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COURSE OBJECTIVES

Solve complex decision problems by using numerical optimization

Application domains:

• Finance, management science, economics (portfolio optimization, business

analytics, investment plans, resource allocation, logistics, ...)

• Engineering (engineering design, process optimization, embedded control, ...)

• Artificial intelligence (machine learning, data science, autonomous driving, ...)

• Myriads of other applications (transportation, smart grids, water networks,

sports scheduling, health-care, oil & gas, space, ...)
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COURSE OBJECTIVES

What this course is about:

• How to formulate a decision problem as a numerical optimization problem?

(modeling)

• Which numerical algorithm is most appropriate to solve the problem?

(algorithms)

• What’s the theory behind the algorithm? (theory)
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COURSE CONTENTS

• Optimizationmodeling

– Linear models

– Convexmodels

• Optimization theory

– Optimality conditions, sensitivity analysis

– Duality

• Optimization algorithms

– Basics of numerical linear algebra

– Convex programming

– Nonlinear programming
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OTHER REFERENCES

• Stephen Boyd’s “ConvexOptimization” courses at Stanford:

http://ee364a.stanford.edu http://ee364b.stanford.edu

• Lieven Vandenberghe’s courses at UCLA:

http://www.seas.ucla.edu/~vandenbe/

• Formore tutorials/books see

http://plato.asu.edu/sub/tutorials.html
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OPTIMIZATION MODELING



WHAT IS OPTIMIZATION?

• Optimization = assign values to a set of decision variables so to optimize a

certain objective function

• Example: Which is the best velocity tominimize fuel consumption ?

fuel 
[ℓ/km]

velocity 
[km/h]

60 90300 120 160
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WHAT IS OPTIMIZATION?

• Optimization = assign values to a set of decision variables so to optimize a

certain objective function

• Example: Which is the best velocity tominimize fuel consumption ?

fuel 
[ℓ/km]

velocity 
[km/h]

optimal 
velocity

best fuel 
consumption

60 90300 120 160

optimization variable: velocity

cost function tominimize: fuel consumption

parameters of the decision problem: engine type, chassis shape, gear, …
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OPTIMIZATION PROBLEM

min
x

f (x)

f∗ = minx f(x) = optimal value

x∗ = argminx f(x) = optimizer

(
maxx f(x)

)

x

f(x)

f(x*)

x*

x ∈ Rn, f : Rn → R

x =


x1

...

xn

 , f(x) = f(x1, x2, . . . , xn)

Most often the problem is difficult to solve by inspection

use a numerical solver implementing an optimization algorithm
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OPTIMIZATION PROBLEM

min
x

f (x)

• The objective function f : Rn → Rmodels our goal: minimize (or maximize)

some quantity.

For example fuel,money, distance from a target, etc.

• The optimization vector x ∈ Rn is the vector of optimization variables

(or unknowns) xi to be decided optimally.

For example velocity, number of assets in a portfolio, voltage applied to a

motor, etc.
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CONSTRAINED OPTIMIZATION PROBLEM
• The optimization vector xmay not be completely free, but rather restricted to a

feasible setX ⊆ Rn

• Example: the velocity must be smaller than 60 km/h

fuel 
[ℓ/km]

velocity 
[km/h]

60 90300 120 160

fuel 
[ℓ/km]

velocity 
[km/h]

optimal 
velocity

best fuel 
consumption

60 90300 120 160

The new optimizer is x∗ = 42 km/h.
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CONSTRAINED OPTIMIZATION PROBLEM

minx f(x)

s.t. g(x) ≤ 0

h(x) = 0

• The (in)equalities define the feasible set

X of admissible variables

X = {x ∈ Rn : g(x) ≤ 0, h(x) = 0}

• Further constraints may restrictX ,

for example:

x ∈ {0, 1}n (x = binary vector)
x ∈ Zn (x = integer vector)

x

f(x)

g(x)  0

g : Rn → Rm, h : Rn → Rp

g(x) =

[
g1(x1,x2,...,xn)

...
gm(x1,x2,...,xn)

]

h(x) =

[
h1(x1,x2,...,xn)

...
hp(x1,x2,...,xn)

]
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A FEW OBSERVATIONS (1/2)

• An optimization problem can always bewritten as aminimization problem

max
x∈X

f(x) = −min
x∈X

{−f(x)}

• Similarly, an inequality gi(x) ≥ 0 is equivalent to−gi(x) ≤ 0

• An equality h(x) = 0 is equivalent to the double inequalities h(x) ≤ 0,

−h(x) ≤ 0 (often this is only good in theory, but not numerically)
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A FEW OBSERVATIONS (2/2)

• The following transformations do not change the optimizer:

– Scaleαf(x),α > 0, and/or shift f(x) + γ

– More in general: apply amonotonically increasing function ϕ(f(x))

Example: if f(x) > 0 for all x, minimizing f(x) is the same asminimizing log(f(x))

– Scaleαgi(x) ≤ 0,α > 0, scale γhj(x) = 0, γ ̸= 0

– More in general, apply amonotonically increasing function ϕ(·)
Example: ∥x∥2 ≤ 1⇔ x′x ≤ 1 for all x (here ϕ(α) = α2,α ≥ 0)

• Adding constraintsmakes the objective worse or equal:

min
x∈X1

f(x) ≤ min
x∈X1, x∈X2

f(x)

• Strict inequalities gi(x) < 0 can be approximated by gi(x) ≤ −ϵ (0 < ϵ ≪ 1)
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INFEASIBILITY AND UNBOUNDEDNESS

• A vector x ∈ Rn is feasible if x ∈ X , i.e., it satisfies the given constraints

• A problem is infeasible ifX = ∅ (the constraints are too tight)

• A problem is unbounded if ∀M > 0 ∃x ∈ X such that f(x) < −M .

In this case wewrite

inf
x∈X

f(x) = −∞
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GLOBAL AND LOCAL MINIMA

• A vector x∗ ∈ Rn is a global optimizer if x∗ ∈ X and f(x) ≥ f(x∗), ∀x ∈ X

• A vector x∗ ∈ Rn is a strict global optimizer if x∗ ∈ X and f(x) > f(x∗),

∀x ∈ X , x ̸= x∗

• A vector x∗ ∈ Rn is a (strict) local optimizer if x∗ ∈ X and there exists a

neighborhood1 N of x∗ such that f(x) ≥ f(x∗), ∀x ∈ X ∩N
(f(x) > f(x∗), ∀x ∈ X ∩N , x ̸= x∗)

1Neighborhood of x = open set containing x
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EXAMPLE: LEAST SQUARES
• We have a dataset (uk, yk), uk, yk ∈ R, k = 1, . . . N

• Wewant to fit a line ŷ = au+ b to the dataset that minimizes

f(x) =

N∑
k=1

(yk − auk − b)2 =

N∑
k=1

([ uk
1 ]

′
x− yk)

2 =

∥∥∥∥∥∥
 u1 1

...
...

uN 1

x−

[ y1

...
yN

]∥∥∥∥∥∥
2

2

with respect to x = [ ab ]

• The problem
[
a∗

b∗
]
= argmin f([ ab ]) is a least-squares problem: ŷ = a∗u+ b∗

InMATLAB:

x=[u ones(size(u))]\y

In Python:
import numpy as np
A=np.hstack((u,np.ones(u.shape)))
x=np.linalg.lstsq(A,y,rcond=0)[0]

-1 -0.5 0 0.5 1

-1.5

-1

-0.5

0

0.5

1

1.5 optimal a*=0.9785, b*=0.0309

u

y
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LEAST SQUARES USING BASIS FUNCTIONS
• More generally: we can fit nonlinear functions y = f(u) expressed as the sum

of basis functions yk ≈
n∑

i=1

xiϕi(uk) using least squares

• Example: fit polynomial function y = x1 + x2u1 + x3u
2
1 + x4u

3
1 + x5u

4
1

min
x

N∑
k=1

(
yk −

[
1 uk u2

k u3
k u4

k

]
x︸ ︷︷ ︸

linear with respect to x

)2
least squares

ϕ(u) =


1

u1

u2
1

u3
1

u4
1


0 0.5 1 1.5 2

1

1.5

2

2.5
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LEAST SQUARES - FITTING A CIRCLE
• Example: fit a circle to a set of data2

min
x0,y0,r

N∑
k=1

(r2 − (xk − x0)
2 − (yk − y0)

2)2

• Let x =

[
x0
y0

r2−x2
0−y2

0

]
be the optimization vector (note the change of variables!)

