BASICS OF NUMERICAL LINEAR ALGEBRA

NUMERICAL LINEAR ALGEBRA

Before diving into optimization algorithms we need to recall some basic facts of

numerical linear algebra

We will review basic numerical techniques of matrix factorization and solution
of linear systems, which are key ingredients for most optimization algorithms

We also want to keep in mind the flops (floating point operations) involved in
those numerical techniques, where 1 flop = one operation (4, —, x or =)1

When counting flops, we usually consider only the largest terms

Excellent textbook: Golub-Van Loan, ~ ~Matrix Computations™ (4th ed.), 2012

1We do not consider Single Instruction Multiple Data (SIMD) capabilities of modern processors

" Numerical Optimization" - ©2023 A. Bemporad. All rights reserved 1/24

BASIC MATRIX OPERATIONS

e Theinner product z’y, z,y € R"™, requires 21 — 1 =~ 2n flops
e The sum x + y and multiplication by a scalar ax require 7 flops

e The matrix-vector product Az, A € R™*", requires:

- m(2n — 1) ~ 2mn flops, or
- 2N flops if Ais sparse with N nonzero entries, or
- 2p(n +m)flopsif U € R™*P,V € R"*? aregivensuchthat A = UV’

(Az = U(V'z)). This can be useful when p,n < m

e The matrix-matrix product C = AB with B € R"*P, requires
mp(2n — 1) ~ 2mnp flops (or = m2n if C is symmetric, m = p)

" “Numerical Optimization" - ©2023 A. Bemporad. All rights reserved. 2/24

SOLVING LINEAR SYSTEMS AX=B

e We want to solve the square linear system Az = b, A € R"*",det A # 0
e If Aisdiagonal, A = diag(a), we get z; = 2, which requires /. flops

o If Aislower triangular, A;; = 0for j > 7, we can compute x = A~ 1bwith
>or_i2(k —1) 4 1=n"flops by forward substitution:

ry = bi/an a7 0 ... 0
xo = (b —ag1®1)/aze A a2 azp ...0
Tn = (bn - Z?z_ll anixi)/ann an1 Ap2 L. Ann,

o Similarly, if A is upper triangular, 4;; = 0for j < i,computingz = A™1b
requires .° flops by backward substitution

" “Numerical Optimization" - ©2023 A. Bemporad. All rights reserved. 3/24

SOLVING LINEAR SYSTEMS AX=B

e Let A be aHouseholder matrix, A = I — 2vv/, ||v]|s = 1. Since A~! = A,
x=A"1b= Ab=b—2(v'b)vrequires 11 flops

o If Aisapermutation matrix (=permutation of the columns of I) then A= = A4/,
and z = A~ brequires O flops

Example:
01 00 0 010 T3
. 0 0 0 1 A A 1 0 00 Al 1
1 0 00 0 0 01 Ty
0 010 01 00 To

" “Numerical Optimization" - ©2023 A. Bemporad. All rights reserved. 4/24

LU FACTORIZATION

DEFINITION
A square matrix A € R™*" is diagonally nonsingular if all its leading principal
submatrices Ay, € R¥** q; ;. = a;;, are nonsingular, Vk = 1,...,n

A diagonally nonsingular matrix A can be factorized as A = LU,
where L = lower triangular, U = upper triangular

The LU factorization requires ~ - 1" flops

Hence we can solve the linear system Az = L(Ux) = bas follows:

- Solve Ly = b (n” flops)

- Solve Uz = y (n” flops)

The total cost for solving the linear system is %n“ +2n? ~ %n:; flops

" “Numerical Optimization" - ©2023 A. Bemporad. Al rights reserved 5/24

LU FACTORIZATION

e Every nonsingular matrix A can be factorized as A = PLU,
where P = permutation matrix, L = lower triangular, U = upper triangular

e The permutation matrix P adds no flop in solving Az = b:
Pz =b(0flops), Ly = z (n” flops), Uz = y (n” flops)

¢ Note that when solving N linear systems Az = b%, k = 1,2, ..., N, we only need
to compute the LU factorization once.

For example in iterative refinement (see later) we improve the precision of a
solution zg of Az = b by iterating

TL = b — Axk
Adk = Tk
Tyl = T +dp, k=0,...

