OPERATOR SPLITING METHODS

References:

L. Vandenberghe, "Optimization Methods for Large-Scale Systems," lecture notes, http://www.seas.ucla.edu/~vandenbe/ee236c.html
S. Boyd, "Convex Optimization II", lecture notes, http: //ee364b. stanford.edu

PROXIMAL MAPPING

- The proximal mapping (or proximal operator) of a convex function $f: \mathbb{R}^{n} \rightarrow \mathbb{R} \cup\{+\infty\}$ is defined as

$$
\operatorname{prox}_{f}(v)=\arg \min _{x}\left(f(x)+\frac{1}{2}\|x-v\|_{2}^{2}\right)
$$

- We assume also that f is closed and proper, that is its epigraph

$$
\text { epi } f=\{(x, t): f(x) \leq t\} \subseteq \mathbb{R}^{n+1}
$$

is nonempty, closed and convex.

PROXIMAL MAPPING

- We often use the proximal operator on the scaled function λf with $\lambda>0$

$$
\operatorname{prox}_{\lambda f}(v)=\arg \min _{x}\left(f(x)+\frac{1}{2 \lambda}\|x-v\|_{2}^{2}\right)
$$

- The proximal point $\operatorname{prox}_{\lambda f}(v)$ of v is a tradeoff between being close to v and minimizing f
- f can be nonsmooth and extended real-valued $(f(x)=+\infty$ for some $x)$
- Example: indicator function of a convex $\operatorname{set} \mathcal{C}$:

$$
f(x)=\left\{\begin{aligned}
0 & \text { if } x \in \mathcal{C} \\
+\infty & \text { if } x \notin \mathcal{C}
\end{aligned}\right.
$$

PROXIMAL POINT ALGORITHM

- When v is a minimizer of $f\left(v=x^{*} \in \arg \min _{x} f(x)\right)$ we get

$$
\operatorname{prox}_{\lambda f}\left(x^{*}\right)=x^{*}
$$

as both terms $f(x)$ and $\frac{1}{\lambda}\left\|x-x^{*}\right\|_{2}^{2}$ are minimized at x^{*}

- The proximal point algorithm simply iterates

$$
x^{k+1}=\operatorname{prox}_{\lambda f}\left(x^{k}\right)
$$

- If f has a minimum, the algorithm converges to an optimizer x^{*} of f
(Bauschke, Combettes, 2011)
- The parameter λ may be changed during iterations, as long as $\lambda_{k}>0$ and $\sum_{k=0}^{\infty} \lambda_{k}=+\infty$

PROXIMAL GRADIENT METHOD

- We want to solve the unconstrained optimization problem

$$
\min _{x} f(x)+g(x)
$$

where

- $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is convex and differentiable with $\operatorname{dom} f=\mathbb{R}^{n}$
- $g: \mathbb{R}^{n} \rightarrow \mathbb{R} \cup\{+\infty\}$ is convex (possibly non-smooth) with an inexpensive proximal operator
- The proximal gradient algorithm (or forward backward splitting) iterates

$$
x^{k+1}=\operatorname{prox}_{\lambda_{k} g}\left(x^{k}-\lambda_{k} \nabla f\left(x^{k}\right)\right)
$$

PROXIMAL GRADIENT METHOD - INTERPRETATION

- The proximal gradient step has the following interpretation:

$$
\begin{aligned}
x^{k+1} & =\operatorname{prox}_{\lambda_{k} g}\left(x^{k}-\lambda_{k} \nabla f\left(x^{k}\right)\right) \\
& =\arg \min _{x}\left(g(x)+\frac{1}{2 \lambda_{k}}\left\|x-x^{k}+\lambda_{k} \nabla f\left(x^{k}\right)\right\|_{2}^{2}\right) \\
& =\arg \min _{x}(g(x)+\underbrace{f\left(x^{k}\right)+\nabla f\left(x^{k}\right)^{\prime}\left(x-x^{k}\right)+\frac{1}{2 \lambda_{k}}\left\|x-x^{k}\right\|_{2}^{2}}_{\text {simple quadratic model of } f(x) \text { around } x^{k}})
\end{aligned}
$$

PROXIMAL GRADIENT METHOD - CONVERGENCE

- If ∇f is Lipschitz continuous with constant $L>0$

$$
\|\nabla f(x)-\nabla f(y)\| \leq L\|x-y\|, \forall x, y \in \mathbb{R}^{n}
$$

then the algorithm converges for all constant $\lambda_{k} \equiv \lambda \in\left(0, \frac{1}{L}\right]$

- Convergence rate: $f\left(x^{k}\right)+g\left(x^{k}\right)-\left(f\left(x^{*}\right)+g\left(x^{*}\right)\right) \leq \frac{1}{2 \lambda k}\left\|x^{0}-x^{*}\right\|_{2}^{2}$
- If f is strongly convex with parameter $m>0^{1}$ then

$$
\left\|x^{k}-x^{*}\right\|_{2}^{2} \leq\left(1-\frac{m}{L}\right)^{k}\left\|x^{0}-x^{*}\right\|_{2}^{2} \quad \text { Linear convergence }
$$

[^0]
PROXIMAL GRADIENT METHOD WITH LINE SEARCH

- If L is not known one can choose λ_{k} by line search, for example:
(Beck, Teboulle, 2009)
- Choose $\beta \in(0,1)$ (e.g., $\beta=\frac{1}{2}$) and set $\lambda \leftarrow \lambda_{k-1}$
- Repeat

$$
\begin{aligned}
& z \leftarrow \operatorname{prox}_{\lambda g}\left(x^{k}-\lambda \nabla f\left(x^{k}\right)\right) \\
& \text { break if } f(z) \leq f\left(x^{k}\right)+\nabla f\left(x^{k}\right)^{\prime}\left(z-x^{k}\right)+\frac{1}{2 \lambda}\left\|z-x^{k}\right\|_{2}^{2} \\
& \text { update } \lambda \leftarrow \beta \lambda
\end{aligned}
$$

- Return $\lambda_{k} \leftarrow \lambda, x^{k+1} \leftarrow z$

ACGELERATED PROXIMAL GRADIENT METHOD

(Nesterov, 1983) (Beck, Teboulle, 2008)

