BASICS OF NUMERICAL LINEAR ALGEBRA

- Before diving into optimization algorithms we need to recall some basic facts of numerical linear algebra
- We will review basic numerical techniques of matrix factorization and solution of linear systems, which are key ingredients for most optimization algorithms
- We also want to keep in mind the flops (floating point operations) involved in those numerical techniques, where 1 flop = one operation (+, -, * or ÷)¹
- When counting flops, we usually consider only the largest terms
- Excellent textbook: Golub-Van Loan, ``Matrix Computations'' (4th ed.), 2012

`Numerical Optimization'' - ©2023 A. Bemporad. All rights reserved.

 $^{^1}$ We do not consider Single Instruction Multiple Data (SIMD) capabilities of modern processors

BASIC MATRIX OPERATIONS

- The inner product $x'y, x, y \in \mathbb{R}^n$, requires $2n 1 \approx 2n$ flops
- The sum x + y and multiplication by a scalar αx require n flops
- The matrix-vector product $Ax, A \in \mathbb{R}^{m \times n}$, requires:
 - $m(2n-1) \approx 2mn$ flops, or
 - 2N flops if A is sparse with N nonzero entries, or
 - 2p(n+m) flops if $U \in \mathbb{R}^{m \times p}$, $V \in \mathbb{R}^{n \times p}$ are given such that A = UV'(Ax = U(V'x)). This can be useful when $p, n \le m$
- The matrix-matrix product C = AB with $B \in \mathbb{R}^{n \times p}$, requires $mp(2n-1) \approx 2mnp$ flops (or $\approx m^2n$ if C is symmetric, m = p)

SOLVING LINEAR SYSTEMS AX=B

- We want to solve the square linear system $Ax = b, A \in \mathbb{R}^{n \times n}, \det A \neq 0$
- If A is diagonal, $A = \operatorname{diag}(a)$, we get $x_i = \frac{b_i}{a_i}$, which requires n flops
- If A is lower triangular, $A_{ij} = 0$ for j > i, we can compute $x = A^{-1}b$ with $\sum_{k=1}^{n} 2(k-1) + 1 = n^2$ flops by forward substitution:

$$\begin{array}{rcl} x_1 &=& b_1/a_{11} \\ x_2 &=& (b_2 - a_{21}x_1)/a_{22} \\ \vdots &\vdots \\ x_n &=& (b_n - \sum_{i=1}^{n-1} a_{ni}x_i)/a_{nn} \end{array} \qquad A = \begin{bmatrix} a_{11} & 0 & \dots & 0 \\ a_{12} & a_{22} & \dots & 0 \\ \vdots &\vdots & \dots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{bmatrix}$$

• Similarly, if A is upper triangular, $A_{ij} = 0$ for j < i, computing $x = A^{-1}b$ requires n^2 flops by backward substitution

SOLVING LINEAR SYSTEMS AX=B

- Let A be a Householder matrix, A = I 2vv', $||v||_2 = 1$. Since $A^{-1} = A$, $x = A^{-1}b = Ab = b - 2(v'b)v$ requires 4n flops
- If A is a permutation matrix (=permutation of the columns of I) then $A^{-1} = A'$, and $x = A^{-1}b$ requires 0 flops

Example:

$$A = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}, \ A^{-1} = A' = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \end{bmatrix}, \ A^{-1}x = \begin{bmatrix} x_3 \\ x_1 \\ x_4 \\ x_2 \end{bmatrix}$$

``Numerical Optimization'' - ©2023 A. Bemporad. All rights reserved.

LU FACTORIZATION

DEFINITION

A square matrix $A \in \mathbb{R}^{n \times n}$ is diagonally nonsingular if all its leading principal submatrices $A_k \in \mathbb{R}^{k \times k}$, $a_{k,ij} = a_{ij}$, are nonsingular, $\forall k = 1, \dots, n$

- A diagonally nonsingular matrix A can be factorized as A = LU, where L = lower triangular, U = upper triangular
- The LU factorization requires $\approx \frac{2}{3}n^3$ flops
- Hence we can solve the linear system Ax = L(Ux) = b as follows:
 - Solve Ly = b (n^2 flops)
 - Solve Ux = y (n^2 flops)
- The total cost for solving the linear system is $\frac{2}{3}n^3 + 2n^2 \approx \frac{2}{3}n^3$ flops

LU FACTORIZATION

- Every nonsingular matrix A can be factorized as A = PLU, where P = permutation matrix, L = lower triangular, U = upper triangular
- The permutation matrix P adds no flop in solving Ax = b: Pz = b (0 flops), Ly = z (n^2 flops), Ux = y (n^2 flops)
- Note that when solving N linear systems $Ax = b^k$, k = 1, 2, ..., N, we only need to compute the LU factorization once.

