ACTIVE-SET METHODS
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LINEAR PROGRAM IN STANDARD FORM

e Consider the linear program in standard form

min 'z
st. Az =2b
x>0

e Assumption: A € R™*™ has full row rank (this implies n > m)

e |ncase the LPis notin standard form, remember that:

- Inequality constraints Ax < bcan be transformedinto Az + z = b,z > 0
- Variables without sign restriction can be splitintoz = + — 2=, withz*, 2~ > 0

- We can solve the dual LP (in standard form) with respect to the dual vector \:

ming 'z miny b\
st. Axr <b st. AA=—-c,A>0

and get 2™ as the optimal dual vector of the dual LP problem
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BASIC SOLUTIONS

e Asubset B C {1,...,n} of exactly m elements is a basis and a vector z € R" is
a basic feasible point (a.k.a. basic feasible solution) if
-x>0

- x; =0foralli € B

- the basis matrix B € R™*™ obtained by collecting the columns A; of A indexed
by ¢ € Bis nonsingular

THEOREM

- If the LP is feasible then there exists at least one basic feasible point
- If the LP admits optimal solutions then at least one basic feasible point is optimal
- If the LP is feasible and bounded then it has a basic feasible optimal solution
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BASIC SOLUTIONS

THEOREM
The basic feasible points are the vertices of the polyhedron {x : Ax = b, x > 0}.

DEFINITION
A basis B is degenerate if z; = 0 for some i € B. An LP is degenerate if it has
at least one degenerate basis

e The simplex method determines the solution of a solvable LP problem in a finite
number of iterations, iterating from a vertex of the feasible set (basic feasible)
point to an adjacent one
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REVISED SIMPLEX METHOD

e The KKT conditions of optimality for the LP we considered are

c+Av—5=0
Ax=0b
z,s >0

zisi=0,1=1,....n

¢ Given a basis B and the corresponding basic matrix B, let V' = {1,...,n} \ B
and N the corresponding matrix of columns A; indexed by i € N

e Let 2 be the subvector of = indexed by B and z y the subvector indexed by A,
and similarly sg, sy, cB, cn
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REVISED SIMPLEX METHOD

e Start from a basic point z, thatisxzy = 0

e From Az = bwe get 3 = B~ 'b (this requires solving Bz, = b, e.g., by LU
factorization)

o Tosatisfy complementarity slackness, set s = 0

e Partition the KKT condition A’v — s = —cinto

B'v = —CB
N'v—sy = —cn
e Thereforev = —B~Tcgand sy = cxy — (B~ N)'cp (=reduced costs)

e The only missing KKT condition to satisfy is sy > 0
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REVISED SIMPLEX METHOD

e If sy > 0we have found an optimal solution x. Stop

e Otherwise, we execute a pivoting procedure:

- selectanindex ¢ € N suchthat s, < 0and make index g enter the basis B
- increase x4 from 0 while keeping Az = b satisfied, until another component
xp =0,p € B:

Agqzq + B(zxp + Azp) =bandzp + Axzp >0
B:EB =b
—_——~—
Arp =B 'b—axp—B 'Ajry=—-B 'Agx, > —xp
[B_lAq]jxq <[zBl;yVi=1,....,m
d

- theindex p = arg min; { [zf]" |d; >0,j=1,..., m} leaves B
J

e One can prove that ¢z is strictly decreasing if B is nondegenerate

o [fthe LPis nondegenerate, since the number of possible basis B is finite the
procedure terminates after a finite number of pivoting steps
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REVISED SIMPLEX METHOD

e Initialization: a basic feasible point is obtained by solving a modified LP, for
which a starting basic feasible point is obvious (this is called phase-1 LP)

o degenerate steps may be encountered in which z, remains O (only 3 changes).
In this case ¢’z remains constant

e cycling may occur if the same basis 5 is encountered again. To prevent this,
anti-cycling strategies are usually included in the LP solver

e The dual simplex method is similar to the revised simplex method. It keeps s
feasible rather than x feasible during the iterations
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SIMPLEX METHOD FOR LP