- The accelerated (or fast) proximal gradient algorithm iterates the following

$$
\begin{aligned}
& y^{k+1}=x^{k}+\beta_{k}\left(x^{k}-x^{k-1}\right) \quad \text { extrapolation slep } \\
& x^{k+1}=\operatorname{prox}_{\lambda_{k} g}\left(y^{k+1}-\lambda_{k} \nabla f\left(y^{k+1}\right)\right)
\end{aligned}
$$

- Possible choices for β_{k} (with $\left.\beta_{0}=0\right)$ are for example

$$
\beta_{k}=\frac{k-1}{k+2}, \quad \beta_{k}=\frac{k}{k+3}, \quad\left\{\begin{aligned}
\beta_{k} & =\frac{\alpha_{k}}{\alpha_{k-1}}-\alpha_{k} \\
\alpha_{k+1} & =\frac{1}{2}\left(\sqrt{\alpha_{k}^{4}+4 \alpha_{k}^{2}}-\alpha_{k}^{2}\right) \\
\alpha_{0} & =\alpha_{-1}=1^{2}
\end{aligned}\right.
$$

- Thanks to adding the "momentum term" y^{k} the initial error $f\left(x^{0}\right)+g\left(x^{0}\right)-\left(f\left(x^{*}\right)+g\left(x^{*}\right)\right)$ reduces as $1 / k^{2}$
- Same line-search procedure is applicable to select varying λ_{k}

$$
{ }^{2} \text { Any } \alpha_{k} \text { satisfying } \alpha_{k}^{2}\left(1-\alpha_{k+1}\right) \leq \alpha_{k+1}^{2} \text { would work }
$$

SPECIAL CASES

- Special cases of the (non-accelerated) proximal gradient method:
- For $g(x)=0, \operatorname{prox}_{\lambda g}(v)=v$ we obtain the standard gradient descent method

$$
x^{k+1}=x^{k}-\lambda_{k} \nabla f\left(x^{k}\right)
$$

- For $f(x)=0$ we obtain the standard proximal point method

$$
x^{k+1}=\operatorname{prox}_{\lambda_{k} g}\left(x^{k}\right)
$$

- For $g(x)=$ indicator function of a convex set \mathcal{C} we obtain the gradient projection method (Bertsekas, 1999)

$$
x^{k+1}=\Pi_{\mathcal{C}}\left(x^{k}-\lambda_{k} \nabla f\left(x^{k}\right)\right)
$$

- The accelerated version of the algorithm gives a fast version of the above

(FAST) GRADIENT PROJECTION FOR BOX-CONSTRANED QP

- Consider the convex box-constrained QP

$$
\begin{array}{cl}
\min & \frac{1}{2} x^{\prime} Q x+c^{\prime} x \\
\text { s.t. } & \ell \leq x \leq u
\end{array}
$$

- Since $\|\nabla f(x)-\nabla f(y)\|_{2}=\|Q(x-y)\|_{2} \leq \lambda_{\max }(Q)\|x-y\|_{2}$ we can choose any $\lambda \leq \frac{1}{\lambda_{\max }(Q)}$
- The gradient projection method for box-constrained QP is

$$
x^{k+1}=\max \left\{\ell, \min \left\{u, x^{k}-\lambda\left(Q x^{k}+c\right)\right\}\right\}
$$

- The fast gradient projection method for box-constrained QP is

$$
\begin{aligned}
y^{k+1} & =x^{k}+\beta_{k}\left(x^{k}-x^{k-1}\right) \\
x^{k+1} & =\max \left\{\ell, \min \left\{u, y^{k+1}-\lambda\left(Q y^{k+1}+c\right)\right\}\right\}
\end{aligned}
$$

DUAL GRADIENT PROJECTION FOR QP

- Consider the strictly convex QP and its dual

$$
\begin{aligned}
& \min \frac{1}{2} x^{\prime} Q x+c^{\prime} x \\
& \text { s.t. } A x \leq b \\
& \min \frac{1}{2} y^{\prime} H y+d^{\prime} y \\
& H=A Q^{-1} A^{\prime} \\
& \text { s.t. } \quad y \geq 0 \\
& d=b+A Q^{-1} c
\end{aligned}
$$

- Take $\lambda \leq \frac{1}{\lambda_{\max }(H)}\left(^{3}\right)$ and apply the proximal gradient method to the dual QP:

$$
\begin{aligned}
& \left.\mid y^{k+1}=\max \left\{y^{k}-\lambda\left(H y^{k}+d\right), 0\right\}\right\} \mid \quad y_{0}=0 \\
& \text { dual gradient projection method for QP }
\end{aligned}
$$

- The primal solution is related to the dual solution by

$$
x^{k}=-Q^{-1}\left(c+A^{\prime} y^{k}\right)
$$

[^1]
AGGELERATED DUAL GRADIENT PROJECTION FOR QP (GPAD)

- The dual accelerated gradient projection (GPAD) for QP can be written as

$$
\begin{aligned}
w^{k} & =y^{k}+\beta_{k}\left(y^{k}-y^{k-1}\right) \\
x^{k} & =-K w^{k}-g \\
s^{k} & =\frac{1}{L} A x^{k}-\frac{1}{L} b \\
y^{k+1} & =\max \left\{w^{k}+s^{k}, 0\right\}
\end{aligned}
$$

$$
\begin{aligned}
K & =Q^{-1} A^{\prime} \\
g & =Q^{-1} c \\
L & \geq \lambda_{\max }\left(A Q^{-1} A^{\prime}\right)
\end{aligned}
$$

- Termination criteria: when the following two conditions are met

$$
\begin{aligned}
s_{i}^{k} & \leq \frac{1}{L} \epsilon_{A}, i=1, \ldots, m & & \text { primal feasibility } \\
-\left(w^{k}\right)^{\prime} s^{k} & \leq \frac{1}{L} \epsilon_{f} & & \text { optimality }
\end{aligned}
$$

the solution $x^{k}=-K w^{k}-g$ satisfies $A_{i} x^{k}-b_{i} \leq \epsilon_{A}$ and, if $w^{k} \geq 0$,

$$
f\left(x^{k}\right)-f\left(x^{*}\right) \leq f\left(x^{k}\right)-\underbrace{q\left(w^{k}\right)}_{\text {dual } f_{\text {cn }}}=-\left(w^{k}\right)^{\prime} s^{k} L \leq \epsilon_{f}
$$

