BASICS OF NUMERICAL LINEAR ALGEBRA

NUMERICAL LINEAR ALGEBRA

- Before diving into optimization algorithms we need to recall some basic facts of numerical linear algebra
- We will review basic numerical techniques of matrix factorization and solution of linear systems, which are key ingredients for most optimization algorithms
- We also want to keep in mind the flops (floating point operations) involved in those numerical techniques, where 1 flop $=$ one operation $(+,-, * \text { or } \div)^{1}$
- When counting flops, we usually consider only the largest terms
- Excellent textbook: Golub-Van Loan, ``Matrix Computations" (4th ed.), 2012

[^0]
BASIC MATRIX OPERATIONS

- The inner product $x^{\prime} y, x, y \in \mathbb{R}^{n}$, requires $2 n-1 \approx 2 n$ flops
- The sum $x+y$ and multiplication by a scalar αx require n flops
- The matrix-vector product $A x, A \in \mathbb{R}^{m \times n}$, requires:
- $m(2 n-1) \approx 2 m n$ flops, or
- $2 N$ flops if A is sparse with N nonzero entries, or
- $2 p(n+m)$ flops if $U \in \mathbb{R}^{m \times p}, V \in \mathbb{R}^{n \times p}$ are given such that $A=U V^{\prime}$ $\left(A x=U\left(V^{\prime} x\right)\right.$). This can be useful when $p, n \leq m$
- The matrix-matrix product $C=A B$ with $B \in \mathbb{R}^{n \times p}$, requires $m p(2 n-1) \approx 2 m n p$ flops (or $\approx m^{2} n$ if C is symmetric, $m=p$)

SOLVING LINEAR SYSTEMS AX=B

- We want to solve the square linear system $A x=b, A \in \mathbb{R}^{n \times n}, \operatorname{det} A \neq 0$
- If A is diagonal, $A=\operatorname{diag}(a)$, we get $x_{i}=\frac{b_{i}}{a_{i}}$, which requires n flops
- If A is lower triangular, $A_{i j}=0$ for $j>i$, we can compute $x=A^{-1} b$ with $\sum_{k=1}^{n} 2(k-1)+1=n^{2}$ flops by forward substitution:

$$
\begin{aligned}
x_{1} & =b_{1} / a_{11} \\
x_{2} & =\left(b_{2}-a_{21} x_{1}\right) / a_{22} \\
\vdots & \vdots \\
x_{n} & =\left(b_{n}-\sum_{i=1}^{n-1} a_{n i} x_{i}\right) / a_{n n}
\end{aligned} \quad A=\left[\begin{array}{cccc}
a_{11} & 0 & \ldots & 0 \\
a_{12} & a_{22} & \ldots 0 & \\
\vdots & \vdots & \ldots & \vdots \\
a_{n 1} & a_{n 2} & \ldots & a_{n n}
\end{array}\right]
$$

- Similarly, if A is upper triangular, $A_{i j}=0$ for $j<i$, computing $x=A^{-1} b$ requires n^{2} flops by backward substitution

SOLVING LINEAR SYSTEMS AX=B

- Let A be a Householder matrix, $A=I-2 v v^{\prime},\|v\|_{2}=1$. Since $A^{-1}=A$, $x=A^{-1} b=A b=b-2\left(v^{\prime} b\right) v$ requires $4 n$ flops
- If A is a permutation matrix (=permutation of the columns of I) then $A^{-1}=A^{\prime}$, and $x=A^{-1} b$ requires 0 flops

Example:

$$
A=\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right], A^{-1}=A^{\prime}=\left[\begin{array}{llll}
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0
\end{array}\right], A^{-1} x=\left[\begin{array}{l}
x_{3} \\
x_{1} \\
x_{4} \\
x_{2}
\end{array}\right]
$$

LU FACTORIZATION

DEFINITION

A square matrix $A \in \mathbb{R}^{n \times n}$ is diagonally nonsingular if all its leading principal submatrices $A_{k} \in \mathbb{R}^{k \times k}, a_{k, i j}=a_{i j}$, are nonsingular, $\forall k=1, \ldots, n$

