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Optimality conditions

Theorem (Taylor’s Theorem)
Let f : Rn → R be continuously differentiable and p ∈ Rn. Then for some
t ∈ (0, 1)we have that

f(x+p) = f(x)+∇f(x+tp)′p ∇f =


∂f
∂x1

...
∂f
∂xn


Brook Taylor
(1685–1731)

Moreover, if f is twice continuously differentiable, for some t ∈ (0, 1)we have that

f(x+ p) = f(x) +∇f(x)′p+
1

2
p′∇2f(x+ tp)p
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Optimality conditions
Theorem (First-order necessary conditions)
Let f : Rn → R be continuously differentiable and x∗ a local optimizer. Then

∇f(x∗) = 0

Proof:

• Assume by contradiction that p = −∇f(x∗) ̸= 0. Let g(t) = p′∇f(x∗ + tp).

Then g(0) = p′∇f(x∗) = −∥∇f(x∗)∥2 < 0

• ∇f is continuous around x∗, so g is also continuous wrt t in t = 0, and therefore

∃T > 0 such that g(t) < 0 for all t ∈ [0, T ]

• For any t̄ ∈ (0, T ] by Taylor’s theoremwe have that for some t ∈ (0, t̄)

f(x∗ + t̄p) = f(x∗) + t̄p′∇f(x∗ + tp) = f(x∗) + g(t)t̄ < f(x∗), ∀t̄ ∈ (0, T ]

• Then x∗ is not a local minimizer, which is a contradiction. □

``Numerical Optimization'' - ©2023 A. Bemporad. All rights reserved. 2/47



Optimality conditions
Theorem (Second-order necessary conditions)

Let theHessianmatrix function∇2f : Rn → Rn×n exist and be continuous in an
open neighborhood of a local optimizer x∗. Then

∇f(x∗) = 0,∇f2(x∗) ⪰ 0

Proof:

• Assume by contradiction that∇2f(x∗) ̸⪰ 0. Then there exist p such that

p′∇2f(x∗)p < 0.

• Since∇2f(x) is continuous around x∗, ∃T > 0 such that p′∇2f(x∗ + tp)p < 0

for all t ∈ [0, T ].

• By doing a Taylor expansion around x∗, ∀t̄ ∈ (0, T ] there exists t ∈ (0, t̄) such

that

f(x∗ + t̄p) = f(x∗) + t̄p′∇f(x∗) +
1

2
t̄2p′∇2f(x∗ + tp)p < f(x∗)

• Then x∗ is not a local minimizer, which is a contradiction. □
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Optimality conditions
Theorem (Second-order sufficient conditions)

Let∇2f : Rn → Rn×n exist and be continuous in an open neighborhood of x∗.
Let∇f(x∗) = 0 and∇2f(x∗) ≻ 0. Then x∗ is a strict local minimizer of f .

Proof:

• Since the Hessian function∇2f(x) is continuous at x∗ and∇2f(x∗) ≻ 0,

∇2f(x) ≻ 0 for all x in an open ballB(x∗, r)1 for some scalar r > 0

• For any p such that ∥p∥2 < rwe have that x∗ + p ∈ B(x∗, r) and hence

f(x∗+p) = f(x∗)+p′∇f(x∗)+
1

2
p′∇2f(x∗+tp)p = f(x∗)+

1

2
p′∇2f(x∗+tp)p

for some t ∈ (0, 1).

• Since x∗ + tp ∈ B(x∗, r), p′∇2f(x∗ + tp)p > 0, and therefore

f(x∗ + p) > f(x∗), ∀p ∈ B(0, r). □
1For a positive scalar r > 0, the Euclidean ballB(x0, r) is the set {x : ∥x− x0∥2 ≤ r}.
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Optimality conditions - Constrained case

• Consider the constrained optimization problem

minx f(x)

s.t. gi(x) ≤ 0, i ∈ I

gj(x) = 0, j ∈ E

with I ∪ E = {1, . . . ,m}.

• A vector x is feasible if gi(x) ≤ 0, ∀i ∈ I , and gj(x) = 0, ∀j ∈ E

• We say that the inequality constraint i ∈ I is active if gi(x) = 0, inactive if

gi(x) < 0 (equality constraints gj(x), j ∈ E, are always active).
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Optimality conditions - Constrained case
• The active setA(x) at any feasible vector x is the set of indexes

A(x) = {i ∈ I : gi(x) = 0} ∪ E

• We say that the linear independence constraint qualification (LICQ) condition

holds at x if the vectors {∇gi(x)}i∈A(x) are linearly independent

• The setF(x) of linearized feasible directions at a feasible x is the cone

F(x) = {d : d′∇gi(x) = 0, ∀i ∈ E, d′∇gi(x) ≤ 0, ∀i ∈ A(x), i ̸∈ E}

Note that gi(x+ d) ≈ gi(x)︸ ︷︷ ︸
=0

+∇gi(x)
′d for d → 0, ∀i ∈ A(x)