RESTART IN FAST GRADIENT PROJECTION

- Fast gradient projection methods can be sped up by adaptively restarting the sequence of coefficients β_{k} (O'Donoghue, Candés, 2013)
- Restart conditions:
- function restart whenever

$$
f\left(y^{k}\right)>f\left(y^{k-1}\right)
$$

- gradient restart whenever

$$
\nabla f\left(w^{k-1}\right)^{\prime}\left(y_{k}-y_{k-1}\right)>0
$$

PROXIMAL OPERATORS - EXAMPLES

- indicator function of a convex set \mathcal{C} :

$$
f(x)=\{\begin{aligned}
0 & \text { if } x \in \mathcal{C} \\
+\infty & \text { if } x \notin \mathcal{C}
\end{aligned} \quad \quad \underbrace{\operatorname{prox}_{\lambda f}(v)=\Pi_{\mathcal{C}}(v)}_{\text {projection of } v \text { on } \mathcal{C}}
$$

- 1-norm: $\operatorname{prox}_{\lambda f}$ is called the soft-threshold (shrinkage) operator $S_{\lambda}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$

$$
f(x)=\|x\|_{1} \quad\left[\operatorname{prox}_{\lambda f}(v)\right]_{i}=\left[S_{\lambda}(v)\right]_{i} \triangleq\left\{\begin{array}{rll}
v_{i}+\lambda & \text { if } & v_{i} \leq-\lambda \\
0 & \text { if } & \left|v_{i}\right| \leq \lambda \\
v_{i}-\lambda & \text { if } & v_{i} \geq \lambda
\end{array}\right.
$$

- Euclidean norm:

$$
f(x)=\|x\|_{2} \quad \operatorname{prox}_{\lambda f}(v)= \begin{cases}\left(1-\lambda /\|v\|_{2}\right) v & \text { if }\|v\|_{2} \geq \lambda \\ 0 & \text { otherwise }\end{cases}
$$

PROXIMAL OPERATORS - EXAMPLES

- quadratic function: $Q \succeq 0$

$$
f(x)=\frac{1}{2} x^{\prime} Q x+c^{\prime} x \quad \operatorname{prox}_{\lambda f}(v)=(I+\lambda Q)^{-1}(v-\lambda c)
$$

- logarithmic barrier:

$$
f(x)=-\sum_{i=1}^{n} \log x_{i} \quad\left[\operatorname{prox}_{\lambda f}(v)\right]_{i}=\frac{v_{i}+\sqrt{v_{i}^{2}+4 \lambda}}{2}, i=1, \ldots, n
$$

- Many other examples exist for which the proximal operator can be computed analytically or determined efficiently (for example by bisection)

PROXIMAL OPERATORS - CALCULUS RULES

- separable sum:

$$
\left.f(x)=\sum_{i=1}^{n} f_{i}\left(x_{i}\right) \quad \square \operatorname{prox}_{\lambda f}(v)\right]_{i}=\operatorname{prox}_{\lambda f_{i}}\left(v_{i}\right)
$$

- postcomposition:

$$
f(x)=\alpha \phi(x)+b, \alpha>0 \quad \operatorname{prox}_{\lambda f}(v)=\operatorname{prox}_{\alpha \lambda \phi}(v)
$$

- precomposition:

$$
f(x)=\phi(\alpha x+b), \alpha \neq 0 \quad \square \operatorname{prox}_{\lambda f}(v)=\frac{1}{\alpha}\left(\operatorname{prox}_{\alpha^{2} \lambda \phi}(\alpha v+b)-b\right)
$$

PROXIMAL OPERATORS - CALCULUS RULES

- affine addition:

$$
f(x)=\phi(x)+a^{\prime} x+b \quad \square \operatorname{prox}_{\lambda f}(v)=\operatorname{prox}_{\lambda \phi}(v-\lambda a)
$$

- regularization: by setting $\tilde{\lambda}=\frac{\lambda}{1+\lambda \rho}$

$$
f(x)=\phi(x)+\frac{\rho}{2}\|x-a\|_{2}^{2} \quad \square \operatorname{prox}_{\lambda f}(v)=\operatorname{prox}_{\tilde{\lambda} \phi}\left(\frac{\tilde{\lambda}}{\lambda} v+\rho \tilde{\lambda} a\right)
$$

- Moreau decomposition: for all functions f it always holds that

$$
v=\operatorname{prox}_{f}(v)+\operatorname{prox}_{f^{*}}(v)
$$

where f^{*} is the convex conjugate (or Fenchel conjugate) of f

$$
f^{*}(y)=\sup _{x}\left\{y^{\prime} x-f(x)\right\}
$$

- Calculus rules also exist for computing convex conjugate functions

RELATION BETWEEN CONJUGATE FUNCTION AND LAGRANGE DUAL

- Consider the convex optimization problem with linear constraints

$$
\begin{aligned}
\min & f(x) \\
\mathrm{s.t.} & A_{i} x \leq b_{i}, i \in I \\
& A_{i} x=b_{i}, i \in E
\end{aligned}
$$

- The dual function for the problem is

$$
\begin{aligned}
q(\lambda) & =\inf _{x}\left\{f(x)+\lambda^{\prime}(A x-b)\right\}=-\sup _{x}\left\{\left(-A^{\prime} \lambda\right)^{\prime} x-f(x)\right\}-b^{\prime} \lambda \\
& =-f^{*}\left(-A^{\prime} \lambda\right)-b^{\prime} \lambda
\end{aligned}
$$

- If we know the conjugate function f^{*} we can compute the dual function easily

RELATION WITH INTEGRATION METHODS FOR ODES

- Let f smooth and convex, $\arg \min _{x} f(x) \neq \emptyset$, and the solution $x(t)$ of the ordinary differential equation (ODE)

$$
\frac{d x(t)}{d t}=-\nabla f(x(t)), \quad x(0)=x_{0}
$$

exist. Then $\lim _{t \rightarrow \infty} x(t)=x^{*} \in \arg \min _{x} f(x)$.

