References:

The proximal mapping (or proximal operator) of a convex function \(f : \mathbb{R}^n \rightarrow \mathbb{R} \cup \{+\infty\} \) is defined as

\[
\text{prox}_f(v) = \arg \min_x \left(f(x) + \frac{1}{2} \|x - v\|^2 \right)
\]

We assume also that \(f \) is closed and proper, that is its epigraph

\[
\text{epi } f = \{(x, t) : f(x) \leq t\} \subseteq \mathbb{R}^{n+1}
\]
is nonempty, closed and convex.
• We often use the proximal operator on the scaled function λf with $\lambda > 0$

$$\text{prox}_{\lambda f}(v) = \arg \min_x \left(f(x) + \frac{1}{2\lambda} \|x - v\|_2^2 \right)$$

• The **proximal point** $\text{prox}_{\lambda f}(v)$ of v is a tradeoff between being close to v and minimizing f.

• f can be **nonsmooth** and **extended real-valued** ($f(x) = +\infty$ for some x).

• Example: **indicator function** of a convex set C:

$$f(x) = \begin{cases}
0 & \text{if } x \in C \\
+\infty & \text{if } x \notin C
\end{cases} \quad \Rightarrow \quad \text{prox}_{\lambda f}(v) = \Pi_C(v)$$

projection of v on C
• When v is a minimizer of f ($v = x^* \in \arg\min_x f(x)$) we get

$$\text{prox}_{\lambda f}(x^*) = x^*$$

as both terms $f(x)$ and $\frac{1}{\lambda} \|x - x^*\|^2_2$ are minimized at x^*

• The **proximal point algorithm** simply iterates

$$x^{k+1} = \text{prox}_{\lambda f}(x^k)$$

• If f has a minimum, the algorithm converges to an optimizer x^* of f

(Bauschke, Combettes, 2011)

• The parameter λ may be changed during iterations, as long as $\lambda_k > 0$ and

$$\sum_{k=0}^{\infty} \lambda_k = +\infty$$
• We want to solve the unconstrained optimization problem

\[
\min_x f(x) + g(x)
\]

where

- \(f : \mathbb{R}^n \to \mathbb{R} \) is convex and differentiable with \(\text{dom } f = \mathbb{R}^n \)

- \(g : \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\} \) is convex (possibly non-smooth) with an inexpensive proximal operator

• The **proximal gradient algorithm** (or **forward backward splitting**) iterates

\[
x^{k+1} = \text{prox}_{\lambda_k g} \left(x^k - \lambda_k \nabla f(x^k) \right)
\]
The proximal gradient step has the following interpretation:

\[
x^{k+1} = \text{prox}_{\lambda_k g} \left(x^k - \lambda_k \nabla f(x^k) \right)
\]

\[
= \arg \min_x \left(g(x) + \frac{1}{2\lambda_k} \| x - x^k + \lambda_k \nabla f(x^k) \|^2 \right)
\]

\[
= \arg \min_x \left(g(x) + f(x_k) + \nabla f(x^k)' (x - x_k) + \frac{1}{2\lambda_k} \| x - x^k \|^2 \right)
\]

\[
\{ \text{simple quadratic model of } f(x) \text{ around } x_k \}
\]
• If ∇f is **Lipschitz continuous** with constant $L > 0$

$$\|\nabla f(x) - \nabla f(y)\| \leq L \|x - y\|, \forall x, y \in \mathbb{R}^n$$

then the algorithm converges for all constant $\lambda_k \equiv \lambda \in (0, \frac{1}{L}]$

• Convergence rate: $f(x^k) + g(x^k) - (f(x^*) + g(x^*)) \leq \frac{1}{2\lambda_k} \|x^0 - x^*\|^2$

• If f is strongly convex with parameter $m \geq 0^1$ then

$$\|x^k - x^*\|^2 \leq \left(1 - \frac{m}{L}\right)^k \|x^0 - x^*\|^2 \quad \text{Linear convergence}$$

1Remember that f is **strongly convex** with parameter $m \geq 0$ if and only if

$$f(y) \geq f(x) + \nabla f(x)' (y - x) + \frac{m}{2} \|y - x\|^2,$$ or equivalently $f(x) - \frac{m}{2} x'x$ convex, or

$$\nabla^2 f(x) \succeq mI, \forall x \in \mathbb{R}^n.$$

©2021 A. Bemporad - Numerical Optimization 6/46
If L is not known one can choose λ_k by line search, for example:

(Beck, Teboulle, 2009)

- Choose $\beta \in (0, 1)$ (e.g., $\beta = \frac{1}{2}$) and set $\lambda \leftarrow \lambda_{k-1}$