• Linear case example:{
A1x ≤ b1
A2x ≤ b2

{
A1d ≤ 0

A2d ≤ 0 d

A1x ≤ b1

A2x ≤ b2

A1

A2

F
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Optimality conditions - Constrained case

Theorem
If x∗ is a local minimum and the LICQ condition is satisfied then

∇f(x∗)′d ≥ 0, ∀d ∈ F(x∗)

• Define the Lagrangian function

L(x, λ) = f(x) +

m∑
i=1

λigi(x)

where λ ∈ Rm are the Lagrangemultipliers,

I ∪ E = {1, . . . ,m} Joseph-Louis Lagrange
(1736–1813)
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KKT optimality conditions

Theorem (First-order necessary conditions)
Let f and gi, i = 1, . . . ,m, be continuously differentiable and x∗

a local optimizer. Let the LICQ condition hold at x∗. Then
∃λ∗ ∈ Rm such that

Karush

Kuhn

Tucker (KKT)

conditions

∇xL(x∗, λ∗) = 0

gi(x
∗) ≤ 0 ∀i ∈ I

gi(x
∗) = 0 ∀i ∈ E

λ∗
i ≥ 0 ∀i ∈ I

λ∗
i gi(x

∗) = 0 ∀i = 1, . . . ,m

• λ∗
i gi(x

∗) = 0 is a complementary slackness condition

• strict complementarity holds if λ∗
i > 0 for all i ∈ A(x∗)

• λ∗ is unique if the LICQ condition holds

William Karush
(1917–1997)

Harold W. Kuhn
(1925–2014)

Albert W. Tucker
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KKT optimality conditions

∇g1(x*)
-∇f(x*)

∇g2(x*)

x0

∇g2(x0)

∇g3(x0)

g 3
(x

)≤
0

g 1
(x

)≤0
g
2 (x)≤

0

x*

-∇f(x0)

KKT satisfied

KKT not satisfied

d

−∇f(x∗) =

m∑
i=1

λ∗
i∇gi(x

∗), λ∗
i ≥ 0, E = ∅

f(x∗ + ϵd) ≈ f(x∗) + ϵ∇f(x∗)′d

f decreases when−∇f(x∗)′d > 0

• if−∇f(x∗)′d =
∑m

i=1 λ
∗
i∇gi(x

∗)′dwere positive then∇gi(x
∗)′d > 0 for some

i ∈ A(x∗) such that λ∗
i > 0.

Hence f can only decrease at x∗ if some active constraint gi is violated, as

gi(x
∗ + ϵd) ≈ gi(x

∗) + ϵ∇gi(x
∗)′d = ϵ∇gi(x

∗)′d > 0, ϵ > 0

• Vice versa, if−∇f(x∗) does not belong to the convex cone one canmove in a

direction d such that d′∇f(x∗) < 0 (that is, decrease f ) while keeping gi(x) ≤ 0
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KKT conditions for equality-constrained QP
• Quadratic programming problem subject to equality constraints:

min
1

2
x′Qx+ c′x

s.t. Ax = b
Q = Q′ ≻ 0, A full row rank

• Lagrangian function: L(x, λ) = 1
2x

′Qx+ c′x+ λ′(Ax− b)

• KKT conditions:

Qx+ c+A′λ = 0

Ax = b
⇒ x = −Q−1(c+A′λ)

AQ−1A′λ = −(b+AQ−1c)

and therefore

λ∗ = −(AQ−1A′)−1(b+AQ−1c)

x∗ = −Q−1(c−A′(AQ−1A′)−1(b+AQ−1c))

• In this case, the KKT conditions are also sufficient for optimality

(this is a convex optimization problem, see later ...)
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KKT conditions for QP
• Quadratic programming problem

min
1

2
x′Qx+ c′x

s.t. Ax ≤ b

Ex = f

• Lagrangian function: L(x, λ, ν) = 1
2x

′Qx+ c′x+ λ′(Ax− b) + ν′(Ex− f)

• KKT conditions:
Qx+ c+A′λ+ E′ν = 0

Ex = f

Ax ≤ b

λ ≥ 0

λ′(Ax− b) = 0

where we replaced λi(Aix− bi) = 0, ∀i, with
∑

i λi(Aix− bi) = 0, having

imposed λi ≥ 0,Aix ≤ bi, ∀i
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2nd-order necessary conditions

