OPERATOR SPLITTING METHODS
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PROXIMAL MAPPING

e The proximal mapping (or proximal operator) of a convex function
f:R" - RU {400} is defined as

. 1
pros(v) = argain (1(0) + g — ol

o We assume also that f is closed and proper, that is its epigraph

t
epi f = {(z,t): f(z) <t} CR"H
. #(z) epif
is nonempty, closed and convex.
! X
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PROXIMAL MAPPING

o We often use the proximal operator on the scaled function A f with A > 0
. 1
pross (0) = argaain ( /() + 5 o~ vl
e The proximal point prox, ; (v) of v is a tradeoff between being close to v and
minimizing f
e f canbe nonsmooth and extended real-valued (f (z) = 4 oo for some x)

e Example: indicator function of a convex set C:

() = { e pros, (v) = Tle(v)

?rﬂcr/ﬁow Ne v o C
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PROXIMAL POINT ALGORITHM

When v is a minimizer of f (v = 2* € arg min, f(x)) we get

prox, ¢ (") = a*

as both terms f(xz) and §||z — 2*||3 are minimized at 2*

The proximal point algorithm simply iterates

k+1

v = profo(xk)

If f has a minimum, the algorithm converges to an optimizer z* of f

The parameter A may be changed during iterations, as long as A, > 0 and
Z;O:O A = +00
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PROXIMAL GRADIENT METHOD

o We want to solve the unconstrained optimization problem
min (x) + g(v)
where
- f:R™ — Ris convex and differentiable with dom f = R"
- g:R™ = R U {+o0} is convex (possibly non-smooth) with an inexpensive

proximal operator

e The proximal gradient algorithm (or forward backward splitting) iterates

il = prox,, , (mk — MV ("))
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PROXIMAL GRADIENT METHOD - INTERPRETATION

e The proximal gradient step has the following interpretation:

T = proxy, (@8 = MV ()
1
= argmin (g(m) + KHJC — b+ /\ka(xk)Hg)
@ k

— angmin (g(a) + F(a) + VI (@ - %)+ 5o — o3 )

s'uM?\(‘. quéra\fho wodel Og f(l') wround Jfk
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PROXIMAL GRADIENT METHOD - CONVERGENCE

o If V fis Lipschitz continuous with constant L > 0
IVf(z) = Vi)l < Llz —yll, Vz,y € R
then the algorithm converges for all constant A, = A € (0, %]
e Convergencerate: f(z*) 4+ g(z*) — (f(z*) + g(2*)) < = ||l2° — 2*||3
o If fis strongly convex with parameter m > 0! then

k
2% — 2|2 < (1 — %) |z — 2|3 Linear convergence

1Remember that f is strongly convex with parameter m > 0 if and only if
fy) > f(@) + V(z) (y—z) + 2y — =3, or equivalently f(z) — 2’z convex, or
V2f(z) = mI,Vz € R™.
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PROXIMAL GRADIENT METHOD WITH LINE SEARCH

e [f L is not known one can choose A\ by line search, for example:
(Beck, Teboulle, 2009)

- Choose 3 € (0,1) (e.g., 3 = 3)andset A < Ap_1

- Repeat

z 4 proxxg(a:k — AV £(z*))
breakif £(2) < f(a*) + Vf(a*)'(z — 2*) + 55 ]Iz — 213

update A < B\

k+1

- Return A\, « A\ x — z
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ACCELERATED PROXIMAL GRADIENT METHOD

e The accelerated (or fast) proximal gradient algorithm iterates the following

yk+1 = zF4 ﬂk(xk - xk_l) exEraPoLaEiou sEe’a

"t = proxy,, (VT = MV EETY)

e Possible choices for 8y, (with 3y = 0) are for example

— @ _
k-1 k e ,
be=t0ra P=1i3 ary1 = 3(Vag +4af —aj)
a0 = a_y=1?

e Thanks to adding the “momentum term” y* the initial error
F(@%) + g(2%) — (f(x*) + g(x*)) reduces as 1/k?

e Same line-search procedure is applicable to select varying A\

2Any oy, satisfying a2 (1 — ag1) < g ., would work
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SPECIAL CASES

e Special cases of the (non-accelerated) proximal gradient method:

- Forg(x) = 0, prox, ,(v) = v we obtain the standard gradient descent method
" =P — A V()
- For f(z) = 0 we obtain the standard proximal point method
k41