For example in **iterative refinement** (see later) we improve the precision of a solution x_0 of Ax = b by iterating

$$r_k = b - Ax_k$$

$$Ad_k = r_k$$

$$x_{k+1} = x_k + d_k, \quad k = 0, \dots$$

``Numerical Optimization'' - ©2023 A. Bemporad. All rights reserved.

CHOLESKY FACTORIZATION

- Every symmetric positive definite matrix A admits the Cholesky factorization A = LL'. This requires $\approx \frac{1}{3}n^3$ flops and n square roots, where L = lower triangular matrix (Demmel, 1989)
- Hence the linear system Ax = L(L'x)) = b can be solved by
 - solving Ly = b (n^2 flops)
 - solving L'x = y (n^2 flops)
- The total cost for solving the linear system Ax = b is $\frac{1}{3}n^3 + 2n^2 \approx \frac{1}{3}n^3$ flops
- Again, when solving N linear systems $Ax=b^k, k=1,2,...,N$ the Cholesky factorization is only computed once
- Efficient sparse versions of the Cholesky factorization algorithm exist

André-Louis Cholesky (1875–1918)

LDL' FACTORIZATION

- Every diagonally nonsingular and symmetric matrix A can be factorized as A = LDL' with $\approx \frac{1}{3}n^3$ flops and no square root, where D = diagonal and L = unit lower-triangular ($L_{ii} = 1$)
- We can solve the linear system Ax = L(D(L'x)) = b as follows:
 - Solve Lz = b (n^2 flops)
 - Solve Dy = z (*n* flops)
 - Solve L'x = y (n^2 flops)
- The total cost for solving the linear system is $\frac{1}{3}n^3 + 2n^2 + n \approx \frac{1}{3}n^3$ flops
- Every symmetric positive definite matrix A is diagonally nonsingular, therefore

$$A = A' \succ 0 \Rightarrow A = LDL'$$

``Numerical Optimization'' - ©2023 A. Bemporad. All rights reserved.

• Every nonsingular symmetric matrix A can be factorized as

PAP' = LDL'

with $\approx \frac{1}{3}n^3$ flops and no square root, where P = permutation matrix, L = unit lower triangular, D = block diagonal with 1×1 or 2×2 blocks

- When A is sparse, techniques exist to choose P such that L is sparse, so the solution cost is $\ll \frac{1}{3}n^3$
- Again, when solving N linear systems $Ax = b^k$, k = 1, 2, ..., N the LDL' factorization is only computed once

MATRIX INVERSION LEMMA

LEMMA

Let $A \in \mathbb{R}^{n \times n}$, $B \in \mathbb{R}^{n \times m}$, $C \in \mathbb{R}^{m \times m}$, $D \in \mathbb{R}^{m \times n}$, and let A, C, and $C^{-1} + DA^{-1}B$ be nonsingular. Then

$$(A + BCD)^{-1} = A^{-1} - A^{-1}B(C^{-1} + DA^{-1}B)^{-1}DA^{-1}$$

- Assume the structure of A and C is such that Ax = b is easy to solve (e.g., A block diagonal) and C is easily invertible (e.g., C = I or $m \ll n$)
- Then we can solve $x = (A + BCD)^{-1}b$ as follows:
 - Solve Ad = b with respect to d
 - Get matrix $E = A^{-1}B$ by solving $Az = B_i$ = *i*th column of B, i = 1, ..., m
 - Solve $(C^{-1} + DE)y = Dd$ with respect to $y \in \mathbb{R}^m$
 - Solve Ax = b By with respect to x
- This is very useful when $m \ll n$. For m = C = 1 the inversion formula reduces to Sherman-Morrison's formula $(A + bd')^{-1} = A^{-1} \frac{A^{-1}bd'A^{-1}}{1+d'A^{-1}b}$

`Numerical Optimization'' - ©2023 A. Bemporad. All rights reserved.

QR FACTORIZATION

THEOREM

Any matrix $A \in \mathbb{R}^{m \times n}$ can be factorized as

$$A = QR$$

where $Q \in \mathbb{R}^{m \times m}$ is orthogonal (Q'Q = I) and $R \in \mathbb{R}^{m \times n}$ is upper triangular.

