BASICS OF NUMERICAL LINEAR ALGEBRA
Before diving into optimization algorithms we need to recall some basic facts of numerical linear algebra.

We will review basic numerical techniques of matrix factorization and solution of linear systems, which are key ingredients for most optimization algorithms.

We also want to keep in mind the flops (floating point operations) involved in those numerical techniques, where 1 flop = one operation (+, −, ∗ or ÷).\(^1\)

When counting flops, we usually consider only the largest terms.

\(^1\)We do not consider Single Instruction Multiple Data (SIMD) capabilities of modern processors.
• The **inner product** $x'y, x, y \in \mathbb{R}^n$, requires $2n - 1 \approx 2n$ flops

• The **sum** $x + y$ and **multiplication by a scalar** αx require n flops

• The **matrix-vector** product $Ax, A \in \mathbb{R}^{m \times n}$, requires:
 - $m(2n - 1) \approx 2mn$ flops, or
 - $2N$ flops if A is sparse with N nonzero entries, or
 - $2p(n + m)$ flops if $U \in \mathbb{R}^{m \times p}, V \in \mathbb{R}^{n \times p}$ are given such that $A = U V'$
 ($Ax = U(V'x)$). This can be useful when $p, n \leq m$

• The **matrix-matrix product** $C = AB$ with $B \in \mathbb{R}^{n \times p}$, requires
 $mp(2n - 1) \approx 2mnp$ flops (or $\approx m^2 n$ if C is symmetric, $m = p$)
We want to solve the square linear system \(Ax = b, A \in \mathbb{R}^{n \times n}, \det A \neq 0 \)

If \(A \) is diagonal, \(A = \text{diag}(a) \), we get \(x_i = \frac{b_i}{a_i} \), which requires \(n \) flops

If \(A \) is lower triangular, \(A_{ij} = 0 \) for \(j > i \), we can compute \(x = A^{-1}b \) with \(\sum_{k=1}^{n} 2(k - 1) + 1 = n^2 \) flops by forward substitution:

\[
\begin{align*}
x_1 &= b_1/a_{11} \\
x_2 &= (b_2 - a_{21}x_1)/a_{22} \\
 & \vdots \\
x_n &= (b_n - \sum_{i=1}^{n-1} a_{ni}x_i)/a_{nn}
\end{align*}
\]

\[
A = \begin{bmatrix} a_{11} & 0 & \ldots & 0 \\
a_{12} & a_{22} & \ldots & 0 \\
 & \vdots & \ddots & \vdots \\
a_{n1} & a_{n2} & \ldots & a_{nn} \end{bmatrix}
\]

Similarly, if \(A \) is upper triangular, \(A_{ij} = 0 \) for \(j < i \), computing \(x = A^{-1}b \) requires \(n^2 \) flops by backward substitution.
Let A be a **Householder matrix**, $A = I - 2vv'$, $\|v\|_2 = 1$. Since $A^{-1} = A$, $x = A^{-1}b = Ab = b - 2(v'b)v$ requires $4n$ flops.

If A is a **permutation matrix** (=permutation of the columns of I) then $A^{-1} = A'$, and $x = A^{-1}b$ requires 0 flops.

Example:

$$A = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}, \quad A^{-1} = A' = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \end{bmatrix}, \quad A^{-1}x = \begin{bmatrix} x_3 \\ x_1 \\ x_4 \\ x_2 \end{bmatrix}$$
DEFINITION

A square matrix $A \in \mathbb{R}^{n \times n}$ is **diagonally nonsingular** if all its leading principal submatrices $A_k \in \mathbb{R}^{k \times k}$, $a_{k,ij} = a_{ij}$, are nonsingular, $\forall k = 1, \ldots, n$.

- A **diagonally nonsingular matrix** A can be factorized as $A = LU$, where L = lower triangular, U = upper triangular.
- The LU factorization requires $\approx \frac{2}{3}n^3$ flops.
- Hence we can solve the linear system $Ax = L(Ux) = b$ as follows:
 - Solve $Ly = b$ (n^2 flops)
 - Solve $Ux = y$ (n^2 flops)
- The total cost for solving the linear system is $\frac{2}{3}n^3 + 2n^2 \approx \frac{2}{3}n^3$ flops.
• Every **nonsingular matrix** A can be factorized as $A = PLU$, where $P =$ permutation matrix, $L =$ lower triangular, $U =$ upper triangular

• The permutation matrix P adds no flop in solving $Ax = b$: $Pz = b$ (0 flops), $Ly = z$ (n^2 flops), $Ux = y$ (n^2 flops)

• Note that when solving N linear systems $Ax = b^k$, $k = 1, 2, \ldots, N$, we only need to compute the LU factorization once.