• Let x∗, λ∗ satisfy the KKT conditions. The critical cone C(x∗, λ∗) is defined as

C(x∗, λ∗) =

w :

∇gi(x
∗)′w = 0, ∀i ∈ E

∇gi(x
∗)′w = 0, ∀i ∈ A(x∗) ∩ I with λ∗

i > 0

∇gi(x
∗)′w ≤ 0, ∀i ∈ A(x∗) ∩ I with λ∗

i = 0


• The critical cone C(x∗, λ∗) contains directions inF(x∗) for which it is not clear

from gradient information only whether f will increase or decrease, as from the

KKT conditions we have

w′∇f(x∗) =

m∑
i=1

λ∗
iw

′∇gi(x
∗) = 0, ∀w ∈ C(x∗, λ∗)
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2nd-order conditions

Theorem (2nd-order necessary conditions)
Assume f , g be twice continuously differentiable. Let x∗ be a local minimum and
the LICQ condition satisfied andλ∗ such that the KKT conditions are satisfied. Then

w′∇xxL(x∗, λ∗)w ≥ 0, ∀w ∈ C(x∗, λ∗)

Theorem (2nd-order sufficient conditions)
Assume f , g be twice continuously differentiable. Let x∗, λ∗ satisfy the KKT
conditions and assume that

w′∇xxL(x∗, λ∗)w > 0, ∀w ∈ C(x∗, λ∗), w ̸= 0

Then x∗ is a strict local minimum.

``Numerical Optimization'' - ©2023 A. Bemporad. All rights reserved. 13/47



Sensitivity analysis

• Question: if we slightly perturb a constraint gi howmuch f(x∗)will change?

• The Lagrangemultipliers λ∗ answer such a sensitivity analysis question

• If gi(x∗) < 0 (⇒ λ∗
i = 0), perturbing gi(x) ≤ 0 to gi(x) ≤ −ϵ does not change

the solution, ∀ϵ < −gi(x
∗), as the same x∗, λ∗ satisfy the KKT

• Let us change one of the active constraints gi(x) ≤ 0 to gi(x) ≤ −ϵ, i ∈ A(x∗)

• Let x∗(ϵ) be the perturbed optimal solution and assume |ϵ| small enough so that
A(x∗(ϵ)) = A(x∗)
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Sensitivity analysis

• By taking the Taylor expansion of gj(x∗(ϵ)) around ϵ = 0we get

gj(x
∗(ϵ))− gj(x

∗) ≈ ∇gj(x
∗)′(x∗(ϵ)− x∗), j = 1, . . . ,m

• Since we assumedA(x∗(ϵ)) = A(x∗), then gi(x∗(ϵ)) = −ϵ and gj(x∗(ϵ)) = 0,

∀j ∈ A(x∗) \ {i}, in addition to gj(x∗) = 0, ∀j ∈ A(x∗)

• By expanding f(x∗(ϵ)) around ϵ = 0 and using the KKT conditions

f(x∗(ϵ))− f(x∗) ≈ ∇f(x∗)′(x∗(ϵ)− x∗) =
∑

j∈A(x∗)

−λ∗
j∇gj(x

∗)′(x∗(ϵ)− x∗)

=
∑

j∈A(x∗)

−λ∗
j (gj(x

∗(ϵ))− gj(x
∗)) = ϵλ∗

i

• For ϵ → 0we get df(x∗(ϵ))

dϵ
= λ∗

i
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Sensitivity analysis

Definition
Let i ∈ A(x∗). An inequality constraint gi is strongly active if λ∗

i > 0,

weakly active if λ∗
i = 0

• If a constraint is weakly active, modifying it slightly does not change the optimal

value since df(x∗(ϵ))
dϵ = 0

• Let us scale the constraints to βigi(x) ≤ 0, βi > 0. The KKT conditions are

satisfied for x∗ and λ∗
i

βi

• For the consistent perturbation of the constraint βigi(x) ≤ −βiϵwe get the

same optimizer x∗(ϵ), andmoreover the sensitivity at the solution is

λ∗
i

βi
=

df(x∗(ϵ))

d(βiϵ)
=

1

βi

df(x∗(ϵ))

dϵ

df(x∗(ϵ))

dϵ
= λ∗

i

``Numerical Optimization'' - ©2023 A. Bemporad. All rights reserved. 16/47



Duality

• Consider again the optimization problem

minx f(x)

s.t. gi(x) ≤ 0, i ∈ I

gj(x) = 0, j ∈ E

I ∪ E = {1, . . . ,m}

• Define the dual function q : Rm → R ∪ {−∞}

q(λ) = inf
x

L(x, λ) = inf
x

{
f(x) +

m∑
i=1

λigi(x)

}

• The domainD of q is the set of all λ for which q(λ) > −∞

• A vector λ ∈ D is dual feasible if λi ≥ 0, ∀i ∈ I

• A vector is x ∈ Rn primal feasible if gi(x) ≤ 0, ∀i ∈ I and gj(x) = 0, ∀j ∈ E
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Duality
Theorem (weak duality)
For any given primal feasible x and dual feasible λ

q(λ) ≤ f(x)

In particular q(λ) ≤ f(x∗).

