OPTIMIZATION THEORY
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OPTIMALITY CONDITIONS

THEOREM (TAYLOR'S THEOREM)

Let f : R™ — R be continuously differentiable and p € R™

. Then for some
t € (0,1) we have that

fla+p) = f(2)+V f(a+tp)'p vf

Brook Taylor
(1685-1731)

Moreover, if f is twice continuously differentiable, for somet € (0, 1) we have that

fle+p) = f@)+ V@)Dt 3p Vit o)y
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OPTIMALITY CONDITIONS

THEOREM (FIRST-ORDER NECESSARY CONDITIONS)
Let f : R™ — R be continuously differentiable and x* a local optimizer. Then

V(") =0

Proof:

e Assume by contradiction thatp = —V f(z*) # 0. Let g(t) = p'V f (z* + tp).
Then g(0) = p'V f(2*) = = ||V f(z")* <0

e V fiscontinuous around x*, so g is also continuous wrt ¢t in t = 0, and therefore
3T > Osuchthat g(t) < Oforall¢ € [0, 7]

e Foranyt € (0, T] by Taylor’s theorem we have that for some ¢ € (0, t)
@+ 1) = f@) + WV +tp) = f(@*) + g(0)T < f(a*), WL € (0,T]
e Then z* is not a local minimizer, which is a contradiction. O
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OPTIMALITY CONDITIONS

THEOREM (SECOND-ORDER NEGESSARY CONDITIONS)
Let the Hessian matrix function V2 f: R™ — R™*" exist and be continuous in an
open neighborhood of a local optimizer x*. Then

V(@) =0,Vf*(z") = 0

Proof:

e Assume by contradiction that V2 f(2*) % 0. Then there exist p such that
p'V2f(z*)p <O.

e Since V2 f(x) is continuous around z*, 3T > 0 such that p’ V2 f(z* + tp)p < 0
forallt € [0, 7).

¢ By doing a Taylor expansion around z*, V¢ € (0,T] there exists ¢ € (0, ) such
that

_ _ 1
flz* +tp) = f(a*) + 'V f(z*) + ifzp’VQf(a:* +tp)p < f(z¥)
e Then z* is not a local minimizer, which is a contradiction. O
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OPTIMALITY CONDITIONS

THEOREM (SECOND-ORDER SUFFICIENT CONDITIONS)
Let V2f : R™ — R™*" exist and be continuous in an open neighborhood of x*.
Let Vf(z*) = 0and V2 f(z*) = 0. Then x* is a strict local minimizer of f.

Proof:

e Since the Hessian function V2 f(z) is continuous at z* and V2 f(z*) = 0,
V2 f(z) = 0forall zinanopen ball B(z*,r)! for some scalarr > 0

e Forany psuchthat ||p||2 < rwe have that z* 4+ p € B(z*,r) and hence
F@+p) = f(2")+p' VI (@) 450 V2 (@ +tp)p = f(a")+ 50/ V2 f(2" +p)p

forsomet € (0,1).
e Sincez* +tp € B(z*,r),p'V2f(x* + tp)p > 0,and therefore
flz* 4+ p) > f(x*),Vp € B(O,r). O

For a positive scalar > 0, the Euclidean ball B(zq, ) istheset {x : ||z — zo|l2 < r}.
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OPTIMALITY CONDITIONS - CONSTRAINED CASE

e Consider the constrained optimization problem

WithITUE ={1,...,m}.
o Avector z is feasible if g;(z) < 0,Vi € I,and g;j(z) =0,Vj € E

e We say that the inequality constraint i € I is active if g;(x) = 0, inactive if
gi(x) < 0(equality constraints g;(x), j € E, are always active).
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OPTIMALITY CONDITIONS - CONSTRAINED CASE

e The active set A(z) at any feasible vector z is the set of indexes
Alz)={iel:g(z)=0}UFE

e We say that the linear independence constraint qualification (LICQ) condition
holds at x if the vectors {Vg;(x) };c (. are linearly independent

e Theset F(x) of linearized feasible directions at a feasible z is the cone
F(x)={d: d'Vgi(z)=0,Vie E, dVgi(z) <0,Viec Alx),i ¢ E}
Note that g;(z + d) = ¢;(z) +Vg;(z)' dford — 0,Vi € A(z)
=0

e Linear case example:
Az < by Aqd
Agx S b2 Agd
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OPTIMALITY CONDITIONS - CONSTRAINED CASE

