
References:

L. Vandenberghe, “Optimization Methods for Large-Scale Systems,” lecture notes,

http://www.seas.ucla.edu/~vandenbe/ee236c.html

S. Boyd, “ConvexOptimization II”, lecture notes, http://ee364b.stanford.edu

OPERATOR SPLITTING METHODS

http://www.seas.ucla.edu/~vandenbe/ee236c.html
http://ee364b.stanford.edu

x

t

f(x)
epif

PROXIMAL MAPPING

• The proximal mapping (or proximal operator) of a convex function

f : Rn → R ∪ {+∞} is defined as

proxf (v) = argmin
x

(
f(x) +

1

2
∥x− v∥22

)

• We assume also that f is closed and proper, that is its epigraph

epi f = {(x, t) : f(x) ≤ t} ⊆ Rn+1

is nonempty, closed and convex.

Numerical Optimization - ©2024 A. Bemporad. All rights reserved. 1/46

PROXIMAL MAPPING

• We often use the proximal operator on the scaled function λf with λ > 0

proxλf (v) = argmin
x

(
f(x) +

1

2λ
∥x− v∥22

)

• The proximal point proxλf (v) of v is a tradeoff between being close to v and

minimizing f

• f can be nonsmooth and extended real-valued (f(x) = +∞ for some x)

• Example: indicator function of a convex set C:

f(x) =

{
0 if x ∈ C

+∞ if x ̸∈ C
proxλf (v) = ΠC(v)︸ ︷︷ ︸
projection of v on C

Numerical Optimization - ©2024 A. Bemporad. All rights reserved. 2/46

PROXIMAL POINT ALGORITHM
(Rockafellar, 1976)

• When v is a minimizer of f (v = x∗ ∈ argminx f(x)) we get

proxλf (x
∗) = x∗

as both terms f(x) and 1
λ∥x− x∗∥22 areminimized at x∗

• The proximal point algorithm simply iterates

xk+1 = proxλf (x
k)

• If f has aminimum, the algorithm converges to an optimizer x∗ of f

(Bauschke, Combettes, 2011)

• The parameter λmay be changed during iterations, as long as λk > 0 and∑∞
k=0 λk = +∞

Numerical Optimization - ©2024 A. Bemporad. All rights reserved. 3/46

PROXIMAL GRADIENT METHOD
(Combettes,Wajs, 2005)

• Wewant to solve the unconstrained optimization problem

min
x

f(x) + g(x)

where

– f : Rn → R is convex and differentiable with dom f = Rn

– g : Rn → R ∪ {+∞} is convex (possibly non-smooth) with an inexpensive
proximal operator

• The proximal gradient algorithm (or forward backward splitting) iterates

xk+1 = proxλkg

(
xk − λk∇f(xk)

)
Numerical Optimization - ©2024 A. Bemporad. All rights reserved. 4/46

PROXIMAL GRADIENT METHOD - INTERPRETATION

• The proximal gradient step has the following interpretation:

xk+1 = proxλkg

(
xk − λk∇f(xk)

)
= argmin

x

(
g(x) +

1

2λk
∥x− xk + λk∇f(xk)∥22

)
= argmin

x

(
g(x) + f(xk) +∇f(xk)′(x− xk) +

1

2λk
∥x− xk∥22︸ ︷︷ ︸

simple quadratic model of f(x) around xk

)

Numerical Optimization - ©2024 A. Bemporad. All rights reserved. 5/46

PROXIMAL GRADIENT METHOD - CONVERGENCE

• If∇f is Lipschitz continuouswith constantL > 0

∥∇f(x)−∇f(y)∥ ≤ L∥x− y∥, ∀x, y ∈ Rn

then the algorithm converges for all constant λk ≡ λ ∈ (0, 1
L]

• Convergence rate: f(xk) + g(xk)− (f(x∗) + g(x∗)) ≤ 1

2λk
∥x0 − x∗∥22

• If f is strongly convex with parameterm > 01 then

∥xk − x∗∥22 ≤
(
1− m

L

)k
∥x0 − x∗∥22 linear convergence

1Remember that f is strongly convexwith parameterm > 0 if and only if

f(y) ≥ f(x) +∇f(x)′(y − x) + m
2
∥y − x∥22 , or equivalently f(x)−

m
2
x′x convex, or

∇2f(x) ⪰ mI , ∀x ∈ Rn .