Proof:

• Since x and λ are feasible, λigi(x) ≤ 0, ∀i ∈ I and λjgj(x) = 0, ∀j ∈ E

• Therefore

f(x) ≥ f(x) +

m∑
i=1

λigi(x) = L(x, λ) ≥ inf
x

L(x, λ) = q(λ)

• Since the above relation holds for all feasible x, in particular it holds for x∗

f(x∗) ≥ q(λ), ∀λ such that λi ≥ 0, i ∈ I

□
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Duality
Theorem
The dual function q(λ) is concave and its domainD is convex.

Proof:

• Take any λ1, λ2 ∈ D, andα ∈ [0, 1]. Wewant to verify that
αλ1 + (1− α)λ2 ∈ D and that Jensen’s inequality holds:

q(αλ1 + (1− α)λ2) = inf
x

L(x, αλ1 + (1− α)λ2)

= inf
x

{
f(x) +

m∑
i=1

(αλ1
i + (1− α)λ2

i ))gi(x)

}

= inf
x

{
(α+ 1− α)f(x) + α

m∑
i=1

λ1
i gi(x) + (1− α)

m∑
i=1

λ2
i gi(x)

}

= inf
x

{
α(f(x) +

m∑
i=1

λ1
i gi(x)) + (1− α)(f(x) +

m∑
i=1

λ2
i gi(x))

}

≥ inf
x1

{
α(f(x1) +

m∑
i=1

λ1
i gi(x1))

}
+ inf

x2

{
(1− α)(f(x2) +

m∑
i=1

λ2
i gi(x2))

}
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Duality

• Finally, we get

q(αλ1 + (1− α)λ2) ≥ αq(λ1) + (1− α)q(λ2) > −∞

which proves that q is concave and thatαλ1 + (1− α)λ2 ∈ D □

• Recall that theminimum of a finite number of affine functions is concave.

q(λ) is theminimum of infinitely many affine functions (one for each x).
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Dual problem
• We define dual problem of a given optimization problem the new problem

maxλ q(λ)

s.t. λi ≥ 0, ∀i ∈ I

λ ∈ D

• The dual problem is always a convex programming problem, even if the primal

problem is not convex

• Since f(x∗) ≥ q(λ) for all dual feasible λ, we also have that the optimum of the

dual problem satisfies theweak duality condition

q(λ∗) ≤ f(x∗)

• Strong duality holds when q(λ∗) = f(x∗)

• The difference f(x∗)− q(λ∗) is called duality gap
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Gradient of dual function and its linear approximation
• Let x∗(λ) = argminx L(x, λ). For all λ ≥ 0, the gradient

∇λq(λ) = g(x∗(λ))

Proof:
∇λq(λ) = ∇λ(inf

x
L(x, λ)) = ∇λL(x∗(λ), λ)

= ∇λx
∗(λ)

∂L(x∗(λ), λ)

∂x︸ ︷︷ ︸
= 0 by optimality of x∗(λ)

+
∂L(x∗(λ), λ)

∂λ︸ ︷︷ ︸
= g(x∗(λ))

• The first-order Taylor expansion of the dual function around λ0 is

q(λ) ≈ f(x∗(λ0)) + g(x∗(λ0))
′λ

• Proof:
q(λ) ≈ q(λ0) +∇λq(λ0)

′(λ− λ0) = q(λ0) + g(x∗(λ0))
′(λ− λ0)

= inf
x

L(x, λ0) + g(x∗(λ0))
′(λ− λ0) = f(x∗(λ0)) + g(x∗(λ0))

′λ0

+g(x∗(λ0))
′(λ− λ0) = f(x∗(λ0)) + g(x∗(λ0))

′λ
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Strong duality in convex programming

• Consider the convex programming problem

minx f(x)

s.t. gi(x) ≤ 0, i ∈ I

Ajx = bj , j ∈ E

I ∪ E = {1, . . . ,m}

where are f, gi are convex functions.

• We say that Slater’s constraint qualification is verified if the problem is strictly

feasible:

∃x : gi(x) < 0, ∀i ∈ I, Ajx = bj , ∀j ∈ E

• Strong duality always holds if Slater’s constraint qualification is satisfied

• Other types of constraint qualifications exist
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Duality and KKT conditions for convex problems
Theorem
Let x∗ be the solution of a convex programming problem and f, gi differentiable at
x∗. Any λ∗ satisfying the KKT conditions with x∗ solves the dual problem.

