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Proximal mapping

• The proximal mapping (or proximal operator) of a convex function

f : Rn → R ∪ {+∞} is defined as

proxf (v) = argmin
x

(

f(x) +
1

2
∥x− v∥22

)

• We assume also that f is closed and proper, that is its epigraph

epi f = {(x, t) : f(x) ≤ t} ⊆ R
n+1

is nonempty, closed and convex.
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Proximal mapping

• We often use the proximal operator on the scaled function λf with λ > 0

proxλf (v) = argmin
x

(

f(x) +
1

2λ
∥x− v∥22

)

• The proximal point proxλf (v) of v is a tradeoff between being close to v and

minimizing f

• f can be nonsmooth and extended real-valued (f(x) = +∞ for some x)

• Example: indicator function of a convex set C:

f(x) =

{

0 if x ∈ C
+∞ if x ̸∈ C proxλf (v) = ΠC(v)

︸ ︷︷ ︸

projection of v on C
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Proximal point algorithm
(Rockafellar, 1976)

• When v is a minimizer of f (v = x∗ ∈ argminx f(x)) we get

proxλf (x
∗) = x∗

as both terms f(x) and 1
λ
∥x− x∗∥22 areminimized at x∗

• The proximal point algorithm simply iterates

xk+1 = proxλf (x
k)

• If f has aminimum, the algorithm converges to an optimizer x∗ of f

(Bauschke, Combettes, 2011)

• The parameter λmay be changed during iterations, as long as λk > 0 and
∑∞

k=0 λk = +∞
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Proximal gradient method
(Combettes,Wajs, 2005)

• Wewant to solve the unconstrained optimization problem

min
x

f(x) + g(x)

where

– f : Rn → R is convex and differentiable with dom f = R
n

– g : Rn → R ∪ {+∞} is convex (possibly non-smooth) with an inexpensive

proximal operator

• The proximal gradient algorithm (or forward backward splitting) iterates

xk+1 = proxλkg

(
xk − λk∇f(xk)

)
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Proximal gradient method - Interpretation

• The proximal gradient step has the following interpretation:

xk+1 = proxλkg

(
xk − λk∇f(xk)

)

= argmin
x

(

g(x) +
1

2λk

∥x− xk + λk∇f(xk)∥22
)

= argmin
x

(

g(x) + f(xk) +∇f(xk)′(x− xk) +
1

2λk

∥x− xk∥22
︸ ︷︷ ︸

simple quadratic model of f(x) around xk

)
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Proximal gradient method - Convergence

• If∇f is Lipschitz continuouswith constantL > 0

∥∇f(x)−∇f(y)∥ ≤ L∥x− y∥, ∀x, y ∈ R
n

then the algorithm converges for all constant λk ≡ λ ∈ (0, 1
L
]

• Convergence rate: f(xk) + g(xk)− (f(x∗) + g(x∗)) ≤ 1

2λk
∥x0 − x∗∥22

• If f is strongly convex with parameterm > 01 then

∥xk − x∗∥22 ≤
(

1− m

L

)k

∥x0 − x∗∥22 linear convergence

1Remember that f is strongly convexwith parameterm > 0 if and only if

f(y) ≥ f(x) +∇f(x)′(y − x) + m
2
∥y − x∥22 , or equivalently f(x)−

m
2
x′x convex, or

∇2f(x) ⪰ mI , ∀x ∈ R
n .
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Proximal gradient method with line search

• IfL is not known one can choose λk by line search, for example:
(Beck, Teboulle, 2009)

– Choose β ∈ (0, 1) (e.g., β = 1
2
) and set λ← λk−1

– Repeat

z ← proxλg(x
k − λ∇f(xk))

break if f(z) ≤ f(xk) +∇f(xk)′(z − xk) + 1
2λ
∥z − xk∥22

updateλ← βλ

– Return λk ← λ, xk+1 ← z
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Accelerated proximal gradient method
(Nesterov, 1983) (Beck, Teboulle, 2008)

• The accelerated (or fast) proximal gradient algorithm iterates the following

yk+1 = xk + βk(x
k − xk−1) extrapolation step

xk+1 = proxλkg

(
yk+1 − λk∇f(yk+1)

)