THEOREM
If x* is a local minimum and the LICQ condition is satisfied then

Vf(xz*)'d>0,Vd e F(z*)

¢ Define the Lagrangian function
Lz, ) = f(z)+ Y Nigi(x)
i=1

where A € R™ are the Lagrange multipliers,

I U E = {L s 77’)’1} Joseph-Louis Lagrange
(1736-1813)
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KKT OPTIMALITY CONDITIONS

THEOREM (FIRST-ORDER NECESSARY CONDITIONS)

Let fand g;,i = 1,...,m, be continuously differentiable and x*
a local optimizer. Let the LICQ condition hold at =*. Then

JA* € R™ such that

William Karush

KarUSh (1917-1997)
Kuhn Vo L(z*, \") 0
Tucker (KKT) gi(z*) < 0 Viel
conditions gi(z*) = 0 VieFE
Af> 0 Viel
)\fgi(x*) = 0 Vi=1...,m Harold W. Kuhn

(1925-2014)
e A\fg;(z*) = Ois acomplementary slackness condition
e strict complementarity holds if A} > Oforalli € A(z*)
e )\*isunique if the LICQ condition holds

Albert W. Tucker
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KKT OPTIMALITY CONDITIONS

-V f(z*)

~Vi= Z/\ Vgi(z*), \f >0, E=0

f@* +ed) = f(z*) +eVf(x*)d
f decreaseswhen —V f(z*)'d > 0

o if =V f(z*)'d=>", A\iVg;(z*)'d were positive then Vg;(z*)'d > 0 for some
i € A(z*)suchthat A\ > 0.

Hence f can only decrease at x* if some active constraint g; is violated, as
gi(x* + ed) =~ g;(x*) + eVg;(z*)'d = eVg;(z*)d > 0,e > 0

e Viceversa, if —V f(z*) does not belong to the convex cone one can move in a
direction d such that d'V f(z*) < 0 (that is, decrease f) while keeping g;(x) < 0
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KKT CONDITIONS FOR EQUALITY-CONSTRAINED QP

e Quadratic programming problem subject to equality constraints:

1
min §x’ch +cx

st. Ax=2b

Q=Q =0, Afull row rank

e Lagrangian function: £(z,\) = $2/Qz + 'z + N (Az — b)

o KKT conditions:
Qr+c+AXN=0 L e= —Q e+ A'N)
Ax =10 AQTTA N = —(b+ AQL¢)
and therefore
M= —(AQ7TA) L (b+ AQ¢)
v =—-Q He— A(AQTAN (b + AQ 1¢))

e Inthis case, the KKT conditions are also sufficient for optimality
(this is a convex optimization problem, see later ...)
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KKT CONDITIONS FOR QP

e Quadratic programming problem

1
min §x’Qx +cx
st. Az <b
Ex=f

e Lagrangian function: £(z, \,v) = 12/Qz + dz + X (Az — b) + V/(Ex — f)

o KKT conditions:

Qr+c+AXN+Ev=0
Ex=f

Az <b

A>0

N(Az—-b)=0

[I—— —
where we replaced \; (A;x — b;) = 0, Vi, with > . A\;(A;xz — b;) = 0, having
imposed \; > 0, A;x < b;, Vs
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2ND-ORDER NECESSARY CONDITIONS

o Letx*, \* satisfy the KKT conditions. The critical cone C(z*, \*) is defined as

Vgi(z*)w=0, VieE
Clx* \*)=<{w: Vg(z*)w=0, Vie A(z*)nIwith AF >0
Vgi(z*)w <0, Vie A(a*)NIwithAf =0

e Thecritical cone C(x*, A*) contains directions in F(z*) for which it is not clear
from gradient information only whether f will increase or decrease, as from the
KKT conditions we have

W'V f(z Z)\*w Vgi(z*) =0, Yw € C(z*, \")
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2ND-ORDER CONDITIONS

THEOREM (2ND-ORDER NECESSARY CONDITIONS)
Assume f, g be twice continuously differentiable. Let x* be a local minimum and
the LICQ condition satisfied and \* such that the KKT conditions are satisfied. Then

W'V L(z*, X )w > 0, Yw € C(z*, \*)
THEOREM (2ND-ORDER SUFFICIENT CONDITIONS)

Assume f, g be twice continuously differentiable. Let x*, \* satisfy the KKT
conditions and assume that

W'V L(z*, X )w > 0, Vw € C(z*,\*), w # 0

Then x* is a strict local minimum.
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SENSITIVITY ANALYSIS

Question: if we slightly perturb a constraint g; how much f(z*) will change?