- Repeat

$$z \leftarrow \text{prox}_{\lambda g}(x^k - \lambda \nabla f(x^k))$$

break if $f(z) \leq f(x^k) + \nabla f(x^k)'(z - x^k) + \frac{1}{2\lambda} \|z - x^k\|_2^2$

update $\lambda \leftarrow \beta \lambda$

- Return $\lambda_k \leftarrow \lambda$, $x^{k+1} \leftarrow z$
The **accelerated** (or fast) **proximal gradient algorithm** iterates the following:

\[
\begin{align*}
 y^{k+1} &= x^k + \beta_k (x^k - x^{k-1}) & \text{extrapolation step} \\
 x^{k+1} &= \text{prox}_{\lambda_k g} (y^{k+1} - \lambda_k \nabla f(y^{k+1}))
\end{align*}
\]

- Possible choices for β_k (with $\beta_0 = 0$) are for example

\[
\beta_k = \frac{k - 1}{k + 2}, \quad \beta_k = \frac{k}{k + 3},
\]

\[
\begin{align*}
 \beta_k &= \frac{\alpha_k}{\alpha_{k-1}} - \alpha_k \\
 \alpha_{k+1} &= \frac{1}{2} \left(\sqrt{\alpha_k^4 + 4\alpha_k^2} - \alpha_k^2 \right) \\
 \alpha_0 &= \alpha_{-1} = 1^2
\end{align*}
\]

- Thanks to adding the “momentum term” y^k the initial error $f(x^0) + g(x^0) - (f(x^*) + g(x^*))$ reduces as $1/k^2$

- Same line-search procedure is applicable to select varying λ_k

\[^2\text{Any } \alpha_k \text{ satisfying } \alpha_k^2 (1 - \alpha_{k+1}) \leq \alpha_{k+1}^2 \text{ would work}\]
• **Special case #1**: when $g(x) = 0$, $\text{prox}_{\lambda g}(v) = v$ and we obtain the standard gradient descent method

$$x^{k+1} = x^k - \lambda_k \nabla f(x^k)$$

• **Special case #2**: when $f(x) = 0$ we obtain the standard proximal point method

$$x^{k+1} = \text{prox}_{\lambda_k g}(x^k)$$

• **Special case #3**: when $g(x) = \text{indicator function of a convex set } C$ we obtain the gradient projection method (Bertsekas, 1999)

$$x^{k+1} = \Pi_C(x^k - \lambda_k \nabla f(x^k))$$

• The accelerated version of the algorithm gives a fast version of the above
Consider the convex box-constrained QP

\[
\begin{align*}
\min & \quad \frac{1}{2} x' Q x + c' x \\
\text{s.t.} & \quad \ell \leq x \leq u
\end{align*}
\]

Since \(\| \nabla f(x) - \nabla f(y) \|_2 = \| Q(x - y) \|_2 \leq \lambda_{\text{max}}(Q) \| x - y \|_2 \) we can choose any \(\lambda \leq \frac{1}{\lambda_{\text{max}}(Q)} \)

The gradient projection method for box-constrained QP is

\[
x^{k+1} = \max\{\ell, \min\{u, x^k - \lambda Qx^k + c\}\}
\]

The fast gradient projection method for box-constrained QP is

\[
x^{k+1} = \max\{\ell, \min\{u, y^{k+1} - \lambda Qy^{k+1} + c\}\}
\]

\[
y^{k+1} = x^k + \beta_k (x^k - x^{k-1})
\]
• Consider the strictly convex QP and its dual

\[
\begin{align*}
\min & \quad \frac{1}{2} x'Qx + c'x \\
\text{st.} & \quad Ax \leq b
\end{align*}
\]

\[
\begin{align*}
\min & \quad \frac{1}{2} y'Hy + d'y \\
\text{st.} & \quad y \geq 0
\end{align*}
\]

\[
H = AQ^{-1}A' \quad d = b + AQ^{-1}c
\]

• Take \(\lambda \leq \frac{1}{\lambda_{\text{max}}(H)} \) (3) and apply the proximal gradient method to the dual QP:

\[
y^{k+1} = \max\{y^k - \lambda(Hy^k + d), 0\} \quad y_0 = 0
\]

dual gradient projection method for QP

• The primal solution is related to the dual solution by

\[
x^k = -Q^{-1}(c + A'y^k)
\]

3Since for any matrix \(M \) the largest singular value \(\sigma_{\text{max}}(M) = \sqrt{\lambda_{\text{max}}(M'M)} \), we have that \(\lambda_{\text{max}}(H) = \sigma_{\text{max}}^2((AC^{-1})') = \sigma_{\text{max}}^2(AC^{-1}), \) where \(C'C = Q \)
The dual accelerated gradient projection (GPAD) for QP can be written as:

\[
\begin{align*}
 w^k &= y^k + \beta_k (y^k - y^{k-1}) \\
 x^k &= -K w^k - g \\
 s^k &= \frac{1}{L} A x^k - \frac{1}{L} b \\
 y^{k+1} &= \max \{ w^k + s^k, 0 \}
\end{align*}
\]