- A diagonally nonsingular matrix A can be factorized as $A=L U$, where $L=$ lower triangular, $U=$ upper triangular
- The LU factorization requires $\approx \frac{2}{3} n^{3}$ flops
- Hence we can solve the linear system $A x=L(U x)=b$ as follows:
- Solve $L y=b$ (n^{2} flops)
- Solve $U x=y$ (n^{2} flops)
- The total cost for solving the linear system is $\frac{2}{3} n^{3}+2 n^{2} \approx \frac{2}{3} n^{3}$ flops

LU FACTORIZATION

- Every nonsingular matrix A can be factorized as $A=P L U$, where $P=$ permutation matrix, $L=$ lower triangular, $U=$ upper triangular
- The permutation matrix P adds no flop in solving $A x=b$: $P z=b$ (0 flops), $L y=z$ (n^{2} flops), $U x=y$ (n^{2} flops)
- Note that when solving N linear systems $A x=b^{k}, k=1,2, \ldots, N$, we only need to compute the LU factorization once.

For example in iterative refinement (see later) we improve the precision of a solution x_{0} of $A x=b$ by iterating

$$
\begin{aligned}
r_{k} & =b-A x_{k} \\
A d_{k} & =r_{k} \\
x_{k+1} & =x_{k}+d_{k}, \quad k=0, \ldots
\end{aligned}
$$

CHOLESKY FACTORIZATION

- Every symmetric positive definite matrix A admits the Cholesky factorization $A=L L^{\prime}$. This requires $\approx \frac{1}{3} n^{3}$ flops and n square roots, where $L=$ lower triangular matrix (Demmel, 1989)
- Hence the linear system $\left.A x=L\left(L^{\prime} x\right)\right)=b$ can be solved by

André-Louis Cholesky (1875-1918)

- solving $L y=b$ (n^{2} flops)
- solving $L^{\prime} x=y$ (n^{2} flops)
- The total cost for solving the linear system $A x=b$ is $\frac{1}{3} n^{3}+2 n^{2} \approx \frac{1}{3} n^{3}$ flops
- Again, when solving N linear systems $A x=b^{k}, k=1,2, \ldots, N$ the Cholesky factorization is only computed once
- Efficient sparse versions of the Cholesky factorization algorithm exist

LDL' FACTORIZATION

- Every diagonally nonsingular and symmetric matrix A can be factorized as $A=L D L^{\prime}$ with $\approx \frac{1}{3} n^{3}$ flops and no square root, where $D=$ diagonal and $L=$ unit lower-triangular ($L_{i i}=1$)
- We can solve the linear system $A x=L\left(D\left(L^{\prime} x\right)\right)=b$ as follows:
- Solve $L z=b$ (n^{2} flops)
- Solve $D y=z$ (n flops)
- Solve $L^{\prime} x=y$ (n^{2} flops)
- The total cost for solving the linear system is $\frac{1}{3} n^{3}+2 n^{2}+n \approx \frac{1}{3} n^{3}$ flops
- Every symmetric positive definite matrix A is diagonally nonsingular, therefore

$$
A=A^{\prime} \succ 0 \Rightarrow A=L D L^{\prime}
$$

LDL' FACTORIZATION

- Every nonsingular symmetric matrix A can be factorized as

$$
P A P^{\prime}=L D L^{\prime}
$$

with $\approx \frac{1}{3} n^{3}$ flops and no square root, where $P=$ permutation matrix, $L=$ unit lower triangular, $D=$ block diagonal with 1×1 or 2×2 blocks

- When A is sparse, techniques exist to choose P such that L is sparse, so the solution cost is $\ll \frac{1}{3} n^{3}$
- Again, when solving N linear systems $A x=b^{k}, k=1,2, \ldots, N$ the LDL' factorization is only computed once

MATRIX INVERSION LEMMA

LEMMA

Let $A \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{n \times m}, C \in \mathbb{R}^{m \times m}, D \in \mathbb{R}^{m \times n}$, and let A, C, and $C^{-1}+D A^{-1} B$ be nonsingular. Then