Proof:

• Assume x∗, λ∗ satisfy the KKT conditions and consider

L(x, λ∗) = f(x) +
∑
i∈I

λ∗
i gi(x) +

∑
j∈E

λ∗
j (Ajx− bj)

• L(x, λ∗) is differentiable w.r.t. x at x∗, and is also a convex function of x, as

λ∗
i ≥ 0 for all i ∈ I

• By convexity ofL(x, λ∗)we obtain

L(x, λ∗) ≥ L(x∗, λ∗) +

=0 because of KKT︷ ︸︸ ︷
∇xL(x∗, λ∗)′ (x− x∗) = L(x∗, λ∗)
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Duality and KKT conditions for convex problems
• SinceL(x, λ∗) ≥ L(x∗, λ∗) for all xwe get

q(λ∗) = inf
x

L(x, λ∗) = L(x∗, λ∗)

= f(x∗) +
∑
i∈I

λ∗
i gi(x

∗)︸ ︷︷ ︸
=0 (complementarity)

+
∑
j∈E

λ∗
j ( Ajx

∗ − bj︸ ︷︷ ︸
=0 (feasibility)

) = f(x∗)

• Since q(λ) ≤ f(x∗) for all dual feasible λ, it follows that

q(λ) ≤ q(λ∗)

• As λ∗ is dual feasible, it is therefore an optimizer of the dual problem. □

• Note that we have also proved that the duality gap is zero, as q(λ∗) = f(x∗)

• In general, for xλ ∈ arg infx L(x, λ) the duality gap is

f(xλ)− q(λ) = −
∑
i∈I

λigi(xλ)−
∑
j∈E

λj(Ajxλ − bj)
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Wolfe's dual problem

• Wolfe’s dual problem is defined as follows:

maxx,λ L(x, λ)
s.t. ∇xL(x, λ) = 0

λi ≥ 0, ∀i ∈ I
Philip S. Wolfe
(1927–2016)

Theorem
Consider a convex programming problemwith f , gi differentiable onRn.
Let x∗, λ∗ satisfy the KKT conditions and LICQ hold.
Then x∗, λ∗ is an optimizer ofWolfe’s dual problem.
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Wolfe's dual problem
Proof:

• Since (x∗, λ∗) satisfies the KKT conditions it is a feasible point ofWolfe’s dual

problem, andmoreoverL(x∗, λ∗) = f(x∗)

• For any (x, λ) satisfying∇xL(x, λ) = 0, λi ≥ 0, ∀i ∈ I , we get

L(x∗, λ∗) = f(x∗) ≥ f(x∗) +
∑
i∈I

≤ 0︷ ︸︸ ︷
λigi(x

∗)+
∑
j∈E

λj(

= 0︷ ︸︸ ︷
Ajx

∗ − bj)

= L(x∗, λ) ≥ L(x, λ) +
= 0︷ ︸︸ ︷

∇xL(x, λ)′(x∗ − x)︸ ︷︷ ︸
convexity of L(x, λ)

= L(x, λ)

• HenceL(x∗, λ∗) = f(x∗) is themaximum achievable value ofL(x, λ) under
the constraints∇xL(x, λ) = 0, λi ≥ 0, ∀i ∈ I . □
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Dual Linear Program
• Consider the linear program minx c′x

s.t. Ax ≤ b

• The dual function is

q(λ) = inf
x
{c′x+ λ′(Ax− b)} = inf

x
{(c+A′λ)′x− b′λ}

• q(λ) > −∞ only when c+A′λ = 0, and q(λ) = −b′λ

• The dual problem is therefore

maxλ −b′λ

s.t. A′λ = −c

λ ≥ 0

minλ b′λ

s.t. A′λ = −c

λ ≥ 0

• It is easy to prove that the dual of the dual LP is the original LP (minx,s c
′x s.t.

Ax+ s = b, s ≥ 0). The original x = dual vector of constraint−A′λ+ c = 0, and

s = dual vector of constraint λ ≥ 0.
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Theorem of alternatives

Theorem (Theorem of alternatives)

For givenA ∈ Rm×n, b ∈ Rm, exactly one of the following two alternatives is true:

1. there exists x such thatAx ≤ b

2. there exists y such that y ≥ 0,A′y = 0, b′y < 0

Lemma (Farkas' lemma)
For a given matrixA and vector b, exactly one of the following
two alternatives is true:

1. there exists x such thatAx = b, x ≥ 0

2. there exists y such thatA′y ≥ 0, b′y < 0 Gyula Farkas
(1847–1930)
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Geometric interpretation

Farkas’ lemma has the following geometric interpretation.

