NUMERICAL OPTIMIZATION

Alberto Bemporad

http://cse.lab.imtlucca.it/~bemporad/optimization_course.html

Academic year 2024-2025

Solve complex decision problems by using numerical optimization

Application domains:

- Finance, management science, economics (portfolio optimization, business analytics, investment plans, resource allocation, logistics, ...)
- Engineering (engineering design, process optimization, embedded control, ...)
- Artificial intelligence (machine learning, data science, autonomous driving, ...)
- Myriads of other applications (transportation, smart grids, water networks, sports scheduling, health-care, oil & gas, space, ...)

What this course is about:

• How to formulate a decision problem as a numerical optimization problem? (modeling)

• Which numerical algorithm is most appropriate to solve the problem? (algorithms)

• What's the theory behind the algorithm? (theory)

- Optimization modeling
 - Linear models
 - Convex models
- Optimization theory
 - Optimality conditions, sensitivity analysis
 - Duality
- Optimization algorithms
 - Basics of numerical linear algebra
 - Convex programming
 - Nonlinear programming

REFERENCES i

J. Nocedal and S.J. Wright.

Numerical Optimization.

Springer, 2 edition, 2006.

M.S. Bazaraa, H.D. Sherali, and C.M. Shetty.

Nonlinear Programming - Theory and Algorithms.

John Wiley & Sons, Inc., New York, 3 edition, 2006.

S. Boyd and L. Vandenberghe.

Convex Optimization.

Cambridge University Press, New York, NY, USA, 2004. http://www.stanford.edu/~boyd/cvxbook.html.

S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein. Distributed optimization and statistical learning via the alternating direction method of multipliers.

Foundations and Trends in Machine Learning, 3(1):1--122, 2011.

REFERENCES ii

N. Parikh and S.P. Boyd.

Proximal algorithms.

Foundations and Trends in optimization, 1(3):127--239, January 2014.

C. Guéret, C. Prins, and M. Sevaux.

Applications of optimization with Xpress-MP.

1999.

Translated and revised by S. Heipcke.

Model Building in Mathematical Programming.

John Wiley & Sons, 5 edition, 2013.

• Stephen Boyd's "Convex Optimization" courses at Stanford: http://ee364a.stanford.edu http://ee364b.stanford.edu

 Lieven Vandenberghe's courses at UCLA: http://www.seas.ucla.edu/~vandenbe/

 For more tutorials/books see http://plato.asu.edu/sub/tutorials.html

OPTIMIZATION MODELING

WHAT IS OPTIMIZATION?

- Optimization = assign values to a set of decision variables so to optimize a certain objective function
- Example: Which is the best velocity to minimize fuel consumption?

WHAT IS OPTIMIZATION?

- Optimization = assign values to a set of decision variables so to optimize a certain objective function
- Example: Which is the best velocity to minimize fuel consumption?

optimization variable: velocity

cost function to minimize: fuel consumption

parameters of the decision problem: engine type, chassis shape, gear, ...

OPTIMIZATION PROBLEM

Most often the problem is difficult to solve by inspection use a numerical solver implementing an optimization algorithm

OPTIMIZATION PROBLEM

 $\min f(x)$

• The objective function $f : \mathbb{R}^n \to \mathbb{R}$ models our goal: minimize (or maximize) some quantity.

For example **fuel**, **money**, **distance** from a target, etc.

• The optimization vector $x \in \mathbb{R}^n$ is the vector of optimization variables (or unknowns) x_i to be decided optimally.

For example velocity, number of assets in a portfolio, voltage applied to a motor, etc.

CONSTRAINED OPTIMIZATION PROBLEM

- The optimization vector x may not be completely free, but rather restricted to a feasible set $\mathcal{X}\subseteq\mathbb{R}^n$
- Example: the velocity must be smaller than 60 km/h

The new optimizer is $x^* = 42$ km/h.

Numerical Optimization - ©2024 A. Bemporad. All rights reserved.

CONSTRAINED OPTIMIZATION PROBLEM

$$\min_x f(x) \\ \text{s.t.} g(x) \le 0 \\ h(x) = 0$$

 $\mathcal{X} = \{ x \in \mathbb{R}^n : g(x) \le 0, h(x) = 0 \}$

• Further constraints may restrict X, for example:

$$x \in \{0,1\}^n$$
 (x = binary vector)

 $x \in \mathcal{Z}^n$ (x = integer vector)

 $g: \mathbb{R}^n \to \mathbb{R}^m, h: \mathbb{R}^n \to \mathbb{R}^p$ $g(x) = \begin{bmatrix} g_1(x_1, x_2, \dots, x_n) \\ \vdots \\ g_m(x_1, x_2, \dots, x_n) \end{bmatrix}$ $h(x) = \begin{bmatrix} h_1(x_1, x_2, \dots, x_n) \\ \vdots \\ h_p(x_1, x_2, \dots, x_n) \end{bmatrix}$

• An optimization problem can always be written as a minimization problem

$$\max_{x \in \mathcal{X}} f(x) = -\min_{x \in \mathcal{X}} \{-f(x)\}$$

• Similarly, an inequality $g_i(x) \ge 0$ is equivalent to $-g_i(x) \le 0$

• An equality h(x) = 0 is equivalent to the double inequalities $h(x) \le 0$, $-h(x) \le 0$ (often this is only good in theory, but not numerically)

A FEW OBSERVATIONS (2/2)

- The following transformations do not change the optimizer:
 - Scale $\alpha f(x), \alpha > 0$, and/or shift $f(x) + \gamma$
 - More in general: apply a monotonically increasing function $\phi(f(x))$ Example: if f(x) > 0 for all x, minimizing f(x) is the same as minimizing $\log(f(x))$
 - Scale $\alpha g_i(x) \leq 0, \alpha > 0$, scale $\gamma h_j(x) = 0, \gamma \neq 0$
 - More in general, apply a monotonically increasing function $\phi(\cdot)$ Example: $||x||_2 \le 1 \Leftrightarrow x'x \le 1$ for all x (here $\phi(\alpha) = \alpha^2, \alpha \ge 0$)
- Adding constraints makes the objective worse or equal:

$$\min_{x \in \mathcal{X}_1} f(x) \le \min_{x \in \mathcal{X}_1, \, x \in \mathcal{X}_2} f(x)$$

- Strict inequalities $g_i(x) < 0$ can be approximated by $g_i(x) \leq -\epsilon \ (0 < \epsilon \ll 1)$

INFEASIBILITY AND UNBOUNDEDNESS

• A vector $x \in \mathbb{R}^n$ is feasible if $x \in \mathcal{X}$, i.e., it satisfies the given constraints

• A problem is **infeasible** if $\mathcal{X} = \emptyset$ (the constraints are too tight)

• A problem is unbounded if $\forall M > 0 \ \exists x \in \mathcal{X}$ such that f(x) < -M. In this case we write

$$\inf_{x \in \mathcal{X}} f(x) = -\infty$$

• A vector $x^* \in \mathbb{R}^n$ is a global optimizer if $x^* \in \mathcal{X}$ and $f(x) \ge f(x^*), \forall x \in \mathcal{X}$

• A vector $x^* \in \mathbb{R}^n$ is a strict global optimizer if $x^* \in \mathcal{X}$ and $f(x) > f(x^*)$, $\forall x \in \mathcal{X}, x \neq x^*$

• A vector $x^* \in \mathbb{R}^n$ is a (strict) local optimizer if $x^* \in \mathcal{X}$ and there exists a neighborhood¹ \mathcal{N} of x^* such that $f(x) \ge f(x^*), \forall x \in \mathcal{X} \cap \mathcal{N}$ ($f(x) > f(x^*), \forall x \in \mathcal{X} \cap \mathcal{N}, x \neq x^*$)

