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Active-set methods



Linear program in standard form
• Consider the linear program in standard form

min c′x

s.t. Ax = b

x ≥ 0

• Assumption: A ∈ R
m×n has full row rank (this implies n ≥ m)

• In case the LP is not in standard form, remember that:

– Inequality constraintsAx ≤ b can be transformed intoAx+ z = b, z ≥ 0

– Variables without sign restriction can be split into x = x+ − x−, with x+, x− ≥ 0

– We can solve the dual LP (in standard form) with respect to the dual vector λ:

minx c′x

s.t. Ax ≤ b

minλ b′λ

s.t. A′λ = −c, λ ≥ 0

and get x∗ as the optimal dual vector of the dual LP problem
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Basic solutions

• A subsetB ⊆ {1, . . . , n} of exactlym elements is a basis and a vector x ∈ R
n is

a basic feasible point (a.k.a. basic feasible solution) if

– x ≥ 0

– xi = 0 for all i ̸∈ B

– the basis matrixB ∈ R
m×m obtained by collecting the columnsAi ofA indexed

by i ∈ B is nonsingular

Theorem

– If the LP is feasible then there exists at least one basic feasible point

– If the LP admits optimal solutions then at least one basic feasible point is optimal

– If the LP is feasible and bounded then it has a basic feasible optimal solution

``Numerical Optimization'' - ©2023 A. Bemporad. All rights reserved. 2/18



Basic solutions

Theorem
The basic feasible points are the vertices of the polyhedron {x : Ax = b, x ≥ 0}.

Definition
A basisB is degenerate if xi = 0 for some i ∈ B. An LP is degenerate if it has

at least one degenerate basis

• The simplexmethod determines the solution of a solvable LP problem in a finite

number of iterations, iterating from a vertex of the feasible set (basic feasible)

point to an adjacent one
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Revised simplex method

• The KKT conditions of optimality for the LPwe considered are

c+A′ν − s = 0

Ax = b

x, s ≥ 0

xisi = 0, i = 1, . . . , n

• Given a basisB and the corresponding basic matrixB, letN = {1, . . . , n} \ B

andN the correspondingmatrix of columnsAi indexed by i ∈ N

• Let xB be the subvector of x indexed byB and xN the subvector indexed byN ,

and similarly sB , sN , cB , cN
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Revised simplex method

• Start from a basic point x, that is xN = 0

• FromAx = bwe get xB = B−1b (this requires solvingBxb = b, e.g., by LU

factorization)

• To satisfy complementarity slackness, set sB = 0

• Partition the KKT conditionA′ν − s = −c into

B′ν = −cB

N ′ν − sN = −cN

• Therefore ν = −B−T cB and sN = cN − (B−1N)′cB (=reduced costs)

• The only missing KKT condition to satisfy is sN ≥ 0
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Revised simplex method
• If sN ≥ 0we have found an optimal solution x. Stop

• Otherwise, we execute a pivoting procedure:

– select an index q ∈ N such that sq < 0 andmake index q enter the basisB

– increase xq from 0while keepingAx = b satisfied, until another component

xp = 0, p ∈ B:

Aqxq +B(xB +∆xB) = b and xB +∆xB ≥ 0

∆xB =

BxB = b
︷ ︸︸ ︷

B
−1

b− xB −B
−1

Aqxq = −B−1
Aqxq ≥ −xB

[B−1
Aq

︸ ︷︷ ︸

d

]jxq ≤ [xB ]j , ∀j = 1, . . . ,m

– the index p = argminj

{
[xB ]j
dj
| dj > 0, j = 1, . . . ,m

}

leavesB

• One can prove that c′x is strictly decreasing ifB is nondegenerate

• If the LP is nondegenerate, since the number of possible basisB is finite the

procedure terminates after a finite number of pivoting steps
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Revised simplex method

• Initialization: a basic feasible point is obtained by solving amodified LP, for

which a starting basic feasible point is obvious (this is called phase-1 LP)

• degenerate stepsmay be encountered in which xq remains 0 (onlyB changes).

