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COURSE OBJECTIVES

Solve complex decision problems by using numerical optimization

Application domains:

e Finance, management science, economics (portfolio optimization, business
analytics, investment plans, resource allocation, logistics, ...)

e Engineering (engineering design, process optimization, embedded control, ...)
e Artificial intelligence (machine learning, data science, autonomous driving, ...)

e Myriads of other applications (transportation, smart grids, water networks,
sports scheduling, health-care, oil & gas, space, ...)
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COURSE OBJECTIVES

What this course is about:

o How to formulate a decision problem as a numerical optimization problem?
(modeling)

e Which numerical algorithm is most appropriate to solve the problem?
(algorithms)

e What's the theory behind the algorithm? (theory)
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COURSE CONTENTS

e Optimization modeling

- Linear models

- Convex models

e Optimization theory

- Optimality conditions, sensitivity analysis

- Duality

e Optimization algorithms

- Basics of numerical linear algebra
- Convex programming

- Nonlinear programming
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OTHER REFERENCES

e Stephen Boyd’s “Convex Optimization” courses at Stanford:
http://ee364a.stanford.edu http://ee364b.stanford.edu

e Lieven Vandenberghe’s courses at UCLA:

http://www.seas.ucla.edu/~vandenbe/

e For more tutorials/books see
http://plato.asu.edu/sub/tutorials.html
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OPTIMIZATION MODELING



WHAT IS OPTIMIZATION?

e Optimization = assign values to a set of decision variables so to optimize a
certain objective function

o Example: Which is the best velocity to minimize fuel consumption ?
fuel

[¢/km]

velocity
(km /h]
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WHAT IS OPTIMIZATION?

e Optimization = assign values to a set of decision variables so to optimize a
certain objective function

o Example: Which is the best velocity to minimize fuel consumption ?

best fuel
fuel consumpkiovx
[¢/km]
oPELmaL
/ veLocLE\j
) Y - ) velocity
OI 3‘0 6‘0 6’3 150 1(‘50 Lkm/h]

optimization variable: velocity
cost function to minimize: fuel consumption
parameters of the decision problem: engine type, chassis shape, gear, ...
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OPTIMIZATION PROBLEM

min f(x)

x v
=
f* = min, f(z) = optimal value
x* = arg min, f(x) = optimizer zeR" f:R" >R
L1
( maXx f(x) ) T = 9 f(x):f(xl»x%"'
Tn

Most often the problem is difficult to solve by inspection
use a numerical solver implementing an optimization algorithm
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OPTIMIZATION PROBLEM
min f(x)

X

o The objective function f : R™ — R models our goal: minimize (or maximize)
some quantity.

For example fuel, money, distance from a target, etc.

e The optimization vector x € R™ is the vector of optimization variables
(or unknowns) x; to be decided optimally.

For example velocity, number of assets in a portfolio, voltage applied to a
motor, etc.
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CONSTRAINED OPTIMIZATION PROBLEM

e The optimization vector = may not be completely free, but rather restricted to a
feasible set ¥ C R™
o Example: the velocity must be smaller than 60 km/h

fuel
[¢/km] \\/
velocity

T T f 1 T \.km / h]

best fuel

fuel consumption
¢/km
[ / ] oph’.mak
,,,,,,,,,,, / velocity
5 locit
P

The new optimizer is z* = 42 km/h.
" “Numerical Optimization" - ©2023 A. Bemporad. Al rights reserved 12/93



CONSTRAINED OPTIMIZATION PROBLEM

min, f(x)
st. g(x) <0
h(z)=0

e The (in)equalities define the feasible set

X of admissible variables g:R" = R™ h:R" > R”
1(z1,22,...,T0)
X={zeR": g(z) <0, h(x) =0 g
{ 9(x) <0, h(z) =0} o) = : ]
e Further constraints may restrict X, g (%1821,
for example: hi(z1,22,...,0)
x € {0,1}™ (z = binary vector) h(z) = :
hp(21,22,...,%0)

r e Z"  (x=integer vector)
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A FEW OBSERVATIONS

e An optimization problem can be always written as a minimization problem

max f(z) = —min{~f(z)}

o Similarly, aninequality g;(x) > Ois equivalentto —g;(z) < 0

e Anequality h(z) = 0is equivalent to the double inequalities h(x) < 0,
—h(z) < 0(often this is only good in theory, but not numerically)

e Scaling f(z) to af (z) and/or g;(x) to Bg;(x), or shifting to f(x) + -, does not
change the optimizer, for all ., 3 > 0 and ~. Same if () is scaled to yh; (z)

e Adding constraints makes the objective worse or equal:

min f(z) < min  f(x)

TEX] rEX, xEX,
e Strictinequalities g;() < 0can be approximated by g;(z) < —e (0 <e <k 1)
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INFEASIBILITY AND UNBOUNDEDNESS

e Avector x € R"isfeasibleif z € X,i.e., it satisfies the given constraints
e Aproblemisinfeasible if ¥ = () (the constraints are too tight)

e Aproblemisunbounded if YA/ > 03z € X suchthat f(z) < —M.
In this case we write

2 1) = s
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GLOBAL AND LOCAL MINIMA

e Avectorz* € R"isaglobal optimizerif z* € X and f(z) > f(z*),Vx € X

e Avector z* € R" is astrict global optimizer if z* € X and f(z) > f(z*),
Ve € X,x # z*

e Avector z* € R" is a (strict) local optimizer if z* € X and there exists a
neighborhood! NV of z* such that f(z) > f(z*),Vz € X NN
(f(z) > f(z*),Vz € X NN,z # z*)

INeighborhood of z = open set containing
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EXAMPLE: LEAST SQUARES

e We have adataset (ug, yi), uk,yx € Rok=1,...N

e Wewanttofitaliney = au + bto the dataset that minimizes

N N up 1 Y1 2
=307 =S = || o]
=t k=1 un 1 yn |9

with respecttox = [{]

e Theproblem [ ¢ | = argmin f([{]) is a least-squares problem: §j = a*u + b*

In MATLAB: e optimal a*=0.9785, b*=0.0309
x=[u ones(size(u))]\y m\ /
In Python: 5
import numpy as np e g e
A=np.hstack((u,np.ones(u.shape))) = 08 0 0% ! p 2 °

x=np.linalg.lstsq(A,y,rcond=0)[0]
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LEAST SQUARES USING BASIS FUNCTIONS

e More generally: we can fit nonlinear functions y = f(u) expressed as the sum

n
of basis functions y;, ~ Z x;¢i(ug ) using least squares
i=1
E le: fit pol ial functi = 2 3 4
e Example: fit polynomial functiony = x1 + raou1 + x3uy + xauy + T5uy
N 2
mlnz (yk — {1 Uk u% uz ui} .T) least squares
x
k=1
linear with respect 4o
1
U1
P(u) = | uf
3
Uy
uf
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LEAST SQUARES - FITTING A CIRCLE

e Example: fit acircle to a set of data?