¹Neighborhood of x = open set containing x

EXAMPLE: LEAST SQUARES

- We have a dataset $(u_k, y_k), u_k, y_k \in \mathbb{R}, k = 1, \dots N$
- We want to fit a line $\hat{y} = au + b$ to the dataset that minimizes

$$f(x) = \sum_{k=1}^{N} (y_k - au_k - b)^2 = \sum_{k=1}^{N} (\begin{bmatrix} u_k \\ 1 \end{bmatrix}' x - y_k)^2 = \left\| \begin{bmatrix} u_1 & 1 \\ \vdots & \vdots \\ u_N & 1 \end{bmatrix} x - \begin{bmatrix} y_1 \\ \vdots \\ y_N \end{bmatrix} \right\|_2^2$$

with respect to $x = \begin{bmatrix} a \\ b \end{bmatrix}$

• The problem $\begin{bmatrix} a^*\\b^* \end{bmatrix} = \arg\min f(\begin{bmatrix} a\\b \end{bmatrix})$ is a least-squares problem: $\hat{y} = a^*u + b^*$ In MATLAB:

LEAST SQUARES USING BASIS FUNCTIONS

- More generally: we can fit nonlinear functions y = f(u) expressed as the sum of basis functions $y_k \approx \sum_{i=1}^{n} x_i \phi_i(u_k)$ using least squares
- Example: fit polynomial function $y = x_1 + x_2u_1 + x_3u_1^2 + x_4u_1^3 + x_5u_1^4$

$$\min_{x} \sum_{k=1}^{N} \left(y_k - \left[1 \quad u_k \quad u_k^2 \quad u_k^3 \quad u_k^4 \right] x \right)^2 \quad \text{least squares}$$

LEAST SQUARES - FITTING A CIRCLE

Example: fit a circle to a set of data²

$$\min_{x_0, y_0, r} \sum_{k=1}^{N} (r^2 - (x_k - x_0)^2 - (y_k - y_0)^2)^2$$

- Let $x = \begin{bmatrix} x_0 \\ y_0 \\ r^2 x_0^2 y_0^2 \end{bmatrix}$ be the optimization vector (note the change of variables!)
- The problem becomes the least squares problem

²http://www.utc.fr/~mottelet/mt94/leastSquares.pdf

CONVEX SETS

Definition

A set $S \subseteq \mathbb{R}^n$ is convex if for all $x_1, x_2 \in S$

$$\lambda x_1 + (1 - \lambda) x_2 \in S, \, \forall \lambda \in [0, 1]$$

Numerical Optimization - ©2024 A. Bemporad. All rights reserved.

CONVEX FUNCTIONS

• $f: S \to \mathbb{R}$ is a **convex function** if S is convex and

$$f(\lambda x_1 + (1 - \lambda)x_2) \le \lambda f(x_1) + (1 - \lambda)f(x_2)$$
$$\forall x_1, x_2 \in S, \ \lambda \in [0, 1]$$

Jensen's inequality (Jensen, 1906)

• If f is convex and differentiable at x_2 , take the limit $\lambda \to 0$ and get ³

$$f(x_1) \ge f(x_2) + \nabla f(x_2)'(x_1 - x_2)$$

Johan Jensen (1859–1925)

• A function f is strictly convex if $f(\lambda x_1 + (1 - \lambda)x_2) < \lambda f(x_1) + (1 - \lambda)f(x_2)$, $\forall x_1 \neq x_2 \in S, \forall \lambda \in (0, 1)$

 ${}^{3}f(x_{1}) - f(x_{2}) \ge \lim_{\lambda \to 0} (f(x_{2} + \lambda(x_{1} - x_{2})) - f(x_{2}))/\lambda = \nabla f'(x_{2})(x_{1} - x_{2})$

CONVEX FUNCTIONS

• A function $f: S \to \mathbb{R}$ is strongly convex with parameter $m \ge 0$ if

$$f(\lambda x_1 + (1 - \lambda)x_2) \le \lambda f(x_1) + (1 - \lambda)f(x_2) - \frac{m\lambda(1 - \lambda)}{2} \|x_1 - x_2\|_2^2$$

• If f strongly convex with parameter $m \ge 0$ and differentiable then

$$f(y) \ge f(x) + \nabla f(x)'(y-x) + \frac{m}{2} ||y-x||_2^2$$

• Equivalently, f is strongly convex with parameter $m \geq 0$ if and only if $f(x) - \frac{m}{2}x'x$ convex

CONVEX FUNCTIONS

- Assume f is differentiable twice and let $\nabla^2 f(x) \in \mathbb{R}^{n \times n}$ be the Hessian matrix of f at x
- Strong convexity with parameter $m \ge 0$ is equivalent to $\nabla^2 f(x) \succeq mI$ (i.e., matrix $\nabla^2 f(x) - mI$ is positive semidefinite ⁴), $\forall x \in \mathbb{R}^n$

• A function f is (strictly/strongly) concave if -f is (strictly/strongly) convex

⁴A matrix $P \in \mathbb{R}^{n \times n}$ is positive semidefinite $(P \succeq 0)$ if $x' Px \ge 0$ for all x. It is positive definite $(P \succ 0)$ if in addition x' Px > 0 for all $x \ne 0$. It is negative (semi)definite $(P \prec 0, P \preceq 0)$ if -P is positive (semi)definite. It is indefinite otherwise.

CONVEX PROGRAMMING

The optimization problem

 $\begin{array}{ll} \min & f(x) \\ \text{s.t.} & x \in S \end{array}$

is a **convex optimization problem** if S is a convex set and $f: S \to \mathbb{R}$ is a convex function

- Often S is defined by linear equality constraints Ax = b and convex inequality constraints $g(x) \le 0, g : \mathbb{R}^n \to \mathbb{R}^m$ convex
- Every local solution is also a global one (we will see this later)
- Efficient solution algorithms exist (we will see many later)
- Often occurring in many problems in engineering, economics, and science
 Excellent textbook: "Convex Optimization" (Boyd, Vandenberghe, 2002)

POLYHEDRA

Definition

Convex **polyhedron** = intersection of a finite set of half-spaces of \mathbb{R}^n Convex **polytope** = bounded convex polyhedron

• Hyperplane (H-)representation:

 $P = \{ x \in \mathbb{R}^n : Ax \le b \}$

• Vertex (V-)representation:

$$P = \{x \in \mathbb{R}^n : x = \sum_{i=1}^q \alpha_i v_i + \sum_{j=1}^p \beta_j r_j\}$$
$$\alpha_i, \beta_j \ge 0, \sum_{i=1}^q \alpha_i = 1, v_i, r_j \in \mathbb{R}^n$$
when $q = 0$ the polyhedron is a **cone**

Convex hull = transformation from V- to H-representation

Vertex enumeration = transformation from H- to V-representation

 v_i = vertex, r_j = extreme ray

LINEAR PROGRAMMING

• Linear programming (LP) problem:

 $\begin{array}{ll} \min & c'x \\ \text{s.t.} & Ax \leq b, \, x \in \mathbb{R}^n \\ & Ex = f \end{array}$

• LP in standard form:

George Dantzig (1914–2005)

- Conversion to standard form:
 - 1. introduce slack variables

$$\sum_{i=1}^{n} a_{ij} x_j \le b_i \Rightarrow \sum_{j=1}^{n} a_{ij} x_j + s_i = b_i, \, s_i \ge 0$$

min

s.t.

2. split positive and negative part of x

$$\left\{\begin{array}{l}\sum_{j=1}^{n}a_{ij}x_j+s_i=b_i\\x_j \text{ free, }s_i \ge 0\end{array}\right. \Rightarrow \left\{\begin{array}{l}\sum_{j=1}^{n}a_{ij}(x_j^+-x_j^-)+s_i=b_i\\x_j^+,x_j^-,s_i \ge 0\end{array}\right.$$

Numerical Optimization - ©2024 A. Bemporad. All rights reserved.