The Lagrange multipliers A* answer such a sensitivity analysis question

If g;(z*) < 0(= A = 0), perturbing g;(z) < 0to g;(z) < —e does not change
the solution, Ve < —g;(z*), as the same z*, \* satisfy the KKT

Let us change one of the active constraints g;(x) < 0to g;(z) < —e,i € A(z")

Let z* () be the perturbed optimal solution and assume |e| small enough so that
A(z(€)) = A(z")
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SENSITIVITY ANALYSIS

¢ By taking the Taylor expansion of g;(z*(¢)) around e = 0 we get
gj(x*(e)) — gj(z7) = Vg (") (z"(e) —2"), j=1,....m

o Since we assumed A(z*(¢)) = A(z*),then g;(2*(e)) = —eand g;(z*(¢)) = 0,
Vj € A(z*) \ {i},inadditionto g;(z*) = 0,Vj € A(z*)

e Byexpanding f(x*(e)) around e = 0 and using the KKT conditions

F@(€) = f@) = V(@) (@ () —a™) = Y —AjVg(a™) (2" () - 2¥)

JEA(z*)
= > X (0) — g(a7) = e
JjEA(z*)
e Fore — Oweget "
P9 _ ),
€
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SENSITIVITY ANALYSIS

DEFINITION
Leti € A(x*). Aninequality constraint g; is strongly active if ¥ > 0,
weakly active if \} =0

e If aconstraint is weakly active, modifying it slightly does not change the optimal

value since w -0

e Letusscale the constraints to 8;g;(x) < 0, 5; > 0. The KKT conditions are
satisfied for z* and 2—

o For the consistent perturbation of the constraint 5,¢;(z) < —f;e we get the
same optimizer 2*(¢), and moreover the sensitivity at the solution is

AL df(ar(e) _ 1 df(z"(e) df(z"(€) _

Bi  dBie) B de de ‘
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DUALITY

o Consider again the optimization problem

min, f(z)
st gi(x) <0,iel TUE=A{1,...,m}
gj(x)=0,j€E

Define the dual functiong : R™ — RU {—o0}

g(A) = inf L(z,) = = inf {f(m) + Z)\igi(x)}
i=1

The domain D of ¢ is the set of all A for which ¢(A\) > —oco

Avector A € Disdualfeasibleif \; > 0,Vi € I

Avectoris z € R™ primal feasible if g;(x) < 0,Vi € Tand g;(z) =0,Vj € E
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DUALITY

THEOREM (WEAK DUALITY)
For any given primal feasible x and dual feasible \

a(\) < f(=@)
In particular g(A\) < f(z*).

Proof:
e Since z and \ are feasible, \;g;(z) < 0,Vi € Tand \;g;(z) =0,Vj € E

e Therefore
> 1 —
+ E )\ng LL‘ )\) mf[:(x,)\) = q()\)

e Since the above relation holds for all feasible x, in particular it holds for «*

f(x*) > q(\), YAsuchthat \; > 0,i €I
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DUALITY

THEOREM
The dual function q()\) is concave and its domain D is convex.

Proof:

e Takeany A\',\? € D,and « € [0, 1]. We want to verify that
aAl + (1 — a)A\? € D and that Jensen’s inequality holds:

glad' + (1 —a)X?) = iI;f,C(x, a4+ (1 —a)\?)
= inf {f(fﬂ) + Z(a/\l +01- 04))\12))91‘(55)}