Numerical Optimization - ©2024 A. Bemporad. All rights reserved. 6/46

PROXIMAL GRADIENT METHOD WITH LINE SEARCH

• IfL is not known one can choose λk by line search, for example:
(Beck, Teboulle, 2009)

– Choose β ∈ (0, 1) (e.g., β = 1
2
) and set λ← λk−1

– Repeat

z ← proxλg(x
k − λ∇f(xk))

break if f(z) ≤ f(xk) +∇f(xk)′(z − xk) + 1
2λ
∥z − xk∥22

updateλ← βλ

– Return λk ← λ, xk+1 ← z

Numerical Optimization - ©2024 A. Bemporad. All rights reserved. 7/46

ACCELERATED PROXIMAL GRADIENT METHOD
(Nesterov, 1983) (Beck, Teboulle, 2008)

• The accelerated (or fast) proximal gradient algorithm iterates the following

yk+1 = xk + βk(x
k − xk−1) extrapolation step

xk+1 = proxλkg

(
yk+1 − λk∇f(yk+1)

)
• Possible choices for βk (with β0 = 0) are for example

βk =
k − 1

k + 2
, βk =

k

k + 3
,


βk = αk

αk−1
− αk

αk+1 = 1
2
(
√

α4
k + 4α2

k − α2
k)

α0 = α−1 = 12

• Thanks to adding the “momentum term” yk the initial error

f(x0) + g(x0)− (f(x∗) + g(x∗)) reduces as 1/k2

• Same line-search procedure is applicable to select varying λk

2Anyαk satisfyingα
2
k(1− αk+1) ≤ α2

k+1 would work

Numerical Optimization - ©2024 A. Bemporad. All rights reserved. 8/46

SPECIAL CASES

• Special cases of the (non-accelerated) proximal gradient method:

– For g(x) = 0, proxλg(v) = v we obtain the standard gradient descentmethod

xk+1 = xk − λk∇f(xk)

– For f(x) = 0we obtain the standard proximal pointmethod

xk+1 = proxλkg
(xk)

– For g(x) = indicator function of a convex set C we obtain the gradient projection
method (Bertsekas, 1999)

xk+1 = ΠC(x
k − λk∇f(xk))

• The accelerated version of the algorithm gives a fast version of the above

Numerical Optimization - ©2024 A. Bemporad. All rights reserved. 9/46

(FAST) GRADIENT PROJECTION FOR BOX-CONSTRAINED QP

• Consider the convex box-constrainedQP

min 1
2x

′Qx+ c′x

s.t. ℓ ≤ x ≤ u

• Since ∥∇f(x)−∇f(y)∥2 = ∥Q(x− y)∥2 ≤ λmax(Q)∥x− y∥2 we can choose
any λ ≤ 1

λmax(Q)

• The gradient projectionmethod for box-constrainedQP is

xk+1 = max{ℓ,min{u, xk − λ(Qxk + c)}}

• The fast gradient projectionmethod for box-constrainedQP is

yk+1 = xk + βk(x
k − xk−1)

xk+1 = max{ℓ,min{u, yk+1 − λ(Qyk+1 + c)}}

Numerical Optimization - ©2024 A. Bemporad. All rights reserved. 10/46

DUAL GRADIENT PROJECTION FOR QP
• Consider the strictly convexQP and its dual

min 1
2x

′Qx+ c′x

s.t. Ax ≤ b

min 1
2y

′Hy + d′y

s.t. y ≥ 0

H = AQ−1A′

d = b+AQ−1c

• Take λ ≤ 1
λmax(H) (

3) and apply the proximal gradient method to the dual QP:

yk+1 = max{yk−λ(Hyk+d), 0}} y0 = 0

dual gradient projectionmethod for QP

• The primal solution is related to the dual solution by

xk = −Q−1(c+A′yk)

3Since for anymatrixM the largest singular value σmax(M) =
√

λmax(M ′M), we have that

λmax(H) = σ2
max((AC−1)′) = σ2

max(AC−1), whereC′C = Q

Numerical Optimization - ©2024 A. Bemporad. All rights reserved. 11/46

ACCELERATED DUAL GRADIENT PROJECTION FOR QP (GPAD)
(Patrinos, Bemporad, 2014)

• The dual accelerated gradient projection (GPAD) for QP can bewritten as

wk = yk + βk(y
k − yk−1)

xk = −Kwk − g

sk = 1
LAxk − 1

Lb

yk+1 = max
{
wk + sk, 0

}
K = Q−1A′

g = Q−1c

L ≥ λmax(AQ−1A′)

• Termination criteria: when the following two conditions aremet

ski ≤ 1
LϵA, i = 1, . . . ,m primal feasibility

−(wk)′sk ≤ 1
Lϵf optimality

the solution xk = −Kwk − g satisfiesAix
k − bi ≤ ϵA and, ifwk ≥ 0,

f(xk)− f(x∗) ≤ f(xk)− q(wk)︸ ︷︷ ︸
dual fcn

= −(wk)′skL ≤ ϵf

Numerical Optimization - ©2024 A. Bemporad. All rights reserved. 12/46

RESTART IN FAST GRADIENT PROJECTION

• Fast gradient projectionmethods can be sped up by adaptively restarting the

sequence of coefficients βk (O’Donoghue, Candés , 2013)