QUADRATIC PROGRAMMING (QP)

• Quadratic programming (QP) problem:

min
$$\frac{1}{2}x'Qx + c'x$$

s.t. $Ax \le b, x \in \mathbb{R}^n$
 $Ex = f$

- Convex optimization problem if $Q \succeq 0$ (Q = positive semidefinite matrix)
- Without loss of generality, we can assume Q = Q':

$$\frac{1}{2}x'Qx = \frac{1}{2}x'(\frac{Q+Q'}{2} + \frac{Q-Q'}{2})x = \frac{1}{2}x'(\frac{Q+Q'}{2})x + \frac{1}{4}x'Qx - \frac{1}{4}(x'Q'x)'$$

$$= \frac{1}{2}x'(\frac{Q+Q'}{2})x$$

• Hard problem if $Q \not\succeq 0$

CONTINUOUS VS DISCRETE OPTIMIZATION

- In some problems the optimization variables can only take integer values. We call $x \in \mathbb{Z}$ an integrality constraint
- A special case is $x \in \{0, 1\}$ (binary constraint)
- When all variables are integer (or binary) the problem is an **integer** programming problem (a special case of discrete optimization)
- In a mixed integer programming (MIP) problem some of the variables are real (x_i ∈ ℝ), some are discrete/binary (x_i ∈ ℤ or x_i ∈ {0, 1})

Optimization problems with integer variables are more difficult to solve

MIXED-INTEGER PROGRAMMING (MIP)

 $\begin{array}{ll} \min & c'x \\ \text{s.t.} & Ax \leq b, \, x = \left[\begin{smallmatrix} x_c \\ x_b \end{smallmatrix} \right] \\ & x_c \in \mathbb{R}^{n_c}, \, x_b \in \{0,1\}^{n_b} \end{array}$

$$\begin{array}{ll} \min & \frac{1}{2}x'Qx + c'x \\ \text{s.t.} & Ax \leq b, \ x = \left[\begin{smallmatrix} x_c \\ x_b \end{smallmatrix} \right] \\ & x_c \in \mathbb{R}^{n_c}, \ x_b \in \{0,1\}^{n_b} \end{array}$$

mixed-integer linear program (MILP)

mixed-integer quadratic program (MIQP)

- Some variables are real, some are binary (0/1)
- MILP and MIQP are \mathcal{NP} -hard problems, in general
- Many good solvers are available (CPLEX, Gurobi, GLPK, SCIP, FICO Xpress, CBC, ...) For comparisons see http://plato.la.asu.edu/bench.html

STOCHASTIC AND ROBUST OPTIMIZATION

Relations affected by random numbers lead to stochastic models

 $\min_{x} E_w[f(x,w)]$

- The model is enriched by the information about the probability distribution of \boldsymbol{w}
- Other stochastic measures can be minimized (Var, conditional value-at-risk, ...)
- The deterministic version $\min_x f(x, E_w[w])$ of the problem only considers the expected value of w, not its entire distribution

If f is convex w.r.t. w then $f(x, E_w[w]) \le E_w[f(x, w)]$

- chance constraints are constraints enforced only in probability: $\mathrm{prob}(g(x,w) \leq 0) \geq 99\%$
- robust constraints are constraints that must be always satisfied:

$$g(x,w) \leq 0, \forall w$$

DYNAMIC OPTIMIZATION

• Dynamic optimization involves decision variables that evolve over time

<u>Example</u>: For a given a value of x_0 we want to optimize

$$\min_{x,u} \quad x_N^2 + \sum_{t=0}^{N-1} x_t^2 + u_t^2$$

s.t. $x_{t+1} = ax_t + bu_t, \ t = 0, \dots, N-1$

where u_t is the **control** value (to be decided) and x_t the **state** at time t.

The decision variables are

$$u = \begin{bmatrix} u_0 \\ \vdots \\ u_{N-1} \end{bmatrix}, x = \begin{bmatrix} x_1 \\ \vdots \\ x_N \end{bmatrix}$$

Used to solve optimal control problems, such as in model predictive control

OPTIMIZATION ALGORITHM

- An optimization algorithm is a procedure to find an optimizer x^* of a given optimization problem $\min_{x \in \mathcal{X}} f(x)$
- It is usually iterative: starting from an initial guess x^0 of x it generates a sequence x^k of "iterates", with hopefully $x^N \approx x^*$ after N iterations
- Good optimization algorithms should possess the following properties:
 - Efficiency = do not require excessive CPU time/flops and memory allocation
 - **Robustness** = perform well on a wide variety of problems in their class, for all reasonable values of the initial guess x^0
 - Accuracy = find a solution close to the optimal one, in spite of roundoff errors due to finite precision arithmetic (numerical robustness)
- The above are often conflicting properties

OPTIMIZATION TAXONOMY

https://neos-guide.org/content/optimization-taxonomy

OPTIMIZATION SOFTWARE

• Comparison on benchmark problems:

http://plato.la.asu.edu/bench.html

• Taxonomy of many solvers for different classes of optimization problems:

http://www.neos-guide.org

• NEOS server for remotely solving optimization problems:

Good open-source optimization software:

• An **optimization model** is a mathematical model that captures the objective function to minimize and the constraints imposed on the optimization variables

• It is a **quantitative** model, the decision problem must be formulated as a set of mathematical relations involving the optimization variables

FORMULATING AN OPTIMIZATION MODEL

Steps required to formulate an optimization model that solves a given decision problem:

- 1. Talk to the domain expert to understand the problem we want to solve
- 2. Single out the optimization variables x_i (what are we able to decide?) and their domain (real, binary, integer)
- 3. Treat the remaining variables as **parameters** (=data that affect the problem but are not part of the decision process)
- 4. Translate the objective(s) into a cost function of x to minimize (or maximize)
- 5. Are there **constraints** on the decision variables ? If yes, translate them into (in)equalities involving *x*
- 6. Make sure we have all the required data available

FORMULATING AN OPTIMIZATION MODEL

- It may take several iterations to formulate the optimization model properly, as:
 - A solution does not exist (anything wrong in the constraints?)
 - The solution does not make sense (is any constraint missing or wrong?)
 - The optimal value does not make sense (is the cost function properly defined?)
 - It takes too long to find the solution (can we simplify the model?)

(Guerét et al., Applications of Optimization with XpressMP, 1999)

A small joinery makes two different sizes of boxwood chess sets. The small set requires 3 hours of machining on a lathe, and the large set requires 2 hours. There are four lathes with skilled operators who each work a 40 hour week, so we have 160 lathe-hours per week. The small chess set requires 1 kg of boxwood, and the large set requires 3 kg. Unfortunately, boxwood is scarce and only 200 kg per week can be obtained. When sold, each of the large chess sets yields a profit of \$20, and one of the small chess set has a profit of \$5.

The problem is to decide how many sets of each kind should be made each week so as to maximize profit.

(Guerét et al., Applications of Optimization with XpressMP, 1999)

- A small joinery makes two different sizes of boxwood chess sets. The small set requires 3 hours of machining on a lathe, and the large set requires 2 hours.
- There are four lathes with skilled operators who each work a 40 hour week, so we have 160 lathe-hours per week.
- The small chess set requires 1 kg of boxwood, and the large set requires 3 kg. Unfortunately, boxwood is scarce and only 200 kg per week can be obtained.
- When sold, each of the large chess sets yields a profit of \$20, and one of the small chess set has a profit of \$5.
- The problem is to decide how many sets of each kind should be made each week so as to maximize profit.

- Optimization variables: x_s, x_ℓ = produced quantities of small/large chess sets
- Cost function: $f(x) = 5x_s + 20x_\ell$ (profit)
- Constraints:

 $3x_s + 2x_\ell \le 4 \cdot 40$ (maximum lathe-hours)

 $x_s + 3x_\ell \leq 200$ (available kg of boxwood)

 $x_s, x_\ell \ge 0$ (produced quantities cannot be negative)

$$\begin{array}{ll} \max & 5x_s + 20x_\ell \\ \text{s.t.} & \begin{bmatrix} 3 & 2 \\ 1 & 3 \end{bmatrix} \begin{bmatrix} x_s \\ x_\ell \end{bmatrix} \leq \begin{bmatrix} 160 \\ 200 \end{bmatrix} \\ & x_s, x_\ell \geq 0 \end{array}$$

Numerical Optimization - ©2024 A. Bemporad. All rights reserved.

• What is the best decision ? Let us make some guesses:

	xs	xl	Lathe-hours	Boxwood	OK?	Profit	Notes
Α	0	0	0	0	Yes	0	Unprofitable!
в	10	10	50	40	Yes	250	We won't get rich doing this.
с	-10	10	-10	20	No	150	Planning to make a negative number of small sets.
D	53	0	159	53	Yes	265	Uses all the lathe-hours. There is spare boxwood.
Е	50	20	190	110	No	650	Uses too many lathe-hours.
F	25	30	135	115	Yes	725	There are spare lathe-hours and spare boxwood.
G	12	62	160	198	Yes	1300	Uses all the resources

• What is the best solution ? A numerical solver provides the following solution

$$x_s^* = 0, \ x_\ell^* = 66.6666 \Rightarrow f(x^*) = 1333.3$$

OPTIMIZATION MODELS

- Optimization models, as all mathematical models, are never an exact representation of reality but a good approximation of it
- We need to make working assumptions, for example:
 - Lathe hours are never more than 160
 - Available wood is exactly 200 kg
 - Prices are constant
 - We sell all chess sets
- There are usually many different models for the same real problem

Optimization modeling is an art

Numerical Optimization - ©2024 A. Bemporad. All rights reserved.