• The problem becomes the least squares problem

min
x

N∑
k=1

([
2xk 2yk 1

]
x− (x2

k + y2k)
)2

-2 -1 0 1 2 3
-3

-2

-1

0

1

2

2http://www.utc.fr/~mottelet/mt94/leastSquares.pdf
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CONVEX SETS

Definition

A set S ⊆ Rn is convex if for all x1, x2 ∈ S

λx1 + (1− λ)x2 ∈ S, ∀λ ∈ [0, 1]

convex set

S
x1 x2

nonconvex set

x1 x2
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Johan Jensen
(1859–1925)

CONVEX FUNCTIONS

• f : S → R is a convex function ifS is convex and

f(λx1 + (1− λ)x2) ≤ λf(x1) + (1− λ)f(x2)

∀x1, x2 ∈ S, λ ∈ [0, 1]

Jensen’s inequality (Jensen, 1906)

• If f is convex and differentiable at x2, take the limit λ → 0 and get 3

f(x1) ≥ f(x2) +∇f(x2)
′(x1 − x2)

• A function f is strictly convex if f(λx1 + (1− λ)x2) < λf(x1) + (1− λ)f(x2),

∀x1 ̸= x2 ∈ S, ∀λ ∈ (0, 1)

3f(x1)− f(x2) ≥ limλ→0(f(x2 + λ(x1 − x2))− f(x2))/λ = ∇f ′(x2)(x1 − x2)
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CONVEX FUNCTIONS

• A function f : S → R is strongly convexwith parameterm ≥ 0 if

f(λx1 + (1− λ)x2) ≤ λf(x1) + (1− λ)f(x2)−
mλ(1− λ)

2
∥x1 − x2∥22

• If f strongly convex with parameterm ≥ 0 and differentiable then

f(y) ≥ f(x) +∇f(x)′(y − x) +
m

2
∥y − x∥22

• Equivalently, f is strongly convex with parameterm ≥ 0 if and only if

f(x)− m
2 x

′x convex
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CONVEX FUNCTIONS

• Assume f is differentiable twice and let∇2f(x) ∈ Rn×n be theHessianmatrix

of f at x

• Strong convexity with parameterm ≥ 0 is equivalent to∇2f(x) ⪰ mI

(i.e., matrix∇2f(x)−mI is positive semidefinite 4 ), ∀x ∈ Rn

• A function f is (strictly/strongly) concave if−f is (strictly/strongly) convex

4AmatrixP ∈ Rn×n is positive semidefinite (P ⪰ 0) if x′Px ≥ 0 for all x.

It is positive definite (P ≻ 0) if in addition x′Px > 0 for all x ̸= 0.

It is negative (semi)definite (P ≺ 0,P ⪯ 0) if−P is positive (semi)definite.

It is indefinite otherwise.
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CONVEX PROGRAMMING

The optimization problem

min f(x)

s.t. x ∈ S

is a convex optimization problem ifS is a convex set

and f : S → R is a convex function

S
x1 x2

• OftenS is defined by linear equality constraintsAx = b and convex inequality

constraints g(x) ≤ 0, g : Rn → Rm convex

• Every local solution is also a global one (wewill see this later)

• Efficient solution algorithms exist (wewill seemany later)

• Often occurring in many problems in engineering, economics, and science

Excellent textbook: “ConvexOptimization” (Boyd, Vandenberghe, 2002)
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POLYHEDRA
Definition

Convex polyhedron = intersection of a finite set of half-spaces ofRn

Convex polytope = bounded convex polyhedron

• Hyperplane (H-)representation:

P = {x ∈ Rn : Ax ≤ b}

• Vertex (V-)representation:

P = {x ∈ Rn : x =

q∑
i=1

αivi+

p∑
j=1

βjrj}

αi, βj ≥ 0,

q∑
i=1

αi = 1, vi, rj ∈ Rn

when q = 0 the polyhedron is a cone

A
1x=b

1

A 2
x=
b 2	

A3x=b3

A 2
A
1

A3

v3

v2

v3

v1

Convex hull = transformation

fromV- to H-representation

Vertex enumeration =

transformation fromH- to

V-representation

vi = vertex, rj = extreme ray
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-c

x*

LINEAR PROGRAMMING

• Linear programming (LP) problem:

min c′x

s.t. Ax ≤ b, x ∈ Rn

Ex = f George Dantzig
(1914–2005)

• LP in standard form: min c
′
x

s.t. Ax = b

x ≥ 0, x ∈ Rn

• Conversion to standard form:

1. introduce slack variables
n∑

j=1

aijxj ≤ bi ⇒
n∑

j=1

aijxj + si = bi, si ≥ 0

2. split positive and negative part of x
n∑

j=1

aijxj + si = bi

xj free, si ≥ 0

⇒


n∑

j=1

aij(x
+
j − x

−
j ) + si = bi

x+
j , x−

j , si ≥ 0
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x*

Ax  b

1
2x

0Qx+ c0x = constant

QUADRATIC PROGRAMMING (QP)

• Quadratic programming (QP) problem:

min
1

2
x′Qx+ c′x

s.t. Ax ≤ b, x ∈ Rn

Ex = f

• Convex optimization problem ifQ ⪰ 0 (Q = positive semidefinite matrix)

• Without loss of generality, we can assumeQ = Q′:

1
2x

′Qx = 1
2x

′(Q+Q′

2 + Q−Q′

2 )x = 1
2x

′(Q+Q′

2 )x+ 1
4x

′Qx− 1
4 (x

′Q′x)′

= 1
2x

′(Q+Q′

2 )x

• Hard problem ifQ ̸⪰ 0
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CONTINUOUS VS DISCRETE OPTIMIZATION

• In some problems the optimization variables can only take integer values.

We call x ∈ Z an integrality constraint

• A special case is x ∈ {0, 1} (binary constraint)

• When all variables are integer (or binary) the problem is an integer

programming problem (a special case of discrete optimization)

• In amixed integer programming (MIP) problem some of the variables are real

(xi ∈ R), some are discrete/binary (xi ∈ Z or xi ∈ {0, 1})

Optimization problemswith integer variables aremore difficult to solve
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MIXED-INTEGER PROGRAMMING (MIP)

min c′x

s.t. Ax ≤ b, x = [ xc
xb
]

xc ∈ Rnc , xb ∈ {0, 1}nb

mixed-integer linear program (MILP)

min
1

2
x′Qx+ c′x

s.t. Ax ≤ b, x = [ xc
xb
]

xc ∈ Rnc , xb ∈ {0, 1}nb

mixed-integer quadratic program (MIQP)

• Some variables are real, some are binary (0/1)

• MILP andMIQP areNP-hard problems, in general

• Many good solvers are available (CPLEX, Gurobi, GLPK, SCIP, FICO Xpress, CBC, ...)
For comparisons see http://plato.la.asu.edu/bench.html
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STOCHASTIC AND ROBUST OPTIMIZATION

• Relations affected by random numbers lead to stochastic models

min
x

Ew[f(x,w)]

• Themodel is enriched by the information about the probability distribution ofw

• Other stochastic measures can beminimized (Var, conditional value-at-risk, ...)

