ACTIVE-SET METHODS

References:

J. Nocedal and S.J. Wright, "Numerical Optimization," 2006. Chapter 16
M.S. Bazaraa, H.D. Sherali, C.M. Shetty, "Nonlinear Programming - Theory and

Algorithms," 2006

LINEAR PROGRAM IN STANDARD FORM

- Consider the linear program in standard form

$$
\begin{aligned}
\min & c^{\prime} x \\
\text { s.t. } & A x=b \\
& x \geq 0
\end{aligned}
$$

- Assumption: $A \in \mathbb{R}^{m \times n}$ has full row rank (this implies $n \geq m$)
- In case the LP is not in standard form, remember that:
- Inequality constraints $A x \leq b$ can be transformed into $A x+z=b, z \geq 0$
- Variables without sign restriction can be split into $x=x^{+}-x^{-}$, with $x^{+}, x^{-} \geq 0$
- We can solve the dual LP (in standard form) with respect to the dual vector λ :

$$
\begin{array}{rll}
\min _{x} & c^{\prime} x \\
\text { s.t. } & A x \leq b & \min _{\lambda}
\end{array} b^{\prime} \lambda
$$

and get x^{*} as the optimal dual vector of the dual LP problem

BASIC SOLUTIONS

- A subset $\mathcal{B} \subseteq\{1, \ldots, n\}$ of exactly m elements is a basis and a vector $x \in \mathbb{R}^{n}$ is a basic feasible point (a.k.a. basic feasible solution) if
- $x \geq 0$
- $x_{i}=0$ for all $i \notin \mathcal{B}$
- the basis matrix $B \in \mathbb{R}^{m \times m}$ obtained by collecting the columns A_{i} of A indexed by $i \in \mathcal{B}$ is nonsingular

THEOREM

- If the LP is feasible then there exists at least one basic feasible point
- If the LP admits optimal solutions then at least one basic feasible point is optimal
- If the LP is feasible and bounded then it has a basic feasible optimal solution

BASIC SOLUTIONS

THEOREM

The basic feasible points are the vertices of the polyhedron $\{x: A x=b, x \geq 0\}$.

DEFINITION

A basis \mathcal{B} is degenerate if $x_{i}=0$ for some $i \in \mathcal{B}$. An LP is degenerate if it has at least one degenerate basis

- The simplex method determines the solution of a solvable LP problem in a finite number of iterations, iterating from a vertex of the feasible set (basic feasible) point to an adjacent one

REVISED SIMPLEX METHOD

- The KKT conditions of optimality for the LP we considered are

$$
\begin{aligned}
& c+A^{\prime} \nu-s=0 \\
& A x=b \\
& x, s \geq 0 \\
& x_{i} s_{i}=0, i=1, \ldots, n
\end{aligned}
$$

- Given a basis \mathcal{B} and the corresponding basic matrix B, let $\mathcal{N}=\{1, \ldots, n\} \backslash \mathcal{B}$ and N the corresponding matrix of columns A_{i} indexed by $i \in \mathcal{N}$
- Let x_{B} be the subvector of x indexed by \mathcal{B} and x_{N} the subvector indexed by \mathcal{N}, and similarly $s_{B}, s_{N}, c_{B}, c_{N}$

REVISED SIMPLEX METHOD

- Start from a basic point x, that is $x_{N}=0$
- From $A x=b$ we get $x_{B}=B^{-1} b$ (this requires solving $B x_{b}=b$, e.g., by LU factorization)
- To satisfy complementarity slackness, set $s_{B}=0$
- Partition the KKT condition $A^{\prime} \nu-s=-c$ into

$$
\begin{aligned}
B^{\prime} \nu & =-c_{B} \\
N^{\prime} \nu-s_{N} & =-c_{N}
\end{aligned}
$$

- Therefore $\nu=-B^{-T} c_{B}$ and $s_{N}=c_{N}-\left(B^{-1} N\right)^{\prime} c_{B}$ (=reduced costs)
- The only missing KKT condition to satisfy is $s_{N} \geq 0$