Termination criteria: when the following two conditions are met:

\[
\begin{align*}
 s_i^k &\leq \frac{1}{L} \epsilon_A, \ i = 1, \ldots, m \quad \text{primal feasibility} \\
 -(w^k)' s^k &\leq \frac{1}{L} \epsilon_f \quad \text{optimality}
\end{align*}
\]

the solution \(x^k = -K w^k - g \) satisfies \(A_i x^k - b_i \leq \epsilon_A \) and, if \(w^k \geq 0 \),

\[
\begin{align*}
 f(x^k) - f(x^*) &\leq f(x^k) - q(w^k) = -(w^k)' s^k L \leq \epsilon_f
\end{align*}
\]

\(L \geq \frac{1}{\lambda_{\max}(AQ^{-1}A')} \)
• Fast gradient projection methods can be sped up by adaptively restarting the sequence of coefficients β_k (O’Donoghue, Candés, 2013)

• Restart conditions:

 - **function restart** whenever
 \[f(y^k) > f(y^{k-1}) \]

 - **gradient restart** whenever
 \[\nabla f(w^{k-1})'(y_k - y_{k-1}) > 0 \]
Proximal Operators - Examples

- **Indicator function** of a convex set C:
 \[
 f(x) = \begin{cases}
 0 & \text{if } x \in C \\
 +\infty & \text{if } x \notin C
 \end{cases}
 \]
 \[
 \text{prox}_\lambda f(v) = \Pi_C(v)
 \]

- **1-norm**: \(\text{prox}_\lambda f\) is called the **soft-threshold (shrinkage) operator**
 \(S_\lambda : \mathbb{R}^n \rightarrow \mathbb{R}^n\)
 \[
 f(x) = \|x\|_1 \quad \Rightarrow \quad [\text{prox}_\lambda f(v)]_i = [S_\lambda(v)]_i \triangleq \begin{cases}
 v_i + \lambda & \text{if } v_i \leq -\lambda \\
 0 & \text{if } |v_i| \leq \lambda \\
 v_i - \lambda & \text{if } v_i \geq \lambda
 \end{cases}
 \]

- **Euclidean norm**:
 \[
 f(x) = \|x\|_2 \quad \Rightarrow \quad \text{prox}_\lambda f(v) = \begin{cases}
 (1 - \lambda/\|v\|_2)v & \text{if } \|v\|_2 \geq \lambda \\
 0 & \text{otherwise}
 \end{cases}
 \]
• **quadratic function:** $Q \succeq 0$

\[
f(x) = \frac{1}{2} x' Q x + c' x \quad \Rightarrow \quad \text{prox}_\lambda f(v) = (I + \lambda Q)^{-1}(v - \lambda c)
\]

• **logarithmic barrier:**

\[
f(x) = -\sum_{i=1}^{n} \log x_i \quad \Rightarrow \quad [\text{prox}_\lambda f(v)]_i = \frac{v_i + \sqrt{v_i^2 + 4\lambda}}{2}, \; i = 1, \ldots, n
\]

• Many other examples exist for which the proximal operator can be computed analytically or determined efficiently (for example by bisection)
• **separable sum:**

\[f(x) = \sum_{i=1}^{n} f_i(x_i) \quad \Rightarrow \quad [\text{prox}_\lambda f(v)]_i = \text{prox}_\lambda f_i(v_i) \]

• **postcomposition:**

\[f(x) = \alpha \phi(x) + b, \ \alpha > 0 \quad \Rightarrow \quad \text{prox}_\lambda f(v) = \text{prox}_{\alpha \lambda \phi}(v) \]

• **precomposition:**

\[f(x) = \phi(\alpha x + b), \ \alpha \neq 0 \quad \Rightarrow \quad \text{prox}_\lambda f(v) = \frac{1}{\alpha} \left(\text{prox}_{\lambda \phi}(\alpha v + b) - b \right) \]
• **affine addition:**

\[f(x) = \phi(x) + a'x + b \quad \Rightarrow \quad \text{prox}_\lambda f(v) = \text{prox}_\lambda \phi(v - \lambda a) \]

• **regularization:** by setting \(\tilde{\lambda} = \frac{\lambda}{1 + \lambda \rho} \)

\[f(x) = \phi(x) + \frac{\rho}{2} \|x - a\|^2 \quad \Rightarrow \quad \text{prox}_\lambda f(v) = \text{prox}_{\tilde{\lambda} \phi} \left(\frac{\tilde{\lambda}}{\lambda} v + \rho \tilde{\lambda} a \right) \]

• **Moreau decomposition:** for all functions \(f \) it always holds that

\[v = \text{prox}_f(v) + \text{prox}_{f^*}(v) \]

where \(f^* \) is the **convex conjugate** (or **Fenchel conjugate**) of \(f \)

\[f^*(y) = \sup_x \{ y'x - f(x) \} \]

• **Calculus rules** also exist for computing convex conjugate functions
Consider the convex optimization problem with linear constraints

\[
\begin{align*}
\min & \quad f(x) \\
\text{s.t.} & \quad A_i x \leq b_i, \quad i \in I \\
& \quad A_i x = b_i, \quad i \in E
\end{align*}
\]

