 41/51

Primal-dual interior-point method for QP
(Nocedal,Wright, 2006) (Rao,Wright, Rawlings, 1998) (Wright, 2018)

• Start from a candidate solution z > 0, s > 0, x, y

• As for LP, wewant to solveF (x, z, y, s) = 0 byNewton’s method

• We use a variant ofMehrotra’s predictor-corrector algorithm (Mehrotra, 1992)

• First, we solve the linear system (predictor step)
Q E′ A′ 0

E 0 0 0

A 0 0 I

0 0 S Z

︸ ︷︷ ︸

∇F

∆xaff

∆yaff
∆zaff
∆saff

 =

−rQ
−rE
−rA
−rS

︸ ︷︷ ︸
−F

``Numerical Optimization'' - ©2023 A. Bemporad. All rights reserved. 42/51

Primal-dual interior-point method for QP
(Nocedal,Wright, 2006) (Rao,Wright, Rawlings, 1998)

• Next, we solve the linear system (centering-corrector step)
Q E′ A′ 0

E 0 0 0

A 0 0 I

0 0 S Z

∆xcc

∆ycc
∆zcc
∆scc

 =

0

0

0

−∆Saff∆Zaffe+ σµe

where the centering parameter σ ∈ [0, 1) is chosen as

αaff = argmaxα{α ∈ [0, 1] :
[
z+α∆zaff
s+α∆saff

]
≥ 0}

µaff = (z + αaff∆zaff)
′(s+ αaff∆saff)/m

µ = z′s/m ← duality gap
σ = (µaff/µ)

3

• Note: the same left-hand-sidematrix is used to solve both linear systems.

So such amatrix can be factorized just once at each IP iteration

``Numerical Optimization'' - ©2023 A. Bemporad. All rights reserved. 43/51

Primal-dual interior-point method for QP
(Nocedal,Wright, 2006) (Rao,Wright, Rawlings, 1998)

• Now set
∆x = ∆xaff +∆xcc, ∆y = ∆yaff +∆ycc
∆z = ∆zaff +∆zcc, ∆s = ∆saff +∆scc

and chooseαmax = argmax{α ∈ [0, 1] :
[
z+α∆z
s+α∆s

]
≥ 0}, so that z, s remain

nonnegative

• The actual step-length is chosen asα = γαmax, with the step-factor γ ∈ (0, 1)

close to 1, see (Mehrotra, 1992)

• For even better choices of the step-lengthα see (Curtis, Nocedal, 2007)

• For reducing the number of factorizations, executemultiple corrections steps

(Gondzio, 1996)

• Given a starting point x̄, ȳ, z̄, s̄, a good initial guess is to solve for∆zaff ,∆saff
and set x0 = x̄, y0 = ȳ, z0 = max{1, |z̄ +∆zaff |}, s0 = max{1, |s̄+∆saff |}

``Numerical Optimization'' - ©2023 A. Bemporad. All rights reserved. 44/51

Primal-dual interior-point method for QP
(Nocedal,Wright, 2006) (Rao,Wright, Rawlings, 1998) (Gondzio, Terlaki, 1994)

• Let∆z̃ = Z−1∆z. We can eliminate∆s = Z−1rS − S∆z̃ and get the systemQ E′ A′Z

E 0 0

A 0 −S

∆x

∆y

∆z̃

 =

 −rQ
−rE

Z−1rS − rA

• The above system can bemade symmetric bymultiplying the last rows byZ

• We can further easily eliminateZ−1∆z = S−1(A∆x+ rA − Z−1rS) and get[
Q+A′ZS−1A E′

E 0

][
∆x

∆y

]
=

[
−rQ +A′S−1(rS − ZrA)

−rE

]

• Note thatZ−1S is positive and diagonal.

``Numerical Optimization'' - ©2023 A. Bemporad. All rights reserved. 45/51

Example: NLP solution via IPOPT & CasADi

• IPOPT (Interior PointOPTimizer6) is a software package based an IPmethod

to solve the NLP (Wächter, Biegler, 2006)

minx f(x)

s.t. gℓ ≤ g(x) ≤ gu
xℓ ≤ x ≤ xu

• CasADi7 is a modeling language for NLP problems. It implements automatic

differentiation for computing gradients (Andersson, Gillis, Horn, Rawlings, Diehl, 2019)

• CasADi + IPOPT greatly simplifies formulating and solving nonlinear

optimization problems via interior-point methods inMATLAB, , or C++
6https://coin-or.github.io/Ipopt/
7https://web.casadi.org/

``Numerical Optimization'' - ©2023 A. Bemporad. All rights reserved. 46/51

https://coin-or.github.io/Ipopt/
https://web.casadi.org/

Example: NLP solution via IPOPT & CasADi
• Let usminimize the course-logo function

f(x, y) = −e−(x
2+y2) + 0.3 sin

(
1

10
x3 + y2

)
+ 1.2

import casadi.*

x=SX.sym('x');

y=SX.sym('y');

f=-exp(-(x^2+y^2))+.3*sin(x^3/10+y^2)+1.2;

P=struct('f',f,'x',[x;y]);