N
min Z(TQ — (zk = 20)” — (yr — Y0)?)?
k=1

Zo,Y0,7
o
o Letx = { , ¥ } be the optimization vector (note the change of variables!)
T —Ty—Yo

e The problem becomes the least squares problem

2

al 2 2?2 !
minz ([ka 22Uk 1} x — (x) +yk)>

-t - 0
4
2
3

2 1 0 1 2 3

2http://www.utc.fr/~mottelet/mt94/leastSquares.pdf
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CONVEX SETS

DEFINITION
Aset S C R"™isconvexifforallzi,z0 € S

Azy 4+ (1= Nzg € S, VA €[0,1]

convex set
nonconvex set

.’L'l .’EQ
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CONVEX FUNCTIONS

e f:S — Risaconvex functionif S is convex and

fQz1 4+ (1= ANzz) < Af(z1) + (1= A)f(22)
Vai,x2 €S, X € [0,1]

w1 Awp 4 (L—=XNas  an
Jensen’s inequality (Jensen, 1906)
-
o If fis convex and differentiable at x5, take the limit A\ — 0 and get 3 g

f(l‘]_) > f(xZ) + Vf(xQ)l(xl - 332) Johan Jensen

(1859-1925)

o Afunction f is strictly convexif f(Ax; + (1 — Nxza) < Af(z1) + (1 = N) f(z2),
Va; # a9 € S,YA € (0,1)

3f(x1) — flwa) > limxo(f (2 + A(z1 — 22)) — f(22))/A = V[ (22) (21 — 22)
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CONVEX FUNCTIONS

e Afunction f : § — Ris strongly convex with parameter m > 0 if

mA(l — )

_ 2
5 lz1 — 2|3

fQz1 4+ (1 = Nz2) < Af(21) + (1= A) f(22) —

o [f f strongly convex with parameter m > 0 and differentiable then
m
fy) =2 f2) + V@) (y —2)+ Sy - z|3

e Equivalently, f is strongly convex with parameter m > 0 if and only if
f(x) — o'z convex

e Moreover, if f is differentiable twice this is equivalent to V2 f(x) = mI
(i.e., matrix V2 f(z) — ml[ is positive semidefinite), Vo € R™

e Afunction f is (strictly/strongly) concave if — f is (strictly/strongly) convex
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CONVEX PROGRAMMING

The optimization problem

min  f(x)

is a convex optimization problem if S is a convex set
and f : S — Risaconvex function

e Often S is defined by linear equality constraints Az = band convex inequality
constraints g(z) <0, ¢ : R" — R™ convex

e Every local solution is also a global one (we will see this later)

e Efficient solution algorithms exist (we will see many later)
e Often occurring in many problems in engineering, economics, and science

Excellent textbook: “Convex Optimization”

" “Numerical Optimization" - ©2023 A. Bemporad. Al rights reserved 23/93



POLYHEDRA

DEFINITION
Convex polyhedron = intersection of a finite set of half-spaces of R™

Convex polytope = bounded convex polyhedron

VU3

e Hyperplane (H-)representation: SR
P D2

P={zeR": Az <b}

v
A%xﬁba A 7

e Vertex (V-)representation:
q P Convex hull = transformation

P={zeR":z= Z Q;v; + Zﬂﬂ“g’} from V- to H-representation
i=1 j=1

Vertex enumeration =

q
@i, B; >0, Y ai=1,v,7r; €R" transformation from H- to
=1 . V-representation
when g = 0 the polyhedron is a cone P
v; = vertex, r; = extreme ray
24/93
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LINEAR PROGRAMMING

e Linear programming (LP) problem:

min 'z
st. Ar <b, zeR"
Fxr = f George Dantzig
(1914-2005)
e LPinstandard form: min 'z -~ da=constant
st. Az =0
x>0,z €R"

e Conversion to standard form:
1. introduce slack variables
Zaijwj <b; = Zaija;j +s; =bj, s, >0
i=1 j=1

2. split positive and negative part of x

n n
> aijz + s = b Say(af —wy)+si=bs
=1 = j=1

xjfree, s; > 0 a:;r,x;,sizo
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QUADRATIC PROGRAMMING (QP)

e Quadratic programming (QP) problem: "~ ~,

1
min ix'Qx +cx
st. Ar <b,zecR"” :
Ex — f e 14'Qr + J/x = constant

e Convex optimization problem if Q > 0(Q = positive semidefinite matrix) 4

e Without loss of generality, we can assume Q = Q':

%J?/Q.T $/(Q+TQ/+Q%Q/) 2$(Q+Q )x+i$/Q$—%(.’ElQ/$)/

x/(%)m

N[ N[

e Hard problemif @ % 0

4A matrix P € R™*" is positive semidefinite (P > 0) if 2’ Pz > 0for all z.
It is positive definite (P > 0) if in addition 2’ Pz > 0for all z # 0.

It is negative (semi)definite (P < 0, P < 0) if — P is positive (semi)definite.
It is indefinite otherwise.
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CONTINUQUS VS DISCRETE OPTIMIZATION

e Insome problems the optimization variables can only take integer values.
We call z € Z an integrality constraint

A special caseis « € {0, 1} (binary constraint)

When all variables are integer (or binary) the problem is an integer
programming problem (a special case of discrete optimization)

In a mixed integer programming (MIP) problem some of the variables are real
(z; € R), some are discrete/binary (x; € Zorz; € {0,1})

Optimization problems with integer variables are more difficult to solve
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MIXED-INTEGER PROGRAMMING (MIP)

. 1
min cz min —2'Qz + 'z
e 2
st Az <b, z =[] st Az <b, x =[5¢]
ze € R,y € {0, 1} xe € R, x, € {0,1}™

mixed-integer linear program (MILP) mixed-integer quadratic program (MIQP)

e Some variables are real, some are binary (0/1)

e MILP and MIQP are N"P-hard problems, in general

e Many good solvers are available (CPLEX, Gurobi, GLPK, SCIP, FICO Xpress, CBC, ...)
For comparisons see http://plato.la.asu.edu/bench.html
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STOCHASTIC AND ROBUST OPTIMIZATION

e Relations affected by random numbers lead to stochastic models
min Ey, [ f (2, w)]
x

e The modelis enriched by the information about the probability distribution of w
e Other stochastic measures can be minimized (Var, conditional value-at-risk, ...)

e The deterministic version min,, f(z, E,[w]) of the problem only considers the
expected value of w, not its entire distribution

If fis convex w.r.t. w then f(z, B, [w]) < Ey[f(z,w)]

e chance constraints are constraints enforced only in probability:
prob(g(z,w) < 0) > 99%

e robust constraints are constraints that must be always satisfied:
g(z,w) <0,YVw
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DYNAMIC OPTIMIZATION

e Dynamic optimization involves decision variables that evolve over time

Example: For a given a value of o we want to optimize

N-1
ming 3 + Z 2 4+ u?
t=0
st. T4 =azg+buy, t=0,...,N—1
where u, is the control value (to be decided) and z; the state at time ¢.