(a+1-a)f +O¢Z)\ gi(x 1—a)i)\§9i($)}

=1

1f{af(a: +Z)\191 )+ (1 —a)(f +Z/\zgz }

2 inf a(f(z1) +Z)\ gi(z1) }+i;12f{(1—a)(f(x2)+Z)\?gi(a:2))}
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DUALITY

o Finally, we get
glaX' + (1 — a)A?) > ag(\Y) + (1 — a)g(A\?) > —o0

which proves that g is concave and that a\! + (1 — a)\?> € D ]

e Recall that the minimum of a finite number of affine functions is concave.
q(A) is the minimum of infinitely many affine functions (one for each x).
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DUAL PROBLEM

o We define dual problem of a given optimization problem the new problem

maxy q(\)
st. A >0, Viel
AeD

e The dual problem is always a convex programming problem, even if the primal
problem is not convex

e Since f(z*) > ¢(X) for all dual feasible A, we also have that the optimum of the
dual problem satisfies the weak duality condition

q(A") < f(z7)
e Strongduality holds when g(\*) = f(x*)
e Thedifference f(z*) — q(\*) is called duality gap
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GRADIENT OF DUAL FUNCTION AND ITS LINEAR APPROXIMATION

e Letz*(\) = argmin, £(z, A). Forall A > 0, the gradient

Vag(A) = g(z"(A))

Proof:
- V()= VA(ir;fE(x, A)) = VaL(z* (M), N)

vy PO 0L ()N

O O\
N
=0 \0{ optimalidry of T*()\) = g(T*()\))

e The first-order Taylor expansion of the dual function around )\ is

g(A) = f(2" (M) + g(2" (X))’

q(Xo) + Vag(Ao)' (A = o) = g(ho) + g(z" (X0))" (A = Xo)
= inf £(z,20) +g(z"(X0))' (A = do) = f(2" (X)) + g(2" (X)) Ao
+9(x" (X)) (A = Xo) = f(z" (o)) + g(z" (X)) A
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STRONG DUALITY IN CONVEX PROGRAMMING

e Consider the convex programming problem

min, f(z)
st. gi(x) <0,iel TUE={1,...,m}
Aj.T = bj, jekl

where are f, g; are convex functions.

e We say that Slater’s constraint qualification is verified if the problem is strictly
feasible:
Jz: gi(x)<0,Viel, Ajx=0b;,VjeFE

e Strong duality always holds if Slater’s constraint qualification is satisfied

e Other types of constraint qualifications exist
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DUALITY AND KKT CONDITIONS FOR CONVEX PROBLEMS

THEOREM
Let x* be the solution of a convex programming problem and f, g; differentiable at
x*. Any \* satisfying the KKT conditions with x* solves the dual problem.

Proof:

e Assume z*, \* satisfy the KKT conditions and consider

L(z, ") = f(x) + Z A gi(z) + Z Aj(Ajz

iel jeEE

o L(x, \*)isdifferentiable w.r.t. z at z*, and is also a convex function of z, as
Af > 0foralli € I

e By convexity of L(x, \*) we obtain
=0 Yecause of [day

———
L(xz,\*) > L(z*,N) + VoL@ ) (x—2x")=L(z",\)

" Numerical Optimization" - ©2023 A. Bemporad. All rights reserved 24/47



DUALITY AND KKT CONDITIONS FOR CONVEX PROBLEMS

e Since L(xz, \*) > L(x*, \*) for all z we get
g(A*) = inf L(x, \*) = L(z*, \¥)

=f@)+Y Na@®)  + D N(Ajt—b)=fa")
i€l M . jEE —
=0 (complemertardy) 2o Geasiileny
e Since ¢(A\) < f(x*) for all dual feasible J, it follows that
q(A) < q(X)
e As \*isdual feasible, it is therefore an optimizer of the dual problem. O
[ ]

Note that we have also proved that the duality gap is zero, as ¢(A\*) = f(x*)

In general, for 2, € arginf, £(x, \) the duality gap is

f(l‘)\) - Q()‘) = - Z)\igi(m/\) - Z )\j(Ajw)\ - bj)
iel JjEE
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WOLFE'S DUAL PROBLEM

e Wolfe’s dual problem is defined as follows:

maxg x  L(z,N)
st. VyL(z,\)=0
A >0, Viel

|/ 3 7 |y
9/
ﬂ |
Philip S. Wolfe
(1927-2016)

THEOREM

Consider a convex programming problem with f, g; differentiable on R".
Let x*, \* satisfy the KKT conditions and LICQ hold.

