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COURSE OBJECTIVES

Solve complex decision problems by using numerical optimization

Application domains:

e Finance, management science, economics (portfolio optimization, business
analytics, investment plans, resource allocation, logistics, ...)

e Engineering (engineering design, process optimization, embedded control, ...)
o Artificial intelligence (machine learning, data science, autonomous driving, ...)

e Myriads of other applications (transportation, smart grids, water networks,
sports scheduling, health-care, oil & gas, space, ...)
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COURSE OBJECTIVES

What this course is about:

e How to formulate a decision problem as a numerical optimization problem?
(modeling)

e Which numerical algorithm is most appropriate to solve the problem?
(algorithms)

e What's the theory behind the algorithm? (theory)
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COURSE CONTENTS

e Optimization modeling

- Linear models

- Convex models

e Optimization theory

- Optimality conditions, sensitivity analysis

- Duality

e Optimization algorithms

- Basics of numerical linear algebra
- Convex programming

- Nonlinear programming

5
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OTHER REFERENCES

e Stephen Boyd’s “Convex Optimization” courses at Stanford:
http://ee364a.stanford.edu http://ee364b.stanford.edu

e Lieven Vandenberghe’s courses at UCLA:

http://www.seas.ucla.edu/~vandenbe/

e For more tutorials/books see
http://plato.asu.edu/sub/tutorials.html
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WHAT IS OPTIMIZATION?

e Optimization = assign values to a set of decision variables so to optimize a
certain objective function

e Example: Which is the best velocity to minimize fuel consumption ?
fuel

[¢/lm]

velocity
(km /h]
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WHAT IS OPTIMIZATION?

e Optimization = assign values to a set of decision variables so to optimize a
certain objective function

o Example: Which is the best velocity to minimize fuel consumption ?

best fuel p-
fuel consum ph‘.oh
[¢/km]
oPELMoJ.
veLoci.bj
) L b ) velocity
0I 3‘0 6‘0 35 1%0 1(‘50 {km/h]

optimization variable: velocity
cost function to minimize: fuel consumption
parameters of the decision problem: engine type, chassis shape, gear, ...
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OPTIMIZATION PROBLEM

min f(x)
X :
— x
x
f* = min, f(z) = optimal value
x* = arg min,, f(z) = optimizer zeR" f:R" >R
I
( maxy f(x) ) z=| |, flx)=f(z1,22,...,2p)
Tn

Most often the problem is difficult to solve by inspection
use a numerical solver implementing an optimization algorithm
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OPTIMIZATION PROBLEM
min f(x)
X

o The objective function f : R™ — R models our goal: minimize (or maximize)
some quantity.

For example fuel, money, distance from a target, etc.

e The optimization vector x € R" is the vector of optimization variables
(or unknowns) x; to be decided optimally.

For example velocity, number of assets in a portfolio, voltage applied to a
motor, etc.
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CONSTRAINED OPTIMIZATION PROBLEM

e The optimization vector z may not be completely free, but rather restricted to a
feasible set ¥ C R™
e Example: the velocity must be smaller than 60 km/h

fuel
[¢/km] \\/

\ i ; i : velocity
o 2 6 90 120 10 m/h]

best fuel

fuel consumption
¢/km

[ / ] oPELMoJ.
,,,,,,,,,, / velocity
\ \, ; ‘ ‘ velocity
o 20 60 90 120 160  dm/h]

The new optimizeris z* = 42 km/h.
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CONSTRAINED OPTIMIZATION PROBLEM

min, f(x)
s.t. g(x) <0
h(z) =0

e The (in)equalities define the feasible set
X of admissible variables g:R*" - R™ h:R" - RP

X ={reR": g(x) <0, h(z) =0} g1z en) ]

=2
8

S~—
I

e Further constraints may restrict X, Im (21,22, ,Tn)

for example: lhl(zl,wa,m,zn)]

>
—~

8
~

Il

x € {0,1}"™ (z = binary vector)

x € Z™  (x =integer vector) hp (21,22;..,2n)
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A FEW OBSERVATIONS (1/2)

e An optimization problem can always be written as a minimization problem

max f () = —min{—f(x)}

reX TEX

e Similarly, aninequality g;(x) > 0is equivalentto —g;(z) < 0

e Anequality h(z) = 0is equivalent to the double inequalities h(x) <0,
—h(z) < 0(often this is only good in theory, but not numerically)
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A FEW OBSERVATIONS (2/2)

e The following transformations do not change the optimizer:

- Scale af (), @ > 0,and/or shift f(z) + v

- More in general: apply a monotonically increasing function ¢( f (z))
Example: if f(x) > 0 for all z, minimizing f(z) is the same as minimizing log(f(z))

- Scale ag;(z) < 0,a > 0,scaleyh;(z) =0,7#0

- More in general, apply a monotonically increasing function ¢(-)
Example: ||z]]2 < 1< o’z < 1forallz (here ¢(a) = o, > 0)

e Adding constraints makes the objective worse or equal:

. o
min f(z) < __min  f(2)

e Strictinequalities g;(x) < 0 can be approximated by ¢;(z) < —e (0 < e < 1)
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INFEASIBILITY AND UNBOUNDEDNESS

e Avectorz € R™isfeasibleif x € X, i.e,, it satisfies the given constraints
e Aproblemisinfeasible if ¥ = () (the constraints are too tight)

¢ Aproblemisunboundedif VM > 03z € X suchthat f(z) < —M.
In this case we write
inf f(z) =—-o00

rzeX
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GLOBAL AND LOCAL MINIMA

e Avector z* € R" is a global optimizerif z* € X and f(z) > f(z*),Vz € X

e Avectorz* € R"is astrict global optimizer if z* € X and f(z) > f(a*),
Ve e X,z # x*

e Avector z* € R" is a (strict) local optimizer if z* € X and there exists a
neighborhood® A of z* such that f(x) > f(z*),Vx € X NN
(f(x) > f(z*),YVor € X NN,z # x¥)

INeighborhood of 2 = open set containing «
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EXAMPLE: LEAST SQUARES

e We have adataset (ug, yi), uk,yx € Rok=1,...N
o Wewanttofitaliney = au + bto the dataset that minimizes

fl@) =Y (e —aup =0 = ([FTw—y) = || : |z- l : ]

k=1 k=1 un 1

with respecttox = [¢]

e Theproblem [ ¢ ] = argmin f([{]) is aleast-squares problem: § = a*u + b*

In MATLAB: e optimal a*=0.9785, 5*=0.0309

x=[u ones(size(u))]l\y

In Python: o
import numpy as np N g- s
A=np.hstack((u,np.ones(u.shape))) o 08 0 0s ! Lo
x=np.linalg.lstsq(A,y,rcond=0)[0] u
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LEAST SQUARES USING BASIS FUNCTIONS