REVISED SIMPLEX METHOD

- If $s_{N} \geq 0$ we have found an optimal solution x. Stop
- Otherwise, we execute a pivoting procedure:
- select an index $q \in N$ such that $s_{q}<0$ and make index q enter the basis \mathcal{B}
- increase x_{q} from 0 while keeping $A x=b$ satisfied, until another component

$$
x_{p}=0, p \in \mathcal{B}:
$$

$$
\begin{aligned}
& A_{q} x_{q}+ B\left(x_{B}+\Delta x_{B}\right)=b \text { and } x_{B}+\Delta x_{B} \geq 0 \\
& B x_{B}=b
\end{aligned} \overbrace{\Delta x_{B}=\overbrace{B^{-1} b-x_{B}}-B^{-1} A_{q} x_{q}=-B^{-1} A_{q} x_{q} \geq-x_{B}} \begin{aligned}
& {[\underbrace{B^{-1} A_{q}}_{d}]_{j} x_{q} \leq\left[x_{B}\right]_{j}, \forall j=1, \ldots, m}
\end{aligned}
$$

- the index $p=\arg \min _{j}\left\{\left.\frac{\left[x_{B}\right]_{j}}{d_{j}} \right\rvert\, d_{j}>0, j=1, \ldots, m\right\}$ leaves \mathcal{B}
- One can prove that $c^{\prime} x$ is strictly decreasing if \mathcal{B} is nondegenerate
- If the LP is nondegenerate, since the number of possible basis \mathcal{B} is finite the procedure terminates after a finite number of pivoting steps

REVISED SIMPLEX METHOD

- Initialization: a basic feasible point is obtained by solving a modified LP, for which a starting basic feasible point is obvious (this is called phase-1 LP)
- degenerate steps may be encountered in which x_{q} remains 0 (only \mathcal{B} changes). In this case $c^{\prime} x$ remains constant
- cycling may occur if the same basis \mathcal{B} is encountered again. To prevent this, anti-cycling strategies are usually included in the LP solver
- The dual simplex method is similar to the revised simplex method. It keeps s feasible rather than x feasible during the iterations

SIMPLEX METHOD FOR LP

- Good LP solvers include a presolver, that attempts eliminating variables/constraints to accelerate the subsequent LP solution algorithm
- (Rare) pathological counterexamples exist in which the simplex method visits 2^{n} vertices, showing that its non-polynomial convergence (Klee, Minty, 1972)
- In practice, usually simplex methods converge in at most $2 m$ to $3 m$ iterations
- The simplex method is the ancestor of active set methods for solving nonlinear programs, such as QP and problems with bound constraints

ACTIVE-SET METHOD FOR NNLS

- Active-set method to solve the NNLS problem

$$
\min _{x \geq 0}\|A x-b\|_{2}^{2}, A \in \mathbb{R}^{m \times n}
$$

1. $\mathcal{P} \leftarrow \emptyset, x \leftarrow 0$;
2. $w \leftarrow A^{\prime}(A x-b)$;
3. if $w \geq 0$ or $\mathcal{P}=\{1, \ldots, m\}$ then go to Step 10 ;
4. $i \leftarrow \arg \min _{i \in\{1, \ldots, m\} \backslash \mathcal{P}} w_{i}, \mathcal{P} \leftarrow \mathcal{P} \cup\{i\}$;
5. $y_{\mathcal{P}} \leftarrow \arg \min _{x_{\mathcal{P}}}\left\|\left(\left(A^{\prime}\right)_{\mathcal{P}}\right)^{\prime} x_{\mathcal{P}}-b\right\|_{2}^{2}$,

$$
y_{\{1, \ldots, m\} \backslash \mathcal{P}} \leftarrow 0 ;
$$

6. if $y_{\mathcal{P}} \geq 0$ then $x \leftarrow y$ and go to Step 2;
7. $j \leftarrow \arg \min _{h \in \mathcal{P}: y_{h} \leq 0}\left\{\frac{x_{h}}{x_{h}-y_{h}}\right\}$;
8. $x \leftarrow x+\frac{x_{j}}{x_{j}-y_{j}}(y-x)$;
9. $\mathcal{I} \leftarrow\left\{h \in \mathcal{P}: x_{h}=0\right\}, \mathcal{P} \leftarrow \mathcal{P} \backslash \mathcal{I}$; go to Step 5;
10. end.

