
Basics of numerical linear algebra



Numerical linear algebra

• Before diving into optimization algorithmswe need to recall some basic facts of

numerical linear algebra

• Wewill review basic numerical techniques ofmatrix factorization and solution

of linear systems, which are key ingredients for most optimization algorithms

• We also want to keep inmind the flops (floating point operations) involved in

those numerical techniques, where 1 flop = one operation (+,−, ∗ or÷)1

• When counting flops, we usually consider only the largest terms

• Excellent textbook: Golub-Van Loan, ``Matrix Computations'' (4th ed.), 2012

1Wedo not consider Single InstructionMultiple Data (SIMD) capabilities of modern processors
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Basic matrix operations

• The inner product x′y, x, y ∈ R
n, requires 2n− 1 ≈ 2n flops

• The sum x+ y andmultiplication by a scalarαx require n flops

• Thematrix-vector productAx,A ∈ R
m×n, requires:

– m(2n− 1) ≈ 2mn flops, or

– 2N flops ifA is sparse withN nonzero entries, or

– 2p(n+m) flops ifU ∈ R
m×p, V ∈ R

n×p are given such thatA = UV ′

(Ax = U(V ′x)). This can be useful when p, n ≤ m

• Thematrix-matrix productC = AB withB ∈ R
n×p, requires

mp(2n− 1) ≈ 2mnp flops (or≈ m2n ifC is symmetric,m = p)
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Solving linear systems Ax=b

• Wewant to solve the square linear systemAx = b,A ∈ R
n×n, detA ̸= 0

• IfA is diagonal,A = diag(a), we get xi =
bi
ai

, which requires n flops

• IfA is lower triangular,Aij = 0 for j > i, we can compute x = A−1bwith
∑n

k=1
2(k − 1) + 1 = n2 flops by forward substitution:

x1 = b1/a11
x2 = (b2 − a21x1)/a22
...

...

xn = (bn −
∑n−1

i=1
anixi)/ann

A =









a11 0 . . . 0

a12 a22 . . . 0
...

... . . .
...

an1 an2 . . . ann









• Similarly, ifA is upper triangular,Aij = 0 for j < i, computing x = A−1b

requires n2 flops by backward substitution
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Solving linear systems Ax=b

• LetA be aHouseholder matrix,A = I − 2vv′, ∥v∥2 = 1. SinceA−1 = A,

x = A−1b = Ab = b− 2(v′b)v requires 4n flops

• IfA is a permutation matrix (=permutation of the columns of I) thenA−1 = A′,

and x = A−1b requires 0 flops

Example:

A =








0 1 0 0

0 0 0 1

1 0 0 0

0 0 1 0







, A−1 = A′ =








0 0 1 0

1 0 0 0

0 0 0 1

0 1 0 0







, A−1x =








x3

x1

x4

x2







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LU factorization

Definition

A squarematrixA ∈ R
n×n is diagonally nonsingular if all its leading principal

submatricesAk ∈ R
k×k , ak,ij = aij , are nonsingular, ∀k = 1, . . . , n

• A diagonally nonsingular matrixA can be factorized asA = LU ,

whereL = lower triangular,U = upper triangular

• The LU factorization requires≈ 2

3
n3 flops

• Hencewe can solve the linear systemAx = L(Ux) = b as follows:

– SolveLy = b (n2 flops)

– SolveUx = y (n2 flops)

• The total cost for solving the linear system is 2

3
n3 + 2n2 ≈ 2

3
n3 flops
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LU factorization

• Every nonsingular matrixA can be factorized asA = PLU ,

whereP = permutationmatrix,L = lower triangular,U = upper triangular

• The permutationmatrixP adds no flop in solvingAx = b:

Pz = b (0 flops),Ly = z (n2 flops),Ux = y (n2 flops)

• Note that when solvingN linear systemsAx = bk , k = 1, 2, ..., N , we only need

to compute the LU factorization once.