• Possible choices for βk (with β0 = 0) are for example

βk =
k − 1

k + 2
, βk =

k

k + 3
,











βk = αk

αk−1
− αk

αk+1 = 1
2
(
√

α4
k + 4α2

k − α2
k)

α0 = α−1 = 12

• Thanks to adding the “momentum term” yk the initial error

f(x0) + g(x0)− (f(x∗) + g(x∗)) reduces as 1/k2

• Same line-search procedure is applicable to select varying λk

2Anyαk satisfyingα
2
k
(1− αk+1) ≤ α2

k+1 would work
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Special cases

• Special cases of the (non-accelerated) proximal gradient method:

– For g(x) = 0, proxλg(v) = v we obtain the standard gradient descentmethod

x
k+1 = x

k − λk∇f(x
k)

– For f(x) = 0we obtain the standard proximal pointmethod

x
k+1 = proxλkg

(xk)

– For g(x) = indicator function of a convex set C we obtain the gradient projection

method (Bertsekas, 1999)

x
k+1 = ΠC(x

k − λk∇f(x
k))

• The accelerated version of the algorithm gives a fast version of the above
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(Fast) gradient projection for box-constrained QP

• Consider the convex box-constrainedQP

min 1
2x

′Qx+ c′x

s.t. ℓ ≤ x ≤ u

• Since ∥∇f(x)−∇f(y)∥2 = ∥Q(x− y)∥2 ≤ λmax(Q)∥x− y∥2 we can choose
any λ ≤ 1

λmax(Q)

• The gradient projection method for box-constrained QP is

xk+1 = max{ℓ,min{u, xk − λ(Qxk + c)}}

• The fast gradient projection method for box-constrained QP is

yk+1 = xk + βk(x
k − xk−1)

xk+1 = max{ℓ,min{u, yk+1 − λ(Qyk+1 + c)}}
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Dual gradient projection for QP
• Consider the strictly convexQP and its dual

min 1
2x

′Qx+ c′x

s.t. Ax ≤ b

min 1
2y

′Hy + d′y

s.t. y ≥ 0

H = AQ−1A′

d = b+AQ−1c

• Take λ ≤ 1
λmax(H) (

3) and apply the proximal gradient method to the dual QP:

yk+1 = max{yk−λ(Hyk+d), 0}} y0 = 0

dual gradient projection method for QP

• The primal solution is related to the dual solution by

xk = −Q−1(c+A′yk)

3Since for anymatrixM the largest singular value σmax(M) =
√

λmax(M ′M), we have that

λmax(H) = σ2
max((AC−1)′) = σ2

max(AC−1), whereC′C = Q
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Accelerated dual gradient projection for QP (GPAD)
(Patrinos, Bemporad, 2014)

• The dual accelerated gradient projection (GPAD) for QP can bewritten as

wk = yk + βk(y
k − yk−1)

xk = −Kwk − g

sk = 1
L
Axk − 1

L
b

yk+1 = max
{
wk + sk, 0

}

K = Q−1A′

g = Q−1c

L ≥ λmax(AQ−1A′)

• Termination criteria: when the following two conditions aremet

ski ≤ 1
L
ϵA, i = 1, . . . ,m primal feasibility

−(wk)′sk ≤ 1
L
ϵf optimality

the solution xk = −Kwk − g satisfiesAix
k − bi ≤ ϵA and, ifwk ≥ 0,

f(xk)− f(x∗) ≤ f(xk)− q(wk)
︸ ︷︷ ︸

dual fcn

= −(wk)′skL ≤ ϵf
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Restart in fast gradient projection

• Fast gradient projectionmethods can be sped up by adaptively restarting the

sequence of coefficients βk (O’Donoghue, Candés , 2013)

• Restart conditions:

– function restartwhenever

f(yk) > f(yk−1)

– gradient restartwhenever

∇f(wk−1)′(yk − yk−1) > 0
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Proximal operators - Examples

• indicator function of a convex set C:

f(x) =

{

0 if x ∈ C
+∞ if x ̸∈ C proxλf (v) = ΠC(v)