" “Numerical Optimization" - ©2023 A. Bemporad. Al rights reserved 6/24

CHOLESKY FACTORIZATION

e Every symmetric positive definite matrix A admits the ‘"':3‘7
Cholesky factorization A = LL'. This requires ~ 1" flops and
n square roots, where L = lower triangular matrix

e Hence the linear system Az = L(L’z)) = bcan be solved by André-Louis Cholesky
(1875-1918)

- solving Ly = b (n” flops)
- solving L'z = y (n” flops)

e Thetotal cost for solving the linear system Az = bis .1’ + 2n? ~ L n” flops

e Again, when solving N linear systems Az = b*, k = 1,2, ..., N the Cholesky
factorization is only computed once

o Efficient sparse versions of the Cholesky factorization algorithm exist

" “Numerical Optimization" - ©2023 A. Bemporad. Al rights reserved 7/24

LDL" FACTORIZATION

e Every diagonally nonsingular and symmetric matrix A can be factorized as
A = LDL' with ~ %/13 flops and no square root, where D = diagonal and
L =unit lower-triangular (L;; = 1)

e We cansolve the linear system Az = L(D(L'x)) = bas follows:

- Solve Lz = b(n” flops)
- Solve Dy = z (n flops)
- Solve L'z = y (n” flops)

e The total cost for solving the linear systemis 1" + 21" + 1 ~ L n” flops

e Every symmetric positive definite matrix A is diagonally nonsingular, therefore

A=A >0= A=LDL

" “Numerical Optimization" - ©2023 A. Bemporad. All rights reserved. 8/24

LDL" FACTORIZATION

e Every nonsingular symmetric matrix A can be factorized as
PAP' =LDL'

with ~ %n")’ flops and no square root, where P = permutation matrix, L = unit
lower triangular, D = block diagonal with 1 x 1 or 2 x 2 blocks

e When A is sparse, techniques exist to choose P such that L is sparse, so the
solution cost is < +n?

o Again, when solving N linear systems Az = b*,k = 1,2, ..., N the LDL
factorization is only computed once

" “Numerical Optimization" - ©2023 A. Bemporad. Al rights reserved 9/24

MATRIX INVERSION LEMMA

LEMMA
Let A e R"*" B e R"™™ C € R™*™, D e R™ ™ andlet A, C, and
C~' 4+ DA~'B benonsingular. Then

(A+ BCD) ™' = A ' —A'B(C™' + DA™'B)'DA™!

o Assume the structure of A and C'is such that Az = bis easy to solve (e.g., A
block diagonal) and C'is easily invertible (e.g., C = I orm < n)

e Thenwe cansolve z = (A + BC'D)~1basfollows:

- Solve Ad = bwithrespecttod

- Getmatrix E = A"'Bbysolving Az = B; =ithcolumnof B,i =1,...,m
- Solve (C™! + DE)y = Ddwithrespecttoy € R™

- Solve Az = b — By withrespecttox

e Thisis very useful whenm < n. Form = C = 1 the inversion formula reduces

_ fean’ nN—1 _ A—-1_ A 'bd’A"?!
to Sherman-Morrison’s formula (4 + bd") ™" = A™" — 9795

" Numerical Optimization" - ©2023 A. Bemporad. All rights reserved 10/24

QR FACTORIZATION

THEOREM
Any matrix A € R™*" can be factorized as

A=QR
where () € R™*™ js orthogonal (Q’QQ = I)and R € R™*" is upper triangular.

e The number of nonzero diagonal entries of R is equal torank A

e |ncase of overdetermined linear systems Az = b, m > n,we get

Rl Rl.’E Qllb
R - 5 = s =
i) e=lo o] %]]
o If QLb = 0the system is solvable by solving the triangular system
Rl.’lﬁ = Qllb

e Thefactorization A = Q1 R, is called economy-size QR factorization of A

" “Numerical Optimization" - ©2023 A. Bemporad. Al rights reserved 11/24

QR FACTORIZATION

o Q-less factorization: if we factorize [A b] = Q[R; 73] we can avoid computing
and storing @ explicitly in order to solve Ax = b:

s [ao] [] <elm]| 1] 0 meen

e There are different algorithms to compute A = QR

e The QR factorization is useful to solve least-squares problems:
2

= [|[Riz — Q10|13 + |Q50]13
2

IAxb@—HQRwM@—| Qb

Rw—Q%]

is minimized for 2* = R, 'Q)b

e Alternatives: solve the normal equations A’ A = A’b by factorizing A’A = L'L
(Cholesky) or A’A = LDL'. Or use SVD decomposition (see next slides)