MODELING LANGUAGES FOR OPTIMIZATION PROBLEMS

- AMPL (A Modeling Language for Mathematical Programming) most used modeling language, supports several solvers
- GAMS (General Algebraic Modeling System) is one of the first modeling languages
- GNU MathProg a subset of AMPL associated with the free package GLPK (GNU Linear Programming Kit)
- YALMIP MATLAB-based modeling language
- CVX/CVXPY/Convex.jl Convex problem modeling in MATLAB/ python / julia

MODELING LANGUAGES FOR OPTIMIZATION PROBLEMS

- CASADI + IPOPT Nonlinear modeling + automatic differentiation, nonlinear programming solver (MATLAB, python, C++)
- JAX + JAXOPT 🔁 python automatic differentiation + optimization
- Optimization Toolbox' modeling language (part of MATLAB since R2017b)
- **PYOMO Python**-based modeling language
- GEKKO 🔁 python-based mixed-integer nonlinear modeling language
- PYTHON-MIP python-based modeling language for mixed-integer linear programming
- JuMP A modeling language for linear, quadratic, and nonlinear constrained optimization problems embedded in **Julia**

• Model and solve the problem using YALMIP (Löfberg, 2004)

```
xs = sdpvar(1,1);
xl = sdpvar(1,1);
Constraints = [3*xs+2*xl <= 4*40, 1*xs+3*xl <= 200, ...
xs >= 0, xl >= 0]
Profit = 5*xs+20*xl;
optimize(Constraints,-Profit)
value(xs),value(xl),value(Profit)
```

Numerical Optimization - ©2024 A. Bemporad. All rights reserved.

• Model and solve the problem using CVX (Grant, Boyd, 2013)

```
cvx clear
cvx begin
variable xs(1)
variable xl(1)
Profit = 5*xs+20*x1;
maximize Profit
subject to
3*xs+2*xl <= 4*40; % maximum lathe-hours
1*xs+3*xl <= 200; % available kg of boxwood</pre>
xs >= 0:
x1>=0;
cvx_end
xs,xl,Profit
```

• Model and solve the problem using CASADI + IPOPT

(Andersson, Gillis, Horn, Rawlings, Diehl, 2018) (Wächter, Biegler, 2006)

```
import casadi.*
xs=SX.sym('xs');
xl=SX.svm('xl');
Profit = 5 \times xs + 20 \times xl:
Constraints = [3*xs+2*xl-4*40; 1*xs+3*xl-200];
prob=struct('x',[xs;xl],'f',-Profit,'g',Constraints);
solver = nlpsol('solver','ipopt', prob);
res = solver('lbx',[0;0],'ubg',[0;0]);
Profit = -res.f;
xs = res.x(1);
xl = res.x(2);
```

• Model and solve the problem using Optimization Toolbox (The Mathworks, Inc.)

```
xs=optimvar('xs','LowerBound',0);
xl=optimvar('xl','LowerBound',0);
Profit = 5*xs+20*x1;
C1 = 3 \times xs + 2 \times x1 - 4 \times 40 \le 0;
C2= 1*xs+3*x1-200<=0;
prob=optimproblem('Objective', Profit, 'ObjectiveSense', 'max');
prob.Constraints.C1=C1;
prob.Constraints.C2=C2;
[sol,Profit] = solve(prob);
xs=sol.xs;
xl=sol.xl:
```

• Model and solve the problem in Python using PYTHON-MIP⁵:

```
from mip import *
m = Model(sense=MAXIMIZE, solver_name=CBC)
xs = m.add_var(lb=0)
xl = m.add_var(lb=0)
m += 3*xs+2*xl <= 4*40
m += 1*xs+3*xl <= 200
m.objective = 5*xs+20*xl
m.optimize()
print(xs.x, xl.x)</pre>
```

⁵https://python-mip.readthedocs.io/

• In this case the optimization model is very simple and we can directly code the LP problem in plain MATLAB or Python:

- The Hybrid Toolbox for MATLAB contains interfaces to various solvers for LP, QP, MILP, MIQP (http://cse.lab.imtlucca.it/~bemporad/hybrid/toolbox) (Bemporad, 2003-today)
- However, when there are many variables and constraints forming the problem matrices manually can be very time-consuming and error-prone

• We can even model and solve the optimization problem in Excel:

🔹 🛋 🛋 🗰 Éxcel File Edit View Insert Forma	t Tools Data Window Help	Solver Parameters		
Home Insert Page Layout Formulas Paste V Paste V Home Insert Page Layout Formulas Calibri (Body) • 12 • A • A • B I U • • • • • • • •	Spelling Thesaurus へて第R Smart Lookup へて第L Language AutoCorrect Error Checking	Set Objective: SES2 To: Max Min Value Of: 0 By Changing Variable Cells: SBS6:SCS6		
F6 $\stackrel{\bullet}{\downarrow}$ \times \checkmark f_x	Check Accessibility	Subject to the Constraints: SES3 <= \$D\$3 Add		
A B C D E 2 Profit 5 20 1333.333 1333.333 3 Bowood 1 3 2000 1333.333 20 4 Lathe 3 2 160 135 133 2 6 Chess sets 0 66.6666667 9 9 9 10 10 10	Merge Workbooks	Delete Reset All Load/Save		
ui is optimization variables cost fu	Macro Excel Add-ins	Select a Solving Method: Simplex LP Options Solving Method Select the CRC Nonlinear engine for Solver Problems that are smooth nonlinear. Select the LP Simplex engine for Solver problems that are non- smooth. Options		
B6:C6 =SUMPRO	DUCT(B6:C6;B2:C2)	Close Solve		

LINEAR OPTIMIZATION MODELS

Reference:

C. Guéret, C. Prins, M. Sevaux, "Applications of optimization with Xpress-MP," Translated and revised by S.Heipcke, 1999

OPTIMIZATION MODELING: LINEAR CONSTRAINTS

• Constraints define the set where to look for an optimal solution

• They define relations between decision variables

• When formulating an optimization model we must **disaggregate** the restrictions appearing in the decision problem into subsets of constraints that we know how to model

• There are many types of constraints we know how to model ...

1. UPPER AND LOWER BOUNDS (BOX CONSTRAINTS)

• Box constraints are the simplest constraints: they define upper and lower bounds on the decision variables

- Example: "We cannot sell more than 100 units of Product A"
- Pay attention: some solvers assume nonnegative variables by default!
- When $\ell_i = u_i$ the constraint becomes $x_i = \ell_i$ and variable x_i becomes redundant. Still it may be worthwhile keeping in the model

2. FLOW CONSTRAINTS

• Flow constraints arise when an item can be divided in different streams, or vice versa many streams come together

- Example: "I can get water from 3 suppliers, S1, S2 and S3. I want to have at least 1000 liters available." $x_1 + x_2 + x_3 \ge 1000$
- Example: "I have 50 trucks available to rent to 3 customers C1, C2 and C3" $x_1+x_2+x_3\leq 50$
- Losses can be included as well: ``2% water I get from suppliers gets lost," $0.98x_1 + 0.98x_2 + 0.98x_3 \ge 1000$

3. RESOURCE CONSTRAINTS

• Resource constraints take into account that a given resource is limited

$$\sum_{i=1}^{n} R_{ji} x_i \le R_{\max,j}$$

- The technological coefficients R_{ji} denote the amount of resource j used per unit of activity i
- Example:

"Small chess sets require 1 kg boxwood, the large ones 3 kg, total available is 200 kg." $x_1 + 3x_2 \le 200$

"Small chess sets require 3 lathe hours, the large ones 2 h, total time is 4×40 h." $3x_1 + 2x_2 \le 160$

$$R = \begin{bmatrix} 2 & 3 \\ 3 & 2 \end{bmatrix}, R_{\text{max}} = \begin{bmatrix} 200 \\ 160 \end{bmatrix}$$