• The deterministic versionminx f(x,Ew[w]) of the problem only considers the

expected value ofw, not its entire distribution

If f is convex w.r.t. w then f(x,Ew[w]) ≤ Ew[f(x,w)]

• chance constraints are constraints enforced only in probability:

prob(g(x,w) ≤ 0) ≥ 99%

• robust constraints are constraints that must be always satisfied:

g(x,w) ≤ 0, ∀w
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DYNAMIC OPTIMIZATION

• Dynamic optimization involves decision variables that evolve over time

Example: For a given a value of x0 wewant to optimize

minx,u x2
N +

N−1∑
t=0

x2
t + u2

t

s.t. xt+1 = axt + but, t = 0, . . . , N − 1

where ut is the control value (to be decided) and xt the state at time t.

The decision variables are

u =

[ u0

...
uN−1

]
, x =

[
x1

...
xN

]

• Used to solve optimal control problems, such as inmodel predictive control
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OPTIMIZATION ALGORITHM

• An optimization algorithm is a procedure to find an optimizer x∗ of a given

optimization problemminx∈X f(x)

• It is usually iterative: starting from an initial guess x0 of x it generates a

sequence xk of “iterates”, with hopefully xN ≈ x∗ afterN iterations

• Good optimization algorithms should possess the following properties:

– Efficiency = do not require excessiveCPU time/flops andmemory allocation

– Robustness = performwell on a wide variety of problems in their class, for all

reasonable values of the initial guess x0

– Accuracy = find a solution close to the optimal one, in spite of roundoff errors due

to finite precision arithmetic (numerical robustness)

• The above are often conflicting properties
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OPTIMIZATION TAXONOMY

 Search

Optimization Taxonomy

Back to Types of Optimization Problems

It is difficult to provide a taxonomy of optimization because many of the subfields have multiple links.

Shown here is one perspective, focused mainly on the subfields of deterministic optimization with a single

objective function.

Optimization

Uncertainty Deterministic Multiobjective Optimization

Stochastic Programming Robust Optimization Continuous Discrete

Unconstrained Constrained
Integer

Programming

Combinatorial

Optimization

Nonlinear

Least Squares
Nonlinear Equations

Nondifferentiable

Optimization
Global Optimization Nonlinear Programming Network Optimization Bound Constrained Linearly Constrained

Mixed Integer

Nonlinear Programming
Semidefinite Programming

Semiinfinite

Programming

Mathematical Programs

with Equilibrium Constraints

Derivative-Free

Optimization

Linear

Programming

Quadratic

Programming

Second-Order

Cone Programming

Complementarity

Problems

Quadratically-Constrained

Quadratic Programming

Optimization Guide

Introduction

Types of Problems

Taxonomy

Algorithms

Resources

Footer

©2017      Content is available under Terms of Use.       About NEOS     Acknowledgments 

Case Studies Optimization Guide Server Resources Server Information NEOS Server

https://neos-guide.org/content/optimization-taxonomy
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OPTIMIZATION SOFTWARE

• Comparison on benchmark problems:

http://plato.la.asu.edu/bench.html

• Taxonomy of many solvers for different classes of optimization problems:

http://www.neos-guide.org

• NEOS server for remotely solving optimization problems:

http://www.neos-server.org

• Good open-source optimization software:

http://www.coin-or.org/

• GitHub , MATLABCentral , Google , . . .
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OPTIMIZATION MODEL

• An optimizationmodel is a mathematical model that captures the objective

function tominimize and the constraints imposed on the optimization variables

• It is a quantitativemodel, the decision problemmust be formulated as a set of

mathematical relations involving the optimization variables
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FORMULATING AN OPTIMIZATION MODEL

Steps required to formulate an optimizationmodel that solves a given

decision problem:

1. Talk to the domain expert to understand the problemwewant to solve

2. Single out the optimization variables xi (what are we able to decide?) and their

domain (real, binary, integer)

3. Treat the remaining variables as parameters (=data that affect the problem but

are not part of the decision process)

4. Translate the objective(s) into a cost function of x to minimize (or maximize)

5. Are there constraints on the decision variables ? If yes, translate them into

(in)equalities involving x

6. Make sure we have all the required data available
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FORMULATING AN OPTIMIZATION MODEL

real problem
modeling

analysis of the solution

solution

m
in

1
2
x
0 Q
x
+
c
0 x

s.t
.

A
x

b

optimization model

x⇤ =

2

6664

1.1

3

�25

3

7775
minx f(x)
s.t. g(x)  0

solver

• It may take several iterations to formulate the optimizationmodel properly, as:

– A solution does not exist (anything wrong in the constraints?)

– The solution does not make sense (is any constraint missing or wrong?)

– The optimal value does not make sense (is the cost function properly defined?)

– It takes too long to find the solution (can we simplify themodel?)
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EXAMPLE: CHESS SET PROBLEM

(Guerét et al., Applications of Optimization with XpressMP, 1999)

A small joinery makes two different sizes of boxwood chess sets. The small set requires 3 hours of machining on a
lathe, and the large set requires 2 hours. There are four lathes with skilled operators who each work a 40 hour week,
so we have 160 lathe-hours per week. The small chess set requires 1 kg of boxwood, and the large set requires 3 kg.
Unfortunately, boxwood is scarce and only 200 kg per week can be obtained. When sold, each of the large chess sets
yields a profit of $20, and one of the small chess set has a profit of $5.

The problem is to decide how many sets of each kind should be made each week so as to maximize profit.
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• A small joinery makes two different sizes of boxwood chess sets. The small set requires 3 hours of machining on a
lathe, and the large set requires 2 hours.

• There are four lathes with skilled operators who each work a 40 hour week, so we have 160 lathe-hours per week.
• The small chess set requires 1 kg of boxwood, and the large set requires 3 kg. Unfortunately, boxwood is scarce and

only 200 kg per week can be obtained.

• When sold, each of the large chess sets yields a profit of $20, and one of the small chess set has a profit of $5.

• The problem is to decide how many sets of each kind should be made each week so as tomaximize profit.
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EXAMPLE: CHESS SET PROBLEM

• Optimization variables: xs, xℓ = produced quantities of small/large chess sets

• Cost function: f(x) = 5xs + 20xℓ (profit)

• Constraints:

3xs + 2xℓ ≤ 4 · 40 (maximum lathe-hours)

xs + 3xℓ ≤ 200 (available kg of boxwood)

xs, xℓ ≥ 0 (produced quantities cannot be negative)

max 5xs + 20xℓ

s.t. [ 3 2
1 3 ] [

xs
xℓ
] ≤ [ 160200 ]

xs, xℓ ≥ 0

Numerical Optimization - ©2024 A. Bemporad. All rights reserved. 41/95



EXAMPLE: CHESS SET PROBLEM

• What is the best decision ? Let us make some guesses:
Table 1.1: Values for xs and xl

xs xl Lathe-hours Boxwood OK? Profit Notes
A 0 0 0 0 Yes 0 Unprofitable!
B 10 10 50 40 Yes 250 We won’t get rich doing this.
C -10 10 -10 20 No 150 Planning to make a negative

number of small sets.
D 53 0 159 53 Yes 265 Uses all the lathe-hours. There

is spare boxwood.
E 50 20 190 110 No 650 Uses too many lathe-hours.
F 25 30 135 115 Yes 725 There are spare lathe-hours

and spare boxwood.
G 12 62 160 198 Yes 1300 Uses all the resources
H 0 66 130 198 Yes 1320 Looks good. There are spare

resources.