" “Numerical Optimization" - ©2023 A. Bemporad. Al rights reserved 12/24

SINGULAR VALUE DECOMPOSITION (SVD)

Every matrix A € R™*"™ can be decomposed as

A=UxV’
withU'U = I,VIV:I,E“‘ > O,Eij = O,Vi 7&]

e Thediagonal entries o; of X are called the singular values of A.
They are usually defined in descending order (o; > o; fori < j)

o Ifg; =0fori=r+1,...,min(n,m),thenrank(A4) = r

e Computing the SVD require avmn? + 3n® + ynm? flops, where «, 8, v depend
on the algorithm used and whether only some of 33, U, V" are required

" “Numerical Optimization" - ©2023 A. Bemporad. Al rights reserved 13/24

SINGULAR VALUE DECOMPOSITION (SVD)

e Since V'v; = e; (v; = ith column of V, e; = ith column of I) and Xe; = Ofori > r
the last n — r columns of V' are a basis of the kernel (null-space) of A

e Sincey = Az = U [=1 ... z 0 ... 0]', where x arbitrary and V nonsingular make
z; arbitrary, the first r columns of U are a basis of the image (range) of A

e When Ainvertible, A=! = (USV/)~1 = VvE-1U’

e When Aissymmetric, U = V are a basis of eigenvectors of A and
o; = |A\i|, with \; = eigenvaluesof A, \; € R

SVD plays a fundamental role in many applications!

" “Numerical Optimization" - ©2023 A. Bemporad. Al rights reserved 14/24

LEAST-SQUARES PROBLEMS AND SVD

o Llet A € R™*" m > n,rank A = r < nandfactorize A = UXV’

L=[%3], U=ht], V=MW
Zl e RT’XT’ (]1 e Rm)(’r" ‘/1 e RTLXT‘

e Since U is an orthogonal matrix and X invertible, we get
argmin ||Az — b||3 = argmin |[USV'z — b||2 = argmin ||SVz — U'D||3
= argmin||[2; 0] [51;] x — Ub||3
x 2

o letz =V'w =[%],21 € R"andset [2, 0]z = Ujb= 2z, = X' Ujb
e The optimal solutions are given by

o = Vi Va] [Ef;gib} — VST UL + Vaza, 2o free
e Forr = n,the solution is unique and equal to z* = VE{IU{b

" “Numerical Optimization" - ©2023 A. Bemporad. Al rights reserved 15/24

PRINCIPAL COMPONENT ANALYSIS (PCA) AND SVD

o Given adataset of N samples z; € R”, let A € RV X" be the matrix whose row
n

A; = (z; — T)',where z = Z x; is the empirical mean of the data
i=1

e ComputetheSVD A = UXV’

e Thencolumnsof V = [v; ... v,] are called principal components and form an
orthogonal basis of R™

¢ Why “principal” components ? Note that the components of z; — T in the new
basis are UlE = [Uilal . UznO'n],Wlth 012092 ...2> On

e Only the principal components v; corresponding to “large-enough” singular
values o; are useful torepresent z; — &

" Numerical Optimization" - ©2023 A. Bemporad. All rights reserved 16/24

LOW-RANK MATRIX APPROXIMATION AND SVD

o Lletm < n,U =[U; Us), X1 =diag([oy ... om]), V = [V1 V3,

o Eckart-Young-Mirsky theorem:

A =05,V = arg min ||A— A|r suchthat rank(A) =

Ran

is an optimal low-rank approximation of A,and |4 — A*||% = Z o,
i=m-+1
where || A|| is the Frobenius norm of A (see next slide).

e Matrix A* also minimizes the spectral norm (see next slide) || A — A||, and
[A—=A%l2 = oms

" “Numerical Optimization" - ©2023 A. Bemporad. All rights reserved. 17/24

MATRIX NORMS AND CONDITION NUMBER

A matrix norm is a norm on the vector space R™*"