- gradient descent = forward Euler method for integrating the ODE

$$
x^{k+1}=x^{k}-\lambda_{k} \frac{d x\left(x^{k}\right)}{d t}=x^{k}-\lambda_{k} \nabla f\left(x^{k}\right)
$$

- proximal point method = backward Euler method

$$
x^{k+1}=x^{k}-\lambda_{k} \nabla f\left(x^{k+1}\right)=\arg \min _{x}\left\{f(x)+\frac{1}{2 \lambda_{k}}\left\|x-x^{k}\right\|_{2}^{2}\right\}=\operatorname{prox}_{\lambda_{k} f}\left(x^{k}\right)
$$

- Newton's method $=$ numerical integration of $\frac{d x}{d t}=-\left(\nabla^{2} f(x)\right)^{-1} \nabla f(x)$

ALIERNATING DIRECTION METHODS OF MULTIPLIERS [ADMM]

(Gabay, Mercier, 1976) (Glowinski, Marrocco, 1975) (Douglas, Rachford, 1956) (Boyd et al., 2010)

- We want to solve the optimization problem

$$
\begin{array}{rl}
\min _{x, z} & f(x)+g(z) \\
\text { s.t. } & A x+B z=c
\end{array}
$$

$$
\begin{aligned}
& x \in \mathbb{R}^{n}, z \in \mathbb{R}^{m} \\
& A \in \mathbb{R}^{p \times n}, B \in \mathbb{R}^{p \times m} \\
& c \in \mathbb{R}^{p}
\end{aligned}
$$

where $f: \mathbb{R}^{n} \rightarrow \mathbb{R} \cup\{+\infty\}, g: \mathbb{R}^{m} \rightarrow \mathbb{R} \cup\{+\infty\}$ are closed, proper, and convex (possibly non-smooth)

- For a scalar $\rho>0$ we form the augmented Lagrangian

$$
\mathcal{L}_{\rho}(x, z, y)=f(x)+g(z)+y^{\prime}(A x+B z-c)+\frac{\rho}{2}\|A x+B z-c\|_{2}^{2}
$$

ALIERNATING DIRECTION METHODS OF MULTIPLIERS [ADMM]

- The Alternating Direction Methods of Multipliers (ADMM) iterates the following steps

$$
\begin{aligned}
x^{k+1} & =\arg \min _{x} \mathcal{L}_{\rho}\left(x, z^{k}, y^{k}\right) \\
z^{k+1} & =\arg \min _{z} \mathcal{L}_{\rho}\left(x^{k+1}, z, y^{k}\right) \\
y^{k+1} & =y^{k}+\rho\left(A x^{k+1}+B z^{k+1}-c\right)
\end{aligned}
$$

- The name "alternating direction" comes from minimizing the augmented Lagrangian \mathcal{L}_{ρ} first with respect to x and then to z

ADMM - CONVERCENCE

- Assuming that the unaugmented Lagrangian $\mathcal{L}_{0}(\rho=0)$ has a saddle point, i.e., $\exists\left(x^{*}, z^{*}, y^{*}\right)$ such that

$$
\mathcal{L}_{0}\left(x^{*}, z^{*}, y\right) \leq \mathcal{L}_{0}\left(x^{*}, z^{*}, y^{*}\right) \leq \mathcal{L}_{0}\left(x, z, y^{*}\right)
$$

we have that

$$
\begin{array}{ll}
\lim _{k \rightarrow \infty} A x^{k}+B z^{k}-c=0 & \text { residual convergence } \\
\lim _{k \rightarrow \infty} f\left(x^{k}\right)+g\left(z^{k}\right)=f\left(x^{*}\right)+g\left(z^{*}\right) & \text { objective convergence } \\
\lim _{k \rightarrow \infty} y^{k}=y^{*} & \text { dual variable convergence }
\end{array}
$$

- ADMM has a builtin "integral action", namely y^{k} integrates the primal residual $r^{k}=A x^{k}+B z^{k}-c$

ADMM - STOPPING CRITERIA

- We call dual residual the quantity $s^{k}=\rho A^{\prime} B\left(z^{k+1}-z^{k}\right)$
- A reasonable termination criterion is to stop the ADMM iterations when

$$
\left\|r^{k}\right\|_{2} \leq \epsilon_{\text {pri }} \quad \text { and } \quad\left\|s^{k}\right\|_{2} \leq \epsilon_{\text {dual }}
$$

with

$$
\begin{aligned}
\epsilon_{\text {pri }} & =\sqrt{p} \epsilon_{\text {abs }}+\epsilon_{\text {rel }} \max \left\{\left\|A x^{k}\right\|_{2},\left\|B z_{k}\right\|_{2},\|c\|_{2}\right\} \\
\epsilon_{\text {dual }} & =\sqrt{n} \epsilon_{\text {abs }}+\epsilon_{\text {rel }}\left\|A^{\prime} y^{k}\right\|_{2}
\end{aligned}
$$

and $\epsilon_{\text {abs }}>0$ is an absolute tolerance, $\epsilon_{\text {rel }}>0$ a relative tolerance (for example $\epsilon_{\text {rel }}=10^{-3}$ or 10^{-4})

ADMM - VARIANTS

- Convergence sometimes can be improved by introducing over-relaxation, that is replacing $A x^{k+1}$ with

$$
\alpha A x^{k+1}-(1-\alpha)\left(B z^{k}-c\right)
$$

when updating z^{k+1}, y^{k+1}, where $\alpha \in(1,2)$ (typically $\alpha \in[1.5,1.8]$)

- By introducing the scaled dual variable $u=\frac{1}{\rho} y$, ADMM can be expressed in the simplified scaled form

$$
\begin{aligned}
x^{k+1} & =\arg \min _{x}\left\{f(x)+\frac{\rho}{2}\left\|A x+B z^{k}-c+u^{k}\right\|_{2}^{2}\right\} \\
z^{k+1} & =\arg \min _{z}\left\{g(z)+\frac{\rho}{2}\left\|A x^{k+1}+B z-c+u^{k}\right\|_{2}^{2}\right\} \\
u^{k+1} & =u^{k}+A x^{k+1}+B z^{k+1}-c
\end{aligned}
$$