1.2 Linear Programming

We have just built a model for the decision process that the joinery owner has to make. We have isolated
the decisions he has to make (how many of each type of chess set to manufacture), and taken his objective
of maximizing profit. The constraints acting on the decision variables have been analyzed. We have given
names to his variables and then written down the constraints and the objective function in terms of these
variable names.

At the same time as doing this we have made, explicitly or implicitly, various assumptions. The explicit
assumptions that we noted were:

• For each size of chess set, manufacturing time was proportional to the number of sets made.

• There was no down-time because of changeovers between sizes of sets.

• We could sell all the chess sets we made.

But we made many implicit assumptions too. For instance, we assumed that no lathe will ever break or
get jammed; that all the lathe operators will turn up for work every day; that we never find any flaws in
the boxwood that lead to some being unusable or a chess set being unacceptable; that we never have to
discount the sale price (and hence the per unit profit) to get an order. And so on. We have even avoided
a discussion of what is the worth of a fraction of a chess set — is it a meaningless concept, or can we just
carry the fraction that we have made over into next week’s production?

All mathematical models necessarily contain some degree of simplification of the real world that we are
attempting to describe. Some assumptions and simplifications seem eminently reasonable (for instance,
that we can get the total profit by summing the contributions of the individual profits from the two sizes);
others may in some circumstances be very hopeful (no changeover time lost when we swap between
sizes); whilst others may just be cavalier (all the lathe operators will arrive for work the day after the
World Cup finals).

Modeling is an art, not a precise science. Different modelers will make different assumptions, and come
up with different models of more or less precision, and certainly of different sizes, having different num-
bers of decision variables. And at the same time as doing the modeling, the modeler has to be thinking
about whether he will be able to solve the resulting model, that is find the maximum or minimum value
of the objective function and the values to be given to the decision variables to achieve that value.

It turns out that many models can be cast in the form of Linear Programming models, and it is fortunate
that Linear Programming (LP) models of very large size can be solved in reasonable time on relatively
inexpensive computers. It is not the purpose of this book to discuss the algorithms that are used to solve
LP problems in any depth, but it is safe to assume that problems with tens of thousands of variables and
constraints can be solved with ease. So if you can produce a model of your real-world situation, without
too many wild assumptions, in the form of an LP then you know you can get a solution.

So we next need to see what a Linear Programming problem consists of. To do so, we first introduce the
notion of a linear expression. A linear expression is a sum of the following form

A1 · x1 + A2 · x2 + A3 · x3+. . . +AN · xN

What is modeling? Why use models? 9 Applications of optimization with Xpress-MP

• What is the best solution ? A numerical solver provides the following solution

x∗
s = 0, x∗

ℓ = 66.6666 ⇒ f(x∗) = 1333.3 $
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OPTIMIZATION MODELS

• Optimizationmodels, as all mathematical models, are never an exact

representation of reality but a good approximation of it

• We need tomakeworking assumptions, for example:

– Lathe hours are nevermore than 160

– Available wood is exactly 200 kg

– Prices are constant

– We sell all chess sets

• There are usually many different models for the same real problem

Optimizationmodeling is an art
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MODELING LANGUAGES FOR OPTIMIZATION PROBLEMS

• AMPL (AModeling Language forMathematical Programming) most used

modeling language, supports several solvers

• GAMS (General AlgebraicModeling System) is one of the first modeling

languages

• GNUMathProg a subset of AMPL associated with the free package GLPK

(GNU Linear Programming Kit)

• YALMIPMATLAB-basedmodeling language

• CVX/CVXPY/Convex.jlConvex problemmodeling inMATLAB/ /
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MODELING LANGUAGES FOR OPTIMIZATION PROBLEMS

• CASADI + IPOPTNonlinear modeling + automatic differentiation, nonlinear

programming solver (MATLAB, , C++)

• JAX + JAXOPT automatic differentiation + optimization

• Optimization Toolbox’ modeling language (part ofMATLAB since R2017b)

• PYOMO -basedmodeling language

• GEKKO -basedmixed-integer nonlinear modeling language

• PYTHON-MIP -basedmodeling language for mixed-integer linear

programming

• PuLPA linear programmingmodeler for

• JuMPAmodeling language for linear, quadratic, and nonlinear constrained

optimization problems embedded in
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EXAMPLE: CHESS SET PROBLEM

• Model and solve the problem using YALMIP (Löfberg, 2004)

xs = sdpvar(1,1);
xl = sdpvar(1,1);

Constraints = [3*xs+2*xl <= 4*40, 1*xs+3*xl <= 200, ...
xs >= 0, xl >= 0]

Profit = 5*xs+20*xl;

optimize(Constraints,-Profit)

value(xs),value(xl),value(Profit)
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EXAMPLE: CHESS SET PROBLEM
• Model and solve the problem using CVX (Grant, Boyd, 2013)

cvx_clear
cvx_begin
variable xs(1)
variable xl(1)

Profit = 5*xs+20*xl;

maximize Profit

subject to
3*xs+2*xl <= 4*40; % maximum lathe-hours
1*xs+3*xl <= 200; % available kg of boxwood
xs>=0;
xl>=0;
cvx_end

xs,xl,Profit
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EXAMPLE: CHESS SET PROBLEM

• Model and solve the problem using CASADI + IPOPT

(Andersson, Gillis, Horn, Rawlings, Diehl, 2018) (Wächter, Biegler, 2006)

import casadi.*
xs=SX.sym('xs');
xl=SX.sym('xl');

Profit = 5*xs+20*xl;
Constraints = [3*xs+2*xl-4*40; 1*xs+3*xl-200];

prob=struct('x',[xs;xl],'f',-Profit,'g',Constraints);
solver = nlpsol('solver','ipopt', prob);
res = solver('lbx',[0;0],'ubg',[0;0]);

Profit = -res.f;
xs = res.x(1);
xl = res.x(2);
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EXAMPLE: CHESS SET PROBLEM

• Model and solve the problem usingOptimization Toolbox (TheMathworks, Inc.)

xs=optimvar('xs','LowerBound',0);
xl=optimvar('xl','LowerBound',0);

Profit = 5*xs+20*xl;
C1 = 3*xs+2*xl-4*40<=0;
C2= 1*xs+3*xl-200<=0;

prob=optimproblem('Objective',Profit,'ObjectiveSense','max');
prob.Constraints.C1=C1;
prob.Constraints.C2=C2;

[sol,Profit] = solve(prob);

xs=sol.xs;
xl=sol.xl;
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EXAMPLE: CHESS SET PROBLEM

• Model and solve the problem in Python using PYTHON-MIP5:

from mip import *

m = Model(sense=MAXIMIZE, solver_name=CBC)
xs = m.add_var(lb=0)
xl = m.add_var(lb=0)
m += 3*xs+2*xl <= 4*40
m += 1*xs+3*xl <= 200
m.objective = 5*xs+20*xl
m.optimize()

print(xs.x, xl.x)

5https://python-mip.readthedocs.io/
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EXAMPLE: CHESS SET PROBLEM

• In this case the optimizationmodel is very simple andwe can directly code the

LP problem in plainMATLAB or Python:

A=[1 3;3 2];
b=[200;160];
c=[5 20];
[xopt,fopt]=linprog(...