The decision variables are

Uo x1

UN-—1 TN

e Used to solve optimal control problems, such as in model predictive control

30/93
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OPTIMIZATION ALGORITHM

e Anoptimization algorithm is a procedure to find an optimizer z* of a given
optimization problem min,cx f(z)

e ltisusually iterative: starting from an initial guess 2 of « it generates a
sequence z* of “iterates” with hopefully N ~ x* after N iterations

e Good optimization algorithms should possess the following properties:

- Efficiency = do not require excessive CPU time/flops and memory allocation

- Robustness = perform well on a wide variety of problems in their class, for all
reasonable values of the initial guess x°

- Accuracy = find a solution close to the optimal one, in spite of roundoff errors due
to finite precision arithmetic (humerical robustness)

e The above are often conflicting properties
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OPTIMIZATION TAXONOMY

A
‘Unccm\inly‘ ‘. H iobjective Optimizat ‘
‘chhﬂslicl’mgmmmmg‘ ‘Robulepumi/.auon Continuous ‘Discrele
N Int Combinatorial
Consmined
O
Nonlinear N N N N T N -
Nonlinear Equations Nonlinear Network O Bound Constrained | | Linearly Constrained
Least Squares
Semiinfinite Mathematical Programs Mixed Integer Derivative-Free Quadratic Linear
Semidefinite Programming . . B N .
© with Constraints | | Nonlinear [

Complementarity
Problen
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OPTIMIZATION SOFTWARE

e Comparison on benchmark problems:
http://plato.la.asu.edu/bench.html

o Taxonomy of many solvers for different classes of optimization problems:
http://www.neos-guide.org

NEOS server for remotely solving optimization problems:
s

5 http://www.neos-server.org

Good open-source optimization software:

OR
J http://www.coin-or.org/

O e o G
GitHub , MATLAB Central i Google d,
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OPTIMIZATION MODEL

e An optimization model is a mathematical model that captures the objective
function to minimize and the constraints imposed on the optimization variables

e ltisaquantitative model, the decision problem must be formulated as a set of
mathematical relations involving the optimization variables
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FORMULATING AN OPTIMIZATION MODEL

Steps required to formulate an optimization model that solves a given
decision problem:

1. Talk to the domain expert to understand the problem we want to solve

2. Single out the optimization variables z; (what are we able to decide?) and their
domain (real, binary, integer)

3. Treat the remaining variables as parameters (=data that affect the problem but
are not part of the decision process)

4. Translate the objective(s) into a cost function of = to minimize (or maximize)

5. Arethere constraints on the decision variables ? If yes, translate them into
(in)equalities involving =

6. Make sure we have all the required data available
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FORMULATING AN OPTIMIZATION MODEL

optimization model : solution
modeling ming f(z) sover - [*
real problem gl O e

=

analysis of the solution

e |t may take several iterations to formulate the optimization model properly, as:
- Asolution does not exist (anything wrong in the constraints?)
- The solution does not make sense (is any constraint missing or wrong?)
- The optimal value does not make sense (is the cost function properly defined?)

- It takes too long to find the solution (can we simplify the model?)
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EXAMPLE: CHESS SET PROBLEM

(Guerét et al., Applications of Optimization with XpressMP, 1999)

= A

A small joinery makes two different sizes of boxwood chess sets. The small set requires 3 hours of machining on a
lathe, and the large set requires 2 hours. There are four lathes with skilled operators who each work a 40 hour week,
so we have 160 lathe-hours per week. The small chess set requires 1kg of boxwood, and the large set requires 3 kg.
Unfortunately, boxwood is scarce and only 200 kg per week can be obtained. When sold, each of the large chess sets
yields a profit of $20, and one of the small chess set has a profit of $5.

The problem is to decide how many sets of each kind should be made each week so as to maximize profit.
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EXAMPLE: CHESS SET PROBLEM

(Guerét et al., Applications of Optimization with XpressMP, 1999)

ggggwg

o Asmall joinery makes two different sizes of boxwood chess sets. The small set requires 3 hours of machining on a
lathe, and the large set requires 2 hours.

o There are four lathes with skilled operators who each work a 40 hour week, so we have 160 lathe-hours per week.

o The small chess set requires 1 kg of boxwood, and the large set requires 3 kg. Unfortunately, boxwood is scarce and
only 200 kg per week can be obtained.

o When sold, each of the large chess sets yields a profit of $20, and one of the small chess set has a profit of $5.

o The problem is to decide how many sets of each kind should be made each week so as to maximize profit.
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EXAMPLE: CHESS SET PROBLEM

e Optimization variables: x,, x, = produced quantities of small/large chess sets
e Cost function: f(x) = 5z + 20x, (profit)
e Constraints:
3xs + 2xy < 4 - 40 (maximum lathe-hours)
s + 3¢ < 200 (available kg of boxwood)
s, ¢ > 0(produced quantities cannot be negative)
max dzs+ 20z,

st [$3][5] < [36]

Ts, Ty 2 0
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EXAMPLE: CHESS SET PROBLEM

o What is the best decision ? Let us make some guesses:

xs  xI Lathe-hours Boxwood OK? Profit Notes

0 0 0 0 Yes 0 Unprofitable!

B 10 10 50 40 Yes 250 We won't get rich doing this.

c -10 10 -10 20 No 150 Planning to make a negative
number of small sets.

D 53 0 159 53 Yes 265 Uses all the lathe-hours. There
is spare boxwood.

E 50 20 190 110 No 650 Uses too many lathe-hours.

F 25 30 135 115 Yes 725 There are spare lathe-hours
and spare boxwood.