SCALED ADMM AND PROXIMAL OPERATORS

- Consider the convex problem

$$
\min _{x} f(x)+g(x) \quad \begin{array}{rl}
\min _{x, z} & f(x)+g(z) \\
\text { s.t. } & x-z=0
\end{array}
$$

- The augmented Lagrangian is

$$
\mathcal{L}_{\rho}(x, z, y)=f(x)+g(z)+y^{\prime}(x-z)+\frac{\rho}{2}\|x-z\|_{2}^{2}
$$

- Since $y=\rho u$ and adding $\frac{\rho}{2}\|u\|_{2}^{2}$ does not change the minimizer with respect to x and z, we get

$$
\arg \min _{x, z} \mathcal{L}_{\rho}(x, z, y)=\arg \min _{x, z}\left\{f(x)+g(z)+\frac{\rho}{2}\|x-z+u\|_{2}^{2}\right\}
$$

SGALED ADMM AND PROXIMAL OPERATORS

- By letting $\lambda=\frac{1}{\rho}$, the scaled ADMM iterations can be rewritten as

$$
\begin{aligned}
x^{k+1}=\arg \min _{x} \mathcal{L}_{\rho}\left(x, z^{k}, y^{k}\right) & =\operatorname{prox}_{\lambda f}\left(z^{k}-u^{k}\right) \\
z^{k+1}=\arg \min _{z} \mathcal{L}_{\rho}\left(x^{k+1}, z, y^{k}\right) & =\operatorname{prox}_{\lambda g}\left(x^{k+1}+u^{k}\right) \\
u^{k+1} & =u^{k}+x^{k+1}-z^{k+1}
\end{aligned}
$$

- The proximal operator calculus can be used for ADMM algorithms too
- An accelerated version of ADMM also exists

ADMM FOR CONSTRAINED CONVEX OPTIMIZATION

- Consider the convex problem with f, \mathcal{C} convex

$$
\begin{array}{cl}
\min & f(x) \\
\text { s.t. } & x \in \mathcal{C}
\end{array} \quad \begin{array}{cl}
\min & f(x)+g(z) \\
\text { s.t. } & x-z=0
\end{array}
$$

where g is the indicator function of the set \mathcal{C}

- The scaled ADMM iterations to solve the problem are

$$
\begin{aligned}
x^{k+1} & =\arg \min _{x}\left\{f(x)+\frac{\rho}{2}\left\|x-z^{k}+u^{k}\right\|_{2}^{2}\right\}=\operatorname{prox}_{\frac{1}{\rho} f}\left(z^{k}-u^{k}\right) \\
z^{k+1} & =\Pi_{C}\left(x^{k+1}+u^{k}\right) \\
u^{k+1} & =u^{k}+x^{k+1}-z^{k+1}
\end{aligned}
$$

- ADMM can be applied to nonconvex \mathcal{C} (e.g., $\mathcal{C}=\{0,1\}^{n_{1}} \times \mathbb{R}^{n-n_{1}}$). No guarantee of convergence to a global minimum, but it can be a good heuristic.
(Boyd, Parikh, Chu, Peleato, Eckstein, 2010) (Takapoui, Moehle, Boyd, Bemporad, 2017)

ADMM FOR LINEAR AND QUADRATIC PROGRAMMING

- Consider the standard form QP with Hessian $Q=Q^{\prime} \succeq 0$

$$
\begin{array}{cl}
\min & \frac{1}{2} x^{\prime} Q x+c^{\prime} x \\
\text { s.t. } & A x=b \\
& x \geq 0
\end{array}
$$

- f is the sum of $\frac{1}{2} x^{\prime} Q x+c^{\prime} x$ and the indicator function of $\{x: A x=b\}$
- g is the indicator function of $\mathbb{R}_{+}^{n}=\left\{x: x_{i} \geq 0, i=1, \ldots, n\right\}$
- The problem is an LP in standard form when $Q=0$

ADMM FOR LINEAR AND QUADRATIC PROGRAMMING

- The update for x^{k+1} requires solving

$$
\begin{array}{rll}
x^{k+1}= & \arg \min _{x} & \frac{1}{2} x^{\prime} Q x+c^{\prime} x+\frac{\rho}{2}\left\|x-z^{k}+u^{k}\right\|_{2}^{2} \\
& \text { s.t. } & A x=b
\end{array}
$$

that is solving the linear system

$$
\left[\begin{array}{cc}
Q+\rho I & A^{\prime} \\
A & 0
\end{array}\right]\left[\begin{array}{c}
x^{k+1} \\
\nu
\end{array}\right]=\left[\begin{array}{c}
\rho\left(z^{k}-u^{k}\right)-c \\
b
\end{array}\right]
$$

- Note that the symmetric matrix $\left[\begin{array}{cc}Q+\rho I & A^{\prime} \\ A & 0\end{array}\right]$ can be factorized at start and cached
- The update for z^{k+1} is simply

$$
z^{k+1}=\max \left\{x^{k+1}+u^{k}, 0\right\}
$$

ADMM FOR QUADRATIC PROGRAMMING

- Consider the QP with Hessian $Q=Q^{\prime} \succeq 0, A$ full column rank or $Q=Q^{\prime} \succ 0$

$$
\begin{array}{cl}
\min & \frac{1}{2} x^{\prime} Q x+c^{\prime} x \\
\text { s.t. } & \ell \leq A x \leq u
\end{array} \quad \square \begin{array}{cl}
\min & \frac{1}{2} x^{\prime} Q x+c^{\prime} x+g(z) \\
\text { s.t. } & A x-z=0
\end{array}
$$

where g is the indicator function of $\{z: \ell \leq z \leq u\}$

- The scaled ADMM iterations to solve the QP are

$$
\begin{aligned}
x^{k+1} & =-\left(Q+\rho A^{\prime} A\right)^{-1}\left(\rho A^{\prime}\left(u^{k}-z^{k}\right)+c\right) \\
z^{k+1} & =\min \left\{\max \left\{A x^{k+1}+u^{k}, \ell\right\}, u\right\} \\
u^{k+1} & =u^{k}+A x^{k+1}-z^{k+1}
\end{aligned}
$$