$$
(A+B C D)^{-1}=A^{-1}-A^{-1} B\left(C^{-1}+D A^{-1} B\right)^{-1} D A^{-1}
$$

- Assume the structure of A and C is such that $A x=b$ is easy to solve (e.g., A block diagonal) and C is easily invertible (e.g., $C=I$ or $m \ll n$)
- Then we can solve $x=(A+B C D)^{-1} b$ as follows:
- Solve $A d=b$ with respect to d
- Get matrix $E=A^{-1} B$ by solving $A z=B_{i}=i$ th column of $B, i=1, \ldots, m$
- Solve $\left(C^{-1}+D E\right) y=D d$ with respect to $y \in \mathbb{R}^{m}$
- Solve $A x=b$ - By with respect to x
- This is very useful when $m \ll n$. For $m=C=1$ the inversion formula reduces to Sherman-Morrison's formula $\left(A+b d^{\prime}\right)^{-1}=A^{-1}-\frac{A^{-1} b d^{\prime} A^{-1}}{1+d^{\prime} A^{-1} b}$

QR FACTORIZATION

THEOREM

Any matrix $A \in \mathbb{R}^{m \times n}$ can be factorized as

$$
A=Q R
$$

where $Q \in \mathbb{R}^{m \times m}$ is orthogonal ($Q^{\prime} Q=I$) and $R \in \mathbb{R}^{m \times n}$ is upper triangular.

- The number of nonzero diagonal entries of R is equal to $\operatorname{rank} A$
- In case of overdetermined linear systems $A x=b, m>n$, we get

$$
R=\left[\begin{array}{c}
R_{1} \\
0
\end{array}\right], Q=\left[\begin{array}{ll}
Q_{1} & Q_{2}
\end{array}\right],\left[\begin{array}{c}
R_{1} x \\
0
\end{array}\right]=\left[\begin{array}{c}
Q_{1}^{\prime} b \\
Q_{2}^{\prime} b
\end{array}\right]
$$

- If $Q_{2}^{\prime} b=0$ the system is solvable by solving the triangular system

$$
R_{1} x=Q_{1}^{\prime} b
$$

- The factorization $A=Q_{1} R_{1}$ is called economy-size QR factorization of A

QR FACTORIZATION

- Q-less factorization: if we factorize $[A b]=Q\left[R_{1} r_{2}\right]$ we can avoid computing and storing Q explicitly in order to solve $A x=b$:

$$
A x-b=\left[\begin{array}{ll}
A & b
\end{array}\right]\left[\begin{array}{c}
x \\
-1
\end{array}\right]=Q\left[\begin{array}{ll}
R_{1} & r_{2}
\end{array}\right]\left[\begin{array}{c}
x \\
-1
\end{array}\right]=0 \Leftrightarrow R_{1} x=r_{2}
$$

- There are different algorithms to compute $A=Q R$
(Lawson, Hanson, 1974) (Golub, Van Loan, 2012)
- The QR factorization is useful to solve least-squares problems:

$$
\|A x-b\|_{2}^{2}=\|Q R x-b\|_{2}^{2}=\left\|\left[\begin{array}{c}
R_{1} x-Q_{1}^{\prime} b \\
-Q_{2}^{\prime} b
\end{array}\right]\right\|_{2}^{2}=\left\|R_{1} x-Q_{1}^{\prime} b\right\|_{2}^{2}+\left\|Q_{2}^{\prime} b\right\|_{2}^{2}
$$

is minimized for $x^{*}=R_{1}^{-1} Q_{1}^{\prime} b$

- Alternatives: solve the normal equations $A^{\prime} A=A^{\prime} b$ by factorizing $A^{\prime} A=L^{\prime} L$ (Cholesky) or $A^{\prime} A=L D L^{\prime}$. Or use SVD decomposition (see next slides)

SINGULAR VALUE DECOMPOSITION [SVD]

- Every matrix $A \in \mathbb{R}^{m \times n}$ can be decomposed as

$$
A=U \Sigma V^{\prime}
$$

with $U^{\prime} U=I, V^{\prime} V=I, \Sigma_{i i} \geq 0, \Sigma_{i j}=0, \forall i \neq j$

- The diagonal entries σ_{i} of Σ are called the singular values of A. They are usually defined in descending order ($\sigma_{i} \geq \sigma_{j}$ for $i \leq j$)
- If $\sigma_{i}=0$ for $i=r+1, \ldots, \min (n, m)$, then $\operatorname{rank}(A)=r$
- Computing the SVD require $\alpha m n^{2}+\beta n^{3}+\gamma n m^{2}$ flops, where α, β, γ depend on the algorithm used and whether only some of Σ, U, V are required
(Golub, Van Loan, 2012)