Then x*, \* is an optimizer of Wolfe’s dual problem.
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WOLFE'S DUAL PROBLEM

Proof:

e Since (z*, \*) satisfies the KKT conditions it is a feasible point of Wolfe's dual
problem, and moreover L(z*, \*) = f(z*)
e Forany (z, \) satisfying V,L(z, A\) = 0, \; > 0,Vi € I,we get
< 0 = ()
£ 2%) = F0%) 2 @)+ Y Nl + o hi (Ao —

el JEE
=0

——
= L(z*, ) > L(z,\) + Vi L(x,\) (z* — z)
conveyery of ﬁ(I‘)\)

= L(x,\)

e Hence L(z*, \*) = f(z*) is the maximum achievable value of £(z, ) under
the constraints V,L(z, A\) = 0,A; > 0, Vi € I. O
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DUAL LINEAR PROGRAM

. i i .
Consider the linear program ming ¢z

st. Arx <b

The dual functionis

q(\) = igf{c’x +N(Az —b)} = igf{(c + ANz —b\}

e g(A\) > —cconlywhenc+ A’XA = 0,and g(\) = —=b'\

The dual problem is therefore

) miny b\
Imax 75’ A st. AA=—c
A>0

It is easy to prove that the dual of the dual LP is the original LP (min,, ; ¢’z s.t.
Ax + s = b,s > 0). The original = = dual vector of constraint —A’\ + ¢ = 0, and
s = dual vector of constraint A > 0.
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THEOREM OF ALTERNATIVES

THEOREM (THEOREM OF ALTERNATIVES)
For given A € R™*" b € R™, exactly one of the following two alternatives is true:

1. there exists x such that Az < b
2. thereexistsy suchthaty > 0, A’y = 0,b'y < 0

LEMMA (FARKAS' LEMMA)
For a given matrix A and vector b, exactly one of the following
two alternatives is true:

1. thereexists x such that Ax = b,z > 0

2. thereexists y such that A’y > 0,b'y < 0 Gyula Farkas
(1847-1930)
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GEOMETRIC INTERPRETATION

SUPPLEMENTARY

Farkas’ lemma has the following geometric interpretation.
Let 4; betheithcolumnof A,i =1,...,n,A=[A1 Ay ... A;]

e 1stalternative:
n

b:leAla ZT; ZO,’L: ].,...,’I’L
=1

bis in the convex cone generated by the columns of A

¢ 2nd alternative:

yA; >0,i=1,...,n
y'b <0

vector b cannot be in the convex cone generated by the

columns of A
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DUAL LINEAR PROGRAM

THEOREM (STRONG LP DUALITY)

1. If either the primal or the dual LP has a finite solution, so does the other and
c'z* = —b' \* (strong duality)
2. If one of the two is unbounded the other is infeasible

e To see that infeasibility of dual LP implies unboundedness of a feasible primal
LP, apply Farkas’ Lemma with matrices — A/, ¢

—A'X = ¢, A > Oinfeasible JdeR": —Ad>0,cd <0

o Take afeasible zg € R™. Then A(z¢ + od) = Axg+ 0 Ad < b,VYo > 0,and
d(xg+od) = dxg — ol|dd|

e As o can be arbitrarily large, the infimum of the primal LP is —oo.
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DUAL LP WITH NONNEGATIVE VARIABLES

o Consider the linear program

min, cz
st. Ax >b
x>0

e The dual functionis
g\ v) =inf{dz+ N (b— Az) — V'z} = inf{(c — AN —v) z + A} =b'A

forc — A’X — v =0,v > 0, or equivalently A’\ < ¢

e Thedual problem is therefore

maxy b’
st. AX<c
A>0

e Atoptimality ¢/z* = b'\*
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DUAL LP AND LINEAR COMPLEMENTARITY PROBLEM (LCP)

e Alinear complementarity problem (LCP) is a feasibility problem of the form

w=Mz+q
w'z=0
w,z >0

e By introducing the vector s of slack variables, s = Az — b > 0, the KKT
conditions for the following LP are