G 12 62 160 198 Yes 1300  Uses all the resources

e What is the best solution ? A numerical solver provides the following solution

x¥ =0, 2} = 66.6666 = f(z*) =1333.3$

7073 A
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OPTIMIZATION MODELS

e Optimization models, as all mathematical models, are never an exact
representation of reality but a good approximation of it

o We need to make working assumptions, for example:

- Lathe hours are never more than 160

Available wood is exactly 200 kg
- Prices are constant

We sell all chess sets

e There are usually many different models for the same real problem

Optimization modeling is an art
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MODELING LANGUAGES FOR OPTIMIZATION PROBLEMS

o AMPL (A Modeling Language for Mathematical Programming) most used
modeling language, supports several solvers

e GAMS (General Algebraic Modeling System) is one of the first modeling
languages

e GNU MathProg a subset of AMPL associated with the free package GLPK
(GNU Linear Programming Kit)

o YALMIP MATLAB-based modeling language

o CVX/CVXPY/Convex.jl Convex problem modeling in MATLAB/# PUthOﬂ/juliél
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MODELING LANGUAGES FOR OPTIMIZATION PROBLEMS

e CASADI +IPOPT Nonlinear modeling + automatic differentiation, nonlinear
programming solver (MATLAB, @ python, C++)

o JAX +JAXOPT @ puthon automatic differentiation + optimization

e Optimization Toolbox’ modeling language (part of MATLAB since R2017b)
e PYOMO @ python-based modeling language
e GEKKO @ python-based mixed-integer nonlinear modeling language

e PYTHON-MIP @ python-based modeling language for mixed-integer linear
programming

e PulLP Alinear programming modeler for @ python

e JuMP A modeling language for linear, quadratic, and nonlinear constrained

optimization problems embedded in julié
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EXAMPLE: CHESS SET PROBLEM

e Model and solve the problem using YALMIP

Xs = sdpvar(l,1);
x1l = sdpvar(l,1);
Constraints = [3*xs+2*x]1l <= 4*40, 1l*xs+3*x1 <= 200, ...

xs >= 0, x1 >= 0]
Profit = 5*xs+20%*x1l;

optimize(Constraints,-Profit)

value(xs),value(xl),value(Profit)
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EXAMPLE: CHESS SET PROBLEM

e Model and solve the problem using CVX

cvx_clear
cvx_begin
variable xs(1)
variable x1(1)

Profit = 5*xs+20%*x1l;
maximize Profit

subject to

3*xs+2*x]1 <= 4*40; % maximum lathe-hours
1*xs+3*x1 <= 200; % available kg of boxwood
xs>=0;

x1>=0;

cvx_end

xs,x1,Profit
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EXAMPLE: CHESS SET PROBLEM

e Model and solve the problem using CASADI + IPOPT

import casadi.*
xs=SX.sym('xs');
x1=SX.sym('x1l");

Profit = 5*xs+20%*x1;
Constraints = [3*xs+2*x1-4%40; 1*xs+3*x1-200];

prob=struct('x',[xs;x1],'f',-Profit, ' 'g',Constraints);
solver = nlpsol('solver', 'ipopt', prob);
res = solver('lbx',[0;0],'ubg',[0;01]);

Profit = -res.f;
xXs = res.x(1l);
X1l = res.x(2);
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EXAMPLE: CHESS SET PROBLEM

e Model and solve the problem using Optimization Toolbox

xs=optimvar('xs', 'LowerBound',0);
x1l=optimvar('x1l', 'LowerBound',0);

Profit = 5*xs+20%*x1;
Cl = 3*xs+2*x1-4%40<=0;
C2= 1*xs+3*x1-200<=0;

prob=optimproblem( 'Objective',Profit, 'ObjectiveSense', 'max');
prob.Constraints.C1l=Cl;
prob.Constraints.C2=C2;

[sol,Profit] = solve(prob);

xs=sol.xs;
xl=so0l.x1;

Numerical Optimization" - €
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EXAMPLE: CHESS SET PROBLEM

¢ Model and solve the problem in Python using PYTHON-MIP>:
from mip import *

m = Model (sense=MAXIMIZE, solver_ name=CBC)
xXs = m.add var(1lb=0)

x1l = m.add_var(1lb=0)

m += 3*xs+2%*x]1 <= 4%*40

m += l*xs+3*xl <= 200

m.objective = 5*xs+20%*x1

m.optimize()

print(xs.x, xl.Xx)

Shttps://python-mip.readthedocs.io/
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EXAMPLE: CHESS SET PROBLEM

o Inthis case the optimization model is very simple and we can directly code the
LP problem in plain MATLAB or Python:

A=[1 3;3 2];
b=[200;160];

import scipy as sc
import numpy as np

c=[5 201; A=np.array([[1,3],[3,21])
[xopt, fopt ]=1linprog(... b=np.array([[200],[160]])
_clAlbl[]I[]’[O;O]) c=np'arraY([5120])

sol=sc.optimize.linprog(
-c,A,b,bounds=[0,None])

e The Hybrid Toolbox for MATLAB contains interfaces to various solvers for LP,

QP, MILP, M IQP (http://cse.lab.imtlucca.it/~bemporad/hybrid/toolbox)

o However, when there are many variables and constraints forming the problem
matrices manually can be very time-consuming and error-prone
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EXAMPLE: CHESS SET PROBLEM

e We can even model and solve the optimization problem in Excel:

@ Excel

File Edit View Insert Format Tools Data Window Help

Mm &g s Spelling... p =
SetObjective: (| SES2 ) ]
N’

To: O Max Min Value Of:
Calibri (Body) +|/12 | A= A+ .

%@-ghriable Cells:
Bl L vlER &R AR Error Checki i ‘”’65“5\) bea

Subject to the Constraints:

Insert Page Layout Formulas Dal

Fe Check Accessibility

SES3 <= $DS3
A 8 G D SES4 <= SDS4
T T ; Share Workbook... P
smal arge max ange
2 |Profit 5 20 Track Changes
3 |Boxwood 1 3 Delete
4 | lathe 3 2 . Protection
5 . Reset All
6 |Chess sets | 0 ss.sssssa7l Goal Seek...
7 Scenarios... Load/Save
8 o
9 ’S\uld'""g lake Unconstrained Variables Non-Negative
olver...
1‘13 Select a Solving Method: ] simplex LP = Options
g Solving Method
. . . Select the GRG Nonlinear engine for Solver Problems that are smooth
OP&LM tzation nonlinear. Select the LP Simplex engine for linear Solver Problems,
¥ and select the Evolutionary engine for Solver problems that are non-
3 smooth.
variables )
B6:C6 cost function :
: Close Solve
=SUMPRODUCT(B6:C6;B2:C2) < )
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LINEAR OPTIMIZATION MODELS