SINGULAR VALUE DECOMPOSITION [SVDJ]

- Since $V^{\prime} v_{i}=e_{i}\left(v_{i}=i\right.$ th column of $V, e_{i}=i$ th column of $\left.I\right)$ and $\Sigma e_{i}=0$ for $i>r$ the last $n-r$ columns of V are a basis of the kernel (null-space) of A
- Since $y=A x=U\left[\begin{array}{lllll}z_{1} & \ldots & z_{r} & 0 & \ldots\end{array}\right]^{\prime}$, where x arbitrary and V nonsingular make z_{i} arbitrary, the first r columns of U are a basis of the image (range) of A
- When A invertible, $A^{-1}=\left(U \Sigma V^{\prime}\right)^{-1}=V \Sigma^{-1} U^{\prime}$
- When A is symmetric, $U=V$ are a basis of eigenvectors of A and $\sigma_{i}=\left|\lambda_{i}\right|$, with $\lambda_{i}=$ eigenvalues of $A, \lambda_{i} \in \mathbb{R}$

SVD plays a fundamental role in many applications!

LEAST-SQUARES PROBLEMS AND SVD

- Let $A \in \mathbb{R}^{m \times n}, m>n$, rank $A=r \leq n$ and factorize $A=U \Sigma V^{\prime}$

$$
\begin{aligned}
& \Sigma=\left[\begin{array}{cc}
\Sigma_{1} & 0 \\
0 & 0
\end{array}\right], \quad U=\left[U_{1} U_{2}\right], \quad V=\left[V_{1} V_{2}\right] \\
& \Sigma_{1} \in \mathbb{R}^{r \times r}, \quad U_{1} \in \mathbb{R}^{m \times r}, \quad V_{1} \in \mathbb{R}^{n \times r}
\end{aligned}
$$

- Since U is an orthogonal matrix and Σ_{1} invertible, we get

$$
\begin{aligned}
\arg \min _{x}\|A x-b\|_{2}^{2} & =\arg \min _{x}\left\|U \Sigma V^{\prime} x-b\right\|_{2}^{2}=\arg \min _{x}\left\|\Sigma V^{\prime} x-U^{\prime} b\right\|_{2}^{2} \\
& =\arg \min _{x}\left\|\left[\Sigma_{1} 0\right]\left[\begin{array}{l}
V_{1}^{\prime} \\
V_{2}^{\prime}
\end{array}\right] x-U_{1}^{\prime} b\right\|_{2}^{2}
\end{aligned}
$$

- Let $z=V^{\prime} x=\left[\begin{array}{l}z_{1} \\ z_{2}\end{array}\right], z_{1} \in \mathbb{R}^{r}$ and set $\left[\Sigma_{1} 0\right] z=U_{1}^{\prime} b \Rightarrow z_{1}=\Sigma_{1}^{-1} U_{1}^{\prime} b$
- The optimal solutions are given by

$$
x^{*}=\left[V_{1} V_{2}\right]\left[\begin{array}{c}
\Sigma_{1}^{-1} U_{1}^{\prime} b \\
z_{2}
\end{array}\right]=V_{1} \Sigma_{1}^{-1} U_{1}^{\prime} b+V_{2} z_{2}, \quad z_{2} \text { free }
$$

- For $r=n$, the solution is unique and equal to $x^{*}=V \Sigma_{1}^{-1} U_{1}^{\prime} b$

PRINCIPAL COMPONENT ANALYSIS [PCAI AND SVD

- Given a dataset of N samples $x_{i} \in \mathbb{R}^{n}$, let $A \in \mathbb{R}^{N \times n}$ be the matrix whose row $A_{i}=\left(x_{i}-\bar{x}\right)^{\prime}$, where $\bar{x}=\sum_{i=1}^{n} x_{i}$ is the empirical mean of the data
- Compute the SVD $A=U \Sigma V^{\prime}$
- The n columns of $V=\left[v_{1} \ldots v_{n}\right]$ are called principal components and form an orthogonal basis of \mathbb{R}^{n}
- Why "principal" components ? Note that the components of $x_{i}-\bar{x}$ in the new basis are $U_{i} \Sigma=\left[U_{i 1} \sigma_{1} \ldots U_{i n} \sigma_{n}\right]$, with $\sigma_{1} \geq \sigma_{2} \geq \ldots \geq \sigma_{n}$
- Only the principal components v_{i} corresponding to "large-enough" singular values σ_{i} are useful to represent $x_{i}-\bar{x}$