︸ ︷︷ ︸

projection of v on C

• 1-norm: proxλf is called the soft-threshold (shrinkage) operator

Sλ : Rn → R
n

f(x) = ∥x∥1 [proxλf (v)]i = [Sλ(v)]i ≜







vi + λ if vi ≤ −λ

0 if |vi| ≤ λ

vi − λ if vi ≥ λ

• Euclidean norm:

f(x) = ∥x∥2 proxλf (v) =

{

(1− λ/∥v∥2)v if ∥v∥2 ≥ λ

0 otherwise
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Proximal operators - Examples

• quadratic function: Q ⪰ 0

f(x) =
1

2
x′Qx+ c′x proxλf (v) = (I + λQ)−1(v − λc)

• logarithmic barrier:

f(x) = −
n∑

i=1

log xi [proxλf (v)]i =
vi +

√

v2i + 4λ

2
, i = 1, . . . , n

• Many other examples exist for which the proximal operator can be computed

analytically or determined efficiently (for example by bisection)
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Proximal operators - Calculus rules
• separable sum:

f(x) =

n∑

i=1

fi(xi) [proxλf (v)]i = proxλfi(vi)

• postcomposition:

f(x) = αϕ(x) + b, α > 0 proxλf (v) = proxαλϕ(v)

• precomposition:

f(x) = ϕ(αx+ b), α ̸= 0 proxλf (v) =
1

α

(
proxα2λϕ(αv + b)− b

)
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Proximal operators - Calculus rules
• affine addition:

f(x) = ϕ(x) + a′x+ b proxλf (v) = proxλϕ(v − λa)

• regularization: by setting λ̃ = λ
1+λρ

f(x) = ϕ(x) +
ρ

2
∥x− a∥22 proxλf (v) = proxλ̃ϕ

(

λ̃

λ
v + ρλ̃a

)

• Moreau decomposition: for all functions f it always holds that

v = proxf (v) + proxf∗(v)

where f∗ is the convex conjugate (or Fenchel conjugate) of f

f∗(y) = sup
x
{y′x− f(x)}

• Calculus rules also exist for computing convex conjugate functions
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Relation between conjugate function and Lagrange dual

• Consider the convex optimization problemwith linear constraints

min f(x)

s.t. Aix ≤ bi, i ∈ I

Aix = bi, i ∈ E

• The dual function for the problem is

q(λ) = inf
x
{f(x) + λ′(Ax− b)} = − sup

x
{(−A′λ)′x− f(x)} − b′λ

= −f∗(−A′λ)− b′λ

• If we know the conjugate function f∗ we can compute the dual function easily
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Relation with integration methods for ODEs
(Bruck, 1975) (Botsaris, Jacobson, 1976) (Eckstein, 1989)

• Let f smooth and convex, argminx f(x) ̸= ∅, and the solution x(t) of the
ordinary differential equation (ODE)

dx(t)

dt
= −∇f(x(t)), x(0) = x0

exist. Then limt→∞ x(t) = x∗ ∈ argminx f(x).

• gradient descent = forward Euler method for integrating theODE

xk+1 = xk − λk

dx(xk)

dt
= xk − λk∇f(xk)

• proximal point method = backward Euler method

xk+1 = xk − λk∇f(xk+1) = argmin
x

{f(x) + 1

2λk

∥x− xk∥22} = proxλkf
(xk)

• Newton’s method = numerical integration of dx
dt

= −(∇2f(x))−1∇f(x)
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Alternating Direction Methods of Multipliers (ADMM)
(Gabay,Mercier, 1976) (Glowinski, Marrocco, 1975) (Douglas, Rachford, 1956) (Boyd et al., 2010)

• Wewant to solve the optimization problem

minx,z f(x) + g(z)

s.t. Ax+Bz = c

x ∈ R
n, z ∈ R

m

A ∈ R
p×n, B ∈ R

p×m

c ∈ R
p

where f : Rn → R ∪ {+∞}, g : Rm → R ∪ {+∞} are closed, proper, and
convex (possibly non-smooth)

• For a scalar ρ > 0we form the augmented Lagrangian

Lρ(x, z, y) = f(x) + g(z) + y′(Ax+Bz − c) +
ρ

2
∥Ax+Bz − c∥22
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Alternating Direction Methods of Multipliers (ADMM)

• TheAlternating Direction Methods of Multipliers (ADMM) iterates the

following steps

xk+1 = argminx Lρ(x, z
k, yk)

zk+1 = argminz Lρ(x
k+1, z, yk)

yk+1 = yk + ρ(Axk+1 +Bzk+1 − c)