Reference:

C. Guéret, C. Prins, M. Sevaux, “Applications of optimization with Xpress-MP,’
Translated and revised by S.Heipcke, 1999



OPTIMIZATION MODELING: LINEAR CONSTRAINTS

e Constraints define the set where to look for an optimal solution
e They define relations between decision variables

o When formulating an optimization model we must disaggregate the
restrictions appearing in the decision problem into subsets of constraints that
we know how to model

e There are many types of constraints we know how to model ...
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1. UPPER AND LOWER BOUNDS (BOX CONSTRAINTS)

e Box constraints are the simplest constraints: they define upper and lower
bounds on the decision variables

T2
b <x; <wy i :
11| o
l; e RU{—o0},u; € RU{+o0} adw:::i.ble
0 T :
0" o U1 Z1

o Example: “We cannol sell wore than 100 units of Product A"

e Pay attention: some solvers assume nonnegative variables by default!

e When ¢; = u; the constraint becomes z; = ¢; and variable x; becomes
redundant. Still it may be worthwhile keeping in the model
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2. FLOW CONSTRAINTS

e Flow constraints arise when an item can be divided in different streams, or vice
versa many streams come together

i . xz\OtOtal ﬂovg total ﬂosz/’:
Pl - / ~

Z1

T3

o Example: I can get water from 3 suppliers, 51, 52 and $3. I
wank to have at least 1000 Likers available.” 1 + zo + z3 > 1000

e Example: “'I have 50 brucks available to rent ko 3 customers C1,
C2 and C3"x1 + 29 + 23 <50

e Losses can be included as well: “'2% water I get from suppliers gets
Lost." 0.98z1 + 0.98z2 + 0.98z3 > 1000
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3. RESOURCE CONSTRAINTS

e Resource constraints take into account that a given resource is limited

n
> Rjiw; < Ruax,;

i=1

¢ The technological coefficients I2;; denote the amount of resource j used per
unit of activity i

e Example:

“Small chess sets require 1 kg ““Small chess sets require 3
boxwood, the large ones 3 kg, lathe hours, the large ones 2 h,
total available is 200 kg." total time is 4x40 h'"

r1 + 3z < 200 3x1 + 2x2 < 160

R = [:2%%] s Rmax = [%88]
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4. BALANCE CONSTRAINTS

e Balance constraints model the fact that “what goes out must in total equal
what comes in”

lL
N M :Elm qout
Sa =y anin O/
i=1 i=1 /’
r3m 2out
o Example: “'I have 100 tons steel and can buy more from
sulopl.i.ars 1,2,3 to serve customers AR "z +xp = 100421 + 22 + 23
e Balance can occur between time periods in a multi-time period model
o Example: *The cash I'll have tomorrow is what I have now Plus

whab I receive minus what I spev\d Ecd&v‘" Tl = Tt + Ur — Yt
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8. QUALITY CONSTRAINTS

e Quality constraints are requirements on the average percentage of a certain
quality when blending several components

N N N
Dim1 Ml > 2 ,
= Pmin Qi Z Pmin X

i=1 =1

N
dic1 T

e Example: “The average risk of an investment in assets ABC,
which have risks 28%, §%, and 12% respectively, must be

o/ 0.2524+0.0525+40.12z2¢
swmaller than 10% T <0.1

e The nonlinear quality constraint is converted to a linear one under the
assumption that z; > 0 (if z; = 0 Vi the constraint becomes redundant)

Objectives and constraints can be often simplified by mathematical trans-
formations and/or adding extra variables

" Numerical Optimization" - ©2023 A. Bemporad. All rights reserved 56/93



6. ACCOUNTING VARIABLES AND CONSTRAINTS

o |tis often useful to add extra accounting variables

N
y= E T; accounting constraint
i=1

¢ Of course we can replace y with Zfil x; everywhere in the model (condensed
form), but this would make it less readable

e Moreover, keeping y in the model (non-condensed form) may preserve some
structural properties that the solver could exploit

o Example: “The profit at any given year is the difference between
revenues and expehdibures" D =T — €
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1. BLENDING CONSTRAINTS

¢ Blending constraints occur when we want to blend a set of ingredients x; in
given percentages «; in the final product
Xq

N
Ej:l Zj

e Similar to quality constraints, blending constraints can be converted to linear
equality constraints

N
xXr; = E aixj
Jj=1

58/93
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8. SOFT CONSTRAINTS

e Sofar we have seen are hard constraints, i.e., that cannot be violated.
e Soft constraints are a relaxation, in which the constraint can be violated,
usually paying a penalty

N

N
Zaijxi < bj Zaijmi < bj + €5
i=1 =1

¢ We call the new variable ¢; panic variable: it should be normally zero but can
assume a positive value in case there is no way to fulfill the constraint set

o Example: “*0Only 200 kg boxwood are available ko male chess
sets, but we can buy extra for & $/kg"

MaXy, z,,e>0 OTs + 20T, — b€
s.t. s+ 3xp, <200+ €
3xrs + 2z, < 160

" “Numerical Optimization" - ©2023 A. Bemporad. All rights reserved. 59/93



LINEAR OBJECTIVE FUNCTIONS

e Linear programs only allow minimizing a linear combination of the optimization
variables

o However, by introducing new variables, we can minimize any convex piecewise
affine (PWA) function

RESULT

Every convex piecewise affine function
£ : R™ — R can be represented as the
max of affine functions, and vice versa

Example:
{(x) = max {ajx + b1,...,ajx + by}
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CONVEX PWA OPTIMIZATION PROBLEMS AND LP

e Minimization of a convex PWA function ¢(x):

min,, €
N €e>ajx+ b
s.t. €2 a’2x +0
€ > ahx + b3
€ > ayx+ by

e By construction € > max{a}x + b1, abx + ba, asx + b3, ayx + by}

e By contradiction it is easy to show that at the optimum we have that
e = max{a}z + by, ahw + by, ahw + bz, ayx + by}

e Convex PWA constraints £(x) < 0 can be handled similarly by imposing
ax+b; <0,Vi=1,2,3,4
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1. MINMAX 0BJECTIVE

e minmax objective: we want to minimize the maximum among M given linear
objectives f;(x) = alx + b;

min maxM{fi(x)} s.t. linear constraints
x

i=1,...,
e Example: asymmetric cost min, max{a’z + b,0}

e Example: minimize the co-norm
min ||Az — b|| s
x

where [|[v|| £ max;—;,_, |v;|and A € R™*" b € R™.