4. BALANCE CONSTRAINTS

• Balance constraints model the fact that "what goes out must in total equal what comes in"

- Example: "I have 100 tons steel and can buy more from suppliers 1,2,3 to serve customers A,B." $x_A + x_B = 100 + x_1 + x_2 + x_3$
- Balance can occur between time periods in a multi-time period model
- Example: "The cash I'll have tomorrow is what I have now plus what I receive minus what I spend today," $x_{t+1} = x_t + u_t y_t$

5. QUALITY CONSTRAINTS

• Quality constraints are requirements on the average percentage of a certain quality when blending several components

- Example: "The average risk of an investment in assets A,B,C, which have risks 25%, 5%, and 12% respectively, must be smaller than 10%" $\frac{0.25x_A+0.05x_B+0.12x_C}{x_A+x_B+x_C} \leq 0.1$
- The nonlinear quality constraint is converted to a linear one under the assumption that $x_i \ge 0$ (if $x_i = 0 \forall i$ the constraint becomes redundant)

Objectives and constraints can be often simplified by mathematical transformations and/or adding extra variables

6. ACCOUNTING VARIABLES AND CONSTRAINTS

• It is often useful to add extra accounting variables

$$y = \sum_{i=1}^{N} x_i$$

accounting constraint

- Of course we can replace y with $\sum_{i=1}^{N} x_i$ everywhere in the model (condensed form), but this would make it less readable
- Moreover, keeping y in the model (non-condensed form) may preserve some structural properties that the solver could exploit
- Example: "The profit at any given year is the difference between revenues and expenditures" $p_t = r_t e_t$

 Blending constraints occur when we want to blend a set of ingredients x_i in given percentages α_i in the final product

$$\frac{x_i}{\sum_{j=1}^N x_j} = \alpha_i$$

• Similar to quality constraints, blending constraints can be converted to linear equality constraints

$$x_i = \sum_{j=1}^N \alpha_i x_j$$

8. SOFT CONSTRAINTS

- So far we have seen are hard constraints, i.e., that cannot be violated.
- **Soft constraints** are a relaxation, in which the constraint can be violated, usually paying a penalty

- We call the new variable ϵ_j panic variable: it should be normally zero but can assume a positive value in case there is no way to fulfill the constraint set
- Example: "Only 200 kg boxwood are available to make chess sets, but we can buy extra for 6 \$/kg"

$$\max_{x_s, x_\ell, \epsilon \ge 0} \quad \begin{aligned} 5x_s + 20x_\ell - 6\epsilon \\ \text{s.t.} \quad x_s + 3x_\ell \le 200 + \epsilon \\ 3x_s + 2x_\ell \le 160 \end{aligned}$$

 $b_i + \epsilon_i$

LINEAR OBJECTIVE FUNCTIONS

- Linear programs only allow minimizing a linear combination of the optimization variables
- However, by introducing new variables, we can minimize any convex piecewise affine (PWA) function

Result

Every convex piecewise affine function $\ell : \mathbb{R}^n \to \mathbb{R}$ can be represented as the max of affine functions, and vice versa

(Schechter, 1987)

Example:

$$\ell(x) = \max\{a'_1 x + b_1, \dots, a'_4 x + b_4\}$$

CONVEX PWA OPTIMIZATION PROBLEMS AND LP

• Minimization of a convex PWA function $\ell(x)$:

- By construction $\epsilon \ge \max\{a'_1x + b_1, a'_2x + b_2, a'_3x + b_3, a'_4x + b_4\}$
- By contradiction it is easy to show that at the optimum we have that

$$\epsilon = \max\{a_1'x + b_1, a_2'x + b_2, a_3'x + b_3, a_4'x + b_4\}$$

- Convex PWA constraints $\ell(x) \leq 0$ can be handled similarly by imposing $a_i'x+b_i \leq 0, \forall i=1,2,3,4$

1. MINMAX OBJECTIVE

- minmax objective: we want to minimize the maximum among M given linear objectives $f_i(x) = a'_i x + b_i$

 $\min_{x} \max_{i=1,\ldots,M} \{f_i(x)\} \text{ s.t. linear constraints}$

- Example: asymmetric cost $min_x max\{a'x + b, 0\}$
- Example: minimize the ∞ -norm

$$\min_{x} \|Ax - b\|_{\infty}$$

where $||v||_{\infty} \triangleq \max_{i=1,\dots,n} |v_i|$ and $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$.

This corresponds to

$$\min_{x} \max\{A_1 x - b_1, -A_1 x + b_1, \dots, A_m x - b_m, -A_m x + b_m\}$$

2. MINIMIZE THE SUM OF MAX OBJECTIVES

• We want to minimize the sum of maxima among given linear objectives

$$f_{ij}(x) = a'_{ij}x + b_{ij}$$

$$\min_x \sum_{j=1}^N \max_{i=1,...,M_j} \{f_{ij}(x)\} \text{ s.t. linear constraints}$$

• The equivalent reformulation is

$$\begin{array}{ll} \min_{\epsilon,x} & \sum_{j=1}^{N} \epsilon_{j} \\ \text{s.t.} & \epsilon_{j} \ge a_{ij}' x + b_{ij}, \ i = 1, \dots, M_{j}, j = 1, \dots, N \\ \text{(other linear constraints)} \end{array}$$

• Example: minimize the 1-norm

$$\min_{x} \|Ax - b\|_1$$

where $\|v\|_1 \triangleq \sum_{i=1,...,n} |v_i|$ and $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$, that corresponds to m

$$\min_{x} \sum_{i=1} \max\{A_i x - b_i, -A_i x + b_i\}$$

Numerical Optimization - ©2024 A. Bemporad. All rights reserved.

3. LINEAR-FRACTIONAL PROGRAM

• We want to minimize the ratio of linear objectives

$$\begin{array}{ll} \min_{x} & \frac{c'x+d}{e'x+f} \\ \text{s.t.} & Ax \leq b \\ & Gx = h \end{array}$$

r

over the domain e'x + f > 0

• We introduce the new variable $z = \frac{1}{e'x + f}$ and replace x_i with the new variables $y_i = zx_i, i = 1, ..., n$, where

$$1 = z(e'x + f) = e'y + fz, \ z \ge 0$$

• Since $z \ge 0$ then $zAx \le zb$, and the original problem is translated into the LP

$$\min_{z,y} \quad c'y + dz \\ \text{s.t.} \quad Ay - bz \le 0 \\ Gy = hz \\ e'y + fz = 1 \\ z \ge 0$$

from which we recover $x^* = \frac{1}{z^*}y^*$ in case $z^* > 0$.

Numerical Optimization - ©2024 A. Bemporad. All rights reserved.

CHEBYCHEV CENTER OF A POLYHEDRON

• The Chebychev center of a polyhedron $P = \{x : Ax \le b\}$ is the center x^* of the largest ball $B(x^*, r^*) = \{x : x = x^* + u, \|u\|_2 \le r^*\}$ contained in P

- The radius r^* is called the **Chebychev radius** of P
- A ball B(x, r) is included in P if and only if

 $\sup_{\|u\|_{2} \le r} A_{i}(x+u) = A_{i}x + r\|A_{i}\|_{2} \le b_{i}, \, \forall i = 1, \dots, m,$

where $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$, and A_i is the *i*th row of A.

• Therefore, we can compute the Chebychev center/radius by solving the LP

$$\max_{x,r} \quad r \\ \text{s.t.} \quad A_i x + r \|A_i\|_2 \le b_i, \ i = 1, \dots, m$$

CONVEX OPTIMIZATION MODELS

References:

S. Boyd, L. Vandenberghe, "Convex Optimization," 2004

S. Boyd, "Convex Optimization," lecture notes, http://ee364a.stanford.edu, http://ee364b.stanford.edu

CONVEX SETS

• Convex set: A set $S \subseteq \mathbb{R}^n$ is convex if for all $x_1, x_2 \in S$

$$\lambda x_1 + (1 - \lambda) x_2 \in S, \,\forall \lambda \in [0, 1]$$

• The convex hull of N points $\bar{x}_1, \ldots, \bar{x}_N$ is the set of all their convex combinations

$$S = \{ x \in \mathbb{R}^n : \exists \lambda \in \mathbb{R}^N : x = \sum \lambda_i \bar{x}_i, \\ \lambda_i \ge 0, \sum_{i=1}^N \lambda_i = 1 \}$$

• A convex cone of N points $\bar{x}_1, \ldots, \bar{x}_N$ is the set

$$S = \{ x \in \mathbb{R}^n : \exists \lambda \in \mathbb{R}^N : x = \sum \lambda_i \bar{x}_i, \, \lambda_i \ge 0 \}$$

Numerical Optimization - ©2024 A. Bemporad. All rights reserved.