• The name “alternating direction” comes fromminimizing the augmented

LagrangianLρ first with respect to x and then to z
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ADMM - Convergence

• Assuming that the unaugmented LagrangianL0 (ρ = 0) has a saddle point, i.e.,

∃(x∗, z∗, y∗) such that

L0(x
∗, z∗, y) ≤ L0(x

∗, z∗, y∗) ≤ L0(x, z, y
∗)

we have that

limk→∞ Axk +Bzk − c = 0 residual convergence
limk→∞ f(xk) + g(zk) = f(x∗) + g(z∗) objective convergence
limk→∞ yk = y∗ dual variable convergence

• ADMMhas a builtin “integral action”, namely yk integrates the primal residual

rk = Axk +Bzk − c
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ADMM - Stopping criteria

• We call dual residual the quantity sk = ρA′B(zk+1 − zk)

• A reasonable termination criterion is to stop the ADMM iterations when

∥rk∥2 ≤ ϵpri and ∥sk∥2 ≤ ϵdual

with

ϵpri =
√
pϵabs + ϵrel max{∥Axk∥2, ∥Bzk∥2, ∥c∥2}

ϵdual =
√
nϵabs + ϵrel∥A′yk∥2

and ϵabs > 0 is an absolute tolerance, ϵrel > 0 a relative tolerance (for example

ϵrel = 10−3 or 10−4)
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ADMM - Variants

• Convergence sometimes can be improved by introducing over-relaxation, that

is replacingAxk+1 with

αAxk+1 − (1− α)(Bzk − c)

when updating zk+1, yk+1, whereα ∈ (1, 2) (typicallyα ∈ [1.5, 1.8])

• By introducing the scaled dual variable u = 1
ρ
y, ADMMcan be expressed in the

simplified scaled form

xk+1 = argminx
{
f(x) + ρ

2∥Ax+Bzk − c+ uk∥22
}

zk+1 = argminz
{
g(z) + ρ

2∥Axk+1 +Bz − c+ uk∥22
}

uk+1 = uk +Axk+1 +Bzk+1 − c
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Scaled ADMM and proximal operators

• Consider the convex problem

minx f(x) + g(x)
minx,z f(x) + g(z)

s.t. x− z = 0

• The augmented Lagrangian is

Lρ(x, z, y) = f(x) + g(z) + y′(x− z) +
ρ

2
∥x− z∥22

• Since y = ρu and adding ρ
2∥u∥22 does not change theminimizer with respect to

x and z, we get

argmin
x,z

Lρ(x, z, y) = argmin
x,z

{

f(x) + g(z) +
ρ

2
∥x− z + u∥22

}
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Scaled ADMM and proximal operators

• By letting λ = 1
ρ
, the scaled ADMM iterations can be rewritten as

xk+1 = argminx Lρ(x, z
k, yk) = proxλf (z

k − uk)

zk+1 = argminz Lρ(x
k+1, z, yk) = proxλg(x

k+1 + uk)

uk+1 = uk + xk+1 − zk+1

• The proximal operator calculus can be used for ADMMalgorithms too

• An accelerated version of ADMMalso exists
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ADMM for constrained convex optimization
• Consider the convex problemwith f, C convex

min f(x)

s.t. x ∈ C
min f(x) + g(z)

s.t. x− z = 0

where g is the indicator function of the set C

• The scaled ADMM iterations to solve the problem are

xk+1 = argminx{f(x) + ρ
2∥x− zk + uk∥22} = prox 1

ρ
f (z

k − uk)

zk+1 = ΠC(x
k+1 + uk)

uk+1 = uk + xk+1 − zk+1

• ADMMcan be applied to nonconvex C (e.g., C = {0, 1}n1 × R
n−n1 ). No

guarantee of convergence to a global minimum, but it can be a good heuristic.

