NUMERICAL OPTIMIZATION

Alberto Bemporad

http://cse.lab.imtlucca.it/~bemporad/teaching/numopt
Academic year 2022-2023

IMT

COURSE OBJECTIVES

Solve complex decision problems by using numerical optimization

Application domains:

- Finance, management science, economics (portfolio optimization, business analytics, investment plans, resource allocation, logistics, ...)
- Engineering (engineering design, process optimization, embedded control, ...)
- Artificial intelligence (machine learning, data science, autonomous driving, ...)
- Myriads of other applications (transportation, smart grids, water networks, sports scheduling, health-care, oil \& gas, space, ...)

COURSE OBJECTIVES

What this course is about:

- How to formulate a decision problem as a numerical optimization problem? (modeling)
- Which numerical algorithm is most appropriate to solve the problem? (algorithms)
- What's the theory behind the algorithm? (theory)

COURSE CONTENTS

- Optimization modeling
- Linear models
- Convex models
- Optimization theory
- Optimality conditions, sensitivity analysis
- Duality
- Optimization algorithms
- Basics of numerical linear algebra
- Convex programming
- Nonlinear programming

REFERENCES I

© J. Nocedal and S.J. Wright.
NuMERICAL OptIMIZATION.
Springer, 2 edition, 2006.
R M.S. Bazaraa, H.D. Sherali, and C.M. Shetty.
NONLINEAR PROGRAMMING - THEORY AND ALGORITHMS.
John Wiley \& Sons, Inc., New York, 3 edition, 2006.
R. S. Boyd and L. Vandenberghe.

CONVEX OPTIMIZATION.
Cambridge University Press, New York, NY, USA, 2004.
http://www.stanford.edu/~boyd/cvxbook.html.
P. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein. DISTRIBUTED OPTIMIZATION AND STATISTICAL LEARNING VIA THE ALTERNATING DIRECTION METHOD OF MULTIPLIERS.
Foundations and Trends in Machine Learning, 3(1):1--122, 2011.

REFERENCES II

N. Parikh and S.P. Boyd. PROXIMAL ALGORITHMS.
Foundations and Trends in optimization, 1(3):127--239, January 2014.
C. Guéret, C. Prins, and M. Sevaux.

APPLICATIONS OF OPTIMIZATION WITH XPRESS-MP.
1999.

Translated and revised by S. Heipcke.

ETV.P. Williams.
MODEL BUILDING IN MATHEMATICAL PROGRAMMING.
John Wiley \& Sons, 5 edition, 2013.

OTHER REFERENGES

- Stephen Boyd's "Convex Optimization" courses at Stanford: http://ee364a.stanford.edu http://ee364b.stanford.edu
- Lieven Vandenberghe's courses at UCLA: http://www.seas.ucla.edu/~vandenbe/
- For more tutorials/books see
http://plato.asu.edu/sub/tutorials.html

OPTIMIZATION MODELING

WHAT IS OPTIMIZATION?

- Optimization = assign values to a set of decision variables so to optimize a certain objective function
- Example: Which is the best velocity to minimize fuel consumption?

WHAT IS OPTIMIZATION?

- Optimization = assign values to a set of decision variables so to optimize a certain objective function
- Example: Which is the best velocity to minimize fuel consumption?

optimization variable: velocity
cost function to minimize: fuel consumption
parameters of the decision problem: engine type, chassis shape, gear, ...

OPTIMIZATION PROBLEM

$\min f(x)$
 x

$f^{*}=\min _{x} f(x)=$ optimal value
$x^{*}=\arg \min _{x} f(x)=$ optimizer

$$
\left(\max _{x} f(x)\right) \quad x=\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right], \quad f(x)=f\left(x_{1}, x_{2}, \ldots, x_{n}\right)
$$

Most often the problem is difficult to solve by inspection use a numerical solver implementing an optimization algorithm

OPTIMIZATION PROBLEM

$$
\min _{x} f(x)
$$

- The objective function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ models our goal: minimize (or maximize) some quantity.

For example fuel, money, distance from a target, etc.

- The optimization vector $x \in \mathbb{R}^{n}$ is the vector of optimization variables (or unknowns) x_{i} to be decided optimally.

For example velocity, number of assets in a portfolio, voltage applied to a motor, etc.

CONSTRAINED OPTIMIZATION PROBLEM

- The optimization vector x may not be completely free, but rather restricted to a feasible set $\mathcal{X} \subseteq \mathbb{R}^{n}$
- Example: the velocity must be smaller than $60 \mathrm{~km} / \mathrm{h}$

The new optimizer is $x^{*}=42 \mathrm{~km} / \mathrm{h}$.

CONSTRAINED OPTIMIZATION PROBLEM

$$
\min _{x} f(x)
$$

s.t. $g(x) \leq 0$

$$
h(x)=0
$$

- The (in)equalities define the feasible set \mathcal{X} of admissible variables

$$
g: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}, h: \mathbb{R}^{n} \rightarrow \mathbb{R}^{p}
$$

$$
\mathcal{X}=\left\{x \in \mathbb{R}^{n}: g(x) \leq 0, h(x)=0\right\}
$$

- Further constraints may restrict \mathcal{X}, for example:
$x \in\{0,1\}^{n}$ ($x=$ binary vector)
$x \in \mathcal{Z}^{n} \quad(x=$ integer vector $)$

$$
\begin{gathered}
g(x)=\left[\begin{array}{c}
g_{1}\left(x_{1}, x_{2}, \ldots, x_{n}\right) \\
\vdots \\
g_{m}\left(x_{1}, x_{2}, \ldots, x_{n}\right)
\end{array}\right] \\
h(x)=\left[\begin{array}{c}
h_{1}\left(x_{1}, x_{2}, \ldots, x_{n}\right) \\
\vdots \\
h_{p}\left(x_{1}, x_{2}, \ldots, x_{n}\right)
\end{array}\right]
\end{gathered}
$$

A FEW OBSERVATIONS

- An optimization problem can be always written as a minimization problem

$$
\max _{x \in \mathcal{X}} f(x)=-\min _{x \in \mathcal{X}}\{-f(x)\}
$$

- Similarly, an inequality $g_{i}(x) \geq 0$ is equivalent to $-g_{i}(x) \leq 0$
- An equality $h(x)=0$ is equivalent to the double inequalities $h(x) \leq 0$, $-h(x) \leq 0$ (often this is only good in theory, but not numerically)
- Scaling $f(x)$ to $\alpha f(x)$ and/or $g_{i}(x)$ to $\beta g_{i}(x)$, or shifting to $f(x)+\gamma$, does not change the optimizer, for all $\alpha, \beta>0$ and γ. Same if $h_{j}(x)$ is scaled to $\gamma h_{j}(x)$
- Adding constraints makes the objective worse or equal:

$$
\min _{x \in \mathcal{X}_{1}} f(x) \leq \min _{x \in \mathcal{X}_{1}, x \in \mathcal{X}_{2}} f(x)
$$

- Strict inequalities $g_{i}(x)<0$ can be approximated by $g_{i}(x) \leq-\epsilon(0<\epsilon \ll 1)$

INFEASIBILITY AND UNBOUNDEDNESS

- A vector $x \in \mathbb{R}^{n}$ is feasible if $x \in \mathcal{X}$, i.e., it satisfies the given constraints
- A problem is infeasible if $\mathcal{X}=\emptyset$ (the constraints are too tight)
- A problem is unbounded if $\forall M>0 \exists x \in \mathcal{X}$ such that $f(x)<-M$. In this case we write

$$
\inf _{x \in \mathcal{X}} f(x)=-\infty
$$

GLOBAL AND LOCAL MINIMA

- A vector $x^{*} \in \mathbb{R}^{n}$ is a global optimizer if $x^{*} \in \mathcal{X}$ and $f(x) \geq f\left(x^{*}\right), \forall x \in \mathcal{X}$
- A vector $x^{*} \in \mathbb{R}^{n}$ is a strict global optimizer if $x^{*} \in \mathcal{X}$ and $f(x)>f\left(x^{*}\right)$, $\forall x \in \mathcal{X}, x \neq x^{*}$
- A vector $x^{*} \in \mathbb{R}^{n}$ is a (strict) local optimizer if $x^{*} \in \mathcal{X}$ and there exists a neighborhood ${ }^{1} \mathcal{N}$ of x^{*} such that $f(x) \geq f\left(x^{*}\right), \forall x \in \mathcal{X} \cap \mathcal{N}$ $\left(f(x)>f\left(x^{*}\right), \forall x \in \mathcal{X} \cap \mathcal{N}, x \neq x^{*}\right)$

[^0]
EXAMPLE: LEAST SUUARES

- We have a dataset $\left(u_{k}, y_{k}\right), u_{k}, y_{k} \in \mathbb{R}, k=1, \ldots N$
- We want to fit a line $\hat{y}=a u+b$ to the dataset that minimizes

$$
f(x)=\sum_{k=1}^{N}\left(y_{k}-a u_{k}-b\right)^{2}=\sum_{k=1}^{N}\left(\left[\begin{array}{c}
u_{k} \\
1
\end{array}\right]^{\prime} x-y_{k}\right)^{2}=\left\|\left[\begin{array}{cc}
u_{1} & 1 \\
\vdots & \vdots \\
u_{N} & 1
\end{array}\right] x-\left[\begin{array}{c}
y_{1} \\
\vdots \\
y_{N}
\end{array}\right]\right\|_{2}^{2}
$$

with respect to $x=\left[\begin{array}{l}a \\ b\end{array}\right]$

- The problem $\left[\begin{array}{l}a^{*} \\ b^{*}\end{array}\right]=\arg \min f\left(\left[\begin{array}{l}a \\ b\end{array}\right]\right)$ is a least-squares problem: $\hat{y}=a^{*} u+b^{*}$ In matlab:

```
x=[u ones(size(u))]\y
```


In Python:

import numpy as np
A=np.hstack((u,np.ones(u.shape))) $x=n p . l i n a l g . \operatorname{lstsq}(A, y, r c o n d=0)[0]$

LEAST SQUARES USING BASIS FUNCTIONS

- More generally: we can fit nonlinear functions $y=f(u)$ expressed as the sum of basis functions $y_{k} \approx \sum_{i=1}^{n} x_{i} \phi_{i}\left(u_{k}\right)$ using least squares
- Example: fit polynomial function $y=x_{1}+x_{2} u_{1}+x_{3} u_{1}^{2}+x_{4} u_{1}^{3}+x_{5} u_{1}^{4}$

$$
\min _{x} \sum_{k=1}^{N}(y_{k}-\underbrace{\left[\begin{array}{lllll}
1 & u_{k} & u_{k}^{2} & u_{k}^{3} & u_{k}^{4}
\end{array}\right]}_{\text {linear with respect to } x} x)^{2} \text { Least squares }
$$

$$
\phi(u)=\left[\begin{array}{c}
1 \\
u_{1} \\
u_{1}^{2} \\
u_{1}^{3} \\
u_{1}^{4}
\end{array}\right]
$$

LEAST SQUARES - FITTING A CIRCLE

- Example: fit a circle to a set of data ${ }^{2}$

$$
\min _{x_{0}, y_{0}, r} \sum_{k=1}^{N}\left(r^{2}-\left(x_{k}-x_{0}\right)^{2}-\left(y_{k}-y_{0}\right)^{2}\right)^{2}
$$

- Let $x=\left[\begin{array}{c}x_{0} \\ y_{0} \\ r^{2}-x_{0}^{2}-y_{0}^{2}\end{array}\right]$ be the optimization vector (note the change of variables!)
- The problem becomes the least squares problem

$$
\min _{x} \sum_{k=1}^{N}\left(\left[\begin{array}{lll}
2 x_{k} & 2 y_{k} & 1
\end{array}\right] x-\left(x_{k}^{2}+y_{k}^{2}\right)\right)^{2}
$$

${ }^{2}$ http://www.utc.fr/~mottelet/mt94/leastSquares.pdf

CONVEX SETS

DEFINITION

A set $S \subseteq \mathbb{R}^{n}$ is convex if for all $x_{1}, x_{2} \in S$

$$
\lambda x_{1}+(1-\lambda) x_{2} \in S, \forall \lambda \in[0,1]
$$

convex set
nonconvex set

CONVEX FUNCTIONS

- $f: S \rightarrow \mathbb{R}$ is a convex function if S is convex and

$$
\begin{array}{r}
f\left(\lambda x_{1}+(1-\lambda) x_{2}\right) \leq \\
\lambda f\left(x_{1}\right)+(1-\lambda) f\left(x_{2}\right) \\
\\
\forall x_{1}