¢ More generally: we can fit nonlinear functions y = f(u) expressed as the sum
n
of basis functions y;, ~ Z x;¢i(ur) using least squares
i=1
e Example: fit polynomial functiony = 21 + zou; + x3u? + w4uf + v503

N
2
min -1 2 3wt
Yk Ug  Up Uy U | T least squares
x
k=1

lmear wirl rcs?u,)( Xo
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LEAST SQUARES - FITTING A CIRCLE

e Example: fit acircle to a set of data?

min Z e — (x — ﬂﬂo) — (yk — 1/0)2)2

Z0,Yo,T
zo
o etz = { , Y, } be the optimization vector (note the change of variables!)
T 7{1,’07y0

e The problem becomes the least squares problem

N

2

minZ([zxk 2 1}x—(w%+y§))
k=1

2http://www.utc.fr/~mottelet/mt94/leastSquares.pdf
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CONVEX SETS

Definition
Aset S C R"™isconvexifforall xy,z5 € S

Az + (1 — Nag € S, VA € ]0,1]

convex set
nonconvex set

N
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CONVEX FUNCTIONS

e f: S5 — Risaconvex function if S is convex and

fQa1 + (1= Naz) < Af(z1) + (1= A)f(22)
Vri,20 €S, A € [0, 1]

1 Az 4+ (1 =Nz o

Jensen’s inequality (Jensen, 1906)

o If fis convex and differentiable at x5, take the limit A\ — 0 and get 3 g

f((El) 2 f(xZ) + Vf(xQ),(xl - x2) Johan Jensen

(1859-1925)

¢ Afunction f is strictly convex if f(Az1 + (1 — A)z2) < Af(z1) + (1 = X) f(z2),
Va, # a9 € S,YA € (0,1)

8f(x1) — flz2) > lima_yo(f(z2 + A1 — 22)) — f(22))/A = Vf/(22) (21 — x2)
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CONVEX FUNCTIONS

e Afunction f : S — Ris strongly convex with parameter m > 0 if

mA(l — )

5 21 — m2l3

o [f f strongly convex with parameter m > 0 and differentiable then

) = F@) + VF@) (g =) + 5 |y — =3

e Equivalently, f is strongly convex with parameter m > 0 if and only if
f(z) — Ba’'z convex
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CONVEX FUNCTIONS

e Assume f is differentiable twice and let V2 f(z) € R™*™ be the Hessian matrix
of fatx

e Strong convexity with parameter m > 0 is equivalent to V2 f(z) = mI
(i.e., matrix V2 f(z) — m[ is positive semidefinite *), Vo € R"

o Afunction f is (strictly/strongly) concave if — f is (strictly/strongly) convex

4Amatrix P € R**" is positive semidefinite (P > 0) if 2’ Pz > 0forall x.
Itis positive definite (P > 0) if in addition ' Pz > Oforall x # 0.

It is negative (semi)definite (P < 0, P < 0) if — P is positive (semi)definite.
It is indefinite otherwise.

e
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o

Numerical Optimization - ©202



CONVEX PROGRAMMING

The optimization problem

min  f(x)
st. zeS oAtV o
is a convex optimization problem if S is a convex set S

and f : S — Ris aconvex function “1 =

e Often S is defined by linear equality constraints Az = band convex inequality
constraints g(z) <0, ¢ : R™ — R™ convex

e Every local solution is also a global one (we will see this later)

e Efficient solution algorithms exist (we will see many later)
e Often occurring in many problems in engineering, economics, and science

Excellent textbook: “Convex Optimization”
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POLYHEDRA

Definition
Convex polyhedron = intersection of a finite set of half-spaces of R™
Convex polytope = bounded convex polyhedron

U3

¢ Hyperplane (H-)representation: m”? 4

P={xeR": Az <b}

v
A=y A N
e Vertex (V-)representation:
q P Convex hull = transformation
P={zeR":z= Z Qi + Z/@ﬂ"j} from V- to H-representation
- = ~ Vertex enumeration =

@i 20,3 i =1, vi,1; €R transformation from H- to
'th ; V-representation
when ¢ = 0 the polyhedron is a cone epresentatio
v; = vertex, r; = extreme ray
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LINEAR PROGRAMMING

e Linear programming (LP) problem:

min dzx
st. Az <b, zreR"” N
Fx = f George Dantzig
(1914-2005)
e LPinstandard form: min ¢’z " ¢z = constant
s.t. Az =0b
z>0,zeR”

e Conversion to standard form:
1. introduce slack variables
n n
Zaijm]‘ <b; = Zaijzj—l»si:bi,sizo
j=1 j=1

2. split positive and negative part of x

n n

E a;jx; + s; = b; E aij(z;'—wj_)-i-si =b;
- = —
Jj=1 Jj=1
x; free, s; > 0 z;’,a:j_,s.;zo

N
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QUADRATIC PROGRAMMING (QP)

e Quadratic programming (QP) problem:

1
min 536/@36 +cx
st. Az <b, x e R"
Ex=f

e Convex optimization problem if Q = 0 (Q = positive semidefinite matrix)
e Without loss of generality, we can assume Q = @Q’:

1‘/(%+ Q—QQ ):E 2 (Q-‘rQ )1,+ 1"@1‘77( 'Q'x )/

%x'Qm =
_ x/(QEQ )

N N|—=

e Hard problemif @ # 0
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CONTINUOUS VS DISCRETE OPTIMIZATION

e Insome problems the optimization variables can only take integer values.
We call z € Z an integrality constraint

A special caseis « € {0, 1} (binary constraint)

When all variables are integer (or binary) the problem is an integer
programming problem (a special case of discrete optimization)

In a mixed integer programming (MIP) problem some of the variables are real
(z; € R), some are discrete/binary (x; € Zorz; € {0,1})

Optimization problems with integer variables are more difficult to solve
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MIXED-INTEGER PROGRAMMING (MIP)