T = proxAkg(xk)

- For g(z) = indicator function of a convex set C we obtain the gradient projection
method

2" = e (28 — NV f(2h))

e The accelerated version of the algorithm gives a fast version of the above
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(FAST) GRADIENT PROJECTION FOR BOX-CONSTRAINED QP

e Consider the convex box-constrained QP

min %x’Qx +dx
st. L<zx<u

 Since [V£(z) = VI)llz = |Q( = y)ll2 < Amax(Q) ] — yll> we can choose

any A < 5—-

e The gradient projection method for box-constrained QP is

2F = max{¢, min{u, z* — \(Qz" + ¢)}}

e The fast gradient projection method for box-constrained QP is

yk+1 _ Z[Jk + ﬁk(frfk _ xkfl)

2 = max{¢, min{u, " = MNQyF + o)}
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DUAL GRADIENT PROJECTION FOR QP

e Consider the strictly convex QP and its dual
min  $2'Qz + dx min 3y’ Hy +d'y H =AQ A
st. Ax <b st. y>0 d =b+AQ 'c
e Take A < m@) and apply the proximal gradient method to the dual QP:
y* = max{y* -A(Hy"+d),0}}  yo=0

dual gradient projection method for QP

e The primal solution is related to the dual solution by

.Z‘k _ —Q_l(c—l— A/yk)

3Since for any matrix M the largest singular value Omax(M) = /Amax (M’ M), we have that
Amax(H) = 02, (AC™1Y) = 02 . (AC~1),where C'C = Q
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ACCELERATED DUAL GRADIENT PROJECTION FOR QP (GPAD)

(Patrinos, Bemporad, 2014)

e The dual accelerated gradient projection (GPAD) for QP can be written as

wb =y Byt — yF Y
— -1
of = —Kuwkf—g K = Q 1A
sho= LAk — 1Ly g = @c
- I L L > Amax(AQ7TA)
Y"1 = max{w* +s*,0}

o Termination criteria: when the following two conditions are met

st < teq,i=1,...,m primalfeasibility
—(whysh < Ley optimality
the solution 2% = — Kw" — g satisfies A;z* — b; < €4 and, if w* > 0,
f@®) = fa) < f(@¥) = qw®) = —(w")'s"L < ¢
£
A\Lﬂu\ on
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RESTART IN FAST GRADIENT PROJECTION

e Fast gradient projection methods can be sped up by adaptively restarting the
sequence of coefficients Si (O'Donoghue, Candés, 2013)

e Restart conditions:

- function restart whenever

F@h > F5

Example: box constrained QP

- gradient restart whenever

V(™ (yk — yr—1) > 0

- = function restart
gradient restart

——accelerated proj. grad.

1017 % projected gradient

200 400 600 800 1000 1200 1400 1600 1800 2000
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PROXIMAL OPERATORS - EXAMPLES

e indicator function of a convex set C:

if C
fla) = { e prox, (1) = e (v)

'Frn\lcu’how ng V on C

e 1-norm: prox,; is called the soft-threshold (shrinkage) operator
S)\ :R®” - R"”
v; + A if (O S —-A
f(@) = [z [proxy s (v)]i = [Sa(v)]; = 0 if ol <A
Vi — A if (7 Z A

e Euclidean norm:

(1= Xvll2)v ifffv]2 > A
0 otherwise

f(x) =zl prox, ;(v) = {
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PROXIMAL OPERATORS - EXAMPLES

e quadratic function: Q = 0

flx) = %x'Qm +dz proxy ;(v) = (I + Q) "' (v — Ac)

e |logarithmic barrier:

- v + Ui +4XN
f(x)z—Zlogxi [prOX)\f(’U)]isz,Z:L...,n
i=1

e Many other examples exist for which the proximal operator can be computed
analytically or determined efficiently (for example by bisection)
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PROXIMAL OPERATORS - CALCULUS RULES

e separable sum:

e precomposition:

f(x) = dplax +b), a# 0

Numerical Optimization - ©2024 A. Bemporad. All rights reserved.