• Restart conditions:

– function restartwhenever

f(yk) > f(yk−1)

– gradient restartwhenever

∇f(wk−1)′(yk − yk−1) > 0

Numerical Optimization - ©2024 A. Bemporad. All rights reserved. 13/46

PROXIMAL OPERATORS - EXAMPLES

• indicator function of a convex set C:

f(x) =

{
0 if x ∈ C

+∞ if x ̸∈ C
proxλf (v) = ΠC(v)︸ ︷︷ ︸
projection of v on C

• 1-norm: proxλf is called the soft-threshold (shrinkage) operator

Sλ : Rn → Rn

f(x) = ∥x∥1 [proxλf (v)]i = [Sλ(v)]i ≜


vi + λ if vi ≤ −λ

0 if |vi| ≤ λ

vi − λ if vi ≥ λ

• Euclidean norm:

f(x) = ∥x∥2 proxλf (v) =

{
(1− λ/∥v∥2)v if ∥v∥2 ≥ λ

0 otherwise

Numerical Optimization - ©2024 A. Bemporad. All rights reserved. 14/46

PROXIMAL OPERATORS - EXAMPLES

• quadratic function: Q ⪰ 0

f(x) =
1

2
x′Qx+ c′x proxλf (v) = (I + λQ)−1(v − λc)

• logarithmic barrier:

f(x) = −
n∑

i=1

log xi [proxλf (v)]i =
vi +

√
v2i + 4λ

2
, i = 1, . . . , n

• Many other examples exist for which the proximal operator can be computed

analytically or determined efficiently (for example by bisection)

Numerical Optimization - ©2024 A. Bemporad. All rights reserved. 15/46

PROXIMAL OPERATORS - CALCULUS RULES

• separable sum:

f(x) =

n∑
i=1

fi(xi) [proxλf (v)]i = proxλfi(vi)

• postcomposition:

f(x) = αϕ(x) + b, α > 0 proxλf (v) = proxαλϕ(v)

• precomposition:

f(x) = ϕ(αx+ b), α ̸= 0 proxλf (v) =
1

α

(
proxα2λϕ(αv + b)− b

)

Numerical Optimization - ©2024 A. Bemporad. All rights reserved. 16/46

PROXIMAL OPERATORS - CALCULUS RULES
• affine addition:

f(x) = ϕ(x) + a′x+ b proxλf (v) = proxλϕ(v − λa)

• regularization: by setting λ̃ = λ
1+λρ

f(x) = ϕ(x) +
ρ

2
∥x− a∥22 proxλf (v) = proxλ̃ϕ

(
λ̃

λ
v + ρλ̃a

)

• Moreau decomposition: for all functions f it always holds that

v = proxf (v) + proxf∗(v)

where f∗ is the convex conjugate (or Fenchel conjugate) of f

f∗(y) = sup
x
{y′x− f(x)}

• Calculus rules also exist for computing convex conjugate functions

Numerical Optimization - ©2024 A. Bemporad. All rights reserved. 17/46

CONJUGATE FUNCTION AND LAGRANGE DUAL

• Consider the convex optimization problemwith linear constraints

min f(x)

s.t. Aix ≤ bi, i ∈ I

Aix = bi, i ∈ E

• The dual function for the problem is

q(λ) = inf
x
{f(x) + λ′(Ax− b)} = − sup

x
{(−A′λ)′x− f(x)} − b′λ

= −f∗(−A′λ)− b′λ

• If we know the conjugate function f∗ we can compute the dual function easily

Numerical Optimization - ©2024 A. Bemporad. All rights reserved. 18/46

RELATION WITH INTEGRATION METHODS FOR ODES
(Bruck, 1975) (Botsaris, Jacobson, 1976) (Eckstein, 1989)

• Let f smooth and convex, argminx f(x) ̸= ∅, and the solution x(t) of the
ordinary differential equation (ODE)

dx(t)

dt
= −∇f(x(t)), x(0) = x0

exist. Then limt→∞ x(t) = x∗ ∈ argminx f(x).

• gradient descent = forward Euler method for integrating theODE

xk+1 = xk − λk
dx(xk)

dt
= xk − λk∇f(xk)

• proximal point method = backward Euler method

xk+1 = xk − λk∇f(xk+1) = argmin
x

{f(x) + 1

2λk
∥x− xk∥22} = proxλkf

(xk)

• Newton’s method = numerical integration of dx
dt = −(∇2f(x))−1∇f(x)

Numerical Optimization - ©2024 A. Bemporad. All rights reserved. 19/46

ALTERNATING DIRECTION METHOD OF MULTIPLIERS (ADMM)
(Gabay,Mercier, 1976) (Glowinski, Marrocco, 1975) (Douglas, Rachford, 1956) (Boyd et al., 2010)