This corresponds to

minmax{Ayx — by, — A1z +b1,..., Apx — by, —Apx + by}
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2. MINIMIZE THE SUM OF MAX OBJECTIVES

o We want to minimize the sum of maxima among given linear objectives
fij(@) = aj;z + by;
mln Z max {fij(z)} s.t. linear constraints
7 B ]

e Theequivalent reformulatlon is

. N
mine , Z] 165
st € >a) x+by,i=1,...,Mj,j=1,....,N
(other Ilnear constraints)

e Example: minimize the 1-norm
min || Az — b||;
x
where ||v]|; £ > ie1...n|viland A € R™*™ b € R™, that corresponds to
m
mﬂgn Z max{A;x — b;, —A;x + b; }

=1
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3. LINEAR-FRACTIONAL PROGRAM

o We want to minimize the ratio of linear objectives ; cztd
ming oy

st. Az <b
Gx=h

over thedomaine’z + f > 0
e Weintroduce the new variable z = ﬁ and replace x; with the new
variablesy; = zx;,i =1,...,n,where
l=z(z+f)=€y+fz,2>0
e Since z > 0 then zAz < zb, and the original problem is translated into the LP

min,, cy+dz
st. Ay—02<0
Gy = hz
ey+fz=1
z>0

from which we recover z* = Ziy* incase z* > 0.
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CHEBYCHEV GENTER OF A POLYHEDRON

"
e The Chebychev center of a polyhedron P = {z : Az < b} )
is the center z* of the largest ball B(z*,r*) = {z : = 2* + u,

|lull2 < r*} contained in P

e Theradius r* is called the Chebychev radius of P
e Aball B(z,r)isincluded in P if and only if

sup Ai(z+u)=Ax +r[|A2 <b,Vi=1,...,m,

flullz<r

where A € R™*" b € R™, and A, is the ith row of A.

o Therefore, we can compute the Chebychev center/radius by solving the LP

max,,
st A 4|4l <b,i=1,....m
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CONVEX OPTIMIZATION MODELS

References:
S. Boyd, L. Vandenberghe, “Convex Optimization,’ 2004

S. Boyd, “Convex Optimization,” lecture notes, http://ee364a.stanford.edu,
http://ee364b.stanford.edu


http://ee364a.stanford.edu
http://ee364b.stanford.edu

CONVEX SETS

e Convexset: Aset S C R"isconvexifforall z1,25 € S

Az + (1 — )\)xg e S, Ve [O, 1]
e The convex hull of N points 71,

., Zn is the set of all their convex
combinations

S={zeR": MeRYN: =3 N7y,

.22
N G
Ai>0,> =1} -
Tse
*T4
e Aconvex cone of N points Z1, ..., Ty isthe set
1
S={zeR": MeRY 2= Nz;, A; >0} x
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CONVEX SETS
hyperplane {z : 'z =b},a #0 fﬁ_a/a'x:b

a'r<b

e halfspace {x : a’x < b},a #0
e polyhedronP = {z: Az <b, Ex = f}

e (Euclidean) ball B(zq,r) = {z : ||z — xoll2 <7}
={zo+ry: [lylla <1}

e ellipsoid & = {z: (z —x¢)' P(x — zo) < 1}
with P = P’ > 0,or equivalently & = {xo + Ay : |lyll2 < 1},

Asquareanddet A # 0
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PROPERTIES OF CONVEX SETS

e The intersection of (any number of) convex sets is convex

e AnysetS = {z € R": g(x) < 0} withg : R” — R™ is convex

e The image of a convex set under an affine function f(z) = Az + b
(A e R™*™ p € R™)is convex

S CR"convex = f(S) ={y:y= f(x),z € S} convex

for example: scaling (A diagonal, b = 0), translation (A = 0,b # 0),
projection (A = [10],b = 0,i.e, f(S) = {y = [21 2] : . € S})
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CONVEX FUNCTIONS

e Recall: f: S — Risaconvex functionif S'is convex and

FQz1+ (1= AN)z2) < Af(x1) + (1= A)f(22)

Jensen’s inequality
Vay,x9 € S, A € [0,1]

e Sublevel sets C,, of convex functions are convex sets (but not vice versa)
Co={z€8: flz)<a}

e Therefore linear equality constraints Az = b and inequality constraints
g(x) < 0, with g a convex (vector) function, define a convex set
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CONVEX FUNCTIONS

e Examples of convex functions
- affine f(z) = a’z + b,foranya € R",b € R

exponential f(z) = e**,z € R,foranya € R

- power f(z) = 2%,z € R,forany @ > lora < 0. Example: 2°,1/z for x > 0
- powers of absolute value f(z) = |z|P,z € R,forp > 1

- negative entropy f(z) = zlogz,x € R

- anynorm f(z) = ||z||

- maximum f(x) = max(z1,...,Tn)

e Examples of concave functions
- affine f(x) = a’z + b,foranya € R™,b € R

logarithm f(z) = logz,z € R

power f(z) = 2%,z € R,forany 0 < « < 1. Example: \/z,z > 0

- minimum f(z) = min(z1,...,zx)
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CONVEX FUNCTIONS

o Recall the first-order condition of convexity: f : R™ — R with convex domain
dom f and differentiable is convex if and only if

fy) > f(x)+Vf(z) (y—2), Y,y € dom f

f(z) T(2)+V f(z) (y-2)

e Second-order condition: Let f : R™ — R with convex domain dom f be twice
differentiable and V2 f () its Hessian matrix, [V f (z)];; = gmfai) Then fis
convex if and only if

V2f(x) = 0, Vo € dom f

If V2f(x) = Oforallz € dom f then f is strictly convex.
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CHECKING CONVEXITY

1. Check directly whether the definition is satisfied (Jensen'’s inequality)

2. Check if the Hessian matrix is positive semidefinite (only for twice
differentiable functions)

3. Show that f is obtained by combining known convex functions via operations
that preserve convexity
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CALCULUS RULES FOR CONVEX FUNCTIONS

e nonnegative scaling: f convex,a > 0= a.f convex
e sum: f, g convex = f + g convex

e affine composition: f convex = f(Ax + b) convex

pointwise maximum: f1, ..., f,, convex = max; f;(x) convex

e composition: i convex increasing, f convex = h(f(x)) convex

General compositionrule: h(f1(x), ..., fx(z))isconvexwhen & is convex and

hisincreasing w.r.t. its ith argument, and f; convex, or
his decreasing w.r.t. its ith argument, and f; concave, or
fiis affine

foreachi=1,...,k

Seealsodcp.stanford.edu
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CONVEX PROGRAMMING

e The optimization problem

min  f(z) or, more min  f(z)
st g(z) <0 generally, st. z€S
Az =b
S convex set

g :R™ — R™, g; convex

with f : X — R convex is a convex optimization problem, where
X ={zeR": g(x) <0, Az = b} or,more generally, ¥ = S.