[prox/\f (v)]; = Prox, f, (v)

PIOXy ¢ (v) = PTOXaA¢(U)

1

prox, ;(v) = - (prox,zyg(av +b) — b)
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PROXIMAL OPERATORS - CALCULUS RULES

e affine addition:

flx)=9¢(x)+dz+0b profo(v) = proxw(v - Aa)
e regularization: by setting A = T>\)\p
f(@) = 6(x) + £l — a3 (v) = prox, [ 2o+ 3
xr) = X 2 xXr a 2 prOX>\f v —prOXM) )\U pAQ

e Moreau decomposition: for all functions f it always holds that
v = prox(v) + prox . (v)
where f* is the convex conjugate (or Fenchel conjugate) of f
[ (y) = sup{y'z — f(2)}
x

e Calculus rules also exist for computing convex conjugate functions
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CONJUGATE FUNCTION AND LAGRANGE DUAL

o Consider the convex optimization problem with linear constraints

min  f(z)
s.t. Ajx < bi,1el
AiJZ = bi, 1€l

e The dual function for the problem is

q(\) = nf{f(z) +N(A v = b)} = —sup{(-A Na = fx)} = A
= (AN = VA

o [f we know the conjugate function f* we can compute the dual function easily
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RELATION WITH INTEGRATION METHODS FOR ODES

(Bruck, 1975) (Botsaris, Jacobson, 1976) (Eckstein, 1989)

¢ Let f smooth and convex, arg min, f(z) # 0, and the solution x(¢) of the
ordinary differential equation (ODE)

dz(t)
dt

= -Vf(z(t)), =z(0)=x
exist. Then limy_, o z(t) = =* € argmin, f(z).
e gradient descent = forward Euler method for integrating the ODE

dz(z%)
dt

aF =gk ),

= b — N V(")

e proximal point method = backward Euler method

. 1
P = ab - M V(@) = argmin{ (@) + F-lle — 213} = prox,, ;(a*)

e Newton's method = numerical integration of 4 = —(V?2f(z)) "'V f(x)
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ALTERNATING DIRECTION METHOD OF MULTIPLIERS (ADMM)

o We want to solve the optimization problem

rzeR" zeR™
A e RP*" B e RP*™
c e RP

min, . f(z) + g(2)
st. Az +Bz=c

where f : R” - RU {+00},g: R™ — R U {400} are closed, proper, and
convex (possibly non-smooth)

e Forascalar p > 0 we form the augmented Lagrangian

Ly(x, z,y) = f(x) +9(z) + ' (Ax + Bz — ¢) + gHAac + Bz —c|3
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ALTERNATING DIRECTION METHOD OF MULTIPLIERS (ADMM)

e The Alternating Direction Method of Multipliers (ADMM) iterates the
following steps

il — arg min, Ep(ir, Zk, yk)
P arg min, ﬁp($k+lyzvyk)
Yyt = gk 4 p(Agkt 4 B2R —¢)

e The name “alternating direction” comes from minimizing the augmented
Lagrangian £, first with respect to = and then to z

Numerical Optimization - ©2024 A. Bemporad. All rights reserved. 21/46



ADMM - CONVERGENCE

o Assuming that the unaugmented Lagrangian £ (p = 0) has a saddle point, i.e.,
I(x*, 2*, y*) such that

Lo(z*, 2", y) < Lo(z*, 2%, y") < Lo(z, 2,y")
we have that
limg—yoo Az* + B2¥ —c=0 residual convergence
limg oo f(2%) + g(2") = f(z*) + g(z*) objective convergence

limp— oo y* = y* dual variable convergence

e ADMM has a builtin “integral action”, namely y/* integrates the primal residual
rk = Axk + B2F — ¢
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ADMM - STOPPING CRITERIA

e We call dual residual the quantity s* = pA’B(zF+1 — 2F)

e Areasonable termination criterion is to stop the ADMM iterations when
||7‘k||2 < €pri and || s* ll2 < €dual
with

epri = \/Peabs + eremax{||Az" |12, || Bzi |2, [le]l2}
\/ﬁeabs + 6relHAA/kaQ

€dual

and e, > 0is an absolute tolerance, €, > 0 a relative tolerance (for example
€rol = 1073 0r 1074)

Numerical Optimization - ©2024 A. Bemporad. All rights reserved 23/46



ADMM - VARIANTS

e Convergence sometimes can be improved by introducing over-relaxation, that
is replacing Az*+1 with

aAzPt — (1 —a)(BZF - ¢)
when updating z#*1, 4%+, where o € (1,2) (typically a € [1.5,1.8])

e Byintroducing the scaled dual variable . = %y, ADMM can be expressed in the
simplified scaled form