(Boyd, Parikh, Chu, Peleato, Eckstein, 2010) (Takapoui, Moehle, Boyd, Bemporad, 2017)
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ADMM for linear and quadratic programming

• Consider the standard formQPwith HessianQ = Q′ ⪰ 0

min 1
2x

′Qx+ c′x

s.t. Ax = b

x ≥ 0

min f(x) + g(z)

s.t. x− z = 0

• f is the sum of 1
2x

′Qx+ c′x and the indicator function of {x : Ax = b}

• g is the indicator function ofRn
+ = {x : xi ≥ 0, i = 1, . . . , n}

• The problem is an LP in standard formwhenQ = 0
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ADMM for linear and quadratic programming

• The update for xk+1 requires solving

xk+1 = argminx
1
2x

′Qx+ c′x+ ρ
2∥x− zk + uk∥22

s.t. Ax = b

that is solving the linear system

[

Q+ ρI A′

A 0

][

xk+1

ν

]

=

[

ρ(zk − uk)− c

b

]

• Note that the symmetric matrix
[
Q+ρI A′

A 0

]

can be factorized at start and

cached

• The update for zk+1 is simply

zk+1 = max{xk+1 + uk, 0}
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ADMM for quadratic programming

• Consider theQPwith HessianQ = Q′ ⪰ 0,A full column rank orQ = Q′ ≻ 0

min 1
2x

′Qx+ c′x

s.t. ℓ ≤ Ax ≤ u

min 1
2x

′Qx+ c′x+ g(z)

s.t. Ax− z = 0

where g is the indicator function of {z : ℓ ≤ z ≤ u}
• The scaled ADMM iterations to solve theQP are

xk+1 = −(Q+ ρA′A)−1(ρA′(uk − zk) + c)

zk+1 = min{max{Axk+1 + uk, ℓ}, u}
uk+1 = uk +Axk+1 − zk+1

• We can factorizeQ+ ρA′A at start and cache the factorization

• The dual QP solution is also available, as yk = ρuk
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Regularized ADMM for quadratic programming
(Stellato, Banjac, Goulart, Bemporad, Boyd, 2020)

• Consider theQPwith HessianQ = Q′ ⪰ 0

min 1
2x

′Qx+ c′x

s.t. ℓ ≤ Ax ≤ u

min 1
2x

′Qx+ c′x+ g(z)

s.t. Ax− z = 0

where g is the indicator function of {z : ℓ ≤ z ≤ u}

• Chosen any ϵ > 0, more robust “regularized” ADMM iterations are

xk+1 = −(Q+ ρATA+ ϵI)−1(c− ϵxk + ρAT (uk − zk))

zk+1 = min{max{Axk+1 + uk, ℓ}, u}
uk+1 = uk +Axk+1 − zk+1

• See the osQP solver https://github.com/oxfordcontrol/osqp
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Detection of infeasibility and unboundedness

• By Farkas lemma

either
[

A
−A

]
x ≤ [ u

−ℓ ] or [A′ −A′ ]
[
y+

y−

]

= 0, [ u
−ℓ ]

′
[
y+

y−

]

< 0, y+, y− ≥ 0

Then theQP is infeasible if a dual vector y exists such that

A′y = 0, u′ max(y, 0)− l′ max(−y, 0) < 0

• TheQP is unbounded if a primal vector x exists such that

Qx = 0, c′x < 0,







Aix = 0 li, ui ∈ R

Aix ≥ 0 li ∈ R, ui = +∞
Aix ≤ 0 li = −∞, ui ∈ R

• In ADMM iterations, yk(xk) diverge if the problem is infeasible (unbounded)
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Detection of infeasibility and unboundedness

• One can show that

– wk = yk

∥u′ max(yk,0)+l′ max(−yk,0)∥
asymptotically satisfies Farkas lemma if theQP

is infeasible

– vk = xk

−c′xk asymptotically satisfies the conditions for recognizing unboundedness

of theQP

• Alternatively, the increments

δxk = xk − xk−1, δyk = yk − yk−1, δzk = zk − zk−1

always converge and δyk (δxk) also works for recognizing infeasibility

(unboundedness) (Banjac, Goulart, Stellato, Boyd, 2017)
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ADMM for LASSO

• Consider the LASSO problem

min
1

2
∥Ax−b∥22+τ∥x∥1

min 1
2∥Ax− b∥22 + τ∥z∥1

s.t. x− z = 0

• The iteration for z is zk+1 = prox 1
ρ
(τ∥·∥1)(x

k+1 + uk) =S τ
ρ
(xk+1 + uk)

(soft-threshold operator)