The dual function for the problem is

\[
q(\lambda) = \inf_x \{ f(x) + \lambda'(Ax - b) \} = -\sup_x \{ (-A'\lambda)'x - f(x) \} - b'\lambda
\]

\[
= -f^*(-A'\lambda) - b'\lambda
\]

If we know the conjugate function \(f^* \) we can compute the dual function easily.
• Let f smooth and convex, $\arg \min_x f(x) \neq \emptyset$, and the solution $x(t)$ of the ordinary differential equation (ODE)

$$\frac{dx(t)}{dt} = -\nabla f(x(t)), \quad x(0) = x_0$$

exist. Then $\lim_{t \to \infty} x(t) = x^* \in \arg \min_x f(x)$.

• **gradient descent** = forward Euler method for integrating the ODE

$$x^{k+1} = x^k - \lambda_k \frac{dx(x^k)}{dt} = x^k - \lambda_k \nabla f(x^k)$$

• **proximal point method** = backward Euler method

$$x^{k+1} = x^k - \lambda_k \nabla f(x^{k+1}) = \arg \min_x \{f(x) + \frac{1}{2\lambda_k} \|x - x^k\|^2_2\} = \text{prox}_{\lambda_k f}(x_k)$$

• **Newton’s method** = numerical integration of $\frac{dx}{dt} = -(\nabla^2 f(x))^{-1} \nabla f(x)$
We want to solve the optimization problem

\[
\begin{align*}
\min_{x,z} & \quad f(x) + g(z) \\
\text{s.t.} & \quad Ax + Bz = c
\end{align*}
\]

where \(f : \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\} \), \(g : \mathbb{R}^m \to \mathbb{R} \cup \{+\infty\} \) are closed, proper, and convex (possibly non-smooth).

For a scalar \(\rho > 0 \) we form the augmented Lagrangian

\[
\mathcal{L}_\rho(x, z, y) = f(x) + g(z) + y'(Ax + Bz - c) + \frac{\rho}{2} \|Ax + Bz - c\|_2^2
\]
• The Alternating Direction Methods of Multipliers (ADMM) iterates the following steps

\[
\begin{align*}
 x^{k+1} &= \arg\min_x \mathcal{L}_\rho(x, z^k, y^k) \\
 z^{k+1} &= \arg\min_z \mathcal{L}_\rho(x^{k+1}, z, y^k) \\
 y^{k+1} &= y^k + \rho(Ax^{k+1} + Bz^{k+1} - c)
\end{align*}
\]

• The name “alternating direction” comes from minimizing the augmented Lagrangian \(\mathcal{L}_\rho \) first with respect to \(x \) and then to \(z \)
Assuming that the unaugmented Lagrangian $\mathcal{L}_0 (\rho = 0)$ has a saddle point, i.e.,

$$\exists (x^*, z^*, y^*)$$

such that

$$\mathcal{L}_0(x^*, z^*, y) \leq \mathcal{L}_0(x^*, z^*, y^*) \leq \mathcal{L}_0(x, z, y^*)$$

we have that

$$\lim_{k \to \infty} Ax^k + Bz^k - c = 0$$

residual convergence

$$\lim_{k \to \infty} f(x^k) + g(z^k) = f(x^*) + g(z^*)$$

objective convergence

$$\lim_{k \to \infty} y^k = y^*$$

dual variable convergence

ADMM has a built-in “integral action”, namely y^k integrates the primal residual

$$r^k = Ax^k + Bz^k - c$$
• We call **dual residual** the quantity $s^k = \rho A'B(z^{k+1} - z^k)$

• A reasonable termination criterion is to stop the ADMM iterations when

$$\| r^k \|_2 \leq \epsilon_{pri} \quad \text{and} \quad \| s^k \|_2 \leq \epsilon_{dual}$$

with

$$\epsilon_{pri} = \sqrt{p}\epsilon_{abs} + \epsilon_{rel} \max\{\| Ax^k \|_2, \| Bz_k \|_2, \| c \|_2\}$$

$$\epsilon_{dual} = \sqrt{n}\epsilon_{abs} + \epsilon_{rel}\| A'y^k \|_2$$

and $\epsilon_{abs} > 0$ is an absolute tolerance, $\epsilon_{rel} > 0$ a relative tolerance (for example $\epsilon_{rel} = 10^{-3}$ or 10^{-4})
ADMM - VARIANTS

• Convergence sometimes can be improved by introducing over-relaxation, that is replacing Ax^{k+1} with

$$\alpha Ax^{k+1} - (1 - \alpha)(Bz^k - c)$$

with $\alpha \in (1, 2)$ (typically $\alpha \in [1.5, 1.8]$)