: o1
min cx min ix/Qx +cz
ze € R, xp € {0, 1}™ z. € R, z; € {0,1}™

mixed-integer linear program (MILP) mixed-integer quadratic program (MIQP)

e Some variables are real, some are binary (0/1)

e MILP and MIQP are N'P-hard problems, in general

e Many good solvers are available (CPLEX, Gurobi, GLPK, SCIP, FICO Xpress, CBC, ...)
For comparisons see http://plato.la.asu.edu/bench.html
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STOCHASTIC AND ROBUST OPTIMIZATION

e Relations affected by random numbers lead to stochastic models
min Ey, [ f (2, w)]
x

e The modelis enriched by the information about the probability distribution of w
e Other stochastic measures can be minimized (Var, conditional value-at-risk, ...)

e The deterministic version min,, f(x, E,,[w]) of the problem only considers the
expected value of w, not its entire distribution

If fis convex w.r.t. w then f(z, B, [w]) < Ey[f(z,w)]

e chance constraints are constraints enforced only in probability:
prob(g(z,w) < 0) > 99%

e robust constraints are constraints that must be always satisfied:
g(z,w) <0,YVw
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DYNAMIC OPTIMIZATION

e Dynamic optimization involves decision variables that evolve over time

Example: For a given a value of zy we want to optimize

N-1
min, , % + Z x? +u?
t=0
s.t. xt+1:a:l:t—|—but,t:O,...,N—1
where u; is the control value (to be decided) and z; the state at time ¢.

The decision variables are

uog Xy

UN—1 TN

e Used to solve optimal control problems, such as in model predictive control
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OPTIMIZATION ALGORITHM

e Anoptimization algorithm is a procedure to find an optimizer z* of a given
optimization problem min,cy f(z)

e ltisusually iterative: starting from an initial guess z° of x it generates a
sequence z* of “iterates” with hopefully 2V ~ z* after N iterations

e Good optimization algorithms should possess the following properties:

- Efficiency = do not require excessive CPU time/flops and memory allocation

- Robustness = perform well on a wide variety of problems in their class, for all
reasonable values of the initial guess 2°

- Accuracy = find a solution close to the optimal one, in spite of roundoff errors due
to finite precision arithmetic (hnumerical robustness)

e The above are often conflicting properties
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OPTIMIZATION TAXONOMY

A
‘uﬂccmm.y ‘r ‘ ‘ c ‘
‘ Stochastic Programming ‘ ‘ Robust Optimization Discrete

Combinatorial
Optimization

‘ ‘ Bound Constrained ‘ (mearly Constrained

\ N

Derivative-Free ‘ Quadratic ‘ ‘ Linear ‘

Nonlinear
Least Squares

Nonlinear Equations

‘ Nonlinear ‘ ‘ Network O

L

Mathematical Programs
with il Constraints.

Semiinfinite
Semidefinite Programming Noninear P

Mixed Integer ‘

ec rder

Cone Programming
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https://neos-guide.org/content/optimization-taxonomy

OPTIMIZATION SOFTWARE

e Comparison on benchmark problems:
http://plato.la.asu.edu/bench.html

e Taxonomy of many solvers for different classes of optimization problems:
http://www.neos-guide.org

NEOS server for remotely solving optimization problems:
—

£l http://www.neos-server.org

Good open-source optimization software:

R
J http://www.coin-or.org/

O 4 ...¢
GitHub , MATLAB Central , Google J
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OPTIMIZATION MODEL

e Anoptimization model is a mathematical model that captures the objective
function to minimize and the constraints imposed on the optimization variables

e ltisaquantitative model, the decision problem must be formulated as a set of
mathematical relations involving the optimization variables
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FORMULATING AN OPTIMIZATION MODEL

Steps required to formulate an optimization model that solves a given
decision problem:

1. Talk to the domain expert to understand the problem we want to solve

2. Single out the optimization variables z; (what are we able to decide?) and their
domain (real, binary, integer)

3. Treat the remaining variables as parameters (=data that affect the problem but
are not part of the decision process)

4. Translate the objective(s) into a cost function of = to minimize (or maximize)

5. Arethere constraints on the decision variables ? If yes, translate them into
(in)equalities involving x

6. Make sure we have all the required data available
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FORMULATING AN OPTIMIZATION MODEL

optimization model : solution
modeling ming () solver —l
real problem st g(z) <0 Poat=|s

= |

analysis of the solution

e |t may take several iterations to formulate the optimization model properly, as:

A solution does not exist (anything wrong in the constraints?)

The solution does not make sense (is any constraint missing or wrong?)

The optimal value does not make sense (is the cost function properly defined?)

It takes too long to find the solution (can we simplify the model?)

Numerical Optimization - ©2024 A. Bemporad. All rights reserved 38/95



EXAMPLE: CHESS SET PROBLEM

(Guerét et al., Applications of Optimization with XpressMP, 1999)

[
= 2

TS

A small joinery makes two different sizes of boxwood chess sets. The small set requires 3 hours of machining on a
lathe, and the large set requires 2 hours. There are four lathes with skilled operators who each work a 40 hour week,
so we have 160 lathe-hours per week. The small chess set requires 1 kg of boxwood, and the large set requires 3 kg.
Unfortunately, boxwood is scarce and only 200 kg per week can be obtained. When sold, each of the large chess sets
yields a profit of $20, and one of the small chess set has a profit of $5.

The problem is to decide how many sets of each kind should be made each week so as to maximize profit.
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EXAMPLE: CHESS SET PROBLEM

(Guerét et al., Applications of Optimization with XpressMP, 1999)

&
= 2

i116x:

o Asmall joinery makes two different sizes of boxwood chess sets. The small set requires 3 hours of machining on a
lathe, and the large set requires 2 hours.

o There are four lathes with skilled operators who each work a 40 hour week, so we have 160 lathe-hours per week.

o The small chess set requires 1 kg of boxwood, and the large set requires 3 kg. Unfortunately, boxwood is scarce and
only 200 kg per week can be obtained.

o When sold, each of the large chess sets yields a profit of $20, and one of the small chess set has a profit of $5.

o The problem is to decide how many sets of each kind should be made each week so as to maximize profit.
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EXAMPLE: CHESS SET PROBLEM

o Optimization variables: x,, x, = produced quantities of small/large chess sets
e Costfunction: f(x) = 5z + 20x, (profit)
e Constraints:
3xs + 2z, < 4 - 40 (maximum lathe-hours)
s + 3¢ < 200 (available kg of boxwood)
xs,xe > 0 (produced quantities cannot be negative)
max bz + 20x,

st [$3]1%:] <[388]

Ts, Ty >0
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EXAMPLE: CHESS SET PROBLEM

e What is the best decision ? Let us make some guesses:

xs  xI  Lathe-hours Boxwood OK? Profit Notes

A 0 0 0 0 Yes 0 Unprofitable!

B 10 10 50 40 Yes 250 We won't get rich doing this.