F=nlpsol('F','ipopt',P);

r=F('x0',[-1;-1]);

xopt=full(r.x);

fopt=full(r.f);

MATLAB

from casadi import *

x=SX.sym('x')

y=SX.sym('y')

f=-exp(-(x**2+y**2))+.3*sin(x**3/10+y**2)+1.2

P=dict(x=vertcat(x,y), f=f)

F=nlpsol('F','ipopt',P)

r=F(x0=[-1,-1])

xopt=r['x'].full()

fopt=r['f'].full()

• Optimizer x∗ = 0, y∗ = 0, optimum f∗ = 0.2

``Numerical Optimization'' - ©2023 A. Bemporad. All rights reserved. 47/51

Example: NLP solution via IPOPT & CasADi
Number of objective function evaluations = 18
Number of objective gradient evaluations = 11
Number of equality constraint evaluations = 0
Number of inequality constraint evaluations = 0
Number of equality constraint Jacobian evaluations = 0
Number of inequality constraint Jacobian evaluations = 0
Number of Lagrangian Hessian evaluations = 10

• Let’s add the constraint

1 ≤ (x+ 2)2 − 1
2y

3 ≤ 3

g=(x+2)^2-y^3/2;

P=struct('f',f,'x',[x;y],'g',g);

F=nlpsol('F','ipopt',P);

r=F('x0',[-1;-1],'ubg',3,'lbg',1);

xopt=full(r.x);

fopt=full(r.f);

lam_g_opt = full(r.lam_g);

MATLAB

g= (x+2)**2-y**3/2

P=dict(x=vertcat(x,y), f=f, g=g)

F=nlpsol('F','ipopt',P)

r=F(x0=[-1,-1],ubg=3,lbg=1))

xopt=r['x'].full()

fopt=r['f'].full()

lam_g_opt=r['lam_g'].full()

• New optimizer x∗ = −0.2679, y∗ = 0, optimum f∗ = 0.2687

``Numerical Optimization'' - ©2023 A. Bemporad. All rights reserved. 48/51

Example: NLP solution via JAX/JAXOPT
• Use JAX for autodiff and JAXopt (https://jaxopt.github.io)

import jax

import jax.numpy as jnp

import jaxopt

def f(z):

return -jnp.exp(-(z[0]**2+z[1]**2))+

.3*jnp.sin(z[0]**3/10+z[1]**2)+1.2

z0=jnp.array([-1.,-1.])

solver=jaxopt.ScipyMinimize(fun=f,method="L-BFGS-B")

zopt,status=solver.run(z0)

fopt=status.fun_val

z∗(0, 0), f∗ = 0.2

minz,t f(z) + 1000(t− g(z))2

s.t. 1 ≤ t ≤ 3

def g(z):

return (z[0]+2.)**2-z[1]**3/2.

def ft(zt):

z=zt[0:2]; t=zt[2]

return f(z)+1.e3*(t-g(z))**2

solver=jaxopt.ScipyBoundedMinimize(fun=ft,

tol=1.e-10)

zt0=jnp.hstack((z0,g(z0)))

ztopt,status=solver.run(zt0,

bounds=([-jnp.inf,-jnp.inf,1.],

[jnp.inf,jnp.inf,3.]))

zopt=ztopt[0:2]

fopt=status.fun_val

z∗(−0.2679, 0), f∗ = 0.2687

``Numerical Optimization'' - ©2023 A. Bemporad. All rights reserved. 49/51

https://jaxopt.github.io

Example: NLP solution in Julia

• UseNonconvex.jl package and IPopt in

(https://julianonconvex.github.io/Nonconvex.jl)

using Nonconvex

Nonconvex.@load Ipopt

f(z) = - exp(-(z[1]^2+z[2]^2))+

.3*sin(z[1]^3/10+z[2]^2)+1.2

z0 = [-1.,-1.]

model = Model(f)

u = [Inf,Inf]

ℓ = -u

addvar!(model,ℓ,u)

r = optimize(model, IpoptAlg(), z0)

zopt = r.minimizer

fopt = r.minimum

z∗(0, 0), f∗ = 0.2

minz f(z)

s.t. 1 ≤ g(z) ≤ 3

g(z) = (z[1] + 2.) ^ 2 - z[2] ^ 3 / 2.

add_ineq_constraint!(model, z-> g(z)-3)

add_ineq_constraint!(model, z-> -g(z)+1)

r = optimize(model, IpoptAlg(), z0)

zopt = r.minimizer

fopt = r.minimum

z∗(−0.2679, 0), f∗ = 0.2687

``Numerical Optimization'' - ©2023 A. Bemporad. All rights reserved. 50/51

https://julianonconvex.github.io/Nonconvex.jl

Example: dependence on initial guess

• Caveat: the NLP is non convex.

• If we start from x0 = −2, y0 = −2we get the
different local minimum

x∗ = −1.5078, y∗ = −1.7668, optimum f∗ = 1.3019 !

• If function/constraints are not convex, onemay need to test different initial

conditions, or switch to global optimizationmethods

``Numerical Optimization'' - ©2023 A. Bemporad. All rights reserved. 51/51

	Unconstrained nonlinear optimization
	Sequential quadratic programming
	Interior-point methods