LetAi be the ith column ofA, i = 1, . . . , n,A = [A1 A2 . . . An]

• 1st alternative:

b =

n∑
i=1

xiAi, xi ≥ 0, i = 1, . . . , n

b is in the convex cone generated by the columns ofA

• 2nd alternative:

y′Ai ≥ 0, i = 1, . . . , n

y′b < 0

vector b cannot be in the convex cone generated by the

columns ofA

b

A1

A2

b

y
A1

A2
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Dual Linear Program

Theorem (Strong LP Duality)

1. If either the primal or the dual LP has a finite solution, so does the other and
c′x∗ = −b′λ∗ (strong duality)

2. If one of the two is unbounded the other is infeasible

• To see that infeasibility of dual LP implies unboundedness of a feasible primal

LP, apply Farkas’ Lemmawithmatrices−A′, c

−A′λ = c, λ ≥ 0 infeasible ∃d ∈ Rn : −Ad ≥ 0, c′d < 0

• Take a feasible x0 ∈ Rn. ThenA(x0 + σd) = Ax0 + σAd ≤ b, ∀σ ≥ 0, and

c′(x0 + σd) = c′x0 − σ|c′d|

• As σ can be arbitrarily large, the infimum of the primal LP is−∞.
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Dual LP with nonnegative variables

• Consider the linear program minx c′x

s.t. Ax ≥ b

x ≥ 0

• The dual function is

q(λ, ν) = inf
x
{c′x+ λ′(b−Ax)− ν′x} = inf

x
{(c−A′λ− ν)′x+ b′λ} = b′λ

for c−A′λ− ν = 0, ν ≥ 0, or equivalentlyA′λ ≤ c

• The dual problem is therefore maxλ b′λ

s.t. A′λ ≤ c

λ ≥ 0

• At optimality c′x∗ = b′λ∗
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Dual LP and Linear Complementarity Problem (LCP)
• A linear complementarity problem (LCP) is a feasibility problem of the form

(Cottle, Pang, Stone, 2009)
w = Mz + q

w′z = 0

w, z ≥ 0

• By introducing the vector s of slack variables, s = Ax− b ≥ 0, the KKT

conditions for the following LP are

minx c′x

s.t. Ax ≥ b

x ≥ 0

c−A′λ− ν = 0

Ax− b− s = 0

x, λ, ν, s ≥ 0

x′ν = λ′s = 0

• Therefore, the original LP can be solved by solving the LCP[
ν

s

]
︸ ︷︷ ︸
w

=

[
0 −A′

A 0

]
︸ ︷︷ ︸

M

[
x

λ

]
︸ ︷︷ ︸
z

+

[
c

−b

]
︸ ︷︷ ︸

q

, [ xλ ]︸︷︷︸
w

, [ νs ]︸︷︷︸
z

≥ 0, x′ν = λ′s = 0︸ ︷︷ ︸
⇔ x′ν + λ′s = w′z = 0
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Dual Quadratic Program

• Consider the quadratic program minx
1
2x

′Qx+ c′x

s.t. Ax ≤ b
Q = Q′ ≻ 0

• The dual function is q(λ) = inf
x

{
1

2
x′Qx+ c′x+ λ′(Ax− b)

}

• SinceQ ≻ 0 the infimum is achievedwhen 0 = ∇xL(xλ, λ) = Qxλ + c+A′λ,

i.e., for xλ = −Q−1(c+A′λ).

• By substitution, Lagrange’s dual QP problem is therefore

max
λ≥0

−
(
1

2
λ′(AQ−1A′)λ+ (b+AQ−1c)′λ+

1

2
c′Q−1c

)
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Dual QP and LCP

• LetQ ≻ 0 and consider the dual QP problem

minλ
1
2λ

′(AQ−1A′)λ+ (b+AQ−1c)′λ

s.t. λ ≥ 0

• The KKT conditions for the dual QP are the LCP problem

Hλ+ d = s

s′λ = 0

s, λ ≥ 0

whereH = AQ−1A′ is the dual Hessian and d = b+AQ−1c

• We can therefore solve theQP problem as an LCP to get the dual solution λ∗

and then reconstruct the primal solution x∗ = −Q−1(c+A′λ∗)

``Numerical Optimization'' - ©2023 A. Bemporad. All rights reserved. 35/47



LCP and Dual QP
• Vice versa, letM = M ′ ≻ 0,M ∈ Rn×n, and consider the LCP

x = My + d

0 ≤ x ⊥ y ≥ 0

• Consider theQP problem

min 1
2y

′My + d′y

s.t. y ≥ 0

• The corresponding KKT optimality conditions are

My + d− x = 0

y ≥ 0

x ≥ 0

xiyi = 0, i = 1, . . . , n

that are exactly the given LCP
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Wolfe's dual QP