For example in **iterative refinement** (see later) we improve the precision of a solution x_0 of $Ax = b$ by iterating

\[
\begin{align*}
 r_k &= b - Ax_k \\
 Ad_k &= r_k \\
 x_{k+1} &= x_k + d_k, \quad k = 0, \ldots
\end{align*}
\]
Every **symmetric positive definite matrix** A admits the **Cholesky factorization** $A = LL'$. This requires $\approx \frac{1}{3} n^3$ flops and n square roots, where L = lower triangular matrix (Demmel, 1989).

Hence the linear system $Ax = L(L'x)) = b$ can be solved by

- solving $Ly = b$ (n^2 flops)
- solving $L'x = y$ (n^2 flops)

The total cost for solving the linear system $Ax = b$ is $\frac{1}{3} n^3 + 2n^2 \approx \frac{1}{3} n^3$ flops.

Again, when solving N linear systems $Ax = b^k$, $k = 1, 2, \ldots, N$ the Cholesky factorization is only computed once.

Efficient sparse versions of the Cholesky factorization algorithm exist.
Every **diagonally nonsingular and symmetric matrix** A can be factorized as $A = LDL'$ with $\approx \frac{1}{3} n^3$ flops and no square root, where $D =$ **diagonal** and $L =$ **unit lower-triangular** ($L_{ii} = 1$)

We can solve the linear system $Ax = L(D(L'x)) = b$ as follows:

- Solve $Lz = b$ (n^2 flops)
- Solve $Dy = z$ (n flops)
- Solve $L'x = y$ (n^2 flops)

The total cost for solving the linear system is $\frac{1}{3} n^3 + 2n^2 + n \approx \frac{1}{3} n^3$ flops

Every **symmetric positive definite matrix** A is diagonally nonsingular, therefore

$$A = A' \succ 0 \Rightarrow A = LDL'$$
Every **nonsingular symmetric matrix** A can be factorized as

$$PAP' = LDL'$$

with $\approx \frac{1}{3} n^3$ flops and no square root, where $P = \text{permutation matrix}$, $L = \text{unit lower triangular}$, $D = \text{block diagonal with } 1 \times 1 \text{ or } 2 \times 2 \text{ blocks}$

- When A is sparse, techniques exist to choose P such that L is sparse, so the solution cost is $\ll \frac{1}{3} n^3$

- Again, when solving N linear systems $Ax = b^k$, $k = 1, 2, \ldots, N$ the LDL' factorization is only computed once
Lemma

Let $A \in \mathbb{R}^{n \times n}$, $B \in \mathbb{R}^{n \times m}$, $C \in \mathbb{R}^{m \times m}$, $D \in \mathbb{R}^{m \times n}$, and let A, C, and $C^{-1} + DA^{-1}B$ be nonsingular. Then

$$(A + BCD)^{-1} = A^{-1} - A^{-1}B(C^{-1} + DA^{-1}B)^{-1}DA^{-1}$$

- Assume the structure of A and C is such that $Ax = b$ is easy to solve (e.g., A block diagonal) and C is easily invertible (e.g., $C = I$ or $m \ll n$)

- Then we can solve $x = (A + BCD)^{-1}b$ as follows:
 - Solve $Ad = b$ with respect to d
 - Get matrix $E = A^{-1}B$ by solving $Az = B_i = i$th column of $B, i = 1, \ldots, m$
 - Solve $(C^{-1} + DE)y = Dd$ with respect to $y \in \mathbb{R}^m$
 - Solve $Ax = b - By$ with respect to x

- This is very useful when $m \ll n$. For $m = C = 1$ the inversion formula reduces to **Sherman-Morrison’s formula**

$$\left(A + bd'\right)^{-1} = A^{-1} - \frac{A^{-1}bd' A^{-1}}{1 + d'A^{-1}b}$$

©2022 A. Bemporad - Numerical Optimization
QR FACTORIZATION

THEOREM

Any matrix $A \in \mathbb{R}^{m \times n}$ can be factorized as

$$A = QR$$

where $Q \in \mathbb{R}^{m \times m}$ is orthogonal ($Q'Q = I$) and $R \in \mathbb{R}^{m \times n}$ is upper triangular.