 \overline{x}_{2}

CONVEX SETS

- hyperplane $\{x: a'x = b\}, a \neq 0$
- halfspace $\{x : a'x \le b\}, a \ne 0$

- polyhedron $\mathcal{P} = \{x : Ax \leq b, Ex = f\}$
- (Euclidean) ball $B(x_0, r) = \{x : ||x x_0||_2 \le r\}$ = $\{x_0 + ry : ||y||_2 \le 1\}$
- ellipsoid $\mathcal{E} = \{x : (x x_0)' P(x x_0) \le 1\}$ with $P = P' \succ 0$, or equivalently $\mathcal{E} = \{x_0 + Ay : \|y\|_2 \le 1\}$, A square and det $A \ne 0$

PROPERTIES OF CONVEX SETS

• The intersection of (any number of) convex sets is convex

- Any set $S = \{x \in \mathbb{R}^n : g(x) \le 0\}$ with $g : \mathbb{R}^n \to \mathbb{R}^m$ is convex
- The image of a convex set under an affine function f(x) = Ax + b
 (A ∈ ℝ^{m×n}, b ∈ ℝ^m) is convex

$$S \subseteq \mathbb{R}^n \text{ convex } \Rightarrow f(S) = \{y : y = f(x), x \in S\} \text{ convex }$$

for example: scaling (A diagonal, b = 0), translation ($A = I, b \neq 0$), projection ($A = [I \ 0], b = 0$, i.e., $f(S) = \{y = [x_1 \dots x_i]' : x \in S\}$)

CONVEX FUNCTIONS

- Recall: $f:S \rightarrow \mathbb{R}$ is a convex function if S is convex and

 $f(\lambda x_1 + (1 - \lambda)x_2) \le \lambda f(x_1) + (1 - \lambda)f(x_2)$ $\forall x_1, x_2 \in S, \ \lambda \in [0, 1]$

Jensen's inequality

• Sublevel sets C_{α} of convex functions are convex sets (but not vice versa)

$$C_{\alpha} = \{x \in S : f(x) \le \alpha\}$$

• Therefore linear equality constraints Ax = b and inequality constraints $g(x) \le 0$, with g a convex (vector) function, define a convex set

CONVEX FUNCTIONS

Examples of convex functions:

- affine f(x) = a'x + b, for any $a \in \mathbb{R}^n$, $b \in \mathbb{R}$
- exponential $f(x) = e^{ax}$, $x \in \mathbb{R}$, for any $a \in \mathbb{R}$
- power $f(x) = x^{\alpha}, x \in \mathbb{R}$, for any $\alpha \ge 1$ or $\alpha \le 0$. Example: $x^2, 1/x$ for x > 0
- powers of absolute value $f(x)=|x|^p, x\in \mathbb{R},$ for $p\geq 1$
- negative entropy $f(x) = x \log x, x \in \mathbb{R}$
- log-sum-exp $f(x) = \log \left(\sum_{i=1}^{n} e^{a_i x + b_i} \right), x \in \mathbb{R}$
- any norm $f(x) = \|x\|$
- maximum $f(x) = \max(x_1, \ldots, x_n)$

CONCAVE FUNCTIONS

Examples of concave functions:

• affine f(x) = a'x + b, for any $a \in \mathbb{R}^n$, $b \in \mathbb{R}$

• logarithm $f(x) = \log x, x \in \mathbb{R}$

• power $f(x) = x^{\alpha}, x \in \mathbb{R}$, for any $0 \le \alpha \le 1$. Example: $\sqrt{x}, x \ge 0$

• minimum $f(x) = \min(x_1, \ldots, x_n)$

CONVEX FUNCTIONS

 Recall the first-order condition of convexity: *f* : ℝⁿ → ℝ with convex domain dom *f* and differentiable is convex if and only if

$$f(y) \ge f(x) + \nabla f(x)'(y-x), \forall x, y \in \text{dom } f$$

• Second-order condition: Let $f : \mathbb{R}^n \to \mathbb{R}$ with convex domain dom f be twice differentiable and $\nabla^2 f(x)$ its Hessian matrix, $[\nabla^2 f(x)]_{ij} = \frac{\partial^2 f(x)}{\partial x_i \partial x_j}$. Then f is convex if and only if

$$\nabla^2 f(x) \succeq 0, \, \forall x \in \operatorname{dom} f$$

If $\nabla^2 f(x) \succ 0$ for all $x \in \operatorname{dom} f$ then f is strictly convex.

1. Check directly whether the definition is satisfied (Jensen's inequality)

2. Check if the Hessian matrix is positive semidefinite (only for twice differentiable functions)

3. Show that *f* is obtained by **combining known convex functions** via operations that preserve convexity

CALCULUS RULES FOR CONVEX FUNCTIONS

- nonnegative scaling: f convex, $\alpha \geq 0 \,{\Rightarrow}\, \alpha f$ convex
- sum: $f, g \operatorname{convex} \Rightarrow f + g \operatorname{convex}$
- affine composition: $f \operatorname{convex} \Rightarrow f(Ax + b) \operatorname{convex}$
- pointwise maximum: f_1, \ldots, f_m convex $\Rightarrow \max_i f_i(x)$ convex
- composition: h convex increasing, f convex $\Rightarrow h(f(x))$ convex

```
General composition rule: h(f_1(x), \ldots, f_k(x)) is convex when h is convex and h is increasing w.r.t. its ith argument, and f_i convex, or h is decreasing w.r.t. its ith argument, and f_i concave, or f_i is affine for each i = 1, \ldots, k
```

See also dcp.stanford.edu (Diamond 2014)

DISCIPLINED CONVEX PROGRAMMING

(Grant, Boyd, Ye, 2006)

- The objective function has the form
 - minimize a scalar convex expression, or
 - maximize a scalar concave expression

- Each of the constraints (if any) has the form
 - convex expression \leq concave expression, or
 - concave expression \geq convex expression, or
 - affine expression = affine expression

This framework is used in the CVX, CVXPY, and Convex.jl packages.

LEAST SQUARES

• least squares (LS) problem

$$\min \|Ax - b\|_2^2 \implies x^* = \underbrace{(A'A)^{-1}A'}_{\text{pseudoinverse of } A} b$$

Adrien-Marie Legendre (1752–1833)

J. Carl Friedrich Gauss (1777–1855)

• nonnegative least squares (NNLS) (Lawson, Hanson, 1974)

 $\begin{array}{ll} \min & \|Ax - b\|_2^2 \\ \text{s.t.} & x \ge 0 \end{array}$

• bounded-variable least squares (BVLS) (Stark, Parker, 1995)

$$\begin{array}{ll} \min & \|Ax - b\|_2^2 \\ \text{s.t.} & \ell \le x \le u \end{array}$$

• constrained least squares

$$\begin{array}{ll} \min & \|Ax - b\|_2^2 \\ \text{s.t.} & Ax \le b, \ Ex = f \end{array}$$

QUADRATIC PROGRAMMING

• The least squares cost is a special case of quadratic cost

$$\frac{1}{2}||Ax - b||_2^2 = \frac{1}{2}x'A'Ax - b'Ax + b'b$$

• A generalization of constrained least squares is quadratic programming (QP)

$$\min \quad \frac{1}{2}x'Qx + c'x \\ \text{s.t.} \quad Ax \le b \\ Ex = f \\ Q = Q' \succeq 0$$

• If $Q = L'L \succ 0$ we can complete the squares by setting $y = Lx + (L^{-1})'c$ and convert the QP into a LS problem:

$$\frac{1}{2}x'Qx + c'x = \frac{1}{2}||Lx - (-L^{-1})'c||_2^2 - \frac{1}{2}c'Q^{-1}c$$