Cc -10 10 -10 20 No 150 Planning to make a negative
number of small sets.

D 53 0 159 53 Yes 265 Uses all the lathe-hours. There
is spare boxwood.

E 50 20 190 110 No 650 Uses too many lathe-hours.

F 25 30 135 115 Yes 725 There are spare lathe-hours
and spare boxwood.

G 12 62 160 198 Yes 1300  Uses all the resources

o What is the best solution ? A numerical solver provides the following solution

zt =0, z} = 66.6666 = f(z*) =1333.3%
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OPTIMIZATION MODELS

e Optimization models, as all mathematical models, are never an exact
representation of reality but a good approximation of it

e We need to make working assumptions, for example:

- Lathe hours are never more than 160

Available wood is exactly 200 kg

- Prices are constant

We sell all chess sets

e There are usually many different models for the same real problem

Optimization modeling is an art

Numerical Optimization - ©2024 A. Bemporad. All rights reserved 43/95



MODELING LANGUAGES FOR OPTIMIZATION PROBLEMS

o AMPL (A Modeling Language for Mathematical Programming) most used
modeling language, supports several solvers

e GAMS (General Algebraic Modeling System) is one of the first modeling
languages

e GNU MathProg a subset of AMPL associated with the free package GLPK
(GNU Linear Programming Kit)

o YALMIP MATLAB-based modeling language

o CVX/CVXPY/Convex.jl Convex problem modeling in MATLAB/ @ PchOﬂ/jUIié
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MODELING LANGUAGES FOR OPTIMIZATION PROBLEMS

e CASADI +IPOPT Nonlinear modeling + automatic differentiation, nonlinear
programming solver (MATLAB,® python, C++)

o JAX+IJAXOPT @ puthon automatic differentiation + optimization

e Optimization Toolbox’ modeling language (part of MATLAB since R2017b)
e PYOMO @ python-based modeling language
e GEKKO @ python-based mixed-integer nonlinear modeling language

e PYTHON-MIP @ python-based modeling language for mixed-integer linear
programming

e PuLP Alinear programming modeler for @ python

e JuMP A modeling language for linear, quadratic, and nonlinear constrained

optimization problems embedded in leif'.l
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EXAMPLE: CHESS SET PROBLEM

e Model and solve the problem using YALMIP

XS
x1

sdpvar(1l,1);
sdpvar(1l,1);

Constraints = [3*xs+2*x]1 <= 4*40, 1*xs+3*x1 <= 200, ...
xs >= 0, x1 >= 0]
Profit = 5*xs+20%*x1;

optimize(Constraints,-Profit)

value(xs),value(xl),value(Profit)
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EXAMPLE: CHESS SET PROBLEM

e Model and solve the problem using CVX

cvx_clear
cvx_begin
variable xs(1)
variable x1(1)

Profit = 5*xs+20%*x1;
maximize Profit

subject to

3*xs+2*x1 <= 4*40; % maximum lathe-hours
l*xs+3*x1 <= 200; % available kg of boxwood
xs>=0;

x1>=0;

cvx_end

xs,x1,Profit

47/95
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EXAMPLE: CHESS SET PROBLEM

e Model and solve the problem using CASADI + IPOPT

import casadi.*
xs=SX.sym('xs');
x1=SX.sym('x1"');

Profit = 5*xs+20*x1;
Constraints = [3*xs+2*x1-4%40; 1*xs+3*x1-200];

prob=struct('x',[xs;x1],'f',-Profit, 'g',Constraints);
solver = nlpsol('solver', 'ipopt', prob);
res = solver('lbx',[0;0],'ubg',[0;01]);

Profit = -res.f;
xXs = res.x(1l);
X1l = res.x(2);

48/95
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EXAMPLE: CHESS SET PROBLEM

e Model and solve the problem using Optimization Toolbox

xs=optimvar('xs', 'LowerBound',0);
x1l=optimvar('xl', 'LowerBound',0);

Profit = 5*xs+20%*x1;
Cl = 3*xs+2*x1-4%40<=0;
C2= 1*xs+3*x1-200<=0;

prob=optimproblem( 'Objective',Profit, 'ObjectiveSense', 'max');
prob.Constraints.Cl=Cl;
prob.Constraints.C2=C2;

[sol,Profit] = solve(prob);

xs=sol.xs;
x1l=sol.x1;

49/95
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EXAMPLE: CHESS SET PROBLEM

e Model and solve the problem in Python using PYTHON-MIP>:
from mip import *

m = Model (sense=MAXIMIZE, solver name=CBC)
xs = m.add_var(lb=0)

X1 = m.add_var(1lb=0)

m += 3*xs+2*x1l <= 4%*40

m += 1l*xs+3*x1l <= 200

m.objective = 5*xs+20*x1

m.optimize()

print(xs.x, x1.x)

Shttps://python-mip.readthedocs.io/
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EXAMPLE: CHESS SET PROBLEM

e Inthis case the optimization model is very simple and we can directly code the
LP problem in plain MATLAB or Python:

A=[1 3;3 2];
b=[200;160];

import scipy as sc
import numpy as np

c=[5 20]; A=np.array([[1,3],[3,2]1])
[xopt, fopt ]=1linprog(... b=np.array([[200],[160]1])
-c,A,b,[1,[1,[0;01) c=np.array([5,20])

sol=sc.optimize.linprog(
-c,A,b,bounds=[0,None])

e The Hybrid Toolbox for MATLAB contains interfaces to various solvers for LP,

QP, M I LP, M IQP (http: //cse.lab.imtlucca. it/~ben\porad/hybrid/toolbox)

e However, when there are many variables and constraints forming the problem
matrices manually can be very time-consuming and error-prone

Numerical Optimization - © \. Bemporad. All rights reserved
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EXAMPLE: CHESS SET PROBLEM

e We can even model and solve the optimization problem in Excel:

File Edit View
O s

Insert Page Layout

& Excel

Paste B |I|U|>

6 - fx

A B { =
1 small large max
2 |Profit ) 20
3 | Boxwood 1 3
4 |Lathe a 2
5 "
6 |Chesssets | 0 66.6666667|
g O3 |
8
9
10
11
12
13
oPkLmuz.aELoh

variables
B6:C6
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Calibri (Body)  +|/12 +| A= A+
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Insert Format | Tools Data
Spelling...

Formulas Dai

Error Checkin
Check Accessibility
Share Workbook...
Track Changes
Protection

Goal Seek.
Scenarios...
Auditing
Solver...