• The scaled ADMM iterations to solve the LASSO problem become

xk+1 = (A′A+ ρI)−1(A′b+ ρ(zk − uk))

zk+1 = S τ
ρ
(xk+1 + uk)

uk+1 = uk + xk+1 − zk+1

• Since ρ > 0,A′A+ ρI is always invertible and can be factorized once
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Consensus ADMM

• Consider the separable problem

min
x

f(x) =
N∑

i=1

fi(x) x ∈ R
n, fi : R

n → R∪{+∞}

with fi convex and possibly non-smooth

• This may represent amodel fitting problem, where x are the parameters of the

model and fi(x) are the losses associated with the ith datapoint

• The problem can be rewritten as the global consensus problem

min

N∑

i=1

fi(xi)

s.t. xi = z, i = 1, . . . , N
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Consensus ADMM

• Recall the scaled ADMM iterations:






xk+1 = argminx
{
f(x) + ρ

2∥Ax+Bzk − c+ uk∥22
}

zk+1 = argminz
{
g(z) + ρ

2∥Axk+1 +Bz − c+ uk∥22
}

uk+1 = uk +Axk+1 +Bzk+1 − c

• Here x =

[
x1

...
xN

]

, u =

[
u1

...
uN

]

,A = InN ,B = −
[

I

...
I

]

, c = 0, g(z) = 0

• In general, ifw =

[
w1

...
wN

]

then ∥w∥22 =
∑N

i=1 ∥wi∥22. Therefore

∥
∥
∥
∥
∥

[
x1

...
xN

]

−
[

I

...
I

]

z −
[

u1

...
uN

]∥
∥
∥
∥
∥

2

2

=

N∑

i=1

∥xi − z − ui∥22
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Consensus ADMM

• Moreover argmin
z

N
∑

i=1

∥xi − z + ui∥
2
2 = argmin

z

N
∑

i=1

z′z − 2(xi + ui)
′z =

1

N

N
∑

i=1

xi + ui

• The scaled ADMM iterations for the consensus problem are therefore

xk+1
i = argminxi

{
fi(xi) +

ρ
2∥xi − zk + uk

i ∥22
}

local/parallel

zk+1 = 1
N

∑N
i=1 x

k+1
i + uk

i global/centralized

uk+1
i = uk

i + xk+1
i − zk+1 local/parallel

• The 1st and 3rd steps can be run in parallel, the 2nd step averages xk+1
i + uk

i

• The objectives fi do not need to be shared!

• A regularization term or indicator function of a constraint g(z) can be included

as well (g(z) = ∥z∥22, g(z) = ∥z∥1, ...)
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Stochastic gradient methods



Stochastic optimization problem
• Wewant tominimize

min
x

1

N

N∑

i=1

fi(x)

• The problemmay come from takingN samples ξ1, . . . , ξi to approximate

expected value min
x

Eξ[f̄(x; ξ)] ≈ min
x

1

N

N∑

i=1

f̄(x; ξi) empirical mean

• Inmachine learning problemswewant to optimize

min
x

1

N

N∑

i=1

ℓ(h(ui;x), yi)

where (u1, y1), . . . , (uN , yN ) is the training set, h(u;x) a prediction function,

ℓ(h, y) a loss function

Example: h(u;x) = x′
1:n−1u+ xn and ℓ(h, y) = ∥h− y∥22
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Stochastic gradient method
(Robbins, Monro, 1951)

• Let f(x) =
1

N

N∑

i=1

fi(x)

• We solveminx f(x) by choosing an index ik ∈ {1, . . . , N} at random and

update

xk+1 = xk−αk∇fik(x
k) stochastic gradient (SG) method

• The step-sizeαk is called learning-rate in machine learning

• Pros: every iteration is extremely cheap (only one gradient is computed)

• Cons: descent only in expectation

• Themethod is an incremental (or online) optimizationmethod

(cf. survey paper (Bertsekas, 2012))
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Stochastic gradient method

• More generally, the SGmethod can take the following form:

xk+1 = xk − αk∇fik(x
k) single gradient

xk+1 = xk − αk

nk

nk∑

j=1

∇fik,j
(xk) mini-batch (nk ≪ N )

xk+1 = xk − αk

nk

Hk

nk∑

j=1

∇fik,j
(xk) scaled mini-batch (Hk ∈ R

n×n)