LINEAR PROGRAM WITH RANDOM COST = QP

• We want to solve the LP with random cost \boldsymbol{c}

 $\min_{x} \quad c'x \\ \text{s.t.} \quad Ax \le b, \ Ex = f$ $E[c] = \bar{c}, \ \operatorname{Var}[c] = E[(c - \bar{c})(c - \bar{c})'] = \Sigma$

- c'x is a random variable with expectation $E[c'x] = \bar{c}'x$ and variance $Var[c'x] = x'\Sigma x$
- We want to trade off the expectation of c'x with its variance (=risk) with a risk aversion coefficient $\gamma \geq 0$
- This is equivalent to a QP:

• The following ℓ_1 -penalized linear regression problem is called LASSO (least absolute shrinkage and selection operator):

$$\min_{x} \frac{1}{2} \|Ax - b\|_{2}^{2} + \lambda \|x\|_{1} \qquad A \in \mathbb{R}^{m \times n}, \ b \in \mathbb{R}^{m}$$

- The tuning parameter $\lambda \ge 0$ determines the tradeoff between fitting $Ax \approx b$ (λ small) and making x sparse (λ large)
- By splitting x in the difference of its positive and negative parts, x = y z, $y, z \ge 0$ we get the positive semidefinite QP with 2n variables

$$\min_{y,z \ge 0} \frac{1}{2} \|A(y-z) - b\|_2^2 + \lambda 1'(y+z)$$

where $1' = [1 \dots 1]$. At optimality at least one of y_i^* , z_i^* will be zero

- A small Tikhonov regularization $\sigma(\|y\|_2^2+\|z\|_2^2)$ makes the QP strictly convex

Solve LASSO problem

$$\min_{x} \frac{1}{2} \|Ax - b\|_{2}^{2} + \lambda \|x\|_{1}$$

 $A \in \mathbb{R}^{3000 \times 1000}, \, b \in \mathbb{R}^{3000}$

- A, B = random matrices
- A sparse with 3000 nonzero entries
- Problem solved by QP for different λ 's
- CPU time ranges from 8.5 ms to 1.17 s using osQP (http://osqp.org)

(Stellato, Banjac, Goulart, Bemporad, Boyd, 2020)

QUADRATICALLY CONSTRAINED QUADRATIC PROGRAM (QCQP)

• If we add quadratic constraints in a QP we get the **quadratically constrained quadratic program** (QCQP)

min
$$\frac{1}{2}x'Qx + c'x$$

s.t. $\frac{1}{2}x'P_ix + d'_ix + h_i \le 0, i = 1, \dots, m$
 $Ax = b$

- QCQP is a convex problem if $Q, P_i \succeq 0, i = 1, \dots, m$
- If P₁,..., P_m ≻ 0, the feasible region X of the QCQP is the intersection of m ellipsoids and p hyperplanes (b ∈ ℝ^p)
- Polyhedral constraints (halfspaces) are a special case when $P_i = 0$

SECOND-ORDER CONE PROGRAMMING

• A generalization of LP, QP, and QCQP is second-order cone programming (SOCP)

min
$$c'x$$

s.t. $||F_ix + g_i||_2 \le d'_ix + h_i, i = 1, \dots, m$
 $Ax = b$

with $F_i \in \mathbb{R}^{n_1 \times n}$, $A \in \mathbb{R}^{p \times n}$

- If $F_i = 0$ the SOC constraint becomes a linear inequality constraint
- If $d_i = 0$ ($h_i \ge 0$) the SOC constraint becomes a quadratic constraint
- The quadratic constraint $x'F'Fx + d'x + h \le 0$ is equivalent to the SOC constraint

$$\left\| \begin{bmatrix} \frac{1}{2}(1+d'x+h) \\ Fx \end{bmatrix} \right\|_{2} \le \frac{1}{2}(1-d'x-h)$$

EXAMPLE: ROBUST LINEAR PROGRAMMING

We want to solve the LP with uncertain constraint coefficients a_i

$$\begin{array}{ll} \min & c'x \\ \text{s.t.} & a'_i x \leq b_i, \ i = 1, \dots, m \end{array}$$

• Assume a_i can be anything in the ellipsoid $\mathcal{E}_i = \{\bar{a}_i + P_i y, \|y\|_2 \le 1\}$, $P_i \in \mathbb{R}^{n \times n}$, where $\bar{a}_i \in \mathbb{R}^n$ is the center of \mathcal{E}_i

min
$$c'x$$

s.t. $a'_i x \leq b_i, \forall a_i \in \mathcal{E}_i, i = 1, \dots, m$

• The constraint is equivalent to $\sup_{a_i \in \mathcal{E}_i} \{a'_i x\} \leq b_i$, where

$$\sup_{a_i \in \mathcal{E}_i} \{a'_i x\} = \sup_{\|y\|_2 \le 1} \{(\bar{a}_i + P_i y)' x\} = \bar{a}'_i x + \|P'_i x\|_2$$

• The original robust LP is therefore equivalent to the SOCP

min
$$c'x$$

s.t. $\bar{a}'_i x + \|P'_i x\|_2 \le b_i, \ i = 1, \dots, m$

Numerical Optimization - ©2024 A. Bemporad. All rights reserved.

EXAMPLE: LP WITH RANDOM CONSTRAINTS

- Assume a_i Gaussian, $a_i \sim \mathcal{N}(\bar{a}_i, \Sigma_i), \Sigma_i = L'_i L_i$ $(L_i = \Sigma^{\frac{1}{2}} \text{ if } \Sigma \text{ is diagonal})$
- For given $\eta_i \in [\frac{1}{2}, 1]$ we want to solve the LP with chance constraints

min
$$c'x$$

s.t. $\operatorname{prob}(a'_i x \le b_i) \ge \eta_i, i = 1, \dots, m$

• Let $\alpha = a'_i x - b_i$, $\bar{\alpha} = \bar{a}'_i x - b_i$, $\bar{\sigma}^2 = x' \Sigma_i x$. The cumulative distribution function (CDF) of $\alpha \sim \mathcal{N}(\bar{\alpha}, \bar{\sigma})$ is $F(\alpha) = \Phi(\frac{\alpha - \bar{\alpha}}{\bar{\sigma}})$, $\Phi(\beta) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\beta} e^{-t^2/2} dt$

$$\operatorname{prob}(a_i'x - b_i \le 0) = F(0) = \Phi\left(\frac{-\bar{\alpha}}{\bar{\sigma}}\right) = \Phi\left(\frac{b_i - \bar{a}_i'x}{\|L_ix\|_2}\right) \ge \eta_i$$

• The original LP with random constraints is equivalent to the SOCP

min
$$c'x$$

s.t. $\bar{a}'_i x + \Phi^{-1}(\eta_i) \|L_i x\|_2 \le b_i, i = 1, \dots, m$

where the inverse CDF $\Phi^{-1}(\eta_i) \geq 0$ since $\eta_i \geq \frac{1}{2}$

SEMIDEFINITE PROGRAM (SDP)

• A semidefinite program (SDP) is an optimization problem in which we have constraints on positive semidefiniteness of matrices

$$\min_x \quad c'x \\ \text{s.t.} \quad x_1F_1 + x_2F_2 + \ldots + x_nF_n + G \leq 0 \\ Ax = b$$

where F_1, F_2, \ldots, F_n, G are (wlog) symmetric $m \times m$ matrices

- The constraint is called linear matrix inequality (LMI)⁶
- Multiple LMIs can be combined in a single LMI using block-diagonal matrices

 $\begin{array}{c} x_1 F_1^1 + \ldots + x_n F_n^1 + G^1 \preceq 0 \\ x_1 F_1^2 + \ldots + x_n F_n^2 + G^2 \preceq 0 \end{array} \longrightarrow \\ \left[\begin{array}{c} F_1^1 & 0 \\ 0 & F_1^2 \end{array} \right] x_1 + \ldots \\ \left[\begin{array}{c} F_n^1 & 0 \\ 0 & F_n^2 \end{array} \right] x_n + \left[\begin{array}{c} G^1 & 0 \\ 0 & G^2 \end{array} \right] \preceq 0$

Many interesting problems can be formulated (or approximated) as SDPs

⁶The LMI constraint means $z'(x_1F_1 + x_2F_2 + \ldots + x_nF_n + G)z \le 0, \forall z \ge 0$

SEMIDEFINITE PROGRAM (SDP)

SDP generalizes LP, QP, QCQP, SOCP:

• an LP can be recast as an SDP

 $\begin{array}{ll} \min & c'x \\ \text{s.t.} & Ax \le b \end{array}$

 $\begin{array}{ll} \min & c'x\\ \text{s.t.} & \operatorname{diag}(Ax-b) \preceq 0 \end{array}$

• an SOCP can be recast as an SDP

$$\begin{array}{ll} \min \quad c'x \\ \text{s.t.} \quad \|F_i x + g_i\|_2 \le d'_i x + h_i \\ i = 1, \dots, m \end{array} \qquad \begin{array}{l} \min \quad c'x \\ \text{s.t.} \quad \left[\begin{matrix} (d'_i x + h_i)I \ F_i x + g_i \\ (F_i x + g_i)' \ d'_i x + h_i \end{matrix} \right] \succeq 0 \\ i = 1, \dots, m \end{array}$$

• Good SDP packages exist (SeDuMi, SDPT3, Mathworks LMI Toolbox, ...)