- The number of nonzero diagonal entries of R is equal to $\mathrm{rank}\,A$
- In case of overdetermined linear systems Ax = b, m > n, we get

$$R = \begin{bmatrix} R_1 \\ 0 \end{bmatrix}, Q = \begin{bmatrix} Q_1 & Q_2 \end{bmatrix}, \begin{bmatrix} R_1 x \\ 0 \end{bmatrix} = \begin{bmatrix} Q'_1 b \\ Q'_2 b \end{bmatrix}$$

• If $Q_2'b = 0$ the system is solvable by solving the triangular system

$$R_1 x = Q_1' b$$

• The factorization $A = Q_1 R_1$ is called **economy-size QR factorization** of A

QR FACTORIZATION

• **Q-less factorization**: if we factorize $[A b] = Q[R_1 r_2]$ we can avoid computing and storing Q explicitly in order to solve Ax = b:

$$Ax - b = \begin{bmatrix} A & b \end{bmatrix} \begin{bmatrix} x \\ -1 \end{bmatrix} = Q \begin{bmatrix} R_1 & r_2 \end{bmatrix} \begin{bmatrix} x \\ -1 \end{bmatrix} = 0 \iff R_1 x = r_2$$

• There are different algorithms to compute ${\cal A}={\cal Q}{\cal R}$

(Lawson, Hanson, 1974) (Golub, Van Loan, 2012)

• The QR factorization is useful to solve least-squares problems:

$$||Ax - b||_{2}^{2} = ||QRx - b||_{2}^{2} = \left\| \begin{bmatrix} R_{1}x - Q_{1}'b \\ -Q_{2}'b \end{bmatrix} \right\|_{2}^{2} = ||R_{1}x - Q_{1}'b||_{2}^{2} + ||Q_{2}'b||_{2}^{2}$$

is minimized for $x^* = R_1^{-1}Q_1'b$

• Alternatives: solve the normal equations A'A = A'b by factorizing A'A = L'L(Cholesky) or A'A = LDL'. Or use SVD decomposition (see next slides)

SINGULAR VALUE DECOMPOSITION (SVD)

• Every matrix $A \in \mathbb{R}^{m \times n}$ can be decomposed as

$$A = U\Sigma V'$$

with $U'U = I, V'V = I, \Sigma_{ii} \ge 0, \Sigma_{ij} = 0, \forall i \neq j$

- The diagonal entries σ_i of Σ are called the singular values of A. They are usually defined in descending order (σ_i ≥ σ_j for i ≤ j)
- If $\sigma_i = 0$ for $i = r + 1, \dots, \min(n, m)$, then $\operatorname{rank}(A) = r$
- Computing the SVD require $\alpha mn^2 + \beta n^3 + \gamma nm^2$ flops, where α , β , γ depend on the algorithm used and whether only some of Σ , U, V are required (Golub, Van Loan, 2012)

``Numerical Optimization'' - ©2023 A. Bemporad. All rights reserved.

SINGULAR VALUE DECOMPOSITION (SVD)

- Since $V'v_i = e_i$ (v_i = *i*th column of V, e_i = *i*th column of I) and $\Sigma e_i = 0$ for i > r the last n r columns of V are a basis of the kernel (null-space) of A
- Since $y = Ax = U[z_1 \dots z_r \ 0 \dots 0]'$, where x arbitrary and V nonsingular make z_i arbitrary, the first r columns of U are a basis of the image (range) of A
- When A invertible, $A^{-1} = (U\Sigma V')^{-1} = V\Sigma^{-1}U'$
- When A is symmetric, U = V are a basis of eigenvectors of A and $\sigma_i = |\lambda_i|$, with λ_i = eigenvalues of A, $\lambda_i \in \mathbb{R}$

SVD plays a fundamental role in many applications!

LEAST-SQUARES PROBLEMS AND SVD

• Let $A \in \mathbb{R}^{m \times n}$, m > n, rank $A = r \le n$ and factorize $A = U\Sigma V'$

$$\begin{split} \Sigma &= \begin{bmatrix} \Sigma_1 & 0 \\ 0 & 0 \end{bmatrix}, \quad U = \begin{bmatrix} U_1 & U_2 \end{bmatrix}, \quad V = \begin{bmatrix} V_1 & V_2 \end{bmatrix} \\ \Sigma_1 &\in \mathbb{R}^{r \times r}, \quad U_1 \in \mathbb{R}^{m \times r}, \quad V_1 \in \mathbb{R}^{n \times r} \end{split}$$