• For nk = N the resulting batch gradient method = gradient descent iterations

xk+1 = xk − αk

N

N∑

i=1

∇fi(x
k)
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Convergence analysis

• If f is continuously differentiable and∇f Lipschitz continuous with constant4

L the expectations with respect to ik (or equivalently ξk) satisfy

E[f(xk+1)]−f(xk) ≤ −µαk∥∇f(xk)∥22
︸ ︷︷ ︸

expected decrease

+
1

2
α2
kLE[∥∇fik(x

k)∥22]
︸ ︷︷ ︸

variance

µ > 0

• Initially f decreases because ∥∇f∥ is large, then variancemay dominate

• Therefore we need limk→∞ αk = 0

4∥∇f(x)−∇f(y)∥2 ≤ L∥x− y∥2 , ∀x, y ∈ R
n
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Convergence analysis - Strongly convex case

• Choose the learning rate αk =
β

γ + k
β, γ > 0

• When f is strongly convex5 the convergence rate of stochastic gradient descent

is sublinear

E[f(xk)− f(x∗)] = O

(
1

k

)

• Compare with the linear convergence rate of batch gradient

f(xk)− f(x∗) = O(ρk), 0 ≤ ρ < 1

• However, one batch gradient step requires computingN gradients, one SG step

only one gradient

5f(y) ≥ f(x) +∇f(x)′(y − x) + m
2
∥y − x∥22 ,m > 0. Or equivalently f(x)− m

2
x′x convex,

or∇2f(x) ⪰ mI , ∀x
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Averaged SG

Averaged Stochastic Gradient Descent
(Ruppert, 1988) (Polyak, Juditsky, 1992)

• Consider theL2-regularized problem

min
x

λ

2
∥x∥22 +

1

N

N∑

i=1

fi(x), λ > 0

• The idea is to run standard gradient descent but take the average x̄k after k0
steps as the optimizer instead of xk

x̄k =
1

k − k0

k∑

i=k0+1

xi x̄k+1 = x̄k +
1

k + 1− k0
(xk+1 − x̄k)

• Choose learning rate

αk =
α0

(1 + α0λk)σ

0 < σ < 1, e.g., σ = 3
4 (Bottou, 2012)
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Stochastic gradient descent methods

• Despite theorymostly covers the convex case, SGDmethods are heavily used

to solve nonconvex problems (especially for training deep neural networks)

• Several other popular variants exist with adaptive learning ratesαk:

– AdaGrad (Duchi, Hazan, Singer, 2011)

– Adadelta (Zeiler, 2012)

– Adam (Kingma, Ba, 2015)

– Adamax (Kingma, Ba, 2015)

– diffGrad (Dubey, Chakraborty, Roy,Mukherjee, Singh, Chaudhuri, 2020)

– …

• Usually the parameters of the SGD algorithm are tuned on a smaller problem

minx
1
M

∑M
j=1 fij (x), I = {i1, . . . , iM},M ≪ N

``Numerical Optimization'' - ©2023 A. Bemporad. All rights reserved. 44/46



Adam, AMSGrad

• Adam (and other variants) use scaling updates by square roots of exponential

moving averages of squared past gradients

• An issue in Adam convergence proof has been pointed out and fixed by

including a “long-termmemory” of past gradients (=largest components

encountered of scaling factors)

• The new SGD algorithm, calledAMSGrad, guarantees convergence and also

seems to improve empirical performance (Reddi, Kale, Kumar, 2018)

• Update: AdamX further fixes the proof ofAMSGrad (Phuong, Phong, 2019)
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RMSProp

• RMSProp6 keeps amoving average vt of the component-wise squared gradient

vkj = ρvk−1
j + (1− ρ)[∇fi(x

k)]2j

for j = 1, . . . , n, where ρ = forgetting factor, and updates

xk+1
j = xk

j − α

ϵ+
√

vkj

[∇fi(x
k)]j

withα = learning rate coefficient and ϵ > 0 prevents division by zero

• Example: ρ = 0.9,α = 10−3, ϵ = 10−8

• RMSProp extends theRprop7 algorithm (Riedmiller, Braun, 1992) used in batch

optimization to the on-line / mini-batch setting

• Heavily used in deep learning
6https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
7resilient backpropagation
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