• By introducing the scaled dual variable $u = \frac{1}{\rho}y$, ADMM can be expressed in the simplified scaled form

$$x^{k+1} = \arg\min_x \{ f(x) + \frac{\rho}{2}\|Ax + Bz^k - c + u^k\|^2 \}$$

$$z^{k+1} = \arg\min_z \{ g(z) + \frac{\rho}{2}\|Ax^{k+1} + Bz - c + u^k\|^2 \}$$

$$u^{k+1} = u^k + Ax^{k+1} + Bz^{k+1} - c$$
Consider the convex problem

\[
\min_x f(x) + g(x) \quad \Rightarrow \quad \min \ f(x) + g(z) \\
\text{s.t.} \quad x - z = 0
\]

The augmented Lagrangian is

\[
\mathcal{L}_\rho(x, z, y) = f(x) + g(z) + y'(x - z) + \frac{\rho}{2} \|x - z\|^2_2
\]

Since \(y = \rho u \) and adding \(\frac{\rho}{2} \|u\|^2_2 \) does not change the minimizer with respect to \(x \) and \(z \), we get

\[
\arg \min_{x,z} \mathcal{L}_\rho(x, z, y) = \arg \min_{x,z} \left\{ f(x) + g(z) + \frac{\rho}{2} \|x - z + u\|^2_2 \right\}
\]
• By letting $\lambda = \frac{1}{\rho}$, the scaled ADMM iterations can be rewritten as

\[
x^{k+1} = \arg \min_x \mathcal{L}_\rho(x, z^k, y^k) = \text{prox}_{\lambda f}(z^k - u^k)
\]

\[
z^{k+1} = \arg \min_z \mathcal{L}_\rho(x^{k+1}, z, y^k) = \text{prox}_{\lambda g}(x^{k+1} + u^k)
\]

\[
u^{k+1} = u^k + x^{k+1} - z^{k+1}
\]

• The proximal operator calculus can be used for ADMM algorithms too

• An accelerated version of ADMM also exists
Consider the convex problem with f, C convex

$$\min f(x) \quad \text{s.t.} \quad x \in C$$

where g is the indicator function of the set C

The scaled ADMM iterations to solve the problem are

$$x^{k+1} = \arg\min_x \{ f(x) + \frac{\rho}{2} \| x - z^k + u^k \|_2^2 \} = \text{prox}_{\frac{1}{\rho} f} (z^k - u^k)$$

$$z^{k+1} = \Pi_C (x^{k+1} + u^k)$$

$$u^{k+1} = u^k + x^{k+1} - z^{k+1}$$

ADMM can be applied to nonconvex C (e.g., $C = \{0, 1\}^{n_1} \times \mathbb{R}^{n-n_1}$). No guarantee of convergence to a global minimum, but it can be a good heuristic.

Consider the standard form QP with Hessian $Q = Q' \succeq 0$

$$\begin{align*}
\min & \quad \frac{1}{2} x' Q x + c' x \\
\text{s.t.} & \quad A x = b \\
& \quad x \geq 0
\end{align*}$$

$$\begin{align*}
\min & \quad f(x) + g(z) \\
\text{s.t.} & \quad x - z = 0
\end{align*}$$

- f is the sum of $\frac{1}{2} x' Q x + c' x$ and the indicator function of $\{x : A x = b\}$

- g is the indicator function of $\mathbb{R}^n_+ = \{x : x_i \geq 0, i = 1, \ldots, n\}$

- The problem is an LP in standard form when $Q = 0$
• The update for x^{k+1} requires solving

$$x^{k+1} = \arg \min_x \quad \frac{1}{2} x' Q x + c' x + \frac{\rho}{2} \| x - z^k + u^k \|_2^2 \quad \text{s.t.} \quad A x = b$$

that is solving the linear system

$$\begin{bmatrix} Q + \rho I & A' \\ A & 0 \end{bmatrix} \begin{bmatrix} x^{k+1} \\ \nu \end{bmatrix} = \begin{bmatrix} \rho (z^k - u^k) - c \\ b \end{bmatrix}$$

• Note that the symmetric matrix $\begin{bmatrix} Q + \rho I & A' \\ A & 0 \end{bmatrix}$ can be factorized at start and cached

• The update for z^{k+1} is simply

$$z^{k+1} = \max \{ x^{k+1} + u^k, 0 \}$$
• Consider the QP with Hessian $Q = Q' \succeq 0$, A full column rank or $Q = Q' > 0$

\[
\begin{align*}
\min & \quad \frac{1}{2} x' Q x + c' x \\
\text{s.t.} & \quad \ell \leq A x \leq u
\end{align*}
\]

\[
\begin{align*}
\min & \quad \frac{1}{2} x' Q x + c' x + g(z) \\
\text{s.t.} & \quad A x - z = 0
\end{align*}
\]

where g is the indicator function of $\{z : \ell \leq z \leq u\}$

• The scaled ADMM iterations to solve the QP are

\[
\begin{align*}
x^{k+1} &= -(Q + \rho A' A)^{-1}(\rho A'(u^k - z^k) + c) \\
z^{k+1} &= \min \{ \max \{ A x^{k+1} + u^k, \ell \}, u \} \\
u^{k+1} &= u^k + A x^{k+1} - z^{k+1}
\end{align*}
\]