. , c—AN—v=0
min, cw
¥ Az —b— s =
st. Ax>b 1: s=0
r,\v,8 >0
x>0

Tv=Ns=0

e Therefore, the original LP can be solved by solving the LCP

_Al
v 0 LS BLIE =0, gv=Xs=0
s A 0 A b |
w oz Srv+Ns=wz=0

w M z q
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DUAL QUADRATIC PROGRAM

e Consider the quadratic program min,, %x’Qz +

=Q =0
st. Az <b @=Q

1
e Thedual functionis ¢()\) = inf {233'6290 + o+ N(Az — b)}

e Since @ > 0theinfimum is achieved when 0 = V_L(z),\) = Qzx + ¢+ A’
ie,forzy = —Q tc+ A'N).

e By substitution, Lagrange’s dual QP problem is therefore

_ }/ —1 4/ —1 \/ }/ -1
max (2)\(AQ ANX+ (b+ AQ c))\+2cQ ¢
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DUAL QP AND LCP

o Let @ > 0and consider the dual QP problem
miny %)\’(AQ—lA’))\ +(b+ AQ7te) A
st. A>0
e The KKT conditions for the dual QP are the LCP problem
H\+d=s
s'A=0
s, A>0
where H = AQ ' A’ is the dual Hessianand d = b + AQ ‘¢

o We can therefore solve the QP problem as an LCP to get the dual solution \*
and then reconstruct the primal solution z* = —Q~!(c + A’\*)
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LCP AND DUAL QP

e Viceversa,let M = M’ = 0, M € R™"*", and consider the LCP

z=My+d
0<xzly>0

e Consider the QP problem

min 3y’ My+d'y
st. y>0

e The corresponding KKT optimality conditions are

My+d—z = 0
y > 0
x > 0

zyy = 0, ¢+=1,...,n

that are exactly the given LCP
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WOLFE'S DUAL QP

e Consider now Wolfe’s dual problem

max,y 32'Qz+ x4+ N(Az —b)
st. Qr+c+AN=0,12>0

e Wecansubtract 0 = (Qx 4 ¢ + A’ X))’z without changing the function and get
the convex programming problem

max, » —%x’Qx )
st. Qr+c+AXN=0
A>0

¢ Note that Wolfe's dual QP only requires @ = 0.
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DUAL OF QP REFORMULATION OF LASSO

e Consider again the LASSO problem
1
min S Az — b} +llals A E€R™ bER™, 4> 0
e Withz =y — zand y, z > 0, LASSO becomes the positive semidefinite QP

.1 2 /
Jnin §||A(y —2) = bl +yT'(y+ 2)

where T' = [1 ... 1] (as~y > 0 at least one of y}, 27 will be zero at optimality)

e The above QP is the dual of the following least distance programming (LDP)
(constrained LS) problem (see next slide)

min, 3 |jv— b||§ —-v'b
st [JAV|leo <y
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DUAL OF QP REFORMULATION OF LASSO

e Proof: The constrained LS problem is equivalent to the following QP

min,, %v’v —bv— %b’b

st. —yI<Av<~I

whose dual QP problem is exactly the original LASSO’s QP reformulation

1 : : 1, 1
h Y A -1 _ Y 17 _ | A =11\ [y Sy
y{glznw[z][_A/]I [4-a][2]+ (v[1] [_A/}I b [£]+ 566 — SU'b

O

e The LDP reformulation of LASSO is always a strictly convex QP with m
variables, 2n constraints, and Hessian = identity matrix

e The original QP formulation is only convex with 2n variables and 2n constraints
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SUPPORT VECTOR REGRESSION

e Wehave atraining set (z1,41), ..., (zn,yn), 2; € R",y € Randwanttofita
linear function
flz)=wz+b weR"beR

suchthateach |y; — f(a;)| < e

o Since such a function f may not exist,
we want to penalize |y; — f(z;)] > €

N
. 1
min §||w||§+CZ(vi+si)

w,b,v,s ‘
i=1

st. oy —war;, —b<e+u s=max(-&-t,0)

v=max(t-¢,0)

Yyi—w'r —b> —e—s;
Ui,SiZO, i=1,...,N

€ t=y-w'z-b
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SUPPORT VECTOR REGRESSION

e Bysetting X = [z1 ... n].Y = [y1 ... yn]', we can rewrite in vector form

1
min Ew’w +CT(v+s)

w,b,v,s
st. YV —-Xw—-0I<el+v
Y-—Xw—-b1>—€l-s
v, >0

e Introduce the vectors of R of Lagrange multipliers o, 3,7,6 > 0

e The Lagrangian function is

w (63 1
L <[;‘,} , [5]) :Ew’w+C]I’(v+s)+a’(Y—X’w— (b+¢€)T—v)
E 5
+8(-Y+Xw+b—€eT-s)—7v—1¥s
e Thedual function g(«, 8,7, 0) = inf,, 4, s L(w, b, v, s, &, B,7, )
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SUPPORT VECTOR REGRESSION