The Frobenius norm of matrixa A € R™*"is ||A||r =

DT

=1 j=1

A matrix norm can be induced by a vector norm ||z||, z € R™ as

|A] = up ||| |” = sup |Az| induced norm
l=ll=1

A key role in determining the numerical robustness of an (optimization)
algorithm is the condition number of an invertible matrix A € R™*"™

cond(4) = [[A] - [[A7Y|

As [[A]| - [A=Y = [|AA=1]| = [[1]] = 1, we always have cond(A) > 1

" “Numerical Optimization" - ©2023 A. Bemporad. Al rights reserved 18/24

MATRIX NORMS AND CONDITION NUMBER

e If we use the Euclidean norm ||z ||, we get the spectral norm

[All2 = max, [Az]l2 = max, TSV z]|2 = max, 1Zyll2 = omax(A)

and

1
A7l = max VU x|, = max, -
47 = pma, [VE0%0 = e, [l =

e Therefore

Jmax A
cond(4) = [- 1471 = 22
e When A is symmetric
[Amax (A)]
cond(A) = ———=
)= A

Roughly speaking, we say that A is well-conditioned if cond(A) ~ 1
and ill-conditioned if cond(A) > 1

" Numerical Optimization" - ©2023 A. Bemporad. All rights reserved 19/24

NUMERICAL ROBUSTNESS

o Say for numerical errors we are solving A(z + dx) = b+ dbinstead of Az = b
e Since Az = b (exact solution), we get 5z = A~16b

e Therefore, the relative error of the solution is

-1 -1
o= _ 1A (Il [[A—"[llob] _

ob]
< < =cond(A)——-
El El o174 “)

161l

e The larger cond(A) the more an error in computing b propagates into an error
insolving Ax = b

e Example: say we solve a dual QP and retrieve z* = —Q~!(c + A’*). Small
errors in computing A* can become large errors in z* if cond(Q) > 1

" Numerical Optimization" - ©2023 A. Bemporad. All rights reserved 20/24

ITERATIVE REFINEMENT

We want to solve Az = b but A is ill-conditioned (even singular, but Az = bis
solvable)

Regularizing A and solving (A + eI)xz = b, e > 0, will provide a different
solutionzg = (A +el)~1b

Instead, we factorize LL’ = (A + €I) (any other factorization will work) and
iterate the following from zq until the residual b — Azj, ~ 0:

Tpt1 = Tk + (A + 6[)71(17 - ACEk)

refinemerdt

Theoretically, (b — Axy) — O0foralle > 0

Usually only a few steps are required if ¢ is properly chosen (large enough to
compute L robustly, but not too large otherwise convergence is slow)

" Numerical Optimization" - ©2023 A. Bemporad. All rights reserved 21/24

CONJUGATE GRADIENT METHOD

e The conjugate gradient (CG) method is an iterative method for solving Az = b
with A symmetric and positive definite

o Given aninitial guess zg and residual ro = Axzg — b, pg = —ro, the CG algorithm
iterates the following steps until the residual r;, =~ 0:

_ TRTR The1 | Tk + Dk
(652 = A 5 =
Py APk Tk+1 Tk + o Apr
!
Tr+1TE+1
Brt1 = ———, Ph+1 = —Tht1 + Be1Pe
T Tk

e The method is particularly useful when A is large, as it does not involve any
factorization of A

e The method is matrix-free as A does not even need to be available, we only
need to be able to compute Av

e The convergence speed of CG is sensitive to scaling of A4, so it may require
preconditioning

" Numerical Optimization" - ©2023 A. Bemporad. All rights reserved 22/24

PRECONDITIONING

The speed of convergence of many iterative methods is affected by the choice
of coordinate system

Let A = A’ = 0. Solving Az = b means minimizing %x’Am -V

If wereplace z, = T~ 'z weget 12/ T ATz, — V' Tws = T' ATz, = T'b

Matrix 1" should be simple to compute and invert, for example diagonal

Jacobi scaling sets T' = diag(\/7) so that T’ AT has unit diagonal. Usually

(but not always) the new condition number gets lower

" “Numerical Optimization" - ©2023 A. Bemporad. Al rights reserved 23/24

PRECONDITIONING

e Example: Jacobi scaling of random symmetric positive definite matrices with
condition number between 1 and 10%. Ratio cond (7" AT')/ cond(A)

B e

0.6 |

. . .
10° 102 10* 10° 108
cond(A)

e There are many other techniques for matrix preconditioning and for matrix
equilibration (Giselsson, Boyd, 2015)

" “Numerical Optimization" - ©2023 A. Bemporad. All rights reserved. 24/24

	Basics of numerical linear algebra