-c,A,b,[],[],[0;0])

import scipy as sc
import numpy as np
A=np.array([[1,3],[3,2]])
b=np.array([[200],[160]])
c=np.array([5,20])
sol=sc.optimize.linprog(

-c,A,b,bounds=[0,None])

• TheHybrid Toolbox forMATLAB contains interfaces to various solvers for LP,

QP,MILP,MIQP (http://cse.lab.imtlucca.it/~bemporad/hybrid/toolbox) (Bemporad, 2003-today)

• However, when there aremany variables and constraints forming the problem

matrices manually can be very time-consuming and error-prone
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EXAMPLE: CHESS SET PROBLEM

• We can evenmodel and solve the optimization problem in Excel:

optimization
variables cost function

=SUMPRODUCT(B6:C6;B2:C2)B6:C6
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Reference:

C. Guéret, C. Prins, M. Sevaux, “Applications of optimization with Xpress-MP,”

Translated and revised by S.Heipcke, 1999

LINEAR OPTIMIZATION MODELS



OPTIMIZATION MODELING: LINEAR CONSTRAINTS

• Constraints define the set where to look for an optimal solution

• They define relations between decision variables

• When formulating an optimizationmodel wemust disaggregate the

restrictions appearing in the decision problem into subsets of constraints that

we know how tomodel

• There aremany types of constraints we know how tomodel ...
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1. UPPER AND LOWER BOUNDS (BOX CONSTRAINTS)

• Box constraints are the simplest constraints: they define upper and lower

bounds on the decision variables

ℓi ≤ xi ≤ ui

ℓi ∈ R ∪ {−∞}, ui ∈ R ∪ {+∞}

x1

admissible
set

ℓ10

x2

ℓ2

u1

u2

• Example: ``We cannot sell more than 100 units of Product A''
• Pay attention: some solvers assume nonnegative variables by default!

• When ℓi = ui the constraint becomes xi = ℓi and variable xi becomes

redundant. Still it may beworthwhile keeping in themodel
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2. FLOW CONSTRAINTS

• Flow constraints arise when an item can be divided in different streams, or vice

versamany streams come together

Fmin ≤
n∑

i=1

xi ≤ Fmax

x1

x2

x3

total flow

x1

x2

x3

total flow
x1

x2

x3

total flow

x1

x2

x3

total flow

• Example: ``I can get water from 3 suppliers, S1, S2 and S3. I
want to have at least 1000 liters available.'' x1 + x2 + x3 ≥ 1000

• Example: ``I have 50 trucks available to rent to 3 customers C1,
C2 and C3'' x1 + x2 + x3 ≤ 50

• Losses can be included as well: ``2% water I get from suppliers gets
lost.'' 0.98x1 + 0.98x2 + 0.98x3 ≥ 1000
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3. RESOURCE CONSTRAINTS

• Resource constraints take into account that a given resource is limited
n∑

i=1

Rjixi ≤ Rmax,j

• The technological coefficientsRji denote the amount of resource j used per

unit of activity i

• Example:

``Small chess sets require 1 kg
boxwood, the large ones 3 kg,
total available is 200 kg.''
x1 + 3x2 ≤ 200

``Small chess sets require 3
lathe hours, the large ones 2 h,
total time is 4×40 h.''
3x1 + 2x2 ≤ 160

R = [ 2 3
3 2 ] , Rmax = [ 200160 ]
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4. BALANCE CONSTRAINTS

• Balance constraintsmodel the fact that “what goes out must in total equal

what comes in”

N∑
i=1

xout
i =

M∑
i=1

xin
i + L

x2out

L
x1outx1in

x2in

x3in

• Example: ``I have 100 tons steel and can buy more from
suppliers 1,2,3 to serve customers A,B.'' xA +xB = 100+x1 +x2 +x3

• Balance can occur between time periods in amulti-time periodmodel

• Example: ``The cash I'll have tomorrow is what I have now plus
what I receive minus what I spend today.'' xt+1 = xt + ut − yt
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5. QUALITY CONSTRAINTS

• Quality constraints are requirements on the average percentage of a certain

quality when blending several components∑N
i=1 αixi∑N
i=1 xi

⪌ pmin

N∑
i=1

αixi ⪌ pmin

N∑
i=1

xi

• Example: ``The average risk of an investment in assets A,B,C,
which have risks 25%, 5%, and 12% respectively, must be
smaller than 10%'' 0.25xA+0.05xB+0.12xC

xA+xB+xC
≤ 0.1

• The nonlinear quality constraint is converted to a linear one under the

assumption that xi ≥ 0 (if xi = 0 ∀i the constraint becomes redundant)

Objectives andconstraints canbeoften simplifiedbymathematical trans-

formations and/or adding extra variables
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6. ACCOUNTING VARIABLES AND CONSTRAINTS

• It is often useful to add extra accounting variables

y =

N∑
i=1

xi accounting constraint

• Of course we can replace y with
∑N

i=1 xi everywhere in themodel (condensed

form), but this wouldmake it less readable

• Moreover, keeping y in themodel (non-condensed form) may preserve some

structural properties that the solver could exploit

• Example: ``The profit at any given year is the difference between
revenues and expenditures'' pt = rt − et
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7. BLENDING CONSTRAINTS

• Blending constraints occur whenwewant to blend a set of ingredients xi in

given percentagesαi in the final product

xi∑N
j=1 xj

= αi

• Similar to quality constraints, blending constraints can be converted to linear

equality constraints

xi =

N∑
j=1

αixj
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8. SOFT CONSTRAINTS

• So far we have seen are hard constraints, i.e., that cannot be violated.

• Soft constraints are a relaxation, in which the constraint can be violated,

usually paying a penalty

N∑
i=1

aijxi ≤ bj

N∑
i=1

aijxi ≤ bj + ϵj

• We call the new variable ϵj panic variable: it should be normally zero but can

assume a positive value in case there is no way to fulfill the constraint set

• Example: ``Only 200 kg boxwood are available to make chess
sets, but we can buy extra for 6 $/kg''

maxxs,xℓ,ϵ≥0 5xs + 20xℓ − 6ϵ

s.t. xs + 3xℓ ≤ 200 + ϵ

3xs + 2xℓ ≤ 160
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LINEAR OBJECTIVE FUNCTIONS

• Linear programs only allowminimizing a linear combination of the optimization

variables

• However, by introducing new variables, we canminimize any convex piecewise

affine (PWA) function

Result

Every convex piecewise affine function
ℓ : Rn → R can be represented as the
max of affine functions, and vice versa

(Schechter, 1987)

Example:

ℓ(x) = max {a′1x+ b1, . . . , a
′
4x+ b4} x

a01x+ b1

a04x+ b4

a03x+ b3

a02x+ b2

`(x)

Numerical Optimization - ©2024 A. Bemporad. All rights reserved. 62/95



CONVEX PWA OPTIMIZATION PROBLEMS AND LP

• Minimization of a convex PWA function ℓ(x):

x

ϵ minϵ,x ϵ

s.t.


ϵ ≥ a′1x+ b1
ϵ ≥ a′2x+ b2
ϵ ≥ a′3x+ b3
ϵ ≥ a′4x+ b4

• By construction ϵ ≥ max{a′1x+ b1, a
′
2x+ b2, a

′
3x+ b3, a

′
4x+ b4}

• By contradiction it is easy to show that at the optimumwe have that

ϵ = max{a′1x+ b1, a
′
2x+ b2, a

′
3x+ b3, a

′
4x+ b4}

• Convex PWA constraints ℓ(x) ≤ 0 can be handled similarly by imposing

a′ix+ bi ≤ 0, ∀i = 1, 2, 3, 4
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1. MINMAX OBJECTIVE

• minmax objective: we want tominimize themaximum amongM given linear

objectives fi(x) = a′ix+ bi

min
x

max
i=1,...,M

{fi(x)} s.t. linear constraints

• Example: asymmetric costminx max{a′x+ b, 0}

• Example: minimize the∞-norm

min
x

∥Ax− b∥∞

where ∥v∥∞ ≜ maxi=1,...,n |vi| andA ∈ Rm×n, b ∈ Rm.