EXAMPLE OF CONVEX PROGRAM: MAX BOX IN A POLYHEDRON

(Bemporad, Filippi, Torrisi, 2004)

- Goal: find the largest box \mathcal{B} contained inside a polyhedron $\mathcal{P} = \{x \in \mathbb{R}^n : Ax \le b\}$
- Let $y \in \mathbb{R}^n$ = vector of dimensions of \mathcal{B} and $x \in \mathbb{R}^n$ = vertex of \mathcal{B} with lowest coordinates

x*+y*

• Problem to solve:

$$\max_{x,y} \quad \prod_{i=1}^{n} y_i \\ \text{s.t.} \quad A(x + \operatorname{diag}(v)y) \le b, \, \forall v \in \{0,1\}^n \\ y \ge 0$$

nonlinear, nonconvex, many constraints!

• Reformulate as maximize log(volume), remove redundant constraints:

$$\begin{split} \min_{x,y} & -\sum_{i=1}^{n} \log(y_i) & \text{convex problem} \\ \text{s.t.} & Ax + A^+ y \leq b, \quad y \geq 0 & A_{ij}^+ = \max\{A_{ij}, 0\} \end{split}$$

GEOMETRIC PROGRAMMING

(Boyd, Kim, Vandenberghe, Hassibi, 2007)

• A monomial function $f: \mathbb{R}^n_{++} \to \mathbb{R}_{++}$, where $\mathbb{R}_{++} = \{x \in \mathbb{R} : x > 0\}$, has the form

$$f(x) = cx_1^{a_1}x_2^{a_2}\dots x_n^{a_n}, \ c > 0, \ a_i \in \mathbb{R}$$

• A posynomial function $f: \mathbb{R}^n_{++} \to \mathbb{R}_{++}$ is the sum of monomials

$$f(x) = \sum_{k=1}^{K} c_k x_1^{a_{1k}} x_2^{a_{2k}} \dots x_n^{a_{nk}}, \ c_k > 0, \ a_{ik} \in \mathbb{R}$$

• A geometric program (GP) is the following optimization problem

min
$$f(x)$$

s.t. $g_i(x) \le 1, i = 1, ..., m$
 $h_i(x) = 1, i = 1, ..., p$

with f, g_i posynomials, h_i monomials.

Numerical Optimization - ©2024 A. Bemporad. All rights reserved.

GEOMETRIC PROGRAMMING - EQUIVALENT CONVEX PROGRAM

- Introduce the change of variables $y_i = \log x_i$. The optimizer is the same if we minimize $\log f$ instead of f and take the log of both sides of the constraints
- The logarithm of a monomial $f_M(x) = c x_1^{a_1} \dots x_n^{a_n}$ becomes affine in y

 $\log f_M(x) = \log(cx_1^{a_1} \dots x_n^{a_n}) = \log(ce^{a_iy_1} \dots e^{a_ny_n}) = a'y + b, \ b = \log c$

• The logarithm of a posynomial $f_P(x) = \sum_{k=1}^K c_k x_1^{a_{1k}} \dots x_n^{a_{nk}}$ becomes

$$\log f_P(x) = \log \left(\sum_{k=1}^K e^{a'_k y + b_k}\right), \ b_k = \log c_k$$

• One can prove that $F(y) = \log f_P(e^y)$ is convex and so it is the program

min
$$\log\left(\sum_{k=1}^{K} e^{a'_k y + b_k}\right)$$

s.t. $\log\left(\sum_{k=1}^{K} e^{c'_{ik} y + d_{ik}}\right) \le 0, i = 1, \dots, m$
 $Ey + f = 0$

Numerical Optimization - ©2024 A. Bemporad. All rights reserved.

GEOMETRIC PROGRAMMING - EXAMPLE

(Boyd, Kim, Vandenberghe, Hassibi, 2007)

- Maximize the volume of a box-shaped structure with height *h*, width *w*, depth *d*
- Constraints:
 - total wall area $2(hw + hd) \le A_{\text{wall}}$
 - floor area $wd \leq A_{\mathrm{flr}}$
 - upper and lower bounds on aspect ratios $\alpha \leq h/w \leq \beta, \gamma \leq w/d \leq \delta$
- The problem can be cast as the following GP

 $\begin{array}{ll} \min & h^{-1}w^{-1}d^{-1} \\ \text{s.t.} & \frac{2}{A_{\text{wall}}}hw + \frac{2}{A_{\text{wall}}}hd \leq 1 \\ & \frac{1}{A_{\text{fir}}}wd \leq 1 \\ & \alpha h^{-1}w \leq 1, \ \frac{1}{\beta}hw^{-1} \leq 1 \\ & \gamma wd^{-1} \leq 1, \ \frac{1}{\delta}w^{-1}d \leq 1 \end{array}$

GEOMETRIC PROGRAMMING EXAMPLE

• We solve the problem in MATLAB:

alpha=0.5; beta=2; gamma=0.5; delta=2; Awall=1000; Afloor=500;

CVX

```
cvx_begin gp quiet
variables h w d
% obj. function = box volume
maximize(h*w*d)
subject to
2*(h*w + h*d) <= Awall;
w*d <= Afloor;
alpha <= h/w <= beta;
gamma <= d/w <= delta;
cvx_end
opt_volume = cvx_optval;
```

YALMIP

```
sdpvar h w d
C = [alpha <= h/w <= beta,
gamma <= d/w <= delta, h>=0,
w>=0];
C = [C, 2*(h*w+h*d) <= Awall,
w*d <= Afloor];
optimize(C,-(h*w*d))</pre>
```

```
yalmip.github.io/tutorial/geometricprogramming
```

• Result: max volume = 5590.17, $h^* = 11.1803$, $w^* = 22.3599$, $d^* = 22.3614$

• We solve the problem in PYTHON:

CVXPY

```
import cvxpy as cp
alpha = 0.5
beta = 2.0
gamma = 0.5
delta = 2.0
Awall = 1000.0
Afloor = 500.0
h = cp.Variable(pos=True)
w = cp.Variable(pos=True)
d = cp.Variable(pos=True)
obj = h * w * d
```

```
constraints = [
2*(h*w + h*d) \leq Awall,
w*d <= Afloor.
alpha <= h/w, h/w <= beta,
gamma \leq d/w, d/w \leq deltal
problem = cp.Problem(cp.Maximize
            (obj), constraints)
problem.solve(gp=True)
print("h: ", h.value)
print("w: ", w.value)
print("d: ", d.value)
print("volume: ", problem.value)
```

CHANGE OF FUNCTION/VARIABLES

- Substituting the objective *f* with a monotonically increasing function of *f* can simplify the problem
 - Example: $\min \sqrt{x}$ with $x \geq 0,$ is a nonconvex problem, but we can minimize $(\sqrt{x})^2 = x$ instead
 - Example: $\max f(x) = \prod_{i=1}^{n} x_i$ is a nonconvex problem, but the function $\log(f(x)) = \sum_{i=1}^{n} \log(x_i)$ is concave

• Sometimes a nonconvex problem can be transformed into a convex problem by making a nonlinear transformation of the optimization variables (as in GP)