- We can factorize $Q+\rho A^{\prime} A$ at start and cache the factorization
- The dual QP solution is also available, as $y^{k}=\rho u^{k}$

REGULARIZED ADMM FOR QUADRATIC PROGRAMMING

- Consider the QP with Hessian $Q=Q^{\prime} \succeq 0$

$$
\begin{aligned}
\min & \frac{1}{2} x^{\prime} Q x+c^{\prime} x \\
\text { s.t. } & \ell \leq A x \leq u
\end{aligned} \quad \square \begin{array}{cl}
\min & \frac{1}{2} x^{\prime} Q x+c^{\prime} x+g(z) \\
\text { s.t. } & A x-z=0
\end{array}
$$

where g is the indicator function of $\{z: \ell \leq z \leq u\}$

- Chosen any $\epsilon>0$, more robust "regularized" ADMM iterations are

$$
\begin{aligned}
x^{k+1} & =-\left(Q+\rho A^{T} A+\epsilon I\right)^{-1}\left(c-\epsilon x^{k}+\rho A^{T}\left(u^{k}-z^{k}\right)\right) \\
z^{k+1} & =\min \left\{\max \left\{A x^{k+1}+u^{k}, \ell\right\}, u\right\} \\
u^{k+1} & =u^{k}+A x^{k+1}-z^{k+1}
\end{aligned}
$$

- See the osQP solver https://github.com/oxfordcontrol/osqp

DETECTION OF INFEASIBILITY AND UNBOUNDEDNESS

- By Farkas lemma

$$
\text { either }\left[\begin{array}{c}
A \\
-A
\end{array}\right] x \leq\left[\begin{array}{c}
u \\
-\ell
\end{array}\right] \text { or }\left[A^{\prime}-A^{\prime}\right]\left[\begin{array}{c}
y^{+} \\
y^{-}
\end{array}\right]=0,\left[\begin{array}{c}
u \\
-\ell
\end{array}\right]^{\prime}\left[\begin{array}{c}
y^{+} \\
y^{-}
\end{array}\right]<0, y^{+}, y^{-} \geq 0
$$

Then the QP is infeasible if a dual vector y exists such that

$$
A^{\prime} y=0, u^{\prime} \max (y, 0)-l^{\prime} \max (-y, 0)<0
$$

- The QP is unbounded if a primal vector x exists such that

$$
Q x=0, \quad c^{\prime} x<0, \quad \begin{cases}A_{i} x=0 & l_{i}, u_{i} \in \mathbb{R} \\ A_{i} x \geq 0 & l_{i} \in \mathbb{R}, u_{i}=+\infty \\ A_{i} x \leq 0 & l_{i}=-\infty, u_{i} \in \mathbb{R}\end{cases}
$$

- In ADMM iterations, $y^{k}\left(x^{k}\right)$ diverge if the problem is infeasible (unbounded)

DETEGTION OF NNFEASBBLITY AND UNBOUNDEDNESS

- One can show that
- $w^{k}=\frac{y^{k}}{\left\|u^{\prime} \max \left(y^{k}, 0\right)+l^{\prime} \max \left(-y^{k}, 0\right)\right\|}$ asymptotically satisfies Farkas lemma if the QP is infeasible
- $v^{k}=\frac{x^{k}}{-c^{\prime} x^{k}}$ asymptotically satisfies the conditions for recognizing unboundedness of the QP
- Alternatively, the increments

$$
\delta x^{k}=x^{k}-x^{k-1}, \quad \delta y^{k}=y^{k}-y^{k-1}, \quad \delta z^{k}=z^{k}-z^{k-1}
$$

always converge and $\delta y^{k}\left(\delta x^{k}\right)$ also works for recognizing infeasibility (unboundedness) (Banjac, Goulart, Stellato, Boyd, 2017)

ADMM FOR LASSO

- Consider the LASSO problem

$$
\min \frac{1}{2}\|A x-b\|_{2}^{2}+\tau\|x\|_{1} \quad \square \quad \begin{array}{cl}
\min \quad & \frac{1}{2}\|A x-b\|_{2}^{2}+\tau\|z\|_{1} \\
\text { s.t. } \quad x-z=0
\end{array}
$$

- The iteration for z is $z^{k+1}=\operatorname{prox}_{\frac{1}{\rho}\left(\tau\|\cdot\|_{1}\right)}\left(x^{k+1}+u^{k}\right)=S_{\frac{\tau}{\rho}}\left(x^{k+1}+u^{k}\right)$ (soft-threshold operator)
- The scaled ADMM iterations to solve the LASSO problem become

$$
\begin{aligned}
x^{k+1} & =\left(A^{\prime} A+\rho I\right)^{-1}\left(A^{\prime} b+\rho\left(z^{k}-u^{k}\right)\right) \\
z^{k+1} & =S_{\frac{\tau}{\rho}}\left(x^{k+1}+u^{k}\right) \\
u^{k+1} & =u^{k}+x^{k+1}-z^{k+1}
\end{aligned}
$$

- Since $\rho>0, A^{\prime} A+\rho I$ is always invertible and can be factorized once

CONSENSUS ADMM

- Consider the separable problem

$$
\min _{x} f(x)=\sum_{i=1}^{N} f_{i}(x) \mid x \in \mathbb{R}^{n}, \quad f_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R} \cup\{+\infty\}
$$

with f_{i} convex and possibly non-smooth

- This may represent a model fitting problem, where x are the parameters of the model and $f_{i}(x)$ are the losses associated with the i th datapoint
- The problem can be rewritten as the global consensus problem

$$
\begin{aligned}
\min & \sum_{i=1}^{N} f_{i}\left(x_{i}\right) \\
\text { s.t. } & x_{i}=z, \quad i=1, \ldots, N
\end{aligned}
$$

CONSENSUS ADMM

- Recall the scaled ADMM iterations:

$$
\left\{\begin{array}{l}
x^{k+1}=\arg \min _{x}\left\{f(x)+\frac{\rho}{2}\left\|A x+B z^{k}-c+u^{k}\right\|_{2}^{2}\right\} \\
z^{k+1}=\arg \min _{z}\left\{g(z)+\frac{\rho}{2}\left\|A x^{k+1}+B z-c+u^{k}\right\|_{2}^{2}\right\} \\
u^{k+1}=u^{k}+A x^{k+1}+B z^{k+1}-c
\end{array}\right.
$$