This corresponds to

min
x

max{A1x− b1,−A1x+ b1, . . . , Amx− bm,−Amx+ bm}
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2. MINIMIZE THE SUM OF MAX OBJECTIVES
• Wewant tominimize the sum ofmaxima among given linear objectives

fij(x) = a′ijx+ bij

min
x

N∑
j=1

max
i=1,...,Mj

{fij(x)} s.t. linear constraints

• The equivalent reformulation is

minϵ,x
∑N

j=1 ϵj

s.t. ϵj ≥ a′ijx+ bij , i = 1, . . . ,Mj , j = 1, . . . , N

(other linear constraints)

• Example: minimize the 1-norm

min
x

∥Ax− b∥1

where ∥v∥1 ≜
∑

i=1,...,n |vi| andA ∈ Rm×n, b ∈ Rm, that corresponds to

min
x

m∑
i=1

max{Aix− bi,−Aix+ bi}
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3. LINEAR-FRACTIONAL PROGRAM
• Wewant tominimize the ratio of linear objectives minx

c′x+d
e′x+f

s.t. Ax ≤ b

Gx = h

over the domain e′x+ f > 0

• We introduce the new variable z =
1

e′x+ f
and replace xi with the new

variables yi = zxi, i = 1, . . . , n, where

1 = z(e′x+ f) = e′y + fz, z ≥ 0

• Since z ≥ 0 then zAx ≤ zb, and the original problem is translated into the LP

minz,y c′y + dz

s.t. Ay − bz ≤ 0

Gy = hz

e′y + fz = 1

z ≥ 0

fromwhich we recover x∗ = 1
z∗ y

∗ in case z∗ > 0.
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x*
r*

CHEBYCHEV CENTER OF A POLYHEDRON

• TheChebychev center of a polyhedronP = {x : Ax ≤ b}
is the center x∗ of the largest ballB(x∗, r∗) = {x : x = x∗ + u,

∥u∥2 ≤ r∗} contained inP

• The radius r∗ is called theChebychev radius ofP

• A ballB(x, r) is included inP if and only if

sup
∥u∥2≤r

Ai(x+ u) = Aix+ r∥Ai∥2 ≤ bi, ∀i = 1, . . . ,m,

whereA ∈ Rm×n, b ∈ Rm, andAi is the ith row ofA.

• Therefore, we can compute the Chebychev center/radius by solving the LP

maxx,r r

s.t. Aix+ r∥Ai∥2 ≤ bi, i = 1, . . . ,m
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CONVEX SETS

• Convex set: A setS ⊆ Rn is convex if for all x1, x2 ∈ S

λx1 + (1− λ)x2 ∈ S, ∀λ ∈ [0, 1]

• The convex hull ofN points x̄1, . . . , x̄N is the set of all their convex

combinations

S = {x ∈ Rn : ∃λ ∈ RN : x =
∑

λix̄i,

λi ≥ 0,
∑N

i=1 λi = 1}

x1 x2

x3

x4

x5

x7

x6
xN

• A convex cone ofN points x̄1, . . . , x̄N is the set

S = {x ∈ Rn : ∃λ ∈ RN : x =
∑

λix̄i, λi ≥ 0} x

x1

x2
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a

a’x=b

a’x ≤ b

a’x ≥ b

x0

CONVEX SETS

• hyperplane {x : a′x = b}, a ̸= 0

• halfspace {x : a′x ≤ b}, a ̸= 0

• polyhedronP = {x : Ax ≤ b, Ex = f}

• (Euclidean) ballB(x0, r) = {x : ∥x− x0∥2 ≤ r}
={x0 + ry : ∥y∥2 ≤ 1}

• ellipsoid E = {x : (x− x0)
′P (x− x0) ≤ 1}

withP = P ′ ≻ 0, or equivalently E = {x0 +Ay : ∥y∥2 ≤ 1},
A square and detA ̸= 0
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PROPERTIES OF CONVEX SETS

• The intersection of (any number of) convex sets is convex

• Any set S = {x ∈ Rn : g(x) ≤ 0}with g : Rn → Rm is convex

• The image of a convex set under an affine function f(x) = Ax+ b

(A ∈ Rm×n, b ∈ Rm) is convex

S ⊆ Rn convex ⇒ f(S) = {y : y = f(x), x ∈ S} convex

for example: scaling (A diagonal, b = 0), translation (A = I , b ̸= 0),

projection (A = [I 0], b = 0, i.e., f(S) = {y = [ x1 ... xi ]
′
: x ∈ S})
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CONVEX FUNCTIONS

• Recall: f : S → R is a convex function if S is convex and

f(λx1 + (1− λ)x2) ≤ λf(x1) + (1− λ)f(x2)

∀x1, x2 ∈ S, λ ∈ [0, 1]
Jensen’s inequality

• Sublevel setsCα of convex functions are convex sets (but not vice versa)

Cα = {x ∈ S : f(x) ≤ α}

• Therefore linear equality constraintsAx = b and inequality constraints

g(x) ≤ 0, with g a convex (vector) function, define a convex set
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CONVEX FUNCTIONS

Examples of convex functions:

• affine f(x) = a′x+ b, for any a ∈ Rn, b ∈ R

• exponential f(x) = eax, x ∈ R, for any a ∈ R

• power f(x) = xα, x ∈ R, for anyα ≥ 1 orα ≤ 0. Example: x2, 1/x for x > 0

• powers of absolute value f(x) = |x|p, x ∈ R, for p ≥ 1

• negative entropy f(x) = x log x, x ∈ R

• log-sum-exp f(x) = log
(∑n

i=1 e
aix+bi

)
, x ∈ R

• any norm f(x) = ∥x∥

• maximum f(x) = max(x1, . . . , xn)
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CONCAVE FUNCTIONS

Examples of concave functions:

• affine f(x) = a′x+ b, for any a ∈ Rn, b ∈ R

• logarithm f(x) = log x, x ∈ R

• power f(x) = xα, x ∈ R, for any 0 ≤ α ≤ 1. Example:
√
x, x ≥ 0

• minimum f(x) = min(x1, . . . , xn)
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CONVEX FUNCTIONS

• Recall the first-order condition of convexity: f : Rn → Rwith convex domain

dom f and differentiable is convex if and only if

f(y) ≥ f(x)+∇f(x)′(y−x), ∀x, y ∈ dom f

x

f(y)

f(x) f(x)+∇f(x)’(y-x )

• Second-order condition: Let f : Rn → Rwith convex domain dom f be twice

differentiable and∇2f(x) its Hessianmatrix, [∇2f(x)]ij =
∂2f(x)
∂xi∂xj

. Then f is

convex if and only if

∇2f(x) ⪰ 0, ∀x ∈ dom f

If∇2f(x) ≻ 0 for all x ∈ dom f then f is strictly convex.
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CHECKING CONVEXITY

1. Check directly whether the definition is satisfied (Jensen’s inequality)

2. Check if theHessianmatrix is positive semidefinite (only for twice

differentiable functions)

3. Show that f is obtained by combining known convex functions via operations

that preserve convexity
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CALCULUS RULES FOR CONVEX FUNCTIONS