" = argmin, {f(z) + £||Az + Bz* — ¢+ uF||3}
ZF1 = argmin, {g(z) + §||Axk+1 +Bz—c+ uk||§}
WL = gk 1 Akl 4 Bkl
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SCALED ADMM AND PROXIMAL OPERATORS

e Consider the convex problem

min, . f(z)+ g(2)

min, f(z) + g(z) st. x—2z=0

e The augmented Lagrangianis
p
Lo@,z,y) = f(2) +9(2) +¢/(z = 2) + S Iz = 2[5

e Sincey = pu and adding 5w |3 does not change the minimizer with respect to
x and z, we get

argmin £,(r, 2,y) = argmin { f(x) +9(z) + §le — = + ul} |
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SCALED ADMM AND PROXIMAL OPERATORS

o Byletting A\ = %, the scaled ADMM iterations can be rewritten as

¢l = argmin, £,(z, 2%, y") = proxy(zF —uF)
A= argmin, £,(aM 2,0%) = prox,, (zFt! 4+ )
w1 B R e S5

e The proximal operator calculus can be used for ADMM algorithms too

e An accelerated version of ADMM also exists
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ADMM FOR CONSTRAINED CONVEX OPTIMIZATION

o Consider the convex problem with f, C convex

min  f(z) min  f(z) + g(z)
st. xzelC st. z—2z=0

where g is the indicator function of the set C

e The scaled ADMM iterations to solve the problem are

2P = argming {f(z) + §||z — 2 + |3} = PYOX%f(Zk —u")
L = T (2R 4 )
WL =k g gkl ke

e ADMM can be applied to nonconvex C (e.g.,C = {0,1}" x R™"""1). No
guarantee of convergence to a global minimum, but it can be a good heuristic.
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ADMM FOR LINEAR AND QUADRATIC PROGRAMMING

Consider the standard form QP with HessianQ = Q' = 0

min %x’Qm +dx
st. Arx=0b
>0

min  f(z) + g(z)
st. x—2z=0

[ isthe sum of £2/Qz + ¢’ and the indicator function of {z : Az = b}

gistheindicator functionof R, = {z: 2; >0,i=1,...,n}

The problem s an LP in standard formwhen Q) = 0
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ADMM FOR LINEAR AND QUADRATIC PROGRAMMING

e The update for zF*! requires solving

"l = argmin, 12'Qz 4z + Lz — 28 4 uF |3
s.t. Az =b

that is solving the linear system

Q+pl A

A 0

xk+11 _ |f)(2k —uk) c]
v b

o Note that the symmetric matrix {QZPI ‘:‘)/ } can be factorized at start and

cached

e The update for z¥+1 is simply

A = max {2 +u* 0}
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ADMM FOR QUADRATIC PROGRAMMING

e Consider the QP with Hessian Q = Q' = 0, A full column rankor Q = Q' = 0
min  12'Qz + 'z min  12'Qx + dz + g(2)
st. <Az <u st. Az —2=0

where g is the indicator functionof {z : £ < z < u}

e The scaled ADMM iterations to solve the QP are

P = —(Q 4 pATA) T (pA (uF — ) + o)
1 = min{max{AzF T +uF 0}, u}
WL = gk g Agktl k1

e We canfactorize Q + pA’ A at start and cache the factorization

¢ The dual QP solution is also available, as y* = pu*
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REGULARIZED ADMM FOR QUADRATIC PROGRAMMING

e Consider the QP with Hessian@Q = Q' = 0

min  32'Qz + 'z min  12'Qx + dz + g(2)
st. L<Ax<u st. Az —2z=0

where g is the indicator functionof {z : £ < z < u}

e Chosen any ¢ > 0, more robust “regularized” ADMM iterations are

o = —(Q 4 pATA+ el) 7L (e — ex? + pAT (uF — 2F))
A1 = min{max{Az* T + ¥ 0} u}
WFHL = gk Aghtl ke

o Seethe osQP solver https://github.com/oxfordcontrol/osgp
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DETECTION OF INFEASIBILITY AND UNBOUNDEDNESS
SUPPLEMENTARY WA

e By Farkaslemma
either [ 4 ]z < [%]or [4 —a'] [zf] =0,[% [zf] <0,yT,y” >0
Then the QP is infeasible if a dual vector y exists such that