- The number of nonzero diagonal entries of R is equal to $\text{rank } A$
- In case of overdetermined linear systems $Ax = b, m > n$, we get

$$R = \begin{bmatrix} R_1 \\ 0 \end{bmatrix}, \quad Q = \begin{bmatrix} Q_1 & Q_2 \end{bmatrix}, \quad \begin{bmatrix} R_1x \\ 0 \end{bmatrix} = \begin{bmatrix} Q_1' b \\ Q_2' b \end{bmatrix}$$

- If $Q_2' b = 0$ the system is solvable by solving the triangular system

$$R_1x = Q_1' b$$

- The factorization $A = Q_1 R_1$ is called economy-size QR factorization of A
QR Factorization

- **Q-less factorization**: if we factorize \([A \ b] = QR_1 \ r_2\) we can avoid computing and storing \(Q\) explicitly in order to solve \(Ax = b\):

 \[
 Ax - b = \begin{bmatrix} A & b \end{bmatrix} \begin{bmatrix} x \\ -1 \end{bmatrix} = \begin{bmatrix} R_1 & r_2 \end{bmatrix} \begin{bmatrix} x \\ -1 \end{bmatrix} = 0 \iff R_1 x = r_2
 \]

- There are different algorithms to compute \(A = QR\)
 (Lawson, Hanson, 1974) (Golub, Van Loan, 2012)

- The QR factorization is useful to solve **least-squares problems**:

 \[
 \|Ax - b\|_2^2 = \|QRx - b\|_2^2 = \left\| \begin{bmatrix} R_1 x - Q'_1 b \\ -Q'_2 b \end{bmatrix} \right\|_2^2 = \|R_1 x - Q'_1 b\|_2^2 + \|Q'_2 b\|_2^2
 \]

 is minimized for \(x^* = R_1^{-1} Q'_1 b\)

- Alternatives: solve the **normal equations** \(A' A = A' b\) by factorizing \(A' A = L'L\) (Cholesky) or \(A' A = LDL'\). Or use SVD decomposition (see next slides)
• Every matrix $A \in \mathbb{R}^{m \times n}$ can be decomposed as

$$A = U \Sigma V'$$

with $U'U = I$, $V'V = I$, $\Sigma_{ii} \geq 0$, $\Sigma_{ij} = 0$, $\forall i \neq j$

• The diagonal entries σ_i of Σ are called the **singular values** of A. They are usually defined in descending order ($\sigma_i \geq \sigma_j$ for $i \leq j$)

• If $\sigma_i = 0$ for $i = r + 1, \ldots, \min(n, m)$, then $\text{rank}(A) = r$

• Computing the SVD require $\alpha mn^2 + \beta n^3 + \gamma nm^2$ flops, where α, β, γ depend on the algorithm used and whether only some of Σ, U, V are required

(Golub, Van Loan, 2012)
Singular Value Decomposition (SVD)

- Since $V'v_i = e_i \ (v_i = i\text{th column of } V, e_i = i\text{th column of } I)$ and $\Sigma e_i = 0$ for $i > r$ the last $n - r$ columns of V are a basis of the kernel (null-space) of A

- Since $y = Ax = U [z_1 \ldots z_r 0 \ldots 0]'$, where x arbitrary and V nonsingular make z_i arbitrary, the first r columns of U are a basis of the image (range) of A

- When A invertible, $A^{-1} = (U \Sigma V')^{-1} = V \Sigma^{-1} U'$

- When A is symmetric, $U = V$ are a basis of eigenvectors of A and $\sigma_i = |\lambda_i|$, with λ_i = eigenvalues of A, $\lambda_i \in \mathbb{R}$

SVD plays a fundamental role in many applications!
Least-squares problems and SVD

- Let $A \in \mathbb{R}^{m \times n}, m > n$, rank $A = r \leq n$ and factorize $A = U \Sigma V'$

$$
\Sigma = \begin{bmatrix} \Sigma_1 & 0 \\ 0 & 0 \end{bmatrix}, \quad U = \begin{bmatrix} U_1 & U_2 \end{bmatrix}, \quad V = \begin{bmatrix} V_1 & V_2 \end{bmatrix}
$$

$\Sigma_1 \in \mathbb{R}^{r \times r}, \quad U_1 \in \mathbb{R}^{m \times r}, \quad V_1 \in \mathbb{R}^{n \times r}$

- Since U is an orthogonal matrix and Σ_1 invertible, we get

$$
\arg \min_x \|Ax - b\|_2^2 = \arg \min_x \|U \Sigma V' x - b\|_2^2 = \arg \min_x \|\Sigma V' x - U'b\|_2^2
$$

$$
= \arg \min_x \|\begin{bmatrix} \Sigma_1 & 0 \end{bmatrix} \begin{bmatrix} V_1' \\ V_2' \end{bmatrix} x - U_1'b\|_2^2
$$