For example in iterative refinement (see later) we improve the precision of a

solution x0 ofAx = b by iterating

rk = b−Axk

Adk = rk
xk+1 = xk + dk, k = 0, . . .
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Cholesky factorization

• Every symmetric positive definite matrixA admits the

Cholesky factorizationA = LL′. This requires≈ 1

3
n3 flops and

n square roots, whereL = lower triangular matrix (Demmel, 1989)

• Hence the linear systemAx = L(L′x)) = b can be solved by

– solvingLy = b (n2 flops)

– solvingL′x = y (n2 flops)

André-Louis Cholesky
(1875–1918)

• The total cost for solving the linear systemAx = b is 1

3
n3 + 2n2 ≈ 1

3
n3 flops

• Again, when solvingN linear systemsAx = bk , k = 1, 2, ..., N the Cholesky

factorization is only computed once

• Efficient sparse versions of the Cholesky factorization algorithm exist
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LDL' factorization

• Every diagonally nonsingular and symmetric matrixA can be factorized as

A = LDL′ with≈ 1

3
n3 flops and no square root, whereD = diagonal and

L = unit lower-triangular (Lii = 1)

• We can solve the linear systemAx = L(D(L′x)) = b as follows:

– SolveLz = b (n2 flops)

– SolveDy = z (n flops)

– SolveL′x = y (n2 flops)

• The total cost for solving the linear system is 1

3
n3 + 2n2 + n ≈ 1

3
n3 flops

• Every symmetric positive definite matrixA is diagonally nonsingular, therefore

A = A′ ≻ 0 ⇒ A = LDL′
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LDL' factorization

• Every nonsingular symmetric matrixA can be factorized as

PAP ′ = LDL′

with≈ 1

3
n3 flops and no square root, whereP = permutationmatrix,L = unit

lower triangular,D = block diagonal with 1× 1 or 2× 2 blocks

• WhenA is sparse, techniques exist to chooseP such thatL is sparse, so the

solution cost is≪ 1

3
n3

• Again, when solvingN linear systemsAx = bk , k = 1, 2, ..., N the LDL’

factorization is only computed once
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Matrix inversion lemma
Lemma

Let A ∈ R
n×n, B ∈ R

n×m, C ∈ R
m×m, D ∈ R

m×n, and let A, C , and
C−1 +DA−1B be nonsingular. Then

(A+BCD)−1 = A−1 −A−1B(C−1 +DA−1B)−1DA−1

• Assume the structure ofA andC is such thatAx = b is easy to solve (e.g.,A

block diagonal) andC is easily invertible (e.g.,C = I orm ≪ n)

• Thenwe can solve x = (A+BCD)−1b as follows:

– SolveAd = bwith respect to d

– GetmatrixE = A−1B by solvingAz = Bi = ith column ofB, i = 1, . . . ,m

– Solve (C−1 +DE)y = Ddwith respect to y ∈ R
m

– SolveAx = b−By with respect to x

• This is very useful whenm ≪ n. Form = C = 1 the inversion formula reduces

to Sherman-Morrison’s formula (A+ bd′)−1 = A−1 − A−1bd′A−1

1+d′A−1b
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QR factorization
Theorem

Any matrix A ∈ R
m×n can be factorized as

A = QR

where Q ∈ R
m×m is orthogonal (Q′Q = I ) and R ∈ R

m×n is upper triangular.

• The number of nonzero diagonal entries ofR is equal to rankA

• In case of overdetermined linear systemsAx = b,m > n, we get

R =

[

R1

0

]

, Q =
[

Q1 Q2

]

,

[

R1x

0

]

=

[

Q′
1b

Q′
2b

]

• IfQ′
2b = 0 the system is solvable by solving the triangular system

R1x = Q′
1b

• The factorizationA = Q1R1 is called economy-size QR factorization ofA
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QR factorization
• Q-less factorization: if we factorize [A b] = Q[R1 r2]we can avoid computing

and storingQ explicitly in order to solveAx = b:

Ax− b =
[

A b
]
[

x

−1

]

= Q
[

R1 r2

]
[

x

−1

]

= 0 ⇔ R1x = r2

• There are different algorithms to computeA = QR

(Lawson, Hanson, 1974) (Golub, Van Loan, 2012)

• TheQR factorization is useful to solve least-squares problems:

∥Ax− b∥22 = ∥QRx− b∥22 =

∥
∥
∥
∥
∥

[

R1x−Q′
1b

−Q′
2b

]∥
∥
∥
∥
∥

2

2

= ∥R1x−Q′
1b∥

2
2 + ∥Q′

2b∥
2
2

is minimized for x∗ = R−1
1 Q′

1b

• Alternatives: solve the normal equationsA′A = A′b by factorizingA′A = L′L

(Cholesky) orA′A = LDL′. Or use SVD decomposition (see next slides)
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Singular value decomposition (SVD)

• EverymatrixA ∈ R
m×n can be decomposed as

A = UΣV ′

withU ′U = I , V ′V = I ,Σii ≥ 0,Σij = 0, ∀i ̸= j

• The diagonal entries σi ofΣ are called the singular values ofA.