The algorithm maintains the primal vector x feasible and keeps switching the active set until the dual variable w is also feasible.

The key step 5 requires solving an unconstrained LS problem. An LDL', Cholesky, or QR factorization of $\left(A^{\prime}\right)_{\mathcal{P}}$ can be computed recursively
very simple to solve (750 chars in Embedded MATLAB)

NONNEGATIVE LEAST SQUARES - EXAMPLES

- Solving a least distance problem (LDP): (Lawson, Hanson, 1974)

$$
x^{*}=\arg \min \quad\|x\|_{2}^{2} \quad \Leftrightarrow\left\{\begin{aligned}
y^{*}= & \arg \min \\
\text { s.t. } & \left\|\left[\begin{array}{l}
A^{\prime} \\
b^{\prime}
\end{array}\right] y+\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right\|_{2}^{2} \\
x^{*}=-\frac{A^{\prime} y^{*}}{1+b^{\prime} y^{*}} & y \geq 0
\end{aligned}\right.
$$

- Solving a quadratic program (QP) with $Q \succ 0$: (Bemporad, 2016)

$$
x^{*}=\arg \min \operatorname{lo} x^{\prime} Q x+c^{\prime} x \Leftrightarrow\left\{\begin{aligned}
& y^{*}=\arg \min \left\|\left[\begin{array}{l}
M^{\prime} \\
d^{\prime}
\end{array}\right] y+\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right\|_{2}^{2} \\
& \text { s.t. } A x \leq b \\
& x^{*}=-\frac{\left(C^{-1}\right)^{\prime} M^{\prime} y^{*}}{1+d^{\prime} y^{*}}-Q^{-1} c
\end{aligned}\right.
$$

where $M=A\left(C^{-1}\right)^{\prime}, C C^{\prime}=Q$ (Cholesky factorization), $d=b+A Q^{-1} c$

- The LDP/QP is infeasible if and only the residual $r^{*}=\left[\begin{array}{c}M^{\prime} \\ d^{\prime}\end{array}\right] y^{*}+\left[\begin{array}{l}0 \\ 1\end{array}\right]$ of the corresponding NNLS is zero (by Farkas' lemma)

PARTIALLY NONNEGATIVE LEAST SQUARES

- Consider the partially nonnegative least squares (PNNLS) problem

$$
\begin{aligned}
\min _{x, u} & \|A x+B u-c\|_{2}^{2} \\
\text { s.t. } & x \geq 0, u \text { free }
\end{aligned}
$$

$$
A \in \mathbb{R}^{m \times n}
$$

$$
B \in \mathbb{R}^{m \times p}
$$

- Let $B^{\#}$ be the pseudoinverse of B. In case B has full column rank then $B^{\#}=\left(B^{\prime} B\right)^{-1} B^{\prime}$
- The PNNLS problem can be solved as the NNLS problem

$$
\begin{aligned}
\min & \|\bar{A} x-\bar{b}\|_{2}^{2} \\
\text { s.t. } & x \geq 0
\end{aligned}
$$

where $\bar{A}=\left(I-B B^{\#}\right) A, \bar{b}=\left(I-B B^{\#}\right) c$

PARTIALLY NONNEGATIVE LEAST SQUARES - EXAMPLES

- Computing a feasible point in a polyhedron: A polyhedron $P=\{x: A x \leq b\}$ is nonempty if and only if

$$
\begin{aligned}
0=\min _{x} & \|A x+y-b\|_{2}^{2} \\
\text { s.t. } & y \geq 0, x \text { free }
\end{aligned}
$$