e Convex programs can be solved to global optimality and many efficient
algorithms exist for this (we will see many later)

e Although convexity may sound like a restriction, it occurs very frequently in
practice (sometimes after some transformations or approximations)
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DISCIPLINED CONVEX PROGRAMMING

e The objective function has the form

- minimize a scalar convex expression, or

- maximize a scalar concave expression

e Each of the constraints (if any) has the form

- convex expression < concave expression, or
- concave expression > convex expression, or

- affine expression = affine expression

This framework is used in the CVX, CVXPY, and Convex.jl packages.
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LEAST SQUARES

-

e least squares (LS) problem

min || Az — b||3 ot = (AA)TTA b
——
?scwéo'\ucrse ug A

Adrien-Marie Legendre

(1752-1833)

e nonnegative least squares (NNLS) (Lawson, Hanson, 1974)

min || Az — b||3

st. >0

e bounded-variable least squares (BVLS) (Stark Parker, 1995) . Carl Friedrich Gauss
. (1777-1855)
min || Az — b|3
st. f<zx<u
e constrained least squares
min ||Az — b||3

st. Az <b, Exz=f
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QUADRATIC PROGRAMMING

e The least squares cost is a special case of quadratic cost

1 1
§||A;v —b|% = ix’A’A:v — b Az +b'b
e Ageneralization of constrained least squares is quadratic programming (QP)
: 1 ’ /
min 25L‘ Qr+cx
st. Az <b Q=Q =0
Ex=f

e IfQ = L'L = 0we can complete the squares by settingy = Lz + (L~!)'cand
convert the QP into a LS problem:

1 1
37 Qv+ dw =S| Le — (=L71)c]3
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LINEAR PROGRAM WITH RANDOM COST = QP

We want to solve the LP with random cost ¢

min, cdz

st Av<b Eo=f Elc] = ¢, Var[c] = E[(c—¢)(c—¢)] =X

e 'z isarandom variable with expectation F[c¢'z] = ¢« and variance
Var[c'z] = 2’3z

We want to trade off the expectation of ¢’z with its variance (=risk) with a risk

aversion coefficienty > 0

e Thisisequivalenttoa QP:
min, FE[dz] + v Var[d'z] min, cz+yx'3Se
st. Az <b, Ex=f st. Ae<b, Ex=f

" “Numerical Optimization" - ©2023 A. Bemporad. Al rights reserved 78/93



LASSO OPTIMIZATION = QP

e The following ¢1-penalized linear regression problem is called LASSO
(least absolute shrinkage and selection operator):

1
min 5||A:c — b3+ Azly  AER™" beR™

e The tuning parameter A > 0 determines the tradeoff between fitting Az ~ b
(X small) and making x sparse (X large)

o By splitting = in the difference of its positive and negative parts, z = y — z,
y, z > O we get the positive semidefinite QP with 2n variables

: 1 2 /
min SA(y —2) = b3 +AV(y +2)

where1’ = [1 ... 1]. At optimality at least one of 7, z} will be zero

e Asmall Tikhonov regularization o (||y||3 + ||z||3) makes the QP strictly convex
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LASSO - EXAMPLE

e Solve LASSO problem . ‘ N Az” —bll2

o1
min 5||Ax — b2 + \||z||,

3000x 1000 3000
Ae RV heR

e A, B =random matrices LA
A
: . llz*[lo
e A sparse with 3000 nonzero entries 1000

e Problem solved by QP for different \’s

e CPUtimerangesfrom&8.5msto1.17s
usingosQP (http://osgp.orq)

10 10° 102 107! 10° 10 102
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QUADRATICALLY CONSTRAINED QUADRATIC PROGRAM (QCQP)

If we add quadratic constraints in a QP we get the quadratically constrained
quadratic program (QCQP)

min  32'Qz + 'z
s.t. %x’Pierd;quhiSO,i:l,...,m
Ax =10

QCQPisaconvexproblemif @, P, = 0,i=1,...,m

If Pi,..., P, > 0,thefeasible region X’ of the QCQP is the intersection of m
ellipsoids and p hyperplanes (b € RP)

Polyhedral constraints (halfspaces) are a special case when P; = 0
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SECOND-ORDER CONE PROGRAMMING

o Ageneralization of LP, QP, and QCQP is second-order cone programming
(SOCP)

min 'z
Az =10

with F; € Rm>" A4 ¢ RP*"
o |f F; = 0the SOC constraint becomes a linear inequality constraint
o Ifd; = 0(h; > 0) the SOC constraint becomes a quadratic constraint

e The quadratic constraint 2’ F' Fx + d'x + h < 0is equivalent to the SOC

constraint 1
2]l < 50 - dw-n
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EXAMPLE: ROBUST LINEAR PROGRAMMING

e We want to solve the LP with uncertain constraint coefficients a;
min 'z
st alx<b,i=1,....m

¢ Assume a; can be anythingin the ellipsoid &; = {a@; + Py, ||yll2 < 1},
P, € R™*™ where a; € R" is the center of &;
min 'z
st. alx <b,Va; €&,i=1,...,m

The constraint is equivalent to sup,, ¢ {ajz} < b;, where

sup {a;z} = sup {(a; + Py)'z} = ax + || P2

a;€&; llyll2<1
e The original robust LP is therefore equivalent to the SOCP
min 'z
st. ajx+||Plxlls <b,i=1,....m
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EXAMPLE: LP WITH RANDOM CONSTRAINTS

e Assume a; Gaussian, a; ~ N (a;,%;), X; = LiL; (L; = X3 ifXis diagonal)
e Forgiven; € [3, 1] we want to solve the LP with chance constraints

min 'z

s.t. prob(ajz <b;)>mn,i=1,....m
e Leta = alx — b, a = @z — b;, % = 2/3;2. The cumulative distribution

function (CDF) of a ~ N (@, ) is F(a) = ®(2=2),d(8) = \/%7 fio et 2q1

[ea

—Q b —a.x
prob( ) = F(0) = Ty ) 2"

e The original LP with random constraints is equivalent to the SOCP

min 'z :
st. axz+ O Y (n)||Lizlla < bi,i=1,...,m o

. _1 . 1
where the inverse CDF @~ (1;) > Osincen; > 5
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SEMIDEFINITE PROGRAM (SDP)