• nonnegative scaling: f convex,α ≥ 0⇒αf convex

• sum: f, g convex⇒ f + g convex

• affine composition: f convex⇒ f(Ax+ b) convex

• pointwisemaximum: f1, . . . , fm convex⇒maxi fi(x) convex

• composition: h convex increasing, f convex⇒ h(f(x)) convex

General composition rule: h(f1(x), . . . , fk(x)) is convexwhenh is convexand

h is increasing w.r.t. its ith argument, and fi convex, or

h is decreasing w.r.t. its ith argument, and fi concave, or

fi is affine

for each i = 1, . . . , k

See also dcp.stanford.edu (Diamond 2014)
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DISCIPLINED CONVEX PROGRAMMING
(Grant, Boyd, Ye, 2006)

• The objective function has the form

– minimize a scalar convex expression, or

– maximize a scalar concave expression

• Each of the constraints (if any) has the form

– convex expression≤ concave expression, or

– concave expression≥ convex expression, or

– affine expression= affine expression

This framework is used in theCVX,CVXPY, andConvex.jl packages.
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LEAST SQUARES

• least squares (LS) problem

min ∥Ax− b∥22 x∗ = (A′A)−1A′︸ ︷︷ ︸
pseudoinverse of A

b

• nonnegative least squares (NNLS) (Lawson, Hanson, 1974)

min ∥Ax− b∥22
s.t. x ≥ 0

• bounded-variable least squares (BVLS) (Stark,Parker, 1995)

min ∥Ax− b∥22
s.t. ℓ ≤ x ≤ u

• constrained least squares

min ∥Ax− b∥22
s.t. Ax ≤ b, Ex = f

Adrien-Marie Legendre
(1752–1833)

J. Carl Friedrich Gauss
(1777–1855)
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x*

Ax  b

1
2x

0Qx+ c0x = constant

QUADRATIC PROGRAMMING

• The least squares cost is a special case of quadratic cost

1

2
∥Ax− b∥22 =

1

2
x′A′Ax− b′Ax+ b′b

• A generalization of constrained least squares is quadratic programming (QP)

min
1

2
x′Qx+ c′x

s.t. Ax ≤ b

Ex = f

Q = Q′ ⪰ 0

• IfQ = L′L ≻ 0we can complete the squares by setting y = Lx+ (L−1)′c and

convert theQP into a LS problem:

1

2
x′Qx+ c′x =

1

2
∥Lx− (−L−1)′c∥22−

1

2
c′Q−1c
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LINEAR PROGRAMWITH RANDOM COST = QP

• Wewant to solve the LPwith random cost c

minx c′x

s.t. Ax ≤ b, Ex = f
E[c] = c̄, Var[c] = E[(c− c̄)(c− c̄)′] = Σ

• c′x is a random variable with expectationE[c′x] = c̄′x and variance

Var[c′x] = x′Σx

• Wewant to trade off the expectation of c′xwith its variance (=risk) with a risk

aversion coefficient γ ≥ 0

• This is equivalent to aQP:

minx E[c′x] + γVar[c′x]

s.t. Ax ≤ b, Ex = f

minx c̄′x+ γx′Σx

s.t. Ax ≤ b, Ex = f
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LASSO OPTIMIZATION = QP
(Tibshirani, 1996)

• The following ℓ1-penalized linear regression problem is called LASSO

(least absolute shrinkage and selection operator):

min
x

1

2
∥Ax− b∥22 + λ∥x∥1 A ∈ Rm×n, b ∈ Rm

• The tuning parameter λ ≥ 0 determines the tradeoff between fittingAx ≈ b

(λ small) andmaking x sparse (λ large)

• By splitting x in the difference of its positive and negative parts, x = y − z,

y, z ≥ 0we get the positive semidefinite QPwith 2n variables

min
y,z≥0

1

2
∥A(y − z)− b∥22 + λ1′(y + z)

where 1′ = [1 . . . 1]. At optimality at least one of y∗i , z
∗
i will be zero

• A small Tikhonov regularization σ(∥y∥22 + ∥z∥22)makes theQP strictly convex
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LASSO - EXAMPLE

• Solve LASSO problem

min
x

1

2
∥Ax− b∥22 + λ∥x∥1

A ∈ R3000×1000, b ∈ R3000

• A,B = randommatrices

• A sparse with 3000 nonzero entries

• Problem solved byQP for different λ’s

• CPU time ranges from 8.5ms to 1.17 s

using osQP (http://osqp.org)
(Stellato, Banjac, Goulart, Bemporad, Boyd, 2020)
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QUADRATICALLY CONSTRAINED QUADRATIC PROGRAM (QCQP)

• If we add quadratic constraints in a QPwe get the quadratically constrained

quadratic program (QCQP)

min 1
2x

′Qx+ c′x

s.t. 1
2x

′Pix+ d′ix+ hi ≤ 0, i = 1, . . . ,m

Ax = b

• QCQP is a convex problem ifQ,Pi ⪰ 0, i = 1, . . . ,m

• IfP1, . . . , Pm ≻ 0, the feasible regionX of theQCQP is the intersection ofm

ellipsoids and p hyperplanes (b ∈ Rp)

• Polyhedral constraints (halfspaces) are a special case whenPi = 0
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SECOND-ORDER CONE PROGRAMMING

• A generalization of LP, QP, andQCQP is second-order cone programming

(SOCP)
min c′x

s.t. ∥Fix+ gi∥2 ≤ d′ix+ hi, i = 1, . . . ,m

Ax = b

withFi ∈ Rn1×n,A ∈ Rp×n

• IfFi = 0 the SOC constraint becomes a linear inequality constraint

• If di = 0 (hi ≥ 0) the SOC constraint becomes a quadratic constraint

• The quadratic constraint x′F ′Fx+ d′x+ h ≤ 0 is equivalent to the SOC

constraint ∥∥∥[ 1
2 (1+d′x+h)

Fx

]∥∥∥
2
≤ 1

2
(1− d′x− h)
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EXAMPLE: ROBUST LINEAR PROGRAMMING
(Boyd, Vandenberghe, 2004)

• Wewant to solve the LPwith uncertain constraint coefficients ai

min c′x

s.t. a′ix ≤ bi, i = 1, . . . ,m

• Assume ai can be anything in the ellipsoid Ei = {āi + Piy, ∥y∥2 ≤ 1},
Pi ∈ Rn×n, where āi ∈ Rn is the center of Ei

min c′x

s.t. a′ix ≤ bi, ∀ai ∈ Ei, i = 1, . . . ,m

• The constraint is equivalent to supai∈Ei
{a′ix} ≤ bi, where

sup
ai∈Ei

{a′ix} = sup
∥y∥2≤1

{(āi + Piy)
′x} = ā′ix+ ∥P ′

ix∥2

• The original robust LP is therefore equivalent to the SOCP

min c′x

s.t. ā′ix+ ∥P ′
ix∥2 ≤ bi, i = 1, . . . ,m
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EXAMPLE: LP WITH RANDOM CONSTRAINTS
• Assume ai Gaussian, ai ∼ N (āi,Σi),Σi = L′

iLi (Li = Σ
1
2 ifΣ is diagonal)

• For given ηi ∈ [ 12 , 1]wewant to solve the LPwith chance constraints

min c′x

s.t. prob(a′ix ≤ bi) ≥ ηi, i = 1, . . . ,m

• Letα = a′ix− bi, ᾱ = ā′ix− bi, σ̄2 = x′Σix. The cumulative distribution

function (CDF) ofα ∼ N (ᾱ, σ̄) isF (α) = Φ(α−ᾱ
σ̄ ),Φ(β) = 1√

2π

∫ β

−∞ e−t2/2dt

prob(a′ix− bi ≤ 0) = F (0) = Φ

(
−ᾱ

σ̄

)
= Φ

(
bi − ā′ix

∥Lix∥2

)
≥ ηi

• The original LPwith random constraints is equivalent to the SOCP

min c′x

s.t. ā′ix+Φ−1(ηi)∥Lix∥2 ≤ bi, i = 1, . . . ,m

where the inverse CDFΦ−1(ηi) ≥ 0 since ηi ≥ 1
2 (Boyd, Vandenberghe, 2004)
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SEMIDEFINITE PROGRAM (SDP)

• A semidefinite program (SDP) is an optimization problem in which we have

constraints on positive semidefiniteness of matrices

minx c′x

s.t. x1F1 + x2F2 + . . .+ xnFn +G ⪯ 0

Ax = b

whereF1, F2, . . . , Fn, G are (wlog) symmetricm×mmatrices

• The constraint is called linearmatrix inequality (LMI) 6

• Multiple LMIs can be combined in a single LMI using block-diagonal matrices

x1F
1
1 + . . .+ xnF

1
n +G1 ⪯ 0

x1F
2
1 + . . .+ xnF

2
n +G2 ⪯ 0

[
F 1

1 0

0 F 2
1

]
x1+. . .