• Wewant to solve the optimization problem

minx,z f(x) + g(z)

s.t. Ax+Bz = c

x ∈ Rn, z ∈ Rm

A ∈ Rp×n, B ∈ Rp×m

c ∈ Rp

where f : Rn → R ∪ {+∞}, g : Rm → R ∪ {+∞} are closed, proper, and
convex (possibly non-smooth)

• For a scalar ρ > 0we form the augmented Lagrangian

Lρ(x, z, y) = f(x) + g(z) + y′(Ax+Bz − c) +
ρ

2
∥Ax+Bz − c∥22

Numerical Optimization - ©2024 A. Bemporad. All rights reserved. 20/46

ALTERNATING DIRECTION METHOD OF MULTIPLIERS (ADMM)

• TheAlternating DirectionMethod ofMultipliers (ADMM) iterates the

following steps

xk+1 = argminx Lρ(x, z
k, yk)

zk+1 = argminz Lρ(x
k+1, z, yk)

yk+1 = yk + ρ(Axk+1 +Bzk+1 − c)

• The name “alternating direction” comes fromminimizing the augmented

LagrangianLρ first with respect to x and then to z

Numerical Optimization - ©2024 A. Bemporad. All rights reserved. 21/46

ADMM - CONVERGENCE

• Assuming that the unaugmented LagrangianL0 (ρ = 0) has a saddle point, i.e.,

∃(x∗, z∗, y∗) such that

L0(x
∗, z∗, y) ≤ L0(x

∗, z∗, y∗) ≤ L0(x, z, y
∗)

we have that

limk→∞ Axk +Bzk − c = 0 residual convergence
limk→∞ f(xk) + g(zk) = f(x∗) + g(z∗) objective convergence
limk→∞ yk = y∗ dual variable convergence

• ADMMhas a builtin “integral action”, namely yk integrates the primal residual

rk = Axk +Bzk − c

Numerical Optimization - ©2024 A. Bemporad. All rights reserved. 22/46

ADMM - STOPPING CRITERIA

• We call dual residual the quantity sk = ρA′B(zk+1 − zk)

• A reasonable termination criterion is to stop the ADMM iterations when

∥rk∥2 ≤ ϵpri and ∥sk∥2 ≤ ϵdual

with

ϵpri =
√
pϵabs + ϵrel max{∥Axk∥2, ∥Bzk∥2, ∥c∥2}

ϵdual =
√
nϵabs + ϵrel∥A′yk∥2

and ϵabs > 0 is an absolute tolerance, ϵrel > 0 a relative tolerance (for example

ϵrel = 10−3 or 10−4)

Numerical Optimization - ©2024 A. Bemporad. All rights reserved. 23/46

ADMM - VARIANTS

• Convergence sometimes can be improved by introducing over-relaxation, that

is replacingAxk+1 with

αAxk+1 − (1− α)(Bzk − c)

when updating zk+1, yk+1, whereα ∈ (1, 2) (typicallyα ∈ [1.5, 1.8])

• By introducing the scaled dual variable u = 1
ρy, ADMMcan be expressed in the

simplified scaled form

xk+1 = argminx
{
f(x) + ρ

2∥Ax+Bzk − c+ uk∥22
}

zk+1 = argminz
{
g(z) + ρ

2∥Ax
k+1 +Bz − c+ uk∥22

}
uk+1 = uk +Axk+1 +Bzk+1 − c

Numerical Optimization - ©2024 A. Bemporad. All rights reserved. 24/46

SCALED ADMM AND PROXIMAL OPERATORS

• Consider the convex problem

minx f(x) + g(x)
minx,z f(x) + g(z)

s.t. x− z = 0

• The augmented Lagrangian is

Lρ(x, z, y) = f(x) + g(z) + y′(x− z) +
ρ

2
∥x− z∥22

• Since y = ρu and adding ρ
2∥u∥

2
2 does not change theminimizer with respect to

x and z, we get

argmin
x,z

Lρ(x, z, y) = argmin
x,z

{
f(x) + g(z) +

ρ

2
∥x− z + u∥22

}

Numerical Optimization - ©2024 A. Bemporad. All rights reserved. 25/46

SCALED ADMM AND PROXIMAL OPERATORS

• By letting λ = 1
ρ , the scaled ADMM iterations can be rewritten as

xk+1 = argminx Lρ(x, z
k, yk) = proxλf (z

k − uk)

zk+1 = argminz Lρ(x
k+1, z, yk) = proxλg(x

k+1 + uk)

uk+1 = uk + xk+1 − zk+1

• The proximal operator calculus can be used for ADMMalgorithms too

• An accelerated version of ADMMalso exists

Numerical Optimization - ©2024 A. Bemporad. All rights reserved. 26/46

ADMM FOR CONSTRAINED CONVEX OPTIMIZATION
• Consider the convex problemwith f, C convex

min f(x)

s.t. x ∈ C
min f(x) + g(z)

s.t. x− z = 0

where g is the indicator function of the set C

• The scaled ADMM iterations to solve the problem are

xk+1 = argminx{f(x) + ρ
2∥x− zk + uk∥22} = prox 1

ρ f
(zk − uk)

zk+1 = ΠC(x
k+1 + uk)

uk+1 = uk + xk+1 − zk+1

• ADMMcan be applied to nonconvex C (e.g., C = {0, 1}n1 × Rn−n1). No

guarantee of convergence to a global minimum, but it can be a good heuristic.