- Here $x=\left[\begin{array}{c}x_{1} \\ \vdots \\ x_{N}\end{array}\right], u=\left[\begin{array}{c}u_{1} \\ \vdots \\ u_{N}\end{array}\right], A=I_{n N}, B=-\left[\begin{array}{c}I \\ \vdots \\ \dot{I}\end{array}\right], c=0, g(z)=0$
- In general, if $w=\left[\begin{array}{c}w_{1} \\ \vdots \\ w_{N}\end{array}\right]$ then $\|w\|_{2}^{2}=\sum_{i=1}^{N}\left\|w_{i}\right\|_{2}^{2}$. Therefore

$$
\left\|\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{N}
\end{array}\right]-\left[\begin{array}{c}
I \\
\vdots \\
I
\end{array}\right] z-\left[\begin{array}{c}
u_{1} \\
\vdots \\
u_{N}
\end{array}\right]\right\|_{2}^{2}=\sum_{i=1}^{N}\left\|x_{i}-z-u_{i}\right\|_{2}^{2}
$$

CONSENSUS ADMM

- Moreover $\arg \min _{z} \sum_{i=1}^{N}\left\|x_{i}-z+u_{i}\right\|_{2}^{2}=\arg \min _{z} \sum_{i=1}^{N} z^{\prime} z-2\left(x_{i}+u_{i}\right)^{\prime} z=\frac{1}{N} \sum_{i=1}^{N} x_{i}+u_{i}$
- The scaled ADMM iterations for the consensus problem are therefore

$$
\begin{array}{ll|l}
x_{i}^{k+1}=\arg \min _{x_{i}}\left\{f_{i}\left(x_{i}\right)+\frac{\rho}{2}\left\|x_{i}-z^{k}+u_{i}^{k}\right\|_{2}^{2}\right\} & \text { Local/parallel } \\
z^{k+1}=\frac{1}{N} \sum_{i=1}^{N} x_{i}^{k+1}+u_{i}^{k} & \text { global/centralized } \\
u_{i}^{k+1}=u_{i}^{k}+x_{i}^{k+1}-z^{k+1} & \text { Local/parallel }
\end{array}
$$

- The 1st and 3rd steps can be run in parallel, the 2 nd step averages $x_{i}^{k+1}+u_{i}^{k}$
- The objectives f_{i} do not need to be shared!
- A regularization term or indicator function of a constraint $g(z)$ can be included as well $\left(g(z)=\|z\|_{2}^{2}, g(z)=\|z\|_{1}, \ldots\right)$

STOCHASTIC GRADIENTT WETHODS

STOCHASTIC OPTIMIZATION PROBLEM

- We want to minimize

$$
\min _{x} \frac{1}{N} \sum_{i=1}^{N} f_{i}(x)
$$

- The problem may come from taking N samples ξ_{1}, \ldots, ξ_{i} to approximate expected value $\min _{x} E_{\xi}[\bar{f}(x ; \xi)] \approx \min _{x} \frac{1}{N} \sum_{i=1}^{N} \bar{f}\left(x ; \xi_{i}\right)$ empirical mean
- In machine learning problems we want to optimize

$$
\min _{x} \frac{1}{N} \sum_{i=1}^{N} \ell\left(h\left(u_{i} ; x\right), y_{i}\right)
$$

where $\left(u_{1}, y_{1}\right), \ldots,\left(u_{N}, y_{N}\right)$ is the training set, $h(u ; x)$ a prediction function, $\ell(h, y)$ a loss function

Example: $h(u ; x)=x_{1: n-1}^{\prime} u+x_{n}$ and $\ell(h, y)=\|h-y\|_{2}^{2}$

STOCHASTIC GRADIENT METHOD

- Let $f(x)=\frac{1}{N} \sum_{i=1}^{N} f_{i}(x)$
- We solve $\min _{x} f(x)$ by choosing an index $i_{k} \in\{1, \ldots, N\}$ at random and update

$$
x^{k+1}=x^{k}-\alpha_{k} \nabla f_{i_{k}}\left(x^{k}\right) \quad \text { stochastic gradient (SG) method }
$$

- The step-size α_{k} is called learning-rate in machine learning
- Pros: every iteration is extremely cheap (only one gradient is computed)
- Cons: descent only in expectation
- The method is an incremental (or online) optimization method (cf. survey paper (Bertsekas, 2012))

STOCHASTIC GRADIENT METHOD

- More generally, the SG method can take the following form:

$$
\begin{aligned}
x^{k+1} & =x^{k}-\alpha_{k} \nabla f_{i_{k}}\left(x^{k}\right) & & \text { single gradient } \\
x^{k+1} & =x^{k}-\frac{\alpha_{k}}{n_{k}} \sum_{j=1}^{n_{k}} \nabla f_{i_{k, j}}\left(x^{k}\right) & & \text { mini-batch }\left(n_{k} \ll N\right) \\
x^{k+1} & =x^{k}-\frac{\alpha_{k}}{n_{k}} H_{k} \sum_{j=1}^{n_{k}} \nabla f_{i_{k, j}}\left(x^{k}\right) & & \text { scaled mini-batch }\left(H_{k} \in \mathbb{R}^{n \times n}\right)
\end{aligned}
$$

- For $n_{k}=N$ the resulting batch gradient method = gradient descent iterations

$$
x^{k+1}=x^{k}-\frac{\alpha_{k}}{N} \sum_{i=1}^{N} \nabla f_{i}\left(x^{k}\right)
$$

CONVERGENCE ANALYSIS

- If f is continuously differentiable and ∇f Lipschitz continuous with constant ${ }^{4}$ L the expectations with respect to i_{k} (or equivalently ξ_{k}) satisfy

$$
\left.E\left[f\left(x^{k+1}\right)\right]-f\left(x^{k}\right) \leq-\underbrace{\mu \alpha_{k}\left\|\nabla f\left(x^{k}\right)\right\|_{2}^{2}}_{\text {expected decrease }}+\underbrace{\frac{1}{2} \alpha_{k}^{2} L E\left[\left\|\nabla f_{i_{k}}\left(x^{k}\right)\right\|_{2}^{2}\right]}_{\text {variance }} \right\rvert\, \mu>0
$$