They are usually defined in descending order (σi ≥ σj for i ≤ j)

• If σi = 0 for i = r + 1, . . . ,min(n,m), then rank(A) = r

• Computing the SVD requireαmn2 + βn3 + γnm2 flops, whereα, β, γ depend

on the algorithm used andwhether only some ofΣ,U , V are required

(Golub, Van Loan, 2012)
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Singular value decomposition (SVD)

• Since V ′vi = ei (vi = ith column of V , ei = ith column of I) andΣei = 0 for i > r

the last n− r columns of V are a basis of the kernel (null-space) ofA

• Since y = Ax = U [ z1 ... zr 0 ... 0 ]
′, where x arbitrary and V nonsingular make

zi arbitrary, the first r columns ofU are a basis of the image (range) ofA

• WhenA invertible,A−1 = (UΣV ′)−1 = V Σ−1U ′

• WhenA is symmetric,U = V are a basis of eigenvectors ofA and

σi = |λi|, with λi = eigenvalues ofA, λi ∈ R

SVD plays a fundamental role in many applications!
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Least-squares problems and SVD
• LetA ∈ R

m×n,m > n, rankA = r ≤ n and factorizeA = UΣV ′

Σ =
[
Σ1 0

0 0

]
, U = [U1 U2], V = [V1 V2]

Σ1 ∈ R
r×r, U1 ∈ R

m×r, V1 ∈ R
n×r

• SinceU is an orthogonal matrix andΣ1 invertible, we get

argmin
x

∥Ax− b∥22 = argmin
x

∥UΣV ′x− b∥22 = argmin
x

∥ΣV ′x− U ′b∥22

= argmin
x

∥[Σ1 0]
[
V ′

1

V ′

2

]

x− U ′
1b∥

2
2

• Let z = V ′x = [ z1z2 ], z1 ∈ R
r and set [Σ1 0]z = U ′

1b⇒ z1 = Σ−1
1 U ′

1b

• The optimal solutions are given by

x∗ = [V1 V2]
[
Σ

−1

1
U ′

1
b

z2

]

= V1Σ
−1
1 U ′

1b+ V2z2, z2 free

• For r = n, the solution is unique and equal to x∗ = V Σ−1
1 U ′

1b
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Principal Component Analysis (PCA) and SVD

• Given a dataset ofN samples xi ∈ R
n, letA ∈ R

N×n be thematrix whose row

Ai = (xi − x̄)′, where x̄ =

n∑

i=1

xi is the empirical mean of the data

• Compute the SVDA = UΣV ′

• The n columns of V = [v1 . . . vn] are called principal components and form an

orthogonal basis ofRn

• Why “principal” components ? Note that the components of xi − x̄ in the new

basis areUiΣ = [Ui1σ1 . . . Uinσn], with σ1 ≥ σ2 ≥ . . . ≥ σn

• Only the principal components vi corresponding to “large-enough” singular

values σi are useful to represent xi − x̄
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Low-rank matrix approximation and SVD

• Letm ≤ n,U = [U1 U2],Σ1 = diag([σ1 . . . σm]), V = [V1 V2],
U1 ∈ R

N×m

V1 ∈ R
n×m

• Eckart–Young-Mirsky theorem:

Â∗ = U1Σ1V
′
1 = arg min

Â∈RN×n

∥A− Â∥F such that rank(Â) = m

is an optimal low-rank approximation ofA, and ∥A− Â∗∥2F =

n∑

i=m+1

σ2
i ,

where ∥A∥F is the Frobenius norm ofA (see next slide).

• Matrix Â∗ alsominimizes the spectral norm (see next slide) ∥A− Â∥2, and

∥A− Â∗∥2 = σm+1
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Matrix norms and condition number

• Amatrix norm is a norm on the vector spaceRm×n

• The Frobenius norm of matrix aA ∈ R
m×n is ∥A∥F =

√
√
√
√

m∑

i=1

n∑

j=1

A2
ij

• Amatrix norm can be induced by a vector norm ∥x∥, x ∈ R
n as

∥A∥ = sup
x ̸=0

∥Ax∥

∥x∥
= sup

∥x∥=1

∥Ax∥ induced norm

• A key role in determining the numerical robustness of an (optimization)

algorithm is the condition number of an invertible matrixA ∈ R
n×n

cond(A) = ∥A∥ · ∥A−1∥

• As ∥A∥ · ∥A−1∥ ≥ ∥AA−1∥ = ∥I∥ = 1, we always have cond(A) ≥ 1
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Matrix norms and condition number
• If we use the Euclidean norm ∥x∥2 we get the spectral norm