(Boyd, Parikh, Chu, Peleato, Eckstein, 2010) (Takapoui, Moehle, Boyd, Bemporad, 2017)

Numerical Optimization - ©2024 A. Bemporad. All rights reserved. 27/46

ADMM FOR LINEAR AND QUADRATIC PROGRAMMING

• Consider the standard formQPwith HessianQ = Q′ ⪰ 0

min 1
2x

′Qx+ c′x

s.t. Ax = b

x ≥ 0

min f(x) + g(z)

s.t. x− z = 0

• f is the sum of 1
2x

′Qx+ c′x and the indicator function of {x : Ax = b}

• g is the indicator function ofRn
+ = {x : xi ≥ 0, i = 1, . . . , n}

• The problem is an LP in standard formwhenQ = 0

Numerical Optimization - ©2024 A. Bemporad. All rights reserved. 28/46

ADMM FOR LINEAR AND QUADRATIC PROGRAMMING

• The update for xk+1 requires solving

xk+1 = argminx
1
2x

′Qx+ c′x+ ρ
2∥x− zk + uk∥22

s.t. Ax = b

that is solving the linear system[
Q+ ρI A′

A 0

][
xk+1

ν

]
=

[
ρ(zk − uk)− c

b

]

• Note that the symmetric matrix
[
Q+ρI A′

A 0

]
can be factorized at start and

cached

• The update for zk+1 is simply

zk+1 = max{xk+1 + uk, 0}

Numerical Optimization - ©2024 A. Bemporad. All rights reserved. 29/46

ADMM FOR QUADRATIC PROGRAMMING

• Consider theQPwith HessianQ = Q′ ⪰ 0,A full column rank orQ = Q′ ≻ 0

min 1
2x

′Qx+ c′x

s.t. ℓ ≤ Ax ≤ u

min 1
2x

′Qx+ c′x+ g(z)

s.t. Ax− z = 0

where g is the indicator function of {z : ℓ ≤ z ≤ u}

• The scaled ADMM iterations to solve theQP are

xk+1 = −(Q+ ρA′A)−1(ρA′(uk − zk) + c)

zk+1 = min{max{Axk+1 + uk, ℓ}, u}
uk+1 = uk +Axk+1 − zk+1

• We can factorizeQ+ ρA′A at start and cache the factorization

• The dual QP solution is also available, as yk = ρuk

Numerical Optimization - ©2024 A. Bemporad. All rights reserved. 30/46

REGULARIZED ADMM FOR QUADRATIC PROGRAMMING
(Stellato, Banjac, Goulart, Bemporad, Boyd, 2020)

• Consider theQPwith HessianQ = Q′ ⪰ 0

min 1
2x

′Qx+ c′x

s.t. ℓ ≤ Ax ≤ u

min 1
2x

′Qx+ c′x+ g(z)

s.t. Ax− z = 0

where g is the indicator function of {z : ℓ ≤ z ≤ u}

• Chosen any ϵ > 0, more robust “regularized” ADMM iterations are

xk+1 = −(Q+ ρATA+ ϵI)−1(c− ϵxk + ρAT (uk − zk))

zk+1 = min{max{Axk+1 + uk, ℓ}, u}
uk+1 = uk +Axk+1 − zk+1

• See the osQP solver https://github.com/oxfordcontrol/osqp

Numerical Optimization - ©2024 A. Bemporad. All rights reserved. 31/46

https://github.com/oxfordcontrol/osqp

DETECTION OF INFEASIBILITY AND UNBOUNDEDNESS

• By Farkas lemma

either
[

A
−A

]
x ≤ [u

−ℓ] or [A′ −A′]
[
y+

y−

]
= 0, [u

−ℓ]
′
[
y+

y−

]
< 0, y+, y− ≥ 0

Then theQP is infeasible if a dual vector y exists such that

A′y = 0, u′ max(y, 0)− l′ max(−y, 0) < 0

• TheQP is unbounded if a primal vector x exists such that

Qx = 0, c′x < 0,


Aix = 0 li, ui ∈ R
Aix ≥ 0 li ∈ R, ui = +∞
Aix ≤ 0 li = −∞, ui ∈ R

• In ADMM iterations, yk(xk) diverge if the problem is infeasible (unbounded)