• Since U is an orthogonal matrix and Σ_1 invertible, we get

$$\begin{split} \arg \min_{x} \|Ax - b\|_{2}^{2} &= \arg \min_{x} \|U\Sigma V'x - b\|_{2}^{2} = \arg \min_{x} \|\Sigma V'x - U'b\|_{2}^{2} \\ &= \arg \min_{x} \|[\Sigma_{1} \ 0] \begin{bmatrix} V_{1}' \\ V_{2}' \end{bmatrix} x - U_{1}'b\|_{2}^{2} \end{split}$$

- Let $z = V'x = [{z_1 \atop z_2}]$, $z_1 \in \mathbb{R}^r$ and set $[\Sigma_1 \ 0]z = U'_1b \Rightarrow z_1 = \Sigma_1^{-1}U'_1b$
- The optimal solutions are given by

$$x^* = [V_1 \ V_2] \left[\begin{array}{c} \Sigma_1^{-1} U_1' b \\ z_2 \end{array} \right] = V_1 \Sigma_1^{-1} U_1' b + V_2 z_2, \quad z_2 \ \text{free}$$

• For r = n, the solution is unique and equal to $x^* = V \Sigma_1^{-1} U_1' b$

PRINCIPAL COMPONENT ANALYSIS (PCA) AND SVD

- Given a dataset of N samples $x_i \in \mathbb{R}^n,$ let $A \in \mathbb{R}^{N \times n}$ be the matrix whose row

$$A_i = (x_i - \bar{x})'$$
, where $\bar{x} = \sum_{i=1} x_i$ is the empirical mean of the data

- Compute the SVD $A = U\Sigma V'$
- The n columns of $V=[v_1\,\ldots\,v_n]$ are called principal components and form an orthogonal basis of \mathbb{R}^n
- Why "principal" components ? Note that the components of $x_i \bar{x}$ in the new basis are $U_i \Sigma = [U_{i1}\sigma_1 \ldots U_{in}\sigma_n]$, with $\sigma_1 \ge \sigma_2 \ge \ldots \ge \sigma_n$
- Only the principal components v_i corresponding to "large-enough" singular values σ_i are useful to represent $x_i \bar{x}$

LOW-RANK MATRIX APPROXIMATION AND SVD

• Let
$$m \leq n, U = [U_1 U_2], \Sigma_1 = \operatorname{diag}([\sigma_1 \dots \sigma_m]), V = [V_1 V_2], \quad \begin{array}{l} U_1 \in \mathbb{R}^{N \times m} \\ V_1 \in \mathbb{R}^{n \times m} \end{array}$$

• Eckart-Young-Mirsky theorem:

$$\hat{A}^* = U_1 \Sigma_1 V_1' = \arg \min_{\hat{A} \in \mathbb{R}^{N \times n}} \|A - \hat{A}\|_F \quad \text{such that } \operatorname{rank}(\hat{A}) = m$$

is an optimal low-rank approximation of A, and $||A - \hat{A}^*||_F^2 = \sum_{i=m+1} \sigma_i^2$, where $||A||_F$ is the Frobenius norm of A (see next slide).

• Matrix \hat{A}^* also minimizes the spectral norm (see next slide) $||A - \hat{A}||_2$, and $||A - \hat{A}^*||_2 = \sigma_{m+1}$

MATRIX NORMS AND CONDITION NUMBER

- A matrix norm is a norm on the vector space $\mathbb{R}^{m \times n}$
- The Frobenius norm of matrix a $A \in \mathbb{R}^{m \times n}$ is $||A||_F = \sqrt{\sum_{i=1}^m \sum_{j=1}^n A_{ij}^2}$
- A matrix norm can be induced by a vector norm $\|x\|, x \in \mathbb{R}^n$ as

$$||A|| = \sup_{x \neq 0} \frac{||Ax||}{||x||} = \sup_{||x||=1} ||Ax||$$
 induced norm

• A key role in determining the numerical robustness of an (optimization) algorithm is the condition number of an invertible matrix $A \in \mathbb{R}^{n \times n}$

$$cond(A) = ||A|| \cdot ||A^{-1}||$$

- As $\|A\|\cdot\|A^{-1}\|\geq\|AA^{-1}\|=\|I\|=1,$ we always have $\operatorname{cond}(A)\geq 1$

^{``}Numerical Optimization'' - ©2023 A. Bemporad. All rights reserved.