- Let $z = V'x = \begin{bmatrix} z_1' \\ z_2' \end{bmatrix}, z_1 \in \mathbb{R}^r$ and set $[\Sigma_1 0]z = U_1'b \Rightarrow z_1 = \Sigma_1^{-1}U_1'b$

- The optimal solutions are given by

$$
x^* = \begin{bmatrix} V_1 & V_2 \end{bmatrix} \begin{bmatrix} \Sigma_1^{-1}U_1'b \\ z_2' \end{bmatrix} = V_1 \Sigma_1^{-1}U_1'b + V_2 z_2, \quad z_2 \text{ free}
$$

- For $r = n$, the solution is unique and equal to $x^* = V \Sigma_1^{-1}U_1'b$
Principal Component Analysis (PCA) and SVD

- Given a dataset of N samples $x_i \in \mathbb{R}^n$, let $A \in \mathbb{R}^{N \times n}$ be the matrix whose row

$$A_i = (x_i - \bar{x})'$$

where $\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$ is the **empirical mean** of the data.

- Compute the SVD $A = U \Sigma V'$

- The n columns of $V = [v_1 \ldots v_n]$ are called **principal components** and form an orthogonal basis of \mathbb{R}^n.

- Why “principal” components? Note that the components of $x_i - \bar{x}$ in the new basis are $U_i \Sigma = [U_{i1} \sigma_1 \ldots U_{in} \sigma_n]$, with $\sigma_1 \geq \sigma_2 \geq \ldots \geq \sigma_n$.

- Only the principal components v_i corresponding to “large-enough” singular values σ_i are useful to represent $x_i - \bar{x}$.

©2022 A. Bemporad - Numerical Optimization
• Let \(m \leq n, U = [U_1 \ U_2], \Sigma_1 = \text{diag}([\sigma_1 \ldots \sigma_m]), V = [V_1 \ V_2], \)

\[U_1 \in \mathbb{R}^{N \times m}, \quad V_1 \in \mathbb{R}^{n \times m} \]

• **Eckart–Young–Mirsky theorem:**

\[
\hat{A}^* = U_1 \Sigma_1 V_1' = \arg \min_{\hat{A} \in \mathbb{R}^{N \times n}} \|A - \hat{A}\|_F \quad \text{such that } \text{rank}(\hat{A}) = m
\]

is an optimal low-rank approximation of \(A \), and \(\|A - \hat{A}^*\|_F^2 = \sum_{i=m+1}^{n} \sigma_i^2 \), where \(\|A\|_F \) is the **Frobenius norm** of \(A \) (see next slide).

• Matrix \(\hat{A}^* \) also minimizes the **spectral norm** (see next slide) \(\|A - \hat{A}\|_2 \), and \(\|A - \hat{A}^*\|_2 = \sigma_{m+1} \)
A matrix norm is a norm on the vector space $\mathbb{R}^{m \times n}$

The Frobenius norm of matrix $A \in \mathbb{R}^{m \times n}$ is $\|A\|_F = \sqrt{\sum_{i=1}^{m} \sum_{j=1}^{n} A_{ij}^2}$

A matrix norm can be induced by a vector norm $\|x\|, x \in \mathbb{R}^n$ as

$$\|A\| = \sup_{x \neq 0} \frac{\|Ax\|}{\|x\|} = \sup_{\|x\|=1} \|Ax\| \quad \text{induced norm}$$

A key role in determining the numerical robustness of an (optimization) algorithm is the condition number of an invertible matrix $A \in \mathbb{R}^{n \times n}$

$$\text{cond}(A) = \|A\| \cdot \|A^{-1}\|$$

As $\|A\| \cdot \|A^{-1}\| \geq \|AA^{-1}\| = \|I\| = 1$, we always have $\text{cond}(A) \geq 1$
Matrix norms and condition number

- If we use the Euclidean norm $\|x\|_2$ we get the spectral norm

$$\|A\|_2 = \max_{\|x\|_2=1} \|Ax\|_2 = \max_{\|x\|_2=1} \|U\Sigma V^t x\|_2 = \max_{\|y\|_2=1} \|\Sigma y\|_2 = \sigma_{\text{max}}(A)$$

and

$$\|A^{-1}\|_2 = \max_{\|x\|_2=1} \|V\Sigma^{-1} U^t x\|_2 = \max_{\|y\|_2=1} \|\Sigma^{-1} y\|_2 = \frac{1}{\sigma_{\text{min}}(A)}$$