• We can factorize $Q + \rho A' A$ at start and cache the factorization

• The dual QP solution is also available, as $y^k = \rho u^k$
• Consider the QP with Hessian $Q = Q' \succeq 0$

\[
\begin{align*}
\min & \quad \frac{1}{2} x'Qx + c'x \\
\text{s.t.} & \quad \ell \leq Ax \leq u
\end{align*}
\]

\[
\begin{align*}
\min & \quad \frac{1}{2} x'Qx + c'x + g(z) \\
\text{s.t.} & \quad Ax - z = 0
\end{align*}
\]

where g is the indicator function of $\{z : \ell \leq z \leq u\}$

• Chosen any $\epsilon > 0$, more robust “regularized” ADMM iterations are

\[
\begin{align*}
x^{k+1} &= -(Q + \rho A^T A + \epsilon I)^{-1}(c - \epsilon x_k + \rho A^T (u_k - z_k)) \\
z^{k+1} &= \min\{\max\{Ax^{k+1} + u_k, \ell\}, u\} \\
u^{k+1} &= u_k + Ax^{k+1} - z^{k+1}
\end{align*}
\]

• See the osQP solver https://github.com/oxfordcontrol/osqp
Detection of infeasibility and unboundedness

- By Farkas lemma

\[
\text{either } \begin{bmatrix} A \\ -A \end{bmatrix} x \leq \begin{bmatrix} u \\ -l \end{bmatrix} \text{ or } \begin{bmatrix} A' - A' \end{bmatrix} \begin{bmatrix} y^+ \\ y^- \end{bmatrix} = 0, \begin{bmatrix} u' \\ -l' \end{bmatrix}' \begin{bmatrix} y^+ \\ y^- \end{bmatrix} < 0, y^+, y^- \geq 0
\]

Then the QP is **infeasible** if a dual vector \(y \) exists such that

\[
A'y = 0, u' \max(y, 0) - l' \max(-y, 0) < 0
\]

- The QP is **unbounded** if a primal vector \(x \) exists such that

\[
Qx = 0, c'x < 0, \begin{cases}
A_i x = 0 & l_i, u_i \in \mathbb{R} \\
A_i x \geq 0 & l_i \in \mathbb{R}, u_i = +\infty \\
A_i x \leq 0 & l_i = -\infty, u_i \in \mathbb{R}
\end{cases}
\]

- In ADMM iterations, \(y^k(x^k) \) diverge if the problem is infeasible (unbounded)
One can show that
\[- w^k = \frac{y^k}{\| u^\prime \max(y^k, 0) + l^\prime \max(-y^k, 0) \|} \text{ asymptotically satisfies Farkas lemma if the QP is infeasible} \]
\[- v^k = \frac{x^k}{-c^\prime x^k} \text{ asymptotically satisfies the conditions for recognizing unboundedness of the QP} \]

Alternatively, the increments
\[\delta x^k = x^k - x^{k-1}, \quad \delta y^k = y^k - y^{k-1}, \quad \delta z^k = z^k - z^{k-1}\]
always converge and \(\delta y^k (\delta x^k)\) also works for recognizing infeasibility (unboundedness) (Banjac, Goulart, Stellato, Boyd, 2017)
ADMM FOR LASSO

- Consider the LASSO problem

\[
\min \frac{1}{2} \|Ax - b\|_2^2 + \tau \|x\|_1 \quad \rightarrow \quad \min \frac{1}{2} \|Ax - b\|_2^2 + \tau \|z\|_1 \\
\text{s.t.} \quad x - z = 0
\]

- The iteration for \(z \) is \(z^{k+1} = \text{prox}_{\frac{1}{\rho}(\tau \cdot \cdot \cdot)}(x^{k+1} + u^k) = S_{\frac{\tau}{\rho}}(x^{k+1} + u^k) \) (soft-threshold operator)

- The scaled ADMM iterations to solve the LASSO problem become

\[
x^{k+1} = (A' A + \rho I)^{-1} (A' b + \rho (z^k - u^k)) \\
z^{k+1} = S_{\frac{\tau}{\rho}}(x^{k+1} + u^k) \\
u^{k+1} = u^k + x^{k+1} - z^{k+1}
\]

- Since \(\rho > 0 \), \(A' A + \rho I \) is always invertible and can be factorized once
Consider the separable problem

$$\min_{x} f(x) = \sum_{i=1}^{N} f_i(x) \quad x \in \mathbb{R}^n, \quad f_i : \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$$

with f_i convex and possibly non-smooth.

This may represent a model fitting problem, where x are the parameters of the model and $f_i(x)$ are the losses associated with the ith datapoint.