Numerical Optimization - ©2024 A. Bemporad. All rights reserved. 32/46

DETECTION OF INFEASIBILITY AND UNBOUNDEDNESS

• One can show that

– wk = yk

∥u′ max(yk,0)+l′ max(−yk,0)∥ asymptotically satisfies Farkas lemma if theQP

is infeasible

– vk = xk

−c′xk asymptotically satisfies the conditions for recognizing unboundedness

of theQP

• Alternatively, the increments

δxk = xk − xk−1, δyk = yk − yk−1, δzk = zk − zk−1

always converge and δyk (δxk) also works for recognizing infeasibility

(unboundedness) (Banjac, Goulart, Stellato, Boyd, 2017)

Numerical Optimization - ©2024 A. Bemporad. All rights reserved. 33/46

ADMM FOR LASSO

• Consider the LASSO problem

min
1

2
∥Ax−b∥22+τ∥x∥1

min 1
2∥Ax− b∥22 + τ∥z∥1

s.t. x− z = 0

• The iteration for z is zk+1 = prox 1
ρ (τ∥·∥1)(x

k+1 + uk) =S τ
ρ
(xk+1 + uk)

(soft-threshold operator)

• The scaled ADMM iterations to solve the LASSO problem become

xk+1 = (A′A+ ρI)−1(A′b+ ρ(zk − uk))

zk+1 = S τ
ρ
(xk+1 + uk)

uk+1 = uk + xk+1 − zk+1

• Since ρ > 0,A′A+ ρI is always invertible and can be factorized once

Numerical Optimization - ©2024 A. Bemporad. All rights reserved. 34/46

CONSENSUS ADMM

• Consider the separable problem

min
x

f(x) =

N∑
i=1

fi(x) x ∈ Rn, fi : Rn → R∪{+∞}

with fi convex and possibly non-smooth

• This may represent amodel fitting problem, where x are the parameters of the

model and fi(x) are the losses associated with the ith datapoint

• The problem can be rewritten as the global consensus problem

min

N∑
i=1

fi(xi)

s.t. xi = z, i = 1, . . . , N

Numerical Optimization - ©2024 A. Bemporad. All rights reserved. 35/46

CONSENSUS ADMM

• Recall the scaled ADMM iterations:
xk+1 = argminx

{
f(x) + ρ

2∥Ax+Bzk − c+ uk∥22
}

zk+1 = argminz
{
g(z) + ρ

2∥Axk+1 +Bz − c+ uk∥22
}

uk+1 = uk +Axk+1 +Bzk+1 − c

• Here x =

[
x1

...
xN

]
, u =

[
u1

...
uN

]
,A = InN ,B = −

[
I
...
I

]
, c = 0, g(z) = 0

• In general, ifw =

[
w1

...
wN

]
then ∥w∥22 =

∑N
i=1 ∥wi∥22. Therefore

∥∥∥∥∥
[

x1

...
xN

]
−

[
I
...
I

]
z +

[
u1

...
uN

]∥∥∥∥∥
2

2

=

N∑
i=1

∥xi − z + ui∥22

Numerical Optimization - ©2024 A. Bemporad. All rights reserved. 36/46

CONSENSUS ADMM

• Moreover argmin
z

N∑
i=1

∥xi − z + ui∥22 = argmin
z

N∑
i=1

z′z − 2(xi + ui)
′z =

1

N

N∑
i=1

xi + ui

• The scaled ADMM iterations for the consensus problem are therefore

xk+1
i = argminxi

{
fi(xi) +

ρ
2∥xi − zk + uk

i ∥22
}

local/parallel

zk+1 = 1
N

∑N
i=1 x

k+1
i + uk

i global/centralized

uk+1
i = uk

i + xk+1
i − zk+1 local/parallel

• The 1st and 3rd steps can be run in parallel, the 2nd step averages xk+1
i + uk

i

• The objectives fi do not need to be shared!

• A regularization term or indicator function of a constraint g(z) can be included

as well (g(z) = ∥z∥22, g(z) = ∥z∥1, ...)

Numerical Optimization - ©2024 A. Bemporad. All rights reserved. 37/46

STOCHASTIC GRADIENT METHODS

STOCHASTIC OPTIMIZATION PROBLEM
• Wewant tominimize

min
x

1

N

N∑
i=1

fi(x)

• The problemmay come from takingN samples ξ1, . . . , ξi to approximate

expected value min
x

Eξ[f̄(x; ξ)] ≈ min
x

1

N

N∑
i=1

f̄(x; ξi) empirical mean

• Inmachine learning problemswewant to optimize

min
x

1

N

N∑
i=1

ℓ(h(ui;x), yi)

where (u1, y1), . . . , (uN , yN) is the training set, h(u;x) a prediction function,