- Therefore

$$\text{cond}(A) = \|A\|_2 \cdot \|A^{-1}\|_2 = \frac{\sigma_{\text{max}}(A)}{\sigma_{\text{min}}(A)}$$

- When A is symmetric

$$\text{cond}(A) = \frac{|\lambda_{\text{max}}(A)|}{|\lambda_{\text{min}}(A)|}$$

Roughly speaking, we say that A is well-conditioned if $\text{cond}(A) \approx 1$ and ill-conditioned if $\text{cond}(A) \gg 1$
• Say for numerical errors we are solving \(A(x + \delta x) = b + \delta b \) instead of \(Ax = b \)

• Since \(Ax = b \) (exact solution), we get \(\delta x = A^{-1}\delta b \)

• Therefore, the relative error of the solution is

\[
\frac{\|\delta x\|}{\|x\|} \leq \frac{\|A^{-1}\|\|\delta b\|}{\|x\|} \leq \frac{\|A^{-1}\|\|\delta b\|}{\|b\|/\|A\|} = \text{cond}(A) \frac{\|\delta b\|}{\|b\|}
\]

• The larger \(\text{cond}(A) \) the more an error in computing \(b \) propagates into an error in solving \(Ax = b \)

• Example: say we solve a dual QP and retrieve \(x^* = -Q^{-1}(c + A'\lambda^*) \). Small errors in computing \(\lambda^* \) can become large errors in \(x^* \) if \(\text{cond}(Q) \gg 1 \)
Iterative refinement

(Golub and Wilkinson, 1966)

• We want to solve $Ax = b$ but A is ill-conditioned (even singular, but $Ax = b$ is solvable)

• Regularizing A and solving $(A + \epsilon I)x = b$, $\epsilon > 0$, will provide a different solution $x_0 = (A + \epsilon I)^{-1}b$

• Instead, we factorize $LL' = (A + \epsilon I)$ (any other factorization will work) and iterate the following from x_0 until the residual $b - Ax_k \approx 0$:

$$x_{k+1} = x_k + (A + \epsilon I)^{-1}(b - Ax_k)$$

• Theoretically, $(b - Ax_k) \to 0$ for all $\epsilon > 0$

• Usually only a few steps are required if ϵ is properly chosen (large enough to compute L robustly, but not too large otherwise convergence is slow)
The conjugate gradient (CG) method is an \textit{iterative method} for solving $Ax = b$ with A \textit{symmetric and positive definite}.

Given an initial guess x_0 and residual $r_0 = Ax_0 - b$, $p_0 = -r_0$, the CG algorithm iterates the following steps until the residual $r_k \approx 0$:

$$
\alpha_k = \frac{r'_k r_k}{p'_k A p_k}, \quad \begin{bmatrix}
 x_{k+1} \\
 r_{k+1}
\end{bmatrix} = \begin{bmatrix}
 x_k + \alpha_k p_k \\
 r_k + \alpha_k A p_k
\end{bmatrix}
$$

$$
\beta_{k+1} = \frac{r'_{k+1} r_{k+1}}{r'_k r_k}, \quad p_{k+1} = -r_{k+1} + \beta_{k+1} p_k
$$

The method is particularly useful when A is large, as it does not involve any factorization of A.

The method is \textit{matrix-free} as A does not even need to be available, we only need to be able to compute Av.

The convergence speed of CG is sensitive to scaling of A, so it may require preconditioning.
• The speed of convergence of many iterative methods is affected by the choice of coordinate system

• Let $A = A' > 0$. Solving $Ax = b$ means minimizing $\frac{1}{2} x' A x - b' x$

• If we replace $x_s = T^{-1} x$ we get $\frac{1}{2} x_s' T' A T x_s - b' T x_s \Rightarrow T' A T x_s = T' b$

• Matrix T should be simple to compute and invert, for example diagonal

• **Jacobi scaling** sets $T = \text{diag}(\frac{1}{\sqrt{A_{ii}}})$, so that $T' A T$ has unit diagonal. Usually (but not always) the new condition number gets lower
• **Example**: Jacobi scaling of random symmetric positive definite matrices with condition number between 1 and 10^8. Ratio $\frac{\text{cond}(T'AT)}{\text{cond}(A)}$

• There are many other techniques for matrix preconditioning and for matrix equilibration (Giselsson, Boyd, 2015)