SUPPLEMENTARY

e Letus zero the partial derivatives of £ with respect to w, b, v, s:

O:% = w—Xa+Xp = w=X(a-p)
0=2 = —o/T1+p'1 = T(a—p)=0
0:% = Cl-a—v = 7=CI1-a>0
0=2£ = CI1-8-9¢ = 6=CI-8>0
e By substituting the above expressions in the Lagrangian we get
1
q(a,B,7,0) = Qw’w+(Y*X’w)’(a7ﬂ)*611’(a+ﬂ)

1
= —5a=p) X' X(a-p)+Y(a-p)—el(a+p)
e Thedual problem is therefore the following QP

ming s 3(a—B)X'X(a—pB)—Y'(a—pB)+el'(a+p)
st. 0<a<Cl, 0<B<CI, T(a—p)=0
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SUPPORT VECTOR REGRESSION

o After solving the dual QP problem we can retrieve

N
w o= X —p)=) (af - B)z;
=1 N
fl@) = wart+b=(a" =YX z+b=> (af - B])xjz+b
=1
N
fle)=> (o = B)ajz +b
=1

(see next slide for how to reconstruct b)
e f(x)is defined by a linear combination of the training vectors x;
e The vectors z; for which o — 3} # 0 are called support vectors
e Note that the QP is also equivalent to the ¢; -regularized problem
min, 12/X'Xz—Y'z+e€|z|
st Jzml<o, SN =0
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SUPPORT VECTOR REGRESSION

e Thescalar b can be retrieved from the complementarity slackness conditions

= oy —2iw—(b+e)—v;), i=1,...,N
Bi(—yi + zjw + (b —€) — 5;)

Yivi = (C — a;)v;

disi = (C = Bi)si

o O O O

e ifany o € (0,C) thenvf =0=b* =y; — ziw* —¢

e ifany 5F € (0,C)thens; =0=0b" =y, —zjw* + €
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SUPPORT VECTOR REGRESSION

¢ Otherwise, consider the case all o}, 5 € {0,C'}
e o, BF cannot be positive at the same time, as they refer to bilateral constraints
(y; — w’z; — b cannot be both positive and negative)

;=0 = v;,=0 = —ziw—(b+¢€) <0
Bi=0 = s =0 = —yﬂra:; +(b-¢)<0
a=C = (=0 = 5=0, —y+alw+((b—e€)<0
Gi=C = a;=0 = v;,=0, yi — 2w —(b+¢€) <0

eletZ={i:af=0 or Br=ClandT ={i: af =C or BF=0}.Then

b* >y —ziw* —e, Viel
b* <y, —ziw* +e, VieJ

o Therefore,any b* € [max{y; — zjw* — €}, min{y; — z,w* + €}] is optimal
1€T ieJ
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SUPPORT VECTOR REGRESSION

o Kernel trick: if we generalize x; to an arbitrary nonlinear basis ¢(x;) we get
N
fl) = (af = B)k(zi,x) +b
i=1

where k(z,y) = ¢'(x)d(y) is a kernel function, k : R™ x R™ — R

e Example: 2 € R?, é(z) = [27 2m120 23], k(2,7) = (2'y)?

e The (4, j)th term zjz; of the dual Hessian gets replaced by k(x;, ;)

e bdependson zjw = 2, X (o — ) that gets replaced by k(z;, X )(a* — 8*)
e Therefore ¢, w are not required, and can have arbitrary dimensions !

e Example: Gaussian radial basis function kernel k(z, y) = e—sllz—yl*/o® (RBF)
the corresponding ¢ is infinite dimensional
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EXAMPLE OF SUPPORT VECTOR REGRESSION

e Generate N = 100 random samples of the course-logo function

1
f(z1,22) = —e~@1H73) 4 0.3sin (loxi’ + m%) +1.2

e Solve SVR problem with C' = 100, ¢ = 0.01, Gaussian kernel witho = 1

original function SVR approximation
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