Good LP solvers include a presolver, that attempts eliminating
variables/constraints to accelerate the subsequent LP solution algorithm

(Rare) pathological counterexamples exist in which the simplex method visits
2™ vertices, showing that its non-polynomial convergence

In practice, usually simplex methods converge in at most 2m to 3m iterations

The simplex method is the ancestor of active set methods for solving nonlinear
programs, such as QP and problems with bound constraints
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ACTIVE-SET METHOD FOR NNLS

o Active-set method to solve the NNLS problem

ARSI R

N 00O N O

P+ 0,z + 0;
w + A'(Az — b);

. ifw > 0orP = {1,...,m} then go to Step 10;

i 4= argmin;e(q,.. mp\p Wi, P < P U {i};
yp  argming,, [|((A)p) zp — b|3,
y{,...mp\P < 0;

. ifyp > 0thenx < y and go to Step 2;
. j < arg minpep. thO{ﬁ};

. T2+
. I+ {heP:xz,=0}P <« P\ZgotoStep5;
10.

x; .
w2 W — )

end.

The algorithm maintains the
primal vector z feasible
and keeps switching the
active set until the dual
variable w is also feasible.

The key step 5 requires
solving an unconstrained LS
problem. An LDL, Cholesky,
or QR factorization of
(A")p can be computed
recursively

very simple to solve (750 chars in Embedded MATLAB)
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NONNEGATIVE LEAST SQUARES - EXAMPLES

e Solving a least distance problem (LDP):

’ 2
* = argmin A 0
r* = argmin |z|3 y & H[b ]y+[1”|2
st. y>0
st. Az <b on
gt = =Y
o'y~
e Solving a quadratic program (QP) with @ > 0:
* = argmin |[|[[M ]y +]0 2
r* = argmin %x’Qag+c’x y gt ﬂ[od ]i‘/ [1]”2
s.t.
st. Ax <b 71y,—, )
r* = —M—Q*c
1+d'y*

where M = A(C~1)/,CC’" = Q (Cholesky factorization),d = b+ AQ ¢

e The LDP/QP is infeasible if and only the residual r* = [%/] y* 4+ [{] of the
corresponding NNLS is zero (by Farkas’ lemma)
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PARTIALLY NONNEGATIVE LEAST SQUARES

e Consider the partially nonnegative least squares (PNNLS) problem

min, ,, |[Az + Bu—c|3 A e Rmxn
s.t. x>0, ufree B € Rm*P

e Let B# be the pseudoinverse of B. In case B has full column rank then
B#* = (B'B)~'B’
e The PNNLS problem can be solved as the NNLS problem

min || Az — b]|3
st. >0

where A = (I — BB#)A,b = (I — BB#)c
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PARTIALLY NONNEGATIVE LEAST SQUARES - EXAMPLES

e Computing a feasible point in a polyhedron: A polyhedron P = {z : Az < b}is
nonempty if and only if

0 =min, [Az+y—b|3
s.t. y >0, xfree

e Solving an LP: The following two problems are equivalent

2

min 'z min H{%ﬂ[y]—&-[i]x—{g}
& * Aol t® 0 —c

2
st. Az <b ot

y,s >0, xfree

which follows from the optimality conditions A’y + ¢ = 0, Az + s = b, and

y'(Az — b) = 0, where the latter is equivalent to zero duality gap ¢’z = —b'y
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ACTIVE SET METHODS FOR QP

e Active set methods for QP are usually the best on small problems because:
- they provide excellent quality solutions within few iterations
- are less sensitive to preconditioning (= their behavior is more predictable)
- they do not require advanced linear algebra libraries

although they may be less robust than other methods in single precision
arithmetic (due to divisions)

o Different active set methods for QP exist. They all work similar to the simplex
method, switching the set of active constraints A;z = b; until all the KKT
conditions are satisfied