∥A∥2 = max
∥x∥2=1

∥Ax∥2 = max
∥x∥2=1

∥UΣV ′x∥2 = max
∥y∥2=1

∥Σy∥2 = σmax(A)

and

∥A−1∥2 = max
∥x∥2=1

∥V Σ−1U ′x∥2 = max
∥y∥2=1

∥Σ−1y∥2 =
1

σmin(A)

• Therefore

cond(A) = ∥A∥2 · ∥A
−1∥2 =

σmax(A)

σmin(A)

• WhenA is symmetric

cond(A) =
|λmax(A)|

|λmin(A)|

Roughly speaking, we say thatA iswell-conditioned if cond(A) ≈ 1

and ill-conditioned if cond(A) ≫ 1
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Numerical robustness

• Say for numerical errors we are solvingA(x+ δx) = b+ δb instead ofAx = b

• SinceAx = b (exact solution), we get δx = A−1δb

• Therefore, the relative error of the solution is

∥δx∥

∥x∥
≤

∥A−1∥∥δb∥

∥x∥
≤

∥A−1∥∥δb∥

∥b∥/∥A∥
= cond(A)

∥δb∥

∥b∥

• The larger cond(A) themore an error in computing b propagates into an error

in solvingAx = b

• Example: say we solve a dual QP and retrieve x∗ = −Q−1(c+A′λ∗). Small

errors in computing λ∗ can become large errors in x∗ if cond(Q) ≫ 1
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Iterative refinement
(Golub andWilkinson, 1966)

• Wewant to solveAx = b butA is ill-conditioned (even singular, butAx = b is

solvable)

• RegularizingA and solving (A+ ϵI)x = b, ϵ > 0, will provide a different

solution x0 = (A+ ϵI)−1b

• Instead, we factorizeLL′ = (A+ ϵI) (any other factorization will work) and

iterate the following from x0 until the residual b−Axk ≈ 0:

xk+1 = xk + (A+ ϵI)−1(b−Axk)
︸ ︷︷ ︸

refinement

• Theoretically, (b−Axk) → 0 for all ϵ > 0

• Usually only a few steps are required if ϵ is properly chosen (large enough to

computeL robustly, but not too large otherwise convergence is slow)
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Conjugate gradient method
(Hestenes, Stiefel, 1952) (Nocedal,Wright, 2012, Algorithm 5.2)

• The conjugate gradient (CG)method is an iterative method for solvingAx = b

withA symmetric and positive definite

• Given an initial guess x0 and residual r0 = Ax0 − b, p0 = −r0, the CG algorithm
iterates the following steps until the residual rk ≈ 0:

αk =
r′krk

p′kApk
,

[

xk+1

rk+1

]

=

[

xk + αkpk

rk + αkApk

]

βk+1 =
r′k+1rk+1

r′krk
, pk+1 = −rk+1 + βk+1pk

• Themethod is particularly useful whenA is large, as it does not involve any

factorization ofA

• Themethod ismatrix-free asA does not even need to be available, we only

need to be able to computeAv

• The convergence speed of CG is sensitive to scaling ofA, so it may require

preconditioning
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Preconditioning

• The speed of convergence of many iterativemethods is affected by the choice

of coordinate system

• LetA = A′ ≻ 0. SolvingAx = bmeansminimizing 1

2
x′Ax− b′x

• If we replace xs = T−1xwe get 1

2
x′
sT

′ATxs − b′Txs ⇒ T ′ATxs = T ′b

• Matrix T should be simple to compute and invert, for example diagonal

• Jacobi scaling sets T = diag( 1√
Aii

), so that T ′AT has unit diagonal. Usually

(but not always) the new condition number gets lower
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Preconditioning

• Example: Jacobi scaling of random symmetric positive definite matrices with

condition number between 1 and 108. Ratio cond(T ′AT )/ cond(A)

10
0

10
2

10
4

10
6

10
8

cond(A)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

c
o
n
d
(s

c
a
le

d
(A

))
/c

o
n
d
(A

)

• There aremany other techniques for matrix preconditioning and for matrix

equilibration (Giselsson, Boyd, 2015)
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