[
F 1

n 0

0 F 2
n

]
xn+

[
G1 0
0 G2

]
⪯ 0

Many interesting problems can be formulated (or approximated) as SDPs

6The LMI constraint means z′(x1F1 + x2F2 + . . .+ xnFn +G)z ≤ 0, ∀z ≥ 0
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SEMIDEFINITE PROGRAM (SDP)

SDP generalizes LP, QP, QCQP, SOCP:

• an LP can be recast as an SDP

min c′x

s.t. Ax ≤ b

min c′x

s.t. diag(Ax− b) ⪯ 0

• an SOCP can be recast as an SDP

min c′x

s.t. ∥Fix+ gi∥2 ≤ d′ix+ hi

i = 1, . . . ,m

min c′x

s.t.
[
(d′

ix+hi)I Fix+gi
(Fix+gi)

′ d′
ix+hi

]
⪰ 0

i = 1, . . . ,m

• Good SDP packages exist (SeDuMi, SDPT3,Mathworks LMI Toolbox, ...)
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x*

x*+y*

EXAMPLE OF CONVEX PROGRAM: MAX BOX IN A POLYHEDRON
(Bemporad, Filippi, Torrisi, 2004)

• Goal: find the largest boxB contained inside a polyhedron

P = {x ∈ Rn : Ax ≤ b}

• Let y ∈ Rn = vector of dimensions ofB and x ∈ Rn

= vertex ofBwith lowest coordinates

• Problem to solve:

maxx,y
∏n

i=1 yi
s.t. A(x+ diag(v)y) ≤ b, ∀v ∈ {0, 1}n

y ≥ 0

nonlinear, nonconvex,
many constraints!

• Reformulate as maximize log(volume), remove redundant constraints:

minx,y −
n∑

i=1

log(yi)

s.t. Ax+A+y ≤ b, y ≥ 0

convex problem

A+
ij = max{Aij , 0}
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GEOMETRIC PROGRAMMING
(Boyd, Kim, Vandenberghe, Hassibi, 2007)

• Amonomial function f : Rn
++ → R++, whereR++ = {x ∈ R : x > 0}, has

the form

f(x) = cxa1
1 xa2

2 . . . xan
n , c > 0, ai ∈ R

• A posynomial function f : Rn
++ → R++ is the sum ofmonomials

f(x) =

K∑
k=1

ckx
a1k
1 xa2k

2 . . . xank
n , ck > 0, aik ∈ R

• A geometric program (GP) is the following optimization problem

min f(x)

s.t. gi(x) ≤ 1, i = 1, . . . ,m

hi(x) = 1, i = 1, . . . , p

with f, gi posynomials, hi monomials.

Numerical Optimization - ©2024 A. Bemporad. All rights reserved. 90/95



GEOMETRIC PROGRAMMING - EQUIVALENT CONVEX PROGRAM

• Introduce the change of variables yi = log xi. The optimizer is the same if we

minimize log f instead of f and take the log of both sides of the constraints

• The logarithm of amonomial fM (x) = cxa1
1 . . . xan

n becomes affine in y

log fM (x) = log(cxa1
1 . . . xan

n ) = log(ceaiy1 . . . eanyn) = a′y + b, b = log c

• The logarithm of a posynomial fP (x) =
∑K

k=1 ckx
a1k
1 . . . xank

n becomes

log fP (x) = log

(
K∑

k=1

ea
′
ky+bk

)
, bk = log ck

• One can prove thatF (y) = log fP (e
y) is convex and so it is the program

min log
(∑K

k=1 e
a′
ky+bk

)
s.t. log

(∑K
k=1 e

c′iky+dik

)
≤ 0, i = 1, . . . ,m

Ey + f = 0
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GEOMETRIC PROGRAMMING - EXAMPLE
(Boyd, Kim, Vandenberghe, Hassibi, 2007)

• Maximize the volume of a box-shaped structure with

height h, widthw, depth d

• Constraints:

– total wall area 2(hw + hd) ≤ Awall

– floor areawd ≤ Aflr

– upper and lower bounds on aspect ratiosα ≤ h/w ≤ β, γ ≤ w/d ≤ δ

• The problem can be cast as the following GP

min h−1w−1d−1

s.t. 2
Awall

hw + 2
Awall

hd ≤ 1
1

Aflr
wd ≤ 1

αh−1w ≤ 1, 1
βhw

−1 ≤ 1

γwd−1 ≤ 1, 1
δw

−1d ≤ 1
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GEOMETRIC PROGRAMMING EXAMPLE

• We solve the problem inMATLAB:

alpha=0.5; beta=2; gamma=0.5; delta=2; Awall=1000; Afloor=500;

CVX

cvx_begin gp quiet
variables h w d
% obj. function = box volume
maximize(h*w*d)
subject to
2*(h*w + h*d) <= Awall;
w*d <= Afloor;
alpha <= h/w <= beta;
gamma <= d/w <= delta;
cvx_end
opt_volume = cvx_optval;

YALMIP

sdpvar h w d

C = [alpha <= h/w <= beta,
gamma <= d/w <= delta, h>=0,
w>=0];
C = [C, 2*(h*w+h*d) <= Awall,
w*d <= Afloor];

optimize(C,-(h*w*d))

yalmip.github.io/tutorial/geometricprogramming

• Result: max volume = 5590.17, h∗ = 11.1803,w∗ = 22.3599, d∗ = 22.3614
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GEOMETRIC PROGRAMMING - EXAMPLE

• We solve the problem in PYTHON:

CVXPY

import cvxpy as cp

alpha = 0.5
beta = 2.0
gamma = 0.5
delta = 2.0
Awall = 1000.0
Afloor = 500.0

h = cp.Variable(pos=True)
w = cp.Variable(pos=True)
d = cp.Variable(pos=True)

obj = h * w * d

constraints = [
2*(h*w + h*d) <= Awall,
w*d <= Afloor,
alpha <= h/w, h/w <= beta,
gamma <= d/w, d/w <= delta]

problem = cp.Problem(cp.Maximize
(obj), constraints)

problem.solve(gp=True)

print("h: ", h.value)
print("w: ", w.value)
print("d: ", d.value)
print("volume: ", problem.value)
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CHANGE OF FUNCTION/VARIABLES

• Substituting the objective f with amonotonically increasing function of f can

simplify the problem

– Example:min
√
xwith x ≥ 0, is a nonconvex problem, but we canminimize

(
√
x)2 = x instead

– Example:max f(x) =
∏n

i=1 xi is a nonconvex problem, but the function

log(f(x)) =
∑n

i=1 log(xi) is concave

• Sometimes a nonconvex problem can be transformed into a convex problem by

making a nonlinear transformation of the optimization variables (as in GP)
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