¢ Most of these methods are equivalent, i.e., visit the same sequence of active
sets, although with different linear algebra
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AN ACTIVE SET METHOD FOR QP

¢ We want to solve the following general strictly convex QP
min  32'Qz + 'z
s.t. AZZ § bi, i€l
AiLL’ = bi, 1€l
where TUE ={1,...,m}and @ = Q" = 0,Q € R*"*"

e Assume a feasible starting point x is available (e.g., by solving a phase-1 LP)

o Atiteration k, given afeasible xy,let Iy = {i € I : Ajxy, =b;}, Wy = I, UE
be the active set and consider the equality-constrained QP

min  12'Qx + dx
s.t. Alx = bi, xS Wk

" “Numerical Optimization" - ©2023 A. Bemporad. Al rights reserved 14/18



AN ACTIVE SET METHOD FOR QP

e By shifting the coordinates to d = = — xj, the equality-constrained QP becomes

d = argmin  3d'Qd + (Quy + c)'d [,2 M [4] =[]
s.t. Ald = 0, i€ Wk Aw, 0 Vi 0

providing the best shift from x; within the null-space of the submatrix Ay,

e Ifd, =0:
- ifvg > 0then zi is the optimal solution, vy, the optimal dual variables

corresponding to the active constraints

- Otherwise, let ¢ € W, such that (vy), is the most negative component of v, and
update Ix41 = I \ {q}, Wit1 = Ix41 U E, Tpy1 = a1

" “Numerical Optimization" - ©2023 A. Bemporad. Al rights reserved 15/18



AN ACTIVE SET METHOD FOR QP

o Ifdy #£0:
- IfAl(l'k -+ dk) < b; foralls ¢ Wi, set Tri1 = Tk + dy, Wk+1 =W
- otherwise choose the maximum step length ;. < 1 that maintains feasibility

an — min b»; — Alxk _ bq — Aql’k
K gryiAyd, >0 A,dy  Agds

andsetxp+1 =z + ardg, Ixk+1 = I U {q}, Wis1 = Ik 1 UE
e Since at each iteration the objective function is non-increasing, the algorithm
terminates in a finite number & of steps

’
Q Ay,

Aw 0

e For more efficiency a factorization of [
k

} can be updated recursively

e The above active-set method maintains feasibility of x5 during the iterations.
Other (often more effective) methods maintain the dual vector v;, feasible and
stop when the corresponding primal solution zy, is feasible
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BLOCK PIVOTING METHODS - KR ALGORITHM

e Active set methods only add or remove one constraint at each iteration, which
makes them slow for QPs with many constraints/variables

e Block principal pivoting methods perform instead simultaneous changes in the
working-set in one iteration

e Kunisch and RendlI’s (KR) method is an infeasible primal-dual method to solve
box-constrained QP quite efficiently

min %ZL‘/QI' +dx
st. f<zx<u
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BLOCK PIVOTING METHODS - KR ALGORITHM

o The algorithm iteratively mass-updates thesets L, U C N, N = {1,...,n} of
active lower and upper bounds, starting from an arbitrary initial guess L, U:

1. A« LUU, I+ N\ A

2. [ZE) « [£E] 21 « —Qif (cr + Qraza) solve unconstrained QP
A1+ 0,A4 + —ca — Qanz get X from KKT

8. L+ {i€eN:z<tlior(h<Oandi€ L)} update active set
U+ {ieN:z >ujor(\; >0andi € U)}

4. if (LUU) = Preturnz* + z,elsegoto 1

e Very simple to implement and fast (convergence usually in < 12 steps)

e Convergence is guaranteed only under restrictive assumptions. Variants with
less restrictive conditions (but slower to execute) exist

o For given parametricQP (c = FO + f,£ = W0 4+ w,u = SO + s, Q fixed) one
can exactly map the number of iterations KR takes to converge (or cycle) as a
function of the parameter § € R™
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