In this case c′x remains constant

• cyclingmay occur if the same basisB is encountered again. To prevent this,

anti-cycling strategies are usually included in the LP solver

• The dual simplexmethod is similar to the revised simplexmethod. It keeps s

feasible rather than x feasible during the iterations
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Simplex method for LP

• Good LP solvers include a presolver, that attempts eliminating

variables/constraints to accelerate the subsequent LP solution algorithm

• (Rare) pathological counterexamples exist in which the simplexmethod visits

2n vertices, showing that its non-polynomial convergence (Klee, Minty, 1972)

• In practice, usually simplexmethods converge in at most 2m to 3m iterations

• The simplexmethod is the ancestor of active set methods for solving nonlinear

programs, such as QP and problemswith bound constraints
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Active-set method for NNLS
(Lawson, Hanson, 1974)

• Active-set method to solve the NNLS problem min
x≥0

∥Ax− b∥22, A ∈ R
m×n

1. P ← ∅, x← 0;

2. w ← A′(Ax− b);

3. ifw ≥ 0 orP = {1, . . . ,m} then go to Step 10;

4. i← argmini∈{1,...,m}\P wi,P ← P ∪ {i};

5. yP ← argminxP
∥((A′)P)

′xP − b∥22,

y{1,...,m}\P ← 0;

6. if yP ≥ 0 then x← y and go to Step 2;

7. j ← argminh∈P: yh≤0

{
xh

xh−yh

}

;

8. x← x+
xj

xj−yj
(y − x);

9. I ← {h ∈ P : xh = 0},P ← P \ I ; go to Step 5;

10. end.

The algorithm maintains the
primal vector x feasible
and keeps switching the
active set until the dual
variablew is also feasible.

The key step 5 requires
solving an unconstrained LS
problem. An LDL', Cholesky,
or QR factorization of
(A′)P can be computed
recursively

very simple to solve (750 chars in Embedded MATLAB)
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Nonnegative least squares - Examples

• Solving a least distance problem (LDP): (Lawson, Hanson, 1974)

x∗ = argmin ∥x∥22
s.t. Ax ≤ b

⇔











y∗ = argmin
∥

∥

[

A′

b′

]

y + [ 01 ]
∥

∥

2

2

s.t. y ≥ 0

x∗ = − A′y∗

1+b′y∗

• Solving a quadratic program (QP) withQ ≻ 0: (Bemporad, 2016)

x∗ = argmin 1
2x

′Qx+ c′x

s.t. Ax ≤ b
⇔











y∗ = argmin
∥

∥

[

M ′

d′

]

y + [ 01 ]
∥

∥

2

2

s.t. y ≥ 0

x∗ = − (C−1)′M ′y∗

1+d′y∗ −Q−1c

whereM = A(C−1)′,CC ′ = Q (Cholesky factorization), d = b+AQ−1c

• The LDP/QP is infeasible if and only the residual r∗ =
[

M ′

d′

]

y∗ + [ 01 ] of the

corresponding NNLS is zero (by Farkas’ lemma)
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Partially nonnegative least squares
(Bemporad, 2015)

• Consider the partially nonnegative least squares (PNNLS) problem

minx,u ∥Ax+Bu− c∥22
s.t. x ≥ 0, u free

A ∈ R
m×n

B ∈ R
m×p

• LetB# be the pseudoinverse ofB. In caseB has full column rank then

B# = (B′B)−1B′

• The PNNLS problem can be solved as the NNLS problem

min ∥Āx− b̄∥22
s.t. x ≥ 0

where Ā = (I −BB#)A, b̄ = (I −BB#)c
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Partially nonnegative least squares - Examples
(Bemporad, 2015)

• Computing a feasible point in a polyhedron: A polyhedronP = {x : Ax ≤ b} is

nonempty if and only if

0 = minx ∥Ax+ y − b∥22
s.t. y ≥ 0, x free

• Solving an LP: The following two problems are equivalent

min c′x

s.t. Ax ≤ b
⇔

minx

∥

∥

∥

[

b′ 0
0 I
A′ 0

]

[ ys ] +
[

c′

A
0

]

x−
[

0
b
−c

]
∥

∥

∥

2

2

s.t. y, s ≥ 0, x free

which follows from the optimality conditionsA′y + c = 0,Ax+ s = b, and

y′(Ax− b) = 0, where the latter is equivalent to zero duality gap c′x = −b′y
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Active set methods for QP

• Active set methods for QP are usually the best on small problems because:

– they provide excellent quality solutions within few iterations

– are less sensitive to preconditioning (= their behavior is more predictable)

– they do not require advanced linear algebra libraries

although theymay be less robust than other methods in single precision

arithmetic (due to divisions)

• Different active set methods for QP exist. They all work similar to the simplex

method, switching the set of active constraintsAix = bi until all the KKT

conditions are satisfied (Wolfe, 1959) (Lemke, 1962) (Dantzig, 1963) (Fletcher, 1971)