MATRIX NORMS AND CONDITION NUMBER

• If we use the Euclidean norm $||x||_2$ we get the spectral norm

$$|A||_{2} = \max_{\|x\|_{2}=1} \|Ax\|_{2} = \max_{\|x\|_{2}=1} \|U\Sigma V'x\|_{2} = \max_{\|y\|_{2}=1} \|\Sigma y\|_{2} = \sigma_{\max}(A)$$

and

$$\|A^{-1}\|_{2} = \max_{\|x\|_{2}=1} \|V\Sigma^{-1}U'x\|_{2} = \max_{\|y\|_{2}=1} \|\Sigma^{-1}y\|_{2} = \frac{1}{\sigma_{\min}(A)}$$

Therefore

cond(A) =
$$||A||_2 \cdot ||A^{-1}||_2 = \frac{\sigma_{\max}(A)}{\sigma_{\min}(A)}$$

• When A is symmetric

$$\operatorname{cond}(A) = \frac{|\lambda_{\max}(A)|}{|\lambda_{\min}(A)|}$$

Roughly speaking, we say that A is well-conditioned if ${\rm cond}(A)\approx 1$ and ill-conditioned if ${\rm cond}(A)\gg 1$

NUMERICAL ROBUSTNESS

- Say for numerical errors we are solving $A(x + \delta x) = b + \delta b$ instead of Ax = b
- Since Ax = b (exact solution), we get $\delta x = A^{-1}\delta b$
- Therefore, the relative error of the solution is

$$\frac{\|\delta x\|}{\|x\|} \le \frac{\|A^{-1}\| \|\delta b\|}{\|x\|} \le \frac{\|A^{-1}\| \|\delta b\|}{\|b\|/\|A\|} = \operatorname{cond}(A) \frac{\|\delta b\|}{\|b\|}$$

- The larger $\operatorname{cond}(A)$ the more an error in computing b propagates into an error in solving Ax = b
- Example: say we solve a dual QP and retrieve $x^* = -Q^{-1}(c + A'\lambda^*)$. Small errors in computing λ^* can become large errors in x^* if $cond(Q) \gg 1$

ITERATIVE REFINEMENT

- We want to solve Ax = b but A is ill-conditioned (even singular, but Ax = b is solvable)
- Regularizing A and solving $(A+\epsilon I)x=b,\epsilon>0,$ will provide a different solution $x_0=(A+\epsilon I)^{-1}b$
- Instead, we factorize $LL' = (A + \epsilon I)$ (any other factorization will work) and iterate the following from x_0 until the residual $b Ax_k \approx 0$:

$$x_{k+1} = x_k + \underbrace{(A + \epsilon I)^{-1}(b - Ax_k)}_{\text{refinement}}$$

- Theoretically, $(b Ax_k) \rightarrow 0$ for all $\epsilon > 0$
- Usually only a few steps are required if ϵ is properly chosen (large enough to compute L robustly, but not too large otherwise convergence is slow)

CONJUGATE GRADIENT METHOD

- The conjugate gradient (CG) method is an iterative method for solving Ax = b with A symmetric and positive definite
- Given an initial guess x_0 and residual $r_0 = Ax_0 b$, $p_0 = -r_0$, the CG algorithm iterates the following steps until the residual $r_k \approx 0$:

$$\alpha_k = \frac{r'_k r_k}{p'_k A p_k}, \qquad \begin{bmatrix} x_{k+1} \\ r_{k+1} \end{bmatrix} = \begin{bmatrix} x_k + \alpha_k p_k \\ r_k + \alpha_k A p_k \end{bmatrix}$$
$$\beta_{k+1} = \frac{r'_{k+1} r_{k+1}}{r'_k r_k}, \qquad p_{k+1} = -r_{k+1} + \beta_{k+1} p_k$$

- The method is particularly useful when A is large, as it does not involve any factorization of A
- The method is matrix-free as A does not even need to be available, we only need to be able to compute Av
- The convergence speed of CG is sensitive to scaling of A, so it may require preconditioning

- The speed of convergence of many iterative methods is affected by the choice of coordinate system
- Let $A = A' \succ 0$. Solving Ax = b means minimizing $\frac{1}{2}x'Ax b'x$
- If we replace $x_s = T^{-1}x$ we get $\frac{1}{2}x'_sT'ATx_s b'Tx_s \Rightarrow T'ATx_s = T'b$
- Matrix T should be simple to compute and invert, for example diagonal
- Jacobi scaling sets $T = \text{diag}(\frac{1}{\sqrt{A_{ii}}})$, so that T'AT has unit diagonal. Usually (but not always) the new condition number gets lower

PRECONDITIONING

• Example: Jacobi scaling of random symmetric positive definite matrices with condition number between 1 and 10^8 . Ratio $\operatorname{cond}(T'AT)/\operatorname{cond}(A)$

• There are many other techniques for matrix preconditioning and for matrix equilibration (Giselsson, Boyd, 2015)