• Consider nowWolfe’s dual problem

maxx,λ
1
2x

′Qx+ c′x+ λ′(Ax− b)

s.t. Qx+ c+A′λ = 0, λ ≥ 0

• We can subtract 0 = (Qx+ c+A′λ)′xwithout changing the function and get

the convex programming problem

maxx,λ − 1
2x

′Qx− λ′b

s.t. Qx+ c+A′λ = 0

λ ≥ 0

• Note thatWolfe’s dual QP only requiresQ ⪰ 0.
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Dual of QP reformulation of LASSO

• Consider again the LASSO problem

min
x

1

2
∥Ax− b∥22 + γ∥x∥1 A ∈ Rm×n, b ∈ Rm, γ > 0

• With x = y − z and y, z ≥ 0, LASSO becomes the positive semidefinite QP

min
y,z≥0

1

2
∥A(y − z)− b∥22 + γ 1I′(y + z)

where 1I′ = [1 . . . 1] (as γ > 0 at least one of y∗i , z
∗
i will be zero at optimality)

• The aboveQP is the dual of the following least distance programming (LDP)

(constrained LS) problem (see next slide)

minv
1
2 ∥v − b∥22 − b′b

s.t. ∥A′v∥∞ ≤ γ
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Dual of QP reformulation of LASSO

• Proof: The constrained LS problem is equivalent to the followingQP

minv
1
2v

′v − b′v − 1
2b

′b

s.t. −γ 1I ≤ A′v ≤ γ 1I

whose dual QP problem is exactly the original LASSO’s QP reformulation

min
y,z≥0

1

2
[ yz ]

[
A′

−A′

]
I−1 [A −A ] [ yz ] + (γ [ 1I1I ]−

[
A′

−A′

]
I−1b)′ [ yz ] +

1

2
b′b− 1

2
b′b

□

• The LDP reformulation of LASSO is always a strictly convexQPwithm

variables, 2n constraints, and Hessian = identity matrix

• The original QP formulation is only convexwith 2n variables and 2n constraints

``Numerical Optimization'' - ©2023 A. Bemporad. All rights reserved. 39/47



x

y

*

*
*
*
* *

*

*

*

*

*
*

v

s!

!

v=max(t-!,0)

t=y-w′x-b

s=max(-!-t,0)

y=w′x+b

Support Vector Regression
(Smola, Schölkopf, 2004)

• We have a training set (x1, y1), . . . , (xN , yN ), xi ∈ Rn, y ∈ R andwant to fit a

linear function

f(x) = w′x+ b w ∈ Rn, b ∈ R

such that each |yi − f(xi)| ≤ ϵ

• Since such a function f may not exist,

wewant to penalize |yi − f(xi)| > ϵ

min
w,b,v,s

1

2
∥w∥22 + C

N∑
i=1

(vi + si)

s.t. yi − w′xi − b ≤ ϵ+ vi
yi − w′xi − b ≥ −ϵ− si
vi, si ≥ 0, i = 1, . . . , N
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Support Vector Regression

• By settingX = [x1 . . . xN ], Y = [y1 . . . yN ]′, we can rewrite in vector form

min
w,b,v,s

1

2
w′w + C 1I′(v + s)

s.t. Y −X ′w − b 1I ≤ ϵ 1I+v

Y −X ′w − b 1I ≥ −ϵ 1I−s

v, s ≥ 0

• Introduce the vectors ofRN of Lagrangemultipliersα, β, γ, δ ≥ 0

• The Lagrangian function is

L
([

w
b
v
s

]
,

[ α
β
γ
δ

])
=
1

2
w′w + C 1I′(v + s) + α′(Y −X ′w − (b+ ϵ) 1I−v)

+ β′(−Y +X ′w + (b− ϵ) 1I−s)− γ′v − δ′s

• The dual function q(α, β, γ, δ) = infw,b,v,s L(w, b, v, s, α, β, γ, δ)
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Support Vector Regression

• Let us zero the partial derivatives ofLwith respect tow, b, v, s:

0 = ∂L
∂w = w −Xα+Xβ ⇒ w = X(α− β)

0 = ∂L
∂b = −α′ 1I+β′ 1I ⇒ 1I′(α− β) = 0

0 = ∂L
∂v = C 1I−α− γ ⇒ γ = C 1I−α ≥ 0

0 = ∂L
∂s = C 1I−β − δ ⇒ δ = C 1I−β ≥ 0

• By substituting the above expressions in the Lagrangian we get

q(α, β, γ, δ) =
1

2
w′w + (Y −X ′w)′(α− β)− ϵ 1I′(α+ β)