LOW-RANK MATRIX APPROXIMATION AND SVD

- Let $m \leq n, U=\left[U_{1} U_{2}\right], \Sigma_{1}=\operatorname{diag}\left(\left[\sigma_{1} \ldots \sigma_{m}\right]\right), V=\left[\begin{array}{ll}\left.V_{1} V_{2}\right], \begin{array}{l}U_{1} \in \mathbb{R}^{N \times m} \\ V_{1} \in \mathbb{R}^{n \times m}\end{array}\end{array}\right.$
- Eckart-Young-Mirsky theorem:

$$
\hat{A}^{*}=U_{1} \Sigma_{1} V_{1}^{\prime}=\arg \min _{\hat{A} \in \mathbb{R}^{N \times n}}\|A-\hat{A}\|_{F} \quad \text { such that } \operatorname{rank}(\hat{A})=m
$$

is an optimal low-rank approximation of A, and $\left\|A-\hat{A}^{*}\right\|_{F}^{2}=\sum_{i=m+1}^{n} \sigma_{i}^{2}$, where $\|A\|_{F}$ is the Frobenius norm of A (see next slide).

- Matrix \hat{A}^{*} also minimizes the spectral norm (see next slide) $\|A-\hat{A}\|_{2}$, and $\left\|A-\hat{A}^{*}\right\|_{2}=\sigma_{m+1}$

MATRIX NORMS AND CONDITION NUMBER

- A matrix norm is a norm on the vector space $\mathbb{R}^{m \times n}$
- The Frobenius norm of matrix a $A \in \mathbb{R}^{m \times n}$ is $\|A\|_{F}=\sqrt{\sum_{i=1}^{m} \sum_{j=1}^{n} A_{i j}^{2}}$
- A matrix norm can be induced by a vector norm $\|x\|, x \in \mathbb{R}^{n}$ as

$$
\|A\|=\sup _{x \neq 0} \frac{\|A x\|}{\|x\|}=\sup _{\|x\|=1}\|A x\| \quad \text { induced norm }
$$

- A key role in determining the numerical robustness of an (optimization) algorithm is the condition number of an invertible matrix $A \in \mathbb{R}^{n \times n}$

$$
\operatorname{cond}(A)=\|A\| \cdot\left\|A^{-1}\right\|
$$

- As $\|A\| \cdot\left\|A^{-1}\right\| \geq\left\|A A^{-1}\right\|=\|I\|=1$, we always have $\operatorname{cond}(A) \geq 1$

MATRIX NORMS AND CONDITION NUMBER

- If we use the Euclidean norm $\|x\|_{2}$ we get the spectral norm

$$
\|A\|_{2}=\max _{\|x\|_{2}=1}\|A x\|_{2}=\max _{\|x\|_{2}=1}\left\|U \Sigma V^{\prime} x\right\|_{2}=\max _{\|y\|_{2}=1}\|\Sigma y\|_{2}=\sigma_{\max }(A)
$$

and

$$
\left\|A^{-1}\right\|_{2}=\max _{\|x\|_{2}=1}\left\|V \Sigma^{-1} U^{\prime} x\right\|_{2}=\max _{\|y\|_{2}=1}\left\|\Sigma^{-1} y\right\|_{2}=\frac{1}{\sigma_{\min }(A)}
$$

- Therefore

$$
\operatorname{cond}(A)=\|A\|_{2} \cdot\left\|A^{-1}\right\|_{2}=\frac{\sigma_{\max }(A)}{\sigma_{\min }(A)}
$$

- When A is symmetric

$$
\operatorname{cond}(A)=\frac{\left|\lambda_{\max }(A)\right|}{\left|\lambda_{\min }(A)\right|}
$$

Roughly speaking, we say that A is well-conditioned if $\operatorname{cond}(A) \approx 1$ and ill-conditioned if $\operatorname{cond}(A) \gg 1$