Ay =0, v’ max(y,0) — I’ max(—y,0) <0

e The QP is unbounded if a primal vector x exists such that

AZ‘.’E:O li7ui€R
Qr =0, dzr<0, Ax >0 [; €R, u; = 400
Ax <0 [;=—-o0,u; €R

e In ADMM iterations, y*(*) diverge if the problem is infeasible (unbounded)
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DETECTION OF INFEASIBILITY AND UNBOUNDEDNESS
SUPPLEMENTARY WA

e One canshow that

k __ yk
7 |lw’ max(y*,0)+1" max(—y*,0) ||
is infeasible

- w asymptotically satisfies Farkas lemma if the QP

- oF = %,kzk asymptotically satisfies the conditions for recognizing unboundedness

of the QP

e Alternatively, the increments
oxk = ok — gkl gyt =k kTl sk =k
always converge and 6y* (52*) also works for recognizing infeasibility

(unboundedness) (Banjac, Goulart, Stellato, Boyd, 2017)
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ADMM FOR LASSO

e Consider the LASSO problem

min  zllAz — b3 + 7lz[x

1
min = || Az—b||24+7]||z
S Az —bl3+7 ol el

e Theiteration for zis 2" ! = proxu ., (#* 7 +u*) = Sz (a5 + uF)
(soft-threshold operator)

e The scaled ADMM iterations to solve the LASSO problem become

ol = (AA+ pl)"HAb+ p(2F — uF))
Pl — S% (mk-f—l + uk)
B R S S =

e Since p > 0, A’ A + pI is always invertible and can be factorized once

Numerical Optimization - ©2024 A. Bemporad. All rights reserved 34/46



CONSENSUS ADMM

e Consider the separable problem

mlnf Zf’ z€R™ fi:R" — RU{+oc}

with f; convex and possibly non-smooth

e This may represent a model fitting problem, where x are the parameters of the
model and f;(z) are the losses associated with the ith datapoint

e The problem can be rewritten as the global consensus problem

N

st. x;=2 1=1,...,N
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CONSENSUS ADMM

e Recall the scaled ADMM iterations:

Pl = argmin, {f(z) + || Az + B2* — ¢+ u*||3}
K = argmin, {g(z) + &||Az*T! + Bz — ¢ + |3}
WL =k b Agktl 4 Bkl
T Ul I

e Herex = [ : ],u: [ s |, A=1,n,B=— l:},c:o,g(z)zo
oN un i

w1
e Ingeneral,ifw = | :
’UJ.N
T1
’ LN]
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] then [|lw||3 = SN, ||lw;||2. Therefore

I ur 7|2

zZ+

N
D llwi = 2+ will3
i=1

} unN 2



CONSENSUS ADMM

N N N
1
i A 12 = i !/, . Ny — . .
. Moreoverargmzm EIHIZ z 4 uil|3 = arg min 'Elz z—2(x; +ug)'z = ~ Elmz—i-uz

e The scaled ADMM iterations for the consensus problem are therefore

xi.chl = arg minzi {fz (.7;1) =+ §||xz — 2k + uf||%} Locat/parqll.el.
Pin % sz\;l x§+1 + ui“ global/centralized
ui,chl = Uf + xf+1 — zk'H Lccat/paraLLeL

e The 1st and 3rd steps can be run in parallel, the 2nd step averages xf“ + uf
o The objectives f; do not need to be shared!
o Aregularization term or indicator function of a constraint g(z) can be included

aswell (g(2) = [12[13, () = l|z]l1, )

5909
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STOCHASTIC GRADIENT METHODS



STOCHASTIC OPTIMIZATION PROBLEM

¢ We want to minimize

1N
min z; fi(x)
1=
e The problem may come from taking N samples &1, . . ., &; to approximate
N
expectedvalue min E¢[f(x;€)] = Z x;&;) empirical mean
x

e |Inmachine learning problems we want to optimize

N
.1
Il’lmln N ; E(h(uw .T), y’L)

where (u1,91), ..., (un,yn) is the training set, h(u; ) a prediction function,
£(h,y) aloss function
Example: h(u;x) = 4., _qu + z, and £(h,y) = ||h — y||3
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STOCHASTIC GRADIENT METHOD