e Asemidefinite program (SDP) is an optimization problem in which we have
constraints on positive semidefiniteness of matrices

min, cdz
s.t. $1F1+Z‘2F2+—|—$nFn+GjO
Ax =0
where I, Fy, ..., F,, G are (wlog) symmetric m x m matrices

o The constraint is called linear matrix inequality (LMI) ¢

e Multiple LMIs can be combined in a single LMI using block-diagonal matrices

Fl+. . 4z, Fl+Gt =<0 1 1
T Tt G2 [Flo}xﬁ- [Fo}xw[ 0

<0
T F2 4. 4z F2+G? =<0 0 F} 0 F: OGQ]—

Many interesting problems can be formulated (or approximated) as SDPs

6The LMI constraint means 2’ (z1 Fy + 22 Fa + ... + xpnFp + G)z < 0,Vz > 0
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SEMIDEFINITE PROGRAM (SDP)

SDP generalizes LP, QP, QCQP, SOCP:

e anLPcan berecast asan SDP

min 'z min 'z

st. Az <b s.t. diag(Az —0) <0

e an SOCP can be recast as an SDP

min 'z min 'z
/ (djx+hi)I Fiz+g;
st. ||Fix +gill2 < djx + h; s.t. [ (Fiotor) diath, | =0

1=1,....m i=1,...,m

e Good SDP packages exist (SeDuMi, SDPT3, Mathworks LMI Toolbox, ...)
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EXAMPLE OF CONVEX PROGRAM: MAX BOX IN A POLYHEDRON

(Bemporad, Filippi, Torrisi, 2004)

e Goal: find the largest box 3 contained inside a polyhedron
P={xeR": Az <b}

e Lety € R™ = vector of dimensions of Band x € R"
= vertex of B with lowest coordinates

e Problemtosolve:
maXg,y H?:l Yi
s.t. Az + diag(v)y) < b, Vv € {0,1}"
y=>0

nonlinear, nonconvex,

many constraints!

e Reformulate as maximize log(volume), remove redundant constraints:

ming , — Z log(y;) convex problem
i=1
st. Ax+ Aty <b, y>0 A:Fj — maX{Aij,O}
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GEOMETRIC PROGRAMMING

e Amonomial function f : R | — R, ,whereR,, = {z € R: z > 0},has
the form
flx)=ca'z3? ...zt ¢>0,a; €ER

e Aposynomial function f : R, — R | is the sum of monomials
x) = chm‘flk:vg% coexerk e >0, a €R

e Ageometric program (GP) is the following optimization problem

min  f(z)
st gi(x)<1l,i=1,....m
hi(z)=1,i=1,...,p

with f, g; posynomials, h; monomials.
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GEOMETRIC PROGRAMMING - EQUIVALENT CONVEX PROGRAM

o Introduce the change of variables y; = log x;. The optimizer is the same if we
minimize log f instead of f and take the log of both sides of the constraints

e The logarithm of a monomial fy;(z) = cz}* ... x%" becomes affineiny
log far(z) =log(cxft ... x8m) = log(ce®¥ ...e*¥") =a'y + b, b=logc

e The logarithm of a posynomial fp(x) = Zszl cpx™ ... xfr+ becomes

K
log fp(z) = log (Z ea;‘“b’“) , b, = log ey,
k=1

e One can prove that F'(y) = log fp(e¥) is convex and so it is the program

min log Zle e“;vyﬂ’k)
s.t. log Zle ecik-’/*dik) <0,i=1,...,m
Ey+f=0
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GEOMETRIC PROGRAMMING - EXAMPLE

(Boyd, Kim, Vandenberghe, Hassibi, 2007)

e Maximize the volume of a box-shaped structure with
height h, width w, depth d

e Constraints:
- totalwallarea 2(hw + hd) < Ayan
- floorareawd < Ag,
- upper and lower bounds on aspect ratios o« < h/w < 8,7y < w/d < §

e The problem can be cast as the following GP

min A~ lwld!
2 2
Alﬂ wd <1
ah™lw <1, %hw‘1 <1

~ywd™ ! <1, %w‘ld <1
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GEOMETRIC PROGRAMMING EXAMP

e We solve the problem in MATLAB:
alpha=0.5; beta=2; gamma=0.5; delta=2; Awall=1000; Afloor=500;

CVvX YALMIP
cvx_begin gp quiet sdpvar h w d
variables h w d
% obj. function = box volume C = [alpha <= h/w <= beta,
maximize (h*wxd) gamma <= d/w <= delta, h>=0,
subject to w>=01];
2*(h*w + h*d) <= Awall; C = [C, 2*(h*w+h*d) <= Awall,
w*d <= Afloor; w*d <= Afloor];
alpha <= h/w <= beta;
gamma <= d/w <= delta; optimize(C,-(h*wxd))
cvx_end
opt_volume = cvx_optval; yalmip.github.io/tutorial/geometricprogramming

e Result: max volume =5590.17, h* = 11.1803, w* = 22.3599, d* = 22.3614

Numerical Optimization" - €

Bemporad. All rights reserved 91/93


yalmip.github.io/tutorial/geometricprogramming

GEOMETRIC PROGRAMMING - EXAMPLE

e We solve the problem in PYTHON:

CVXPY

import cvxpy as cp

alpha = 0.5
beta = 2.0
gamma = 0.5
delta = 2.0

Awall = 1000.0
Afloor = 500.0

h = cp.Variable(pos=True)
w = cp.Variable(pos=True)
d cp.Variable (pos=True)

obj = h * w * d

Numerical Optimization" - € Bemporad. All rights reserved

constraints = [

2*(h*w + h*d) <= Awall,

w*d <= Afloor,

alpha <= h/w, h/w <= beta,
gamma <= d/w, d/w <= delta]

problem = cp.Problem(cp.Maximize
(obj), constraints)
problem.solve (gp=True)

print("h: ", h.value)

"

print("w: , w.value)

n

print("d: ", d.value)
print("volume:

"

, problem.value)
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CHANGE OF FUNCTION/VARIABLES

o Substituting the objective f with a monotonically increasing function of f can
simplify the problem

- Example: min v/ with z > 0, is a nonconvex problem, but we can minimize
(v/x)? = xinstead

- Example: max f(z) = [, z: is anonconvex problem, but the function
log(f(z)) = >_1_, log(z;) is concave

e Sometimes a nonconvex problem can be transformed into a convex problem by
making a nonlinear transformation of the optimization variables (as in GP)
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