NUMERICAL ROBUSTNESS

- Say for numerical errors we are solving $A(x+\delta x)=b+\delta b$ instead of $A x=b$
- Since $A x=b$ (exact solution), we get $\delta x=A^{-1} \delta b$
- Therefore, the relative error of the solution is

$$
\frac{\|\delta x\|}{\|x\|} \leq \frac{\left\|A^{-1}\right\|\|\delta b\|}{\|x\|} \leq \frac{\left\|A^{-1}\right\|\|\delta b\|}{\|b\| /\|A\|}=\operatorname{cond}(A) \frac{\|\delta b\|}{\|b\|}
$$

- The larger $\operatorname{cond}(A)$ the more an error in computing b propagates into an error in solving $A x=b$
- Example: say we solve a dual QP and retrieve $x^{*}=-Q^{-1}\left(c+A^{\prime} \lambda^{*}\right)$. Small errors in computing λ^{*} can become large errors in x^{*} if $\operatorname{cond}(Q) \gg 1$

ITERATIVE REFINEMENT

- We want to solve $A x=b$ but A is ill-conditioned (even singular, but $A x=b$ is solvable)
- Regularizing A and solving $(A+\epsilon I) x=b, \epsilon>0$, will provide a different solution $x_{0}=(A+\epsilon I)^{-1} b$
- Instead, we factorize $L L^{\prime}=(A+\epsilon I)$ (any other factorization will work) and iterate the following from x_{0} until the residual $b-A x_{k} \approx 0$:

$$
x_{k+1}=x_{k}+\underbrace{(A+\epsilon I)^{-1}\left(b-A x_{k}\right)}_{\text {refinement }}
$$

- Theoretically, $\left(b-A x_{k}\right) \rightarrow 0$ for all $\epsilon>0$
- Usually only a few steps are required if ϵ is properly chosen (large enough to compute L robustly, but not too large otherwise convergence is slow)

CONJUGATE GRADIENT METHOD

- The conjugate gradient (CG) method is an iterative method for solving $A x=b$ with A symmetric and positive definite
- Given an initial guess x_{0} and residual $r_{0}=A x_{0}-b, p_{0}=-r_{0}$, the CG algorithm iterates the following steps until the residual $r_{k} \approx 0$:

$$
\begin{aligned}
\alpha_{k} & =\frac{r_{k}^{\prime} r_{k}}{p_{k}^{\prime} A p_{k}}, & {\left[\begin{array}{c}
x_{k+1} \\
r_{k+1}
\end{array}\right] } & =\left[\begin{array}{c}
x_{k}+\alpha_{k} p_{k} \\
r_{k}+\alpha_{k} A p_{k}
\end{array}\right] \\
\beta_{k+1} & =\frac{r_{k+1}^{\prime} r_{k+1}}{r_{k}^{\prime} r_{k}}, & p_{k+1} & =-r_{k+1}+\beta_{k+1} p_{k}
\end{aligned}
$$

- The method is particularly useful when A is large, as it does not involve any factorization of A
- The method is matrix-free as A does not even need to be available, we only need to be able to compute $A v$
- The convergence speed of CG is sensitive to scaling of A, so it may require preconditioning

PRECONDITIONING

- The speed of convergence of many iterative methods is affected by the choice of coordinate system
- Let $A=A^{\prime} \succ 0$. Solving $A x=b$ means minimizing $\frac{1}{2} x^{\prime} A x-b^{\prime} x$
- If we replace $x_{s}=T^{-1} x$ we get $\frac{1}{2} x_{s}^{\prime} T^{\prime} A T x_{s}-b^{\prime} T x_{s} \Rightarrow T^{\prime} A T x_{s}=T^{\prime} b$
- Matrix T should be simple to compute and invert, for example diagonal
- Jacobi scaling sets $T=\operatorname{diag}\left(\frac{1}{\sqrt{A_{i i}}}\right)$, so that $T^{\prime} A T$ has unit diagonal. Usually (but not always) the new condition number gets lower

PRECONDITIONING

- Example: Jacobi scaling of random symmetric positive definite matrices with condition number between 1 and 10^{8}. Ratio $\operatorname{cond}\left(T^{\prime} A T\right) / \operatorname{cond}(A)$

- There are many other techniques for matrix preconditioning and for matrix equilibration (Giselsson, Boyd, 2015)

[^0]: ${ }^{1}$ We do not consider Single Instruction Multiple Data (SIMD) capabilities of modern processors