= −1

2
(α− β)′X ′X(α− β) + Y ′(α− β)− ϵ 1I′(α+ β)

• The dual problem is therefore the followingQP

minα,β
1
2 (α− β)′X ′X(α− β)− Y ′(α− β) + ϵ 1I′(α+ β)

s.t. 0 ≤ α ≤ C 1I, 0 ≤ β ≤ C 1I, 1I′(α− β) = 0
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Support Vector Regression

• After solving the dual QP problemwe can retrieve

w = X(α∗ − β∗) =

N∑
i=1

(α∗
i − β∗

i )xi

f(x) = w′x+ b = (α∗ − β∗)′X ′x+ b =

N∑
i=1

(α∗
i − β∗

i )x
′
ix+ b

f(x) =

N∑
i=1

(α∗
i − β∗

i )x
′
ix+ b

(see next slide for how to reconstruct b)

• f(x) is defined by a linear combination of the training vectors xi

• The vectors xi for whichα∗
i − β∗

i ̸= 0 are called support vectors

• Note that theQP is also equivalent to the ℓ1-regularized problem

minz
1
2z

′X ′Xz − Y ′z + ϵ∥z∥1
s.t. |zi| ≤ C,

∑N
i=1 zi = 0
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Support Vector Regression

• The scalar b can be retrieved from the complementarity slackness conditions

0 = αi(yi − x′
iw − (b+ ϵ)− vi), i = 1, . . . , N

0 = βi(−yi + x′
iw + (b− ϵ)− si)

0 = γivi = (C − αi)vi

0 = δisi = (C − βi)si

• if anyα∗
i ∈ (0, C) then v∗i = 0⇒ b∗ = yi − x′

iw
∗ − ϵ

• if any β∗
i ∈ (0, C) then s∗i = 0⇒ b∗ = yi − x′

iw
∗ + ϵ
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Support Vector Regression

• Otherwise, consider the case allα∗
i , β

∗
i ∈ {0, C}

• α∗
i , β

∗
i cannot be positive at the same time, as they refer to bilateral constraints

(yi − w′xi − b cannot be both positive and negative)

αi = 0 ⇒ vi = 0 ⇒ yi − x′
iw − (b+ ϵ) ≤ 0

βi = 0 ⇒ si = 0 ⇒ −yi + x′
iw + (b− ϵ) ≤ 0

αi = C ⇒ βi = 0 ⇒ si = 0, −yi + x′
iw + (b− ϵ) ≤ 0

βi = C ⇒ αi = 0 ⇒ vi = 0, yi − x′
iw − (b+ ϵ) ≤ 0

• LetI = {i : α∗
i = 0 or β∗

i = C} andJ = {i : α∗
i = C or β∗

i = 0}. Then

b∗ ≥ yi − x′
iw

∗ − ϵ, ∀i ∈ I
b∗ ≤ yi − x′

iw
∗ + ϵ, ∀i ∈ J

• Therefore, any b∗ ∈ [max
i∈I

{yi − x′
iw

∗ − ϵ},min
i∈J

{yi − x′
iw

∗ + ϵ}] is optimal
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Support Vector Regression

• Kernel trick: if we generalize xi to an arbitrary nonlinear basis ϕ(xi)we get

f(x) =

N∑
i=1

(α∗
i − β∗

i )k(xi, x) + b

where k(x, y) = ϕ′(x)ϕ(y) is a kernel function, k : Rn × Rn → R

• Example: x ∈ R2, ϕ(x) = [x2
1

√
2x1x2 x2

2]
′, k(x, y) = (x′y)2

• The (i, j)th term x′
ixj of the dual Hessian gets replaced by k(xi, xj)

• b depends on x′
iw = x′

iX(α− β) that gets replaced by k(xi, X)(α∗ − β∗)

• Therefore ϕ,w are not required, and can have arbitrary dimensions !

• Example: Gaussian radial basis function kernel k(x, y) = e−
1
2∥x−y∥2/σ2

(RBF)

the corresponding ϕ is infinite dimensional
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Example of Support Vector Regression

• GenerateN = 100 random samples of the course-logo function

f(x1, x2) = −e−(x2
1+x2

2) + 0.3 sin

(
1

10
x3
1 + x2

2

)
+ 1.2

• Solve SVR problemwithC = 100, ϵ = 0.01, Gaussian kernel with σ = 1

0

22

0.5

11

original function

1

00

1.5

-1-1

-2 -2

0

22

0.5

11

SVR approximation

1

0 0

1.5

-1-1

-2-2
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