ℓ(h, y) a loss function

Example: h(u;x) = x′
1:n−1u+ xn and ℓ(h, y) = ∥h− y∥22

Numerical Optimization - ©2024 A. Bemporad. All rights reserved. 38/46

STOCHASTIC GRADIENT METHOD
(Robbins, Monro, 1951)

• Let f(x) =
1

N

N∑
i=1

fi(x)

• We solveminx f(x) by choosing an index ik ∈ {1, . . . , N} at random and

update

xk+1 = xk−αk∇fik(x
k) stochastic gradient (SG)method

• The step-sizeαk is called learning-rate in machine learning

• Pros: every iteration is extremely cheap (only one gradient is computed)

• Cons: descent only in expectation

• Themethod is an incremental (or online) optimizationmethod

(cf. survey paper (Bertsekas, 2012))

Numerical Optimization - ©2024 A. Bemporad. All rights reserved. 39/46

STOCHASTIC GRADIENT METHOD

• More generally, the SGmethod can take the following form:

xk+1 = xk − αk∇fik(x
k) single gradient

xk+1 = xk − αk

nk

nk∑
j=1

∇fik,j
(xk) mini-batch (nk ≪ N)

xk+1 = xk − αk

nk
Hk

nk∑
j=1

∇fik,j
(xk) scaledmini-batch (Hk ∈ Rn×n)

• For nk = N the resulting batch gradientmethod = gradient descent iterations

xk+1 = xk − αk

N

N∑
i=1

∇fi(x
k)

Numerical Optimization - ©2024 A. Bemporad. All rights reserved. 40/46

CONVERGENCE ANALYSIS

• If f is continuously differentiable and∇f Lipschitz continuous with constant4

L the expectations with respect to ik (or equivalently ξk) satisfy

E[f(xk+1)]−f(xk) ≤ −µαk∥∇f(xk)∥22︸ ︷︷ ︸
expected decrease

+
1

2
α2
kLE[∥∇fik(x

k)∥22]︸ ︷︷ ︸
variance

µ > 0

• Initially f decreases because ∥∇f∥ is large, then variancemay dominate

• Therefore we need limk→∞ αk = 0

4∥∇f(x)−∇f(y)∥2 ≤ L∥x− y∥2 , ∀x, y ∈ Rn

Numerical Optimization - ©2024 A. Bemporad. All rights reserved. 41/46

CONVERGENCE ANALYSIS - STRONGLY CONVEX CASE

• Choose the learning rate αk =
β

γ + k
β, γ > 0

• When f is strongly convex5 the convergence rate of stochastic gradient descent

is sublinear

E[f(xk)− f(x∗)] = O

(
1

k

)
• Compare with the linear convergence rate of batch gradient

f(xk)− f(x∗) = O(ρk), 0 ≤ ρ < 1

• However, one batch gradient step requires computingN gradients, one SG step

only one gradient

5f(y) ≥ f(x) +∇f(x)′(y − x) + m
2
∥y − x∥22 ,m > 0. Or equivalently f(x)− m

2
x′x convex,

or∇2f(x) ⪰ mI , ∀x

Numerical Optimization - ©2024 A. Bemporad. All rights reserved. 42/46

-1 -0.5 0 0.5 1
-2.5

-2

-1.5

-1

-0.5

0

0.5

1
SG

Averaged SG

AVERAGED STOCHASTIC GRADIENT DESCENT
(Ruppert, 1988) (Polyak, Juditsky, 1992)

• Consider theL2-regularized problem

min
x

λ

2
∥x∥22 +

1

N

N∑
i=1

fi(x), λ > 0

• The idea is to run standard gradient descent but take the average x̄k after k0
steps as the optimizer instead of xk

x̄k =
1

k − k0

k∑
i=k0+1

xi x̄k+1 = x̄k +
1

k + 1− k0
(xk+1 − x̄k)

• Choose learning rate

αk =
α0

(1 + α0λk)σ

0 < σ < 1, e.g., σ = 3
4 (Bottou, 2012)

Numerical Optimization - ©2024 A. Bemporad. All rights reserved. 43/46

STOCHASTIC GRADIENT DESCENT METHODS

• Despite theorymostly covers the convex case, SGDmethods are heavily used

to solve nonconvex problems (especially for training deep neural networks)

• Several other popular variants exist with adaptive learning ratesαk:

– AdaGrad (Duchi, Hazan, Singer, 2011)

– Adadelta (Zeiler, 2012)

– Adam (Kingma, Ba, 2015)

– Adamax (Kingma, Ba, 2015)

– diffGrad (Dubey, Chakraborty, Roy,Mukherjee, Singh, Chaudhuri, 2020)