The problem can be rewritten as the global consensus problem

$$\min \sum_{i=1}^{N} f_i(x_i)$$

s.t. $x_i = z, \quad i = 1, \ldots, N$
Recall the scaled ADMM iterations:

\[
\begin{align*}
 x^{k+1} &= \arg \min_x \left\{ f(x) + \frac{\rho}{2} \| Ax + Bz^k - c + u^k \|_2^2 \right\} \\
 z^{k+1} &= \arg \min_z \left\{ g(z) + \frac{\rho}{2} \| Ax^{k+1} + Bz - c + u^k \|_2^2 \right\} \\
 u^{k+1} &= u^k + Ax^{k+1} + Bz^{k+1} - c
\end{align*}
\]

Here \(x = \begin{bmatrix} x_1 \\ \vdots \\ x_N \end{bmatrix}, u = \begin{bmatrix} u_1 \\ \vdots \\ u_N \end{bmatrix}, A = I_{nN}, B = - \begin{bmatrix} I \\ \vdots \\ I \end{bmatrix}, c = 0, g(z) = 0 \)

In general, if \(w = \begin{bmatrix} w_1 \\ \vdots \\ w_N \end{bmatrix} \) then \(\| w \|_2^2 = \sum_{i=1}^N \| w_i \|_2^2 \). Therefore

\[
\left\| \begin{bmatrix} x_1 \\ \vdots \\ x_N \end{bmatrix} - \begin{bmatrix} I \\ \vdots \\ I \end{bmatrix} z - \begin{bmatrix} u_1 \\ \vdots \\ u_N \end{bmatrix} \right\|_2^2 = \sum_{i=1}^N \| x_i - z - u_i \|_2^2
\]
Moreover \(\arg \min_z \sum_{i=1}^{N} \| x_i - z + u \|_2^2 = \arg \min_z \sum_{i=1}^{N} z' z - 2(x_i + u)' z = \frac{1}{N} \sum_{i=1}^{N} x_i + u_i \)

The scaled ADMM iterations for the consensus problem are therefore:

\[
\begin{align*}
 x_{i}^{k+1} &= \arg \min_{x_i} \left\{ f_i(x_i) + \frac{\rho}{2} \| x_i - z^k + u_i^k \|_2^2 \right\} & \text{local/parallel} \\
 z^{k+1} &= \frac{1}{N} \sum_{i=1}^{N} x_{i}^{k+1} + u_i^k & \text{global/centralized} \\
 u_{i}^{k+1} &= u_i^k + x_{i}^{k+1} - z^{k+1} & \text{local/parallel}
\end{align*}
\]

The 1st and 3rd steps can be run in parallel, the 2nd step averages \(x_{i}^{k+1} + u_i^k \)

The objectives \(f_i \) do not need to be shared!

A regularization term or indicator function of a constraint \(g(z) \) can be included as well (\(g(z) = \| z \|_2^2, g(z) = \| z \|_1, ... \))
STOCHASTIC GRADIENT METHODS
STOCHASTIC OPTIMIZATION PROBLEM

- We want to minimize
 \[
 \min_x \frac{1}{N} \sum_{i=1}^{N} f_i(x)
 \]

- The problem may come from taking \(N\) samples \(\xi_1, \ldots, \xi_i\) to approximate

 \[
 \min_x E_{\xi}[\bar{f}(x; \xi)] \approx \min_x \frac{1}{N} \sum_{i=1}^{N} \bar{f}(x; \xi_i)
 \]

 expected value

- In **machine learning** problems we want to optimize
 \[
 \min_x \frac{1}{N} \sum_{i=1}^{N} \ell(h(u_i; x), y_i)
 \]

 where \((u_1, y_1), \ldots, (u_N, y_N)\) is the training set, \(h(u; x)\) a prediction function, \(\ell(h, y)\) a loss function

 Example: \(h(u; x) = x_{1:n-1}' u + x_n\) and \(\ell(h, y) = \|h - y\|_2^2\)
Stochastic Gradient Method

(Robbins, Monro, 1951)

• Let \(f(x) = \frac{1}{N} \sum_{i=1}^{N} f_i(x) \)

• We solve \(\min_x f(x) \) by choosing an index \(i_k \in \{1, \ldots, N\} \) at random and update

\[
x^{k+1} = x^k - \alpha_k \nabla f_{i_k}(x^k)
\]

stochastic gradient (SG) method

• The step-size \(\alpha_k \) is called learning-rate in machine learning

• **Pros**: every iteration is extremely cheap (only one gradient is computed)

• **Cons**: descent only in expectation

• The method is an incremental (or online) optimization method

(cf. survey paper (Bertsekas, 2012))
More generally, the SG method can take the following form:

\[x^{k+1} = x^k - \alpha_k \nabla f_{i_k}(x^k) \quad \text{single gradient} \]

\[x^{k+1} = x^k - \frac{\alpha_k}{n_k} \sum_{j=1}^{n_k} \nabla f_{i_{k,j}}(x^k) \quad \text{mini-batch } (n_k \ll N) \]

\[x^{k+1} = x^k - \frac{\alpha_k}{n_k} H_k \sum_{j=1}^{n_k} \nabla f_{i_{k,j}}(x^k) \quad \text{scaled mini-batch } (H_k \in \mathbb{R}^{n \times n}) \]