Macro
Excel Add-ins...

cost function
=SUMPRODUCT(B6:C6;B2:C2)

Window Help

SetObjective: (| SES2 ) I
N

To: O Max Min Value Of:

ing Variable Cells:

| $BS6:5CS6

Subject to the Constraints; -~ _

SES3 Add
SES4 <= $D$4
Change
Delete
Reset All
Load/Save
lake Unconstrained Variables No
Select a Solving Method: ‘ Simplex LP - Options
Solving Method
Select the GRG Nonlinear engine for Solver Problems that are smooth
nonlinear. Select the LP Simplex engine for linear Solver Problems,
and select the Evolutionary engine for Solver problems that are non-
smooth.

Close @
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LINEAR OPTIMIZATION MODELS

Reference:

C. Guéret, C. Prins, M. Sevaux, “Applications of optimization with Xpress-MP,’
Translated and revised by S.Heipcke, 1999



OPTIMIZATION MODELING: LINEAR CONSTRAINTS

e Constraints define the set where to look for an optimal solution
e They define relations between decision variables

o When formulating an optimization model we must disaggregate the
restrictions appearing in the decision problem into subsets of constraints that
we know how to model

e There are many types of constraints we know how to model ...
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1. UPPER AND LOWER BOUNDS (BOX CONSTRAINTS)

e Box constraints are the simplest constraints: they define upper and lower
bounds on the decision variables

T2
b <wxi <wy
DY
l; e RU{—o0},u; € RU {400} adv:i::i.ble
0y -4 ST S
0" o u1 x1

e Example: “We cannot sell more than 100 units of Product A"

o Pay attention: some solvers assume nonnegative variables by default!

e When ¢; = u; the constraint becomes z; = ¢; and variable x; becomes
redundant. Still it may be worthwhile keeping in the model
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2. FLOW CONSTRAINTS

e Flow constraints arise when an item can be divided in different streams, or vice
versa many streams come together

Zn: o . \O total ﬂovg total ﬂosz/’Z:
=1 T3 / \

al

€3

o Example: I can get water from 3 suppliers, 51, 52 and $3. I
wank to have at least 1000 Likers available.” 1 + zo9 + z3 > 1000

e Example: I have $0 trucks available to rent to 3 customers C1,
C2 and C3"x1 + 29 + 123 <50

e Losses can be included as well: “'2% water I gebt from suppliers gets
Lost.” 0.98z1 + 0.98z2 + 0.98x3 > 1000
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3. RESOURCE CONSTRAINTS

e Resource constraints take into account that a given resource is limited

n
ZRjifCi < Rumax,j

i=1

¢ The technological coefficients ;; denote the amount of resource j used per
unit of activity i
e Example:

“Small chess sets require 1 kg ““Small chess sets require 3
boxwood, the large ones 3 kg, lathe hours, the large ones 2 h,
total available is 200 kq." total time is 4x40 h."

x1 + 3z2 < 200 3x1 + 2x9 < 160

R =[33], Rumax = [150]
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4. BALANCE CONSTRAINTS

e Balance constraints model the fact that “what goes out must in total equal
what comes in”

_ L
rm out
N M 1
out __ in L \ /
T, = x; + poin
=1 =1
i= i= Isi“/' \mzom

o Example: “'I have 100 tons steel and can buy more from
suﬂptiers 1,2,3 to serve customers AB"z4+xp = 100421 + 22 + 23

e Balance can occur between time periods in a multi-time period model

o Example: “*The cash I'll have tomorrow is what I have now Plus
whab I receive minus what I sloehd Eodaj." Tl = Te + Ut — Yz
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9. QUALITY CONSTRAINTS

e Quality constraints are requirements on the average percentage of a certain
quality when blending several components

>N a a

. O > >

=1 Yadsg =

=5 = Pmin E Qi = Pmin E T
1=1 1=1

Dim1 T

e Example: “The average risk of an investment in assets ABC,
which have risks 26%, §%, and 12% respectively, must be

Pol A 0.252 440.052540.122¢
smaller than 10% P E i <0.1

e The nonlinear quality constraint is converted to a linear one under the
assumption that z; > 0 (if z; = 0 Vi the constraint becomes redundant)

Objectives and constraints can be often simplified by mathematical trans-
formations and/or adding extra variables
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6. ACCOUNTING VARIABLES AND CONSTRAINTS

o |tis often useful to add extra accounting variables

N
Y= E T; accounting constraint
=1

o Of course we can replace y with Zij\il x; everywhere in the model (condensed
form), but this would make it less readable

® Moreover, keeping y in the model (non-condensed form) may preserve some
structural properties that the solver could exploit

o Example: “The profit ab any given year is the difference between
revenues and expehc&i&ures" P =T — €

Numerical Optimization - ©2024 A. Bemporad. All rights reserved. 59/95



1. BLENDING CONSTRAINTS

¢ Blending constraints occur when we want to blend a set of ingredients x; in
given percentages «; in the final product
e

N =
Zj:l Lj

e Similar to quality constraints, blending constraints can be converted to linear
equality constraints

N
xXr; = E O[i(Ej
Jj=1
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8. SOFT CONSTRAINTS

e So far we have seen are hard constraints, i.e., that cannot be violated.
e Soft constraints are a relaxation, in which the constraint can be violated,
usually paying a penalty

N

N
Zaijxi S b]' Zaijxi S bj + €j
i=1 i=1

¢ We call the new variable ¢; panic variable: it should be normally zero but can
assume a positive value in case there is no way to fulfill the constraint set

* Example: “0nly 200 kg boxwood are available ko make chess
sets, but we can buy extra for & $/kg"

mast,xg,ezo 51:3 + 20-13[ — 66
st. xs+ 3z, <2004 €
3z + 22, < 160
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LINEAR OBJECTIVE FUNCTIONS

e Linear programs only allow minimizing a linear combination of the optimization
variables

o However, by introducing new variables, we can minimize any convex piecewise
affine (PWA) function

Result

Every convex piecewise affine function
£ : R™ — R can be represented as the
max of affine functions, and vice versa

Example:
£(z) = max {ajx + by,...,a}x+ by}

3

T
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CONVEX PWA OPTIMIZATION PROBLEMS AND LP

e Minimization of a convex PWA function ¢(x):

mine, €
N €>ajx+b
ot € > abx + by
€ > ahx + b3
€> ayx + by

¢ By construction e > max{a}z + b1, abx + by, alx + b, alyx + bs}

e By contradiction it is easy to show that at the optimum we have that
€ = max{a}z + by, ahw + by, abw + bz, ayx + by}

e Convex PWA constraints /(x) < 0 can be handled similarly by imposing
ax+b; <0,Vi=1,2,34
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1. MINMAX OBJECTIVE

e minmax objective: we want to minimize the maximum among M given linear
objectives f;(z) = alz + b;

min maxM{fi(x)} s.t. linear constraints

T i=1,...,
e Example: asymmetric cost min, max{a'z + b,0}

e Example: minimize the co-norm

min ||Az — b|| s
x

where [0l £ max;—;1,_, |v;|and A € R™*" b € R™.