1 N
o Letf(z) = D filx)
i=1

e We solve min, f(z) by choosinganindexi; € {1,..., N} atrandom and
update

a*tl = g, Vf;, (z¥) | stochastic gradient (SG) method

e The step-size oy is called learning-rate in machine learning

e Pros: every iteration is extremely cheap (only one gradient is computed)
e Cons: descent only in expectation

e The method is an incremental (or online) optimization method

(cf. survey paper )
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STOCHASTIC GRADIENT METHOD

e More generally, the SG method can take the following form:

gH = gk — VI (2F) single gradient

gkl = gk 2k Z Vfir, ( mini-batch (n, < N)

okl = — —Hk Z szk scaled mini-batch (H;, € R"*")
j=1

e Fornj; = N theresulting batch gradient method = gradient descent iterations
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CONVERGENCE ANALYSIS

e If f is continuously differentiable and V f Lipschitz continuous with constant*
L the expectations with respect to i, (or equivalently &) satisfy

E[f(2*)]=f(2*) < = pow ||V £(")|3 + %aiLEHIVfik @3] p>0
—_———

expected decrease Griohee

e Initially f decreases because ||V f|| is large, then variance may dominate

e Therefore we need limy,_, o, a, = 0

V() = VIille < Lllz — yll2, Yo,y € R?
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CONVERGENCE ANALYSIS - STRONGLY CONVEX CASE

e Choose the learning rate ap = B B,7v>0

v+ k

e When f is strongly convex® the convergence rate of stochastic gradient descent
is sublinear

Blfa") - fa)] =0 1)

e Compare with the linear convergence rate of batch gradient
Fa®) — fa) = 0(p"), 0<p<1

e However, one batch gradient step requires computing IV gradients, one SG step
only one gradient

*fly) > f(=) + V(z) (y — z) + Zlly — =/|3,m > 0. Orequivalently f(z) — 2o’z convex,
orV2f(z) = mI,Vz
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AVERAGED STOCHASTIC GRADIENT DESCENT

e Consider the Lo-regularized problem
A 1
. 2
min Zlelf + 5 3 (@) A>0

e Theideais to run standard gradient descent but take the average z* after k,
steps as the optimizer instead of 2*
k

1 4
i,k:k - Z L ZhHL _ gk
T ko4l

1

k+1 ok
e G )

e Choose learning rate

1
05
(7)) 0
ap = —— 05
(1 + Oéo/\k)o
El
1.5
O<U<1,e.g.,U:% 2
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STOCHASTIC GRADIENT DESCENT METHODS

e Despite theory mostly covers the convex case, SGD methods are heavily used
to solve nonconvex problems (especially for training deep neural networks)

e Several other popular variants exist with adaptive learning rates «y:
- AdaGrad
- Adadelta
- Adam

Adamax

diffGrad

e Usually the parameters of the SGD algorithm are tuned on a smaller problem
min, 4 Y00 fi, (@), ] = {ir,...,in}, M < N
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ADAM, AMSGRAD

e Adam (and other variants) use scaling updates by square roots of exponential
moving averages of squared past gradients

e Anissue in Adam convergence proof has been pointed out and fixed by
including a “long-term memory” of past gradients (=largest components
encountered of scaling factors)

e The new SGD algorithm, called AMSGrad, guarantees convergence and also
seems to improve empirical performance

0.7 0.7
--- Adam ---- Adam ---- Adam
" 0.6 —— AMSGrad 06 —— AMSGrad 0.25 —— AMSGrad
a 2 2020
K] 805 a0
3 3
c = - 015
® $ 0.4 5
=4 [~ £ 0.10
5 03 0.05
.2 0.2 0.00
0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000
Iterations Iterations Iterations

e Update: AdamX further fixes the proof of AMSGrad
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RMSPROP

o RMSProp?® keeps a moving average v, of the component-wise squared gradient
vf = puy Tt (1= p)[V fila")]]

forj =1,...,n,where p = forgetting factor, and updates

it= ~ f IV fi(z

with « = learning rate coefficient and € > 0 prevents division by zero

ps

e Example: p = 0.9,a = 1073,¢ = 1078

o RMSProp extends the Rprop” algorithm used in batch
optimization to the on-line / mini-batch setting

e Heavily used in deep learning

6https ://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
7resilient backpropagation
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