– …

• Usually the parameters of the SGD algorithm are tuned on a smaller problem

minx
1
M

∑M
j=1 fij (x), I = {i1, . . . , iM},M ≪ N

Numerical Optimization - ©2024 A. Bemporad. All rights reserved. 44/46

ADAM, AMSGRAD

• Adam (and other variants) use scaling updates by square roots of exponential

moving averages of squared past gradients

• An issue in Adam convergence proof has been pointed out and fixed by

including a “long-termmemory” of past gradients (=largest components

encountered of scaling factors)

• The new SGD algorithm, calledAMSGrad, guarantees convergence and also

seems to improve empirical performance (Reddi, Kale, Kumar, 2018)

Published as a conference paper at ICLR 2018

Figure 2: Performance comparison of ADAM and AMSGRAD for logistic regression, feedforward neural
network and CIFARNET. The top row shows performance of ADAM and AMSGRAD on logistic regression
(left and center) and 1-hidden layer feedforward neural network (right) on MNIST. In the bottom row, the two
plots compare the training and test loss of ADAM and AMSGRAD with respect to the iterations for CIFARNET.

this problem. We first note that the average regret of ADAM does not converge to 0 with increasing
t. Furthermore, its iterates xt converge to x = 1, which unfortunately has the largest regret amongst
all points in the domain. On the other hand, the average regret of AMSGRAD converges to 0 and its
iterate converges to the optimal solution. Figure 1 also shows the stochastic optimization setting:

ft(x) =

{
1010x, with probability 0.01

−10x, otherwise.

Similar to the aforementioned online setting, the optimal solution for this problem is x = −1. Again,
we see that the iterate xt of ADAM converges to the highly suboptimal solution x = 1.

Logistic Regression: To investigate the performance of the algorithm on convex problems, we
compare AMSGRAD with ADAM on logistic regression problem. We use MNIST dataset for this
experiment, the classification is based on 784 dimensional image vector to one of the 10 class labels.
The step size parameter αt is set to α/

√
t for both ADAM and AMSGRAD in for our experiments,

consistent with the theory. We use a minibatch version of these algorithms with minibatch size set
to 128. We set β1 = 0.9 and β2 is chosen from the set {0.99, 0.999}, but they are fixed throughout
the experiment. The parameters α and β2 are chosen by grid search. We report the train and test
loss with respect to iterations in Figure 2. We can see that AMSGRAD performs better than ADAM
with respect to both train and test loss. We also observed that AMSGRAD is relatively more robust
to parameter changes in comparison to ADAM.

Neural Networks: For our first experiment, we trained a simple 1-hidden fully connected layer
neural network for the multiclass classification problem on MNIST. Similar to the previous experi-
ment, we use β1 = 0.9 and β2 is chosen from {0.99, 0.999}. We use a fully connected 100 rectified
linear units (ReLU) as the hidden layer for this experiment. Furthermore, we use constant αt = α
throughout all our experiments on neural networks. Such a parameter setting choice of ADAM is
consistent with the ones typically used in the deep learning community for training neural networks.
A grid search is used to determine parameters that provides the best performance for the algorithm.

Finally, we consider the multiclass classification problem on the standard CIFAR-10 dataset, which
consists of 60,000 labeled examples of 32 × 32 images. We use CIFARNET, a convolutional neu-
ral network (CNN) with several layers of convolution, pooling and non-linear units, for training a
multiclass classifer for this problem. In particular, this architecture has 2 convolutional layers with
64 channels and kernel size of 6 × 6 followed by 2 fully connected layers of size 384 and 192.
The network uses 2 × 2 max pooling and layer response normalization between the convolutional
layers (Krizhevsky et al., 2012). A dropout layer with keep probability of 0.5 is applied in between
the fully connected layers (Srivastava et al., 2014). The minibatch size is also set to 128 similar
to previous experiments. The results for this problem are reported in Figure 2. The parameters for
ADAM and AMSGRAD are selected in a way similar to the previous experiments. We can see that

7

• Update: AdamX further fixes the proof ofAMSGrad (Phuong, Phong, 2019)

Numerical Optimization - ©2024 A. Bemporad. All rights reserved. 45/46

RMSPROP

• RMSProp6 keeps amoving average vt of the component-wise squared gradient

vkj = ρvk−1
j + (1− ρ)[∇fi(x

k)]2j

for j = 1, . . . , n, where ρ = forgetting factor, and updates

xk+1
j = xk

j − α

ϵ+
√
vkj

[∇fi(x
k)]j

withα = learning rate coefficient and ϵ > 0 prevents division by zero

• Example: ρ = 0.9,α = 10−3, ϵ = 10−8

• RMSProp extends theRprop7 algorithm (Riedmiller, Braun, 1992) used in batch

optimization to the on-line / mini-batch setting

• Heavily used in deep learning
6https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
7resilient backpropagation

Numerical Optimization - ©2024 A. Bemporad. All rights reserved. 46/46

https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf

	Operator splitting methods
	Stochastic gradient methods