This corresponds to

minmax{Ayx — by, —A12+ by, ..., AT — by, — A + b }
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2. MINIMIZE THE SUM OF MAX OBJECTIVES

e We want to minimize the sum of maxima among given linear objectives
fij(x) = aj;x + by

N
min g max {fi;j(x)} s.t. linear constraints
x - 1i:1,“.,Mj

J:

e The equivalent reformulation is

. N
mine, Zj:l €j
st. e >ajw+by,i=1,...,Mj,j=1,...,N
(other linear constraints)

e Example: minimize the 1-norm
min || Az — b||;
x
where [[v[[1 £3,_, . |viland A € R™*" b € R™, that corresponds to

min E max{A4;x — b;,—A;x + b;}
x
i=1
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3. LINEAR-FRACTIONAL PROGRAM

o We want to minimize the ratio of linear objectives min,, EEI?
st. Az <b
Gr=h
over thedomaine’z + f > 0
¢ We introduce the new variable z = e’ler 7 and replace z; with the new
variablesy; = zx;,i = 1,...,n,where

l=z(z+ f)=€y+ fz,2>0
e Since z > 0then zAx < zb, and the original problem is translated into the LP

min., cy+dz
st. Ay—5z<0
Gy = hz
ey+fz=1
z>0

from which we recover z* = Ziy* incase z* > 0.
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CHEBYCHEV CENTER OF A POLYHEDRON

"
e The Chebychev center of a polyhedron P = {z : Az < b}
is the center z* of the largest ball B(z*,r*) = {z : = * + u, )

|lul|2 < r*} contained in P

e Theradius r* is called the Chebychev radius of P

e Aball B(z,r)isincluded in P if and only if

sup Ai(z +u) = Aiz +rl|Aills < b, Vi=1,...,m,
llull2<r

where A € R™*" b € R™, and A, is the ith row of A.

e Therefore, we can compute the Chebychev center/radius by solving the LP

maXg, T
s.t. AZZL'+T||AZ||QSI)“’L:1,,’ITL
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CONVEX OPTIMIZATION MODELS

References:
S. Boyd, L. Vandenberghe, “Convex Optimization,” 2004

S. Boyd, “Convex Optimization,” lecture notes, http://ee364a.stanford.edu,
http://ee364b.stanford.edu


http://ee364a.stanford.edu
http://ee364b.stanford.edu

CONVEX SETS

e Convexset: Aset S C R™isconvexifforall zy,25 € S

Azy 4+ (1= Nzg € S, VA € [0,1]
e The convex hull of IV points Z1,
combinations

., T is the set of all their convex

S={zeR": IRV :

xr = Z)\Z.’E“ .57
Ai 20, Zi\; Ai =1} Y T3
Z6 * '
T5e
-
e Aconvex cone of N points Z1, ..., Zy isthe set
1
S={zeR": MeRY :x=>" \i;, \; >0} p
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CONVEX SETS
hyperplane {z : 'z =b},a #0 ﬂ/a'x:b

a'r<b

e halfspace {z : a’x < b},a #0
e polyhedronP = {z: Az <b, Ex = f}

o (Euclidean) ball B(zg,r) = {z : ||z — a2 < 7}
={zo+ry: |yl <1}

o ellipsoid & = {z: (z — xo) P(x — ) < 1}
with P = P’ >~ 0,or equivalently € = {z¢ + Ay : [|y[]2 < 1},

Asquareanddet A # 0
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PROPERTIES OF CONVEX SETS

e Theintersection of (any number of) convex sets is convex

e AnysetS = {z € R" : g(x) < 0} withg : R" — R™ is convex

e The image of a convex set under an affine function f(z) = Az + b
(A e R™*™ p € R™)is convex

S CR"convex = f(S) ={y:y= f(x),x € S} convex

for example: scaling (A diagonal, b = 0), translation (A = I,b # 0),
projection (A = [I0],b=0,ie, f(S)={y = [=1 =] : € S})
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CONVEX FUNCTIONS

e Recall: f : § — Ris aconvex functionif S is convex and

fzr+ (1= Nag) < Af(z1) + (1= M) f(22)

Jensen’s inequality
Vay,z9 € S, A €[0,1]

e Sublevel sets C,, of convex functions are convex sets (but not vice versa)
Co={zeS: f(x) <a}

e Therefore linear equality constraints Az = b and inequality constraints
g(x) < 0, with g a convex (vector) function, define a convex set

Numerical Optimization - ©2024 A. Bemporad. All rights reserved. 71/95



CONVEX FUNCTIONS

Examples of convex functions:

o affine f(x) = a’x + b,foranya € R",b € R
e exponential f(z) = e**,x € R,foranya € R
e power f(x) = 2% x € R,forany a > 1or a < 0. Example: 22,1 /x forz > 0

e powers of absolute value f(z) = |z

PrxeRforp>1
¢ negative entropy f(z) = zlogz,x € R

o log-sum-exp f(z) = log (37, e%®*¥), 2 € R

e anynorm f(z) = ||zl

e maximum f(z) = max(z1,...,Z,)
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CONCAVE FUNCTIONS

Examples of concave functions:

affine f(x) = a’x + b,foranya € R",b € R

logarithm f(z) = logz,x € R

e power f(z) = x% z € R,forany0 < a < 1. Example: \/z,z > 0

minimum f(z) = min(x1,...,z,)
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CONVEX FUNCTIONS

o Recall the first-order condition of convexity: f : R™ — R with convex domain
dom f and differentiable is convex if and only if

fy) > f(x)+Vf(z) (y—), Yo,y € dom f

f(z) f@)+V f(z) (y-z)

e Second-order condition: Let f : R™ — R with convex domain dom f be twice
differentiable and V2 f () its Hessian matrix, [V f (z)];; = gmfaz) Then fis
convex if and only if

V2f(x) = 0, Vo € dom f

If V2f(z) = Oforallz € dom f then f is strictly convex.
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CHECKING CONVEXITY