- Initially f decreases because $\|\nabla f\|$ is large, then variance may dominate
- Therefore we need $\lim _{k \rightarrow \infty} \alpha_{k}=0$

$$
{ }^{4}\|\nabla f(x)-\nabla f(y)\|_{2} \leq L\|x-y\|_{2}, \forall x, y \in \mathbb{R}^{n}
$$

CONVERGENCE ANALYSIS - STRONGLY CONVEX CASE

- Choose the learning rate

$$
\alpha_{k}=\frac{\beta}{\gamma+k} \quad \beta, \gamma>0
$$

- When f is strongly convex ${ }^{5}$ the convergence rate of stochastic gradient descent is sublinear

$$
E\left[f\left(x^{k}\right)-f\left(x^{*}\right)\right]=O\left(\frac{1}{k}\right)
$$

- Compare with the linear convergence rate of batch gradient

$$
f\left(x^{k}\right)-f\left(x^{*}\right)=O\left(\rho^{k}\right), \quad 0 \leq \rho<1
$$

- However, one batch gradient step requires computing N gradients, one SG step only one gradient

$$
\begin{aligned}
& { }^{5} f(y) \geq f(x)+\nabla f(x)^{\prime}(y-x)+\frac{m}{2}\|y-x\|_{2}^{2}, m>0 \text {. Or equivalently } f(x)-\frac{m}{2} x^{\prime} x \text { convex, } \\
& \text { or } \nabla^{2} f(x) \succeq m I, \forall x
\end{aligned}
$$

AVERAGED STOCHASTIC GRADIENT DESGENT

- Consider the L_{2}-regularized problem

$$
\min _{x} \frac{\lambda}{2}\|x\|_{2}^{2}+\frac{1}{N} \sum_{i=1}^{N} f_{i}(x), \quad \lambda>0
$$

- The idea is to run standard gradient descent but take the average \bar{x}^{k} after k_{0} steps as the optimizer instead of x^{k}

$$
\bar{x}^{k}=\frac{1}{k-k_{0}} \sum_{i=k_{0}+1}^{k} x^{i} \quad \square \quad \bar{x}^{k+1}=\bar{x}^{k}+\frac{1}{k+1-k_{0}}\left(x^{k+1}-\bar{x}^{k}\right)
$$

- Choose learning rate

$$
\alpha_{k}=\frac{\alpha_{0}}{\left(1+\alpha_{0} \lambda k\right)^{\sigma}}
$$

$$
0<\sigma<1 \text {, e.g., } \sigma=\frac{3}{4} \text { (Bottou, 2012) }
$$

STOCHASTIC GRADIENT DESCENT METHODS

- Despite theory mostly covers the convex case, SGD methods are heavily used to solve nonconvex problems (especially for training deep neural networks)
- Several other popular variants exist with adaptive learning rates α_{k} :
- AdaGrad (Duchi, Hazan, Singer, 2011)
- Adadelta (Zeiler, 2012)
- Adam (Kingma, Ba, 2015)
- Adamax (Kingma, Ba, 2015)
- diffGrad (Dubey, Chakraborty, Roy, Mukherjee, Singh, Chaudhuri, 2020)
- ...
- Usually the parameters of the SGD algorithm are tuned on a smaller problem $\min _{x} \frac{1}{M} \sum_{j=1}^{M} f_{i_{j}}(x), I=\left\{i_{1}, \ldots, i_{M}\right\}, M \ll N$

ADAM, AMSGRAD

- Adam (and other variants) use scaling updates by square roots of exponential moving averages of squared past gradients
- An issue in Adam convergence proof has been pointed out and fixed by including a "long-term memory" of past gradients (=largest components encountered of scaling factors)
- The new SGD algorithm, called AMSGrad, guarantees convergence and also seems to improve empirical performance (Reddi, Kale, Kumar, 2018)

- Update: AdamX further fixes the proof of AMSGrad (Phuong, Phong, 2019)

RMSPROP

- RMSProp ${ }^{6}$ keeps a moving average v_{t} of the component-wise squared gradient

$$
v_{j}^{k}=\rho v_{j}^{k-1}+(1-\rho)\left[\nabla f_{i}\left(x^{k}\right)\right]_{j}^{2}
$$

for $j=1, \ldots, n$, where $\rho=$ forgetting factor, and updates

$$
x_{j}^{k+1}=x_{j}^{k}-\frac{\alpha}{\epsilon+\sqrt{v_{j}^{k}}}\left[\nabla f_{i}\left(x^{k}\right)\right]_{j}
$$

with $\alpha=$ learning rate coefficient and $\epsilon>0$ prevents division by zero

- Example: $\rho=0.9, \alpha=10^{-3}, \epsilon=10^{-8}$
- RMSProp extends the Rprop ${ }^{7}$ algorithm (Riedmiller, Braun, 1992) used in batch optimization to the on-line / mini-batch setting
- Heavily used in deep learning

[^2]
[^0]: ${ }^{1}$ Remember that f is strongly convex with parameter $m>0$ if and only if $f(y) \geq f(x)+\nabla f(x)^{\prime}(y-x)+\frac{m}{2}\|y-x\|_{2}^{2}$, or equivalently $f(x)-\frac{m}{2} x^{\prime} x$ convex, or $\nabla^{2} f(x) \succeq m I, \forall x \in \mathbb{R}^{n}$.

[^1]: ${ }^{3}$ Since for any matrix M the largest singular value $\sigma_{\max }(M)=\sqrt{\lambda_{\max }\left(M^{\prime} M\right)}$, we have that $\lambda_{\max }(H)=\sigma_{\max }^{2}\left(\left(A C^{-1}\right)^{\prime}\right)=\sigma_{\max }^{2}\left(A C^{-1}\right)$, where $C^{\prime} C=Q$

[^2]: ${ }^{6}$ https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf ${ }^{7}$ resilient backpropagation