- Solving an LP: The following two problems are equivalent

$$
\begin{aligned}
\min & c^{\prime} x \\
\text { s.t. } & A x \leq b \quad \Leftrightarrow \quad \min _{x}
\end{aligned} \quad\left\|\left[\begin{array}{cc}
b^{\prime} & 0 \\
0 & I \\
A^{\prime} & 0
\end{array}\right]\left[\begin{array}{c}
y \\
s
\end{array}\right]+\left[\begin{array}{c}
c^{\prime} \\
A \\
0
\end{array}\right] x-\left[\begin{array}{c}
0 \\
b \\
-c
\end{array}\right]\right\|_{2}^{2}, ~ s . t . ~ y, s \geq 0, x \text { free }
$$

which follows from the optimality conditions $A^{\prime} y+c=0, A x+s=b$, and $y^{\prime}(A x-b)=0$, where the latter is equivalent to zero duality gap $c^{\prime} x=-b^{\prime} y$

ACTIE SETMETHODS FOR QP

- Active set methods for QP are usually the best on small problems because:
- they provide excellent quality solutions within few iterations
- are less sensitive to preconditioning (= their behavior is more predictable)
- they do not require advanced linear algebra libraries
although they may be less robust than other methods in single precision arithmetic (due to divisions)
- Different active set methods for QP exist. They all work similar to the simplex method, switching the set of active constraints $A_{i} x=b_{i}$ until all the KKT conditions are satisfied (Wolfe, 1959) (Lemke, 1962) (Dantzig, 1963) (Fletcher, 1971)
- Most of these methods are equivalent, i.e., visit the same sequence of active sets, although with different linear algebra (Pang, 1983) (Best, 1984)

AN ACTIVE SET METHOD FOR QP

- We want to solve the following general strictly convex QP

$$
\begin{aligned}
\min & \frac{1}{2} x^{\prime} Q x+c^{\prime} x \\
\mathrm{s.t.} & A_{i} x \leq b_{i}, i \in I \\
& A_{i} x=b_{i}, i \in E
\end{aligned}
$$

where $I \cup E=\{1, \ldots, m\}$ and $Q=Q^{\prime} \succ 0, Q \in \mathbb{R}^{n \times n}$

- Assume a feasible starting point x_{0} is available (e.g., by solving a phase- 1 LP)
- At iteration k, given a feasible x_{k}, let $I_{k}=\left\{i \in I: A_{i} x_{k}=b_{i}\right\}, W_{k}=I_{k} \cup E$ be the active set and consider the equality-constrained QP

$$
\begin{aligned}
\min & \frac{1}{2} x^{\prime} Q x+c^{\prime} x \\
\text { s.t. } & A_{i} x=b_{i}, i \in W_{k}
\end{aligned}
$$

AN ACTIVE SET METHOD FOR QP

- By shifting the coordinates to $d=x-x_{k}$ the equality-constrained QP becomes

$$
\begin{array}{cl}
d_{k}=\arg \min & \frac{1}{2} d^{\prime} Q d+\left(Q x_{k}+c\right)^{\prime} d \\
\text { s.t. } & A_{i} d=0, i \in W_{k}
\end{array} \quad \square\left[\begin{array}{cc}
Q & A_{W_{k}}^{\prime} \\
A_{W_{k}} & 0
\end{array}\right]\left[\begin{array}{c}
d_{k} \\
v_{k}
\end{array}\right]=\left[\begin{array}{c}
-Q x_{k}-c \\
0
\end{array}\right]
$$

providing the best shift from x_{k} within the null-space of the submatrix $A_{W_{k}}$

- If $d_{k}=0$:
- if $v_{k} \geq 0$ then x_{k} is the optimal solution, v_{k} the optimal dual variables corresponding to the active constraints
- Otherwise, let $q \in W_{k}$ such that $\left(v_{k}\right)_{q}$ is the most negative component of v_{k} and update $I_{k+1}=I_{k} \backslash\{q\}, W_{k+1}=I_{k+1} \cup E, x_{k+1}=x_{k}$