1. Check directly whether the definition is satisfied (Jensen'’s inequality)

2. Check if the Hessian matrix is positive semidefinite (only for twice
differentiable functions)

3. Show that f is obtained by combining known convex functions via operations
that preserve convexity
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CALCULUS RULES FOR CONVEX FUNCTIONS

e nonnegative scaling: f convex,a > 0= a.f convex

e sum: f, g convex = f + g convex

affine composition: f convex = f(Ax + b) convex

e pointwise maximum: fi, ..., f,, convex = max; f;(x) convex

composition: h convex increasing, f convex = h(f(z)) convex

General compositionrule: h(f1(z),..., fr(z))isconvexwhen his convexand

hisincreasing w.r.t. its ith argument, and f; convex, or
his decreasing w.r.t. its ith argument, and f; concave, or
fiis affine

foreachi=1,...,k

Seealsodcp.stanford.edu
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DISCIPLINED CONVEX PROGRAMMING

e The objective function has the form

- minimize a scalar convex expression, or

- maximize a scalar concave expression

e Each of the constraints (if any) has the form

- convex expression < concave expression, or
- concave expression > convex expression, or

- affine expression = affine expression

This framework is used in the CVX, CVXPY, and Convex.jl packages.

I
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LEAST SQUARES

e least squares (LS) problem

min || Az — b||3 or= (AA)'A b

——
Tscméo'\mcrsc v‘g A

e nonnegative least squares (NNLS) (Lawson, Hanson, 1974)
min || Az — b||3
st. x>0
e bounded-variable least squares (BVLS) (Stark Parker, 1995)
min || Az — b||3
st. f<z<u
e constrained least squares
min || Az — b||3

st. Az <b, Ex=f

Numerical Optimization - ©2024 A. Bemporad. All rights reserved.
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QUADRATIC PROGRAMMING

e The least squares cost is a special case of quadratic cost

1 1
§||A:c —b|% = ix'A’A:c — b Ax +b'b
e Ageneralization of constrained least squares is quadratic programming (QP)
: } ! /
min 295 Qx+cx
st. Axr <b Q=Q >0
Ex=f

e IfQ = L'L = 0we can complete the squares by settingy = Lz + (L~!)'cand
convert the QP into a LS problem:

1 1
37 Qv+ dw = gL — (=L71)c]3
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LINEAR PROGRAM WITH RANDOM COST = QP

e We want to solve the LP with random cost ¢

min, c'z

st Av<b Er—f Eld] =¢, Var[c] = E[(c—¢)(c—0)] =X

e 'z isarandom variable with expectation F[c¢'z] = ¢ 2 and variance
Var[d'z] = 2'Ex

e We want to trade off the expectation of ¢’z with its variance (=risk) with a risk
aversion coefficienty > 0

e Thisis equivalent toa QP:

min, FE[dz] + v Var[d'z] min, cz+ya'Se
st. Ar<b, Ex=Ff st. Ax <b, Ex=f
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LASSO OPTIMIZATION = QP

o The following ¢1-penalized linear regression problem is called LASSO
(least absolute shrinkage and selection operator):

1
min 5||A:1: — b2+ Mz1  AER™" beR™
e The tuning parameter A\ > 0 determines the tradeoff between fitting Az ~ b

(X small) and making x sparse (X large)

o By splitting x in the difference of its positive and negative parts, x = y — z,
y, z > O we get the positive semidefinite QP with 2n variables

1 2 l
pin o[ A(y —2) = bl + A(y + 2)

where1’ = [1 ... 1]. At optimality at least one of y, z; will be zero

e Asmall Tikhonov regularization o (||y||3 + ||z||3) makes the QP strictly convex
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LASSO - EXAMPLE

Solve LASSO problem . ‘ Az — b2

!
min = || Az — b[[3 + Alle[lx

3000 x 1000 3000
A c RO e R

A, B =random matrices

e A sparse with 3000 nonzero entries
e Problem solved by QP for different \’s

e CPUtimerangesfrom&8.5msto1.17s
usingosQP (http://osgp.org)
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QUADRATICALLY CONSTRAINED QUADRATIC PROGRAM (QCQP)

If we add quadratic constraints in a QP we get the quadratically constrained
quadratic program (QCQP)

min %x’Qerc’x
st. z@'Pr+da+h;<0,i=1,...,m
Ax =10

QCQPisaconvexproblemif@Q,P;, = 0,i=1,...,m

If P1,..., Py, > 0,thefeasible region X’ of the QCQP is the intersection of m
ellipsoids and p hyperplanes (b € RP)

Polyhedral constraints (halfspaces) are a special case when P; = 0
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SECOND-ORDER CONE PROGRAMMING

A generalization of LP, QP, and QCQP is second-order cone programming
(SOCP)

min 'z
S.t. ||Fi$+g¢\|2 Sd;x—i—hz, 1=1,...,m
Ax=1b

with F; € R™"*" A € RP*™

If F; = 0the SOC constraint becomes a linear inequality constraint

If d; = 0 (h; > 0) the SOC constraint becomes a quadratic constraint

The quadratic constraint 2’ F' Fx + d'x + h < 0is equivalent to the SOC
constraint

] =40 -
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EXAMPLE: ROBUST LINEAR PROGRAMMING

o We want to solve the LP with uncertain constraint coefficients a;
min 'z
st alx<b,i=1,....,m

e Assume a; can be anything in the ellipsoid &; = {a; + Py, ||y|l= < 1},
P; € R"*™ where a; € R" is the center of &;

min 'z
/ N
st. ajx<b;,Va; €&,i=1,...,m

e The constraint is equivalent tosup,, ¢ {ajz} < b;, where

sup {ajz} = sup {(a; + Piy)'z} = ajw + || P2
ai€; lyll2<1

e The original robust LP is therefore equivalent to the SOCP
min 'z
st aix + ||Plxlls <b,i=1,....m
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EXAMPLE: LP WITH RANDOM CONSTRAINTS

o Assume a; Gaussian, a; ~ N (a;, %;),X; = LLL; (L; = Y3 ifYis diagonal)
e Forgivenn,; € [%, 1] we want to solve the LP with chance constraints

min 'z

s.t. prob(ajx <b;)) >mn;,i=1,...,m
e Leta = alx — b, a = @z — b;, % = 2'3;2. The cumulative distribution

function (CDF) of a ~ (&, &) is F(a) = B(252), &(8) = &= [7_e~*/2dt

o

— b; — alx
robagm—bi<0:F0:(I><a):<I><Z ’>>i
prob( )= F0) = (= ) 5y

e The original LP with random constraints is equivalent to the SOCP

min 'z :
st. @z + @Y (n)||Lizla < bi,i=1,...,m e

; -1 : 1 ’
where the inverse CDF @~ (n;) > Osincen; > 5
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SEMIDEFINITE PROGRAM (SDP)