• Most of thesemethods are equivalent, i.e., visit the same sequence of active

sets, althoughwith different linear algebra (Pang, 1983) (Best, 1984)
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An active set method for QP
(Bazaraa, Sherali, Shetty, 2006, p. 732)

• Wewant to solve the following general strictly convexQP

min 1
2x

′Qx+ c′x

s.t. Aix ≤ bi, i ∈ I

Aix = bi, i ∈ E

where I ∪ E = {1, . . . ,m} andQ = Q′ ≻ 0,Q ∈ R
n×n

• Assume a feasible starting point x0 is available (e.g., by solving a phase-1 LP)

• At iteration k, given a feasible xk , let Ik = {i ∈ I : Aixk = bi},Wk = Ik ∪ E

be the active set and consider the equality-constrainedQP

min 1
2x

′Qx+ c′x

s.t. Aix = bi, i ∈ Wk
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An active set method for QP
(Bazaraa, Sherali, Shetty, 2006, p. 732)

• By shifting the coordinates to d = x− xk the equality-constrainedQP becomes

dk = argmin 1
2d

′Qd+ (Qxk + c)′d

s.t. Aid = 0, i ∈ Wk

[

Q A′

Wk

AWk
0

]

[

dk
vk

]

=
[

−Qxk−c
0

]

providing the best shift from xk within the null-space of the submatrixAWk

• If dk = 0:

– if vk ≥ 0 then xk is the optimal solution, vk the optimal dual variables

corresponding to the active constraints

– Otherwise, let q ∈Wk such that (vk)q is themost negative component of vk and

update Ik+1 = Ik \ {q},Wk+1 = Ik+1 ∪ E, xk+1 = xk
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An active set method for QP
(Bazaraa, Sherali, Shetty, 2006, p. 732)

• If dk ̸= 0:

– ifAi(xk + dk) ≤ bi for all i ̸∈Wk , set xk+1 = xk + dk ,Wk+1 = Wk

– otherwise choose themaximum step lengthαk < 1 that maintains feasibility

αk = min
i ̸∈Ik:Aidk>0

{
bi −Aixk

Aidk

}

=
bq −Aqxk

Aqdk

and set xk+1 = xk + αkdk , Ik+1 = Ik ∪ {q},Wk+1 = Ik+1 ∪ E

• Since at each iteration the objective function is non-increasing, the algorithm

terminates in a finite number k of steps

• Formore efficiency a factorization of
[

Q A′

Wk

AWk
0

]

can be updated recursively

• The above active-set methodmaintains feasibility of xk during the iterations.

Other (oftenmore effective) methodsmaintain the dual vector vk feasible and

stopwhen the corresponding primal solution xk is feasible
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Block pivoting methods - KR algorithm

(Kunisch, Rendl, 2003)

• Active set methods only add or remove one constraint at each iteration, which

makes them slow for QPswithmany constraints/variables

• Block principal pivotingmethods perform instead simultaneous changes in the

working-set in one iteration

• Kunisch and Rendl’s (KR) method is an infeasible primal-dual method to solve

box-constrainedQP quite efficiently

min 1
2x

′Qx+ c′x

s.t. ℓ ≤ x ≤ u
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Block pivoting methods - KR algorithm
• The algorithm iteratively mass-updates the setsL,U ⊆ N ,N = {1, . . . , n} of

active lower and upper bounds, starting from an arbitrary initial guessL,U :

1. A← L ∪ U , I ← N \A

2. [ zLzU ]←
[

ℓL
uU

]
, zI ← −Q

−1
II (cI +QIAzA) solve unconstrained QP

λI ← 0, λA ← −cA −QANz get λ from KKT
3. L← {i ∈ N : zi < ℓi or (λi < 0 and i ∈ L)} update active set

U ← {i ∈ N : zi > ui or (λi > 0 and i ∈ U)}

4. if (L ∪ U) = ∅ return z∗ ← z, else go to 1

• Very simple to implement and fast (convergence usually in≤ 12 steps)

• Convergence is guaranteed only under restrictive assumptions. Variants with

less restrictive conditions (but slower to execute) exist (Hungerl ander, Rendl, 2015)

• For given parametricQP (c = Fθ + f , ℓ = Wθ + w, u = Sθ + s,Q fixed) one

can exactlymap the number of iterations KR takes to converge (or cycle) as a

function of the parameter θ ∈ R
m (Cimini, Bemporad, 2019)
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