AN ACTIVE SET METHOD FOR QP

- If $d_{k} \neq 0$:
- if $A_{i}\left(x_{k}+d_{k}\right) \leq b_{i}$ for all $i \notin W_{k}$, set $x_{k+1}=x_{k}+d_{k}, W_{k+1}=W_{k}$
- otherwise choose the maximum step length $\alpha_{k}<1$ that maintains feasibility

$$
\begin{aligned}
& \quad \alpha_{k}=\min _{i \notin I_{k}: A_{i} d_{k}>0}\left\{\frac{b_{i}-A_{i} x_{k}}{A_{i} d_{k}}\right\}=\frac{b_{q}-A_{q} x_{k}}{A_{q} d_{k}} \\
& \text { and set } x_{k+1}=x_{k}+\alpha_{k} d_{k}, I_{k+1}=I_{k} \cup\{q\}, W_{k+1}=I_{k+1} \cup E
\end{aligned}
$$

- Since at each iteration the objective function is non-increasing, the algorithm terminates in a finite number k of steps
- For more efficiency a factorization of $\left[\begin{array}{cc}Q & A_{W_{k}}^{\prime} \\ A_{W_{k}} & 0\end{array}\right]$ can be updated recursively
- The above active-set method maintains feasibility of x_{k} during the iterations. Other (often more effective) methods maintain the dual vector v_{k} feasible and stop when the corresponding primal solution x_{k} is feasible

BLOCK PIVOTING METHODS - KR ALGORITHM

- Active set methods only add or remove one constraint at each iteration, which makes them slow for QPs with many constraints/variables
- Block principal pivoting methods perform instead simultaneous changes in the working-set in one iteration
- Kunisch and Rendl's (KR) method is an infeasible primal-dual method to solve box-constrained QP quite efficiently

$$
\begin{array}{cl}
\min & \frac{1}{2} x^{\prime} Q x+c^{\prime} x \\
\text { s.t. } & \ell \leq x \leq u
\end{array}
$$

BLOCK PIVOTING METHODS - KR ALGORITHM

- The algorithm iteratively mass-updates the sets $L, U \subseteq N, N=\{1, \ldots, n\}$ of active lower and upper bounds, starting from an arbitrary initial guess L, U :

1. $A \leftarrow L \cup U, I \leftarrow N \backslash A$
2. $\left[\begin{array}{l}z_{L} \\ z_{U}\end{array}\right] \leftarrow\left[\begin{array}{l}\ell_{L} \\ u_{U}\end{array}\right], z_{I} \leftarrow-Q_{I I}^{-1}\left(c_{I}+Q_{I A} z_{A}\right)$ $\lambda_{I} \leftarrow 0, \lambda_{A} \leftarrow-c_{A}-Q_{A N} z$ solve unconstrained QP get λ from KKT
3. $L \leftarrow\left\{i \in N: z_{i}<\ell_{i}\right.$ or $\left(\lambda_{i}<0\right.$ and $\left.\left.i \in L\right)\right\}$ update active set $U \leftarrow\left\{i \in N: z_{i}>u_{i}\right.$ or $\left(\lambda_{i}>0\right.$ and $\left.\left.i \in U\right)\right\}$
4. if $(L \cup U)=\emptyset$ return $z^{*} \leftarrow z$, else go to 1

- Very simple to implement and fast (convergence usually in ≤ 12 steps)
- Convergence is guaranteed only under restrictive assumptions. Variants with less restrictive conditions (but slower to execute) exist (Hungerl ander, Rendl, 2015)
- For given parametric $\mathrm{QP}(c=F \theta+f, \ell=W \theta+w, u=S \theta+s, Q$ fixed) one can exactly map the number of iterations KR takes to converge (or cycle) as a function of the parameter $\theta \in \mathbb{R}^{m}$ (Cimini, Bemporad, 2019)