e Asemidefinite program (SDP) is an optimization problem in which we have
constraints on positive semidefiniteness of matrices

min, cz
st. vy +aFe+...+x,F,+G =0
Ax =D
where I, Fy, ..., F,, G are (wlog) symmetric m x m matrices

o The constraint is called linear matrix inequality (LMI) ¢

e Multiple LMIs can be combined in a single LMI using block-diagonal matrices

o 4. 4z Fr+ G <0 [Fll 0 }xﬁ [F; O:|£K +{G1 o

=<0
s F2 4+ 4z, F24+G*=<0 0 Ff 0 Fy 06‘2}*

Many interesting problems can be formulated (or approximated) as SDPs

5The LMI constraint means 2’ (z1 F1 + x2Fa + ... + xn Fy + G)z < 0,z > 0
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SEMIDEFINITE PROGRAM (SDP)

SDP generalizes LP, QP, QCQP, SOCP:

e an LP canberecast as an SDP

min 'z min 'z

st. Az <b s.t. diag(Ax —b) <0

e an SOCP can be recast as an SDP

min cz min 'z
st |Fix + gills < dix 4+ h; s.t. [ (Fuatan)! diaths =0

i=1,...,m i=1,...,m

e Good SDP packages exist (SeDuMi, SDPT3, Mathworks LMI Toolbox, ...)
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EXAMPLE OF CONVEX PROGRAM: MAX BOX IN A POLYHEDRON

(Bemporad, Filippi, Torrisi, 2004)
Goal: find the largest box B contained inside a polyhedron

P={zeR": Az <b}

Let y € R™ = vector of dimensions of Band x € R"
= vertex of B with lowest coordinates

Problem to solve:
max,, [, v
s.t. Az + diag(v)y) < b, Vv € {0,1}"
y>0

nonlinear, nonconvex,

many constraints!

Reformulate as maximize log(volume), remove redundant constraints:

n
ming , — Z log(y:) convex problem
i=1
st. Ar+Aty<b, y>0 A;rj — max{A;;,0}
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GEOMETRIC PROGRAMMING

e Amonomial function f : R , — R, ,whereR,, = {z € R: z > 0}, has
the form

flz)=cax*zg?...x0", ¢>0,a; ER

e Aposynomial function f : R, — R | is the sum of monomials

K
flz) = E e xg?e ke >0, a, €R
k=1

e Ageometric program (GP) is the following optimization problem

min  f(z)
st gi(x)<l,i=1,....m
hi(x)=1,i=1,...,p

with f, g; posynomials, h; monomials.
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GEOMETRIC PROGRAMMING - EQUIVALENT CONVEX PROGRAM

¢ Introduce the change of variables y; = log x;. The optimizer is the same if we
minimize log f instead of f and take the log of both sides of the constraints

¢ The logarithm of a monomial fy;(z) = cz{* ... z%" becomes affinein y
log far(z) =log(cxft ... x8") = log(ce® ¥ ...e*¥") =a'y +b, b=logc

e The logarithm of a posynomial fp(x) = ZkK L crxitt L xln* becomes

log fp(x <Z e““’“’k) » b =log

e One can prove that F'(y) = log fp(e¥) is convex and so it is the program

min log (S0, ea;cy“‘b’f)
s.t. log Zle ec'/iky"’d“v) <0,i=1,...,m
Ey+f=0

Numerical Optimization - ©2024 A. Bemporad. All rights reserved 91/95



GEOMETRIC PROGRAMMING - EXAMPLE

(Boyd, Kim, Vandenberghe, Hassibi, 2007)

e Maximize the volume of a box-shaped structure with
height h, width w, depth d

e Constraints:
- totalwallarea 2(hw + hd) < Ayan
- floorareawd < Ag,
- upper and lower bounds on aspect ratiosa < h/w < 8,7y < w/d < ¢

e The problem can be cast as the following GP

min A twld!
2 2
ah™lw <1, %hw—1 <1
~ywd ! <1, %w‘ld <1
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Numerical Optimization

GEOMETRIC PROGRAMMING EXAMPLE

e We solve the problem in MATLAB:

alpha=0.5; beta=2; gamma=0.5; delta=2; Awall=1000; Afloor=500;

CvX

cvx_begin gp quiet
variables h w d

% obj. function = box volume
maximize (h*w*d)

subject to

2*(h*w + h*d) <= Awall;
w*d <= Afloor;

alpha <= h/w <= beta;
gamma <= d/w <= delta;
cvx_end

opt_volume = cvx_optval;

e Result: max volume =5590.17, h*

Bemporad. Al rights reserved

YALMIP

sdpvar h w d

C = [alpha <= h/w <= beta,
gamma <= d/w <= delta, h>=0,
w>=0];

C = [C, 2*(h*w+h*d) <= Awall,
w*d <= Afloor];

optimize(C,-(h*w*d))

yalmip.github.io/tutorial/geometricprogramming

= 11.1803, w* = 22.3599, d* = 22.3614
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GEOMETRIC PROGRAMMING - EXAMPLE

e We solve the problem in PYTHON:

CVXPY

import cvxpy as cp

alpha = 0.5
beta = 2.0
gamma = 0.5
delta = 2.0
Awall = 1000.0
Afloor = 500.0

h = cp.Variable(pos=True)
cp.Variable(pos=True)
cp.Variable(pos=True)

w
d

obj =h * w *d

Numerical Optimization -

constraints = [

2%(h*w + h*d) <= Awall,
w*d <= Afloor,

alpha <= h/w, h/w <= beta,
gamma <= d/w, d/w <= delta]

problem = cp.Problem(cp.Maximize
(obj), constraints)

problem.solve (gp=True)

print("h: ", h.value)

, w.value)

print("d: , d.value)

print("volume: ", problem.value)

n

print("w:

"
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CHANGE OF FUNCTION/VARIABLES

o Substituting the objective f with a monotonically increasing function of f can
simplify the problem

- Example: min \/z with x > 0, is a nonconvex problem, but we can minimize
(v/x)? = xinstead

- Example: max f(x) =[]}, x: is anonconvex problem, but the function
log(f(xz)) = > i, log(x;) is concave

e Sometimes a nonconvex problem can be transformed into a convex problem by
making a nonlinear transformation of the optimization variables (as in GP)
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