For \(n_k = N \) the resulting batch gradient method = gradient descent iterations

\[x^{k+1} = x^k - \frac{\alpha_k}{N} \sum_{i=1}^{N} \nabla f_i(x^k) \]
CONVERGENCE ANALYSIS

- If f is continuously differentiable and ∇f Lipschitz continuous with constant $^4 L$ the expectations with respect to i_k (or equivalently ξ_k) satisfy

$$
E[f(x^{k+1})] - f(x^k) \leq -\mu \alpha_k \|\nabla f(x^k)\|^2_2 + \frac{1}{2} \alpha_k^2 L E[\|\nabla f_{i_k}(x^k)\|^2_2] \quad \mu > 0
$$

- Initially f decreases because $\|\nabla f\|$ is large, then variance may dominate

- Therefore we need $\lim_{k \to \infty} \alpha_k = 0$

$^4 \|\nabla f(x) - \nabla f(y)\|_2 \leq L \|x - y\|_2, \forall x, y \in \mathbb{R}^n$
Choose the learning rate \(\alpha_k = \frac{\beta}{\gamma + k} \) \(\beta, \gamma > 0 \)

When \(f \) is strongly convex the convergence rate of stochastic gradient descent is sublinear

\[
E[f(x^k) - f(x^*)] = O\left(\frac{1}{k}\right)
\]

Compare with the linear convergence rate of batch gradient

\[
f(x^k) - f(x^*) = O(\rho^k), \quad 0 \leq \rho < 1
\]

However, one batch gradient step requires computing \(N \) gradients, one SG step only one gradient

\[
f(y) \geq f(x) + \nabla f(x)'(y - x) + \frac{m}{2}\|y - x\|_2^2, m > 0. \text{ Or equivalently } f(x) - \frac{m}{2}x'x \text{ convex, or } \nabla^2 f(x) \succeq mI, \forall x
\]
Consider the L_2-regularized problem

$$
\min_x \frac{\lambda}{2} \|x\|_2^2 + \frac{1}{N} \sum_{i=1}^{N} f_i(x), \quad \lambda > 0
$$

The idea is to run standard gradient descent but take the average \bar{x}^k after k_0 steps as the optimizer instead of x^k

$$
\bar{x}^k = \frac{1}{k - k_0} \sum_{i=k_0+1}^{k} x^i \quad \Rightarrow \quad \bar{x}^{k+1} = \bar{x}^k + \frac{1}{k + 1 - k_0} (x^{k+1} - \bar{x}^k)
$$

Choose learning rate

$$
\alpha_k = \frac{\alpha_0}{(1 + \alpha_0 \lambda k)^\sigma}
$$

$0 < \sigma < 1$, e.g., $\sigma = \frac{3}{4}$ (Bottou, 2012)
• Despite theory mostly covers the convex case, SGD methods are heavily used to solve nonconvex problems (especially for training deep neural networks)

• Several other popular variants exist with adaptive learning rates α_k:
 - AdaGrad (Duchi, Hazan, Singer, 2011)
 - Adadelta (Zeiler, 2012)
 - Adam (Kingma, Ba, 2015)
 - Adamax (Kingma, Ba, 2015)

• Usually the parameters of the SGD algorithm are tuned on a smaller problem

$$\min_x \frac{1}{M} \sum_{j=1}^{M} f_{i_j}(x), \quad I = \{i_1, \ldots, i_M\}, \quad M \ll N$$
An issue in Adam convergence proof has been pointed out.

Adam (and other variants) are based on scaling updates by square roots of exponential moving averages of squared past gradients.

A fix has been proposed for Adam by including a “long-term memory” of past gradients (=largest components encountered of scaling factors).

The new SGD algorithm, called AMSGrad, guarantees convergence and also seems to improve empirical performance.
• **RMSProp** keeps a moving average v_t of the component-wise squared gradient

$$ v_j^k = \rho v_j^{k-1} + (1 - \rho)[\nabla f_i(x^k)]_j^2 $$

for $j = 1, \ldots, n$, where ρ = forgetting factor, and updates

$$ x_j^{k+1} = x_j^k - \frac{\alpha}{\epsilon + \sqrt{v_j^k}}[\nabla f_i(x^k)]_j $$

with α = learning rate coefficient and $\epsilon > 0$ prevents division by zero

• Example: $\rho = 0.9$, $\alpha = 10^{-3}$, $\epsilon = 10^{-8}$

• RMSProp extends the **Rprop** algorithm (Riedmiller, Braun, 1992) used in batch optimization to the on-line / mini-batch setting

• Heavily used in **deep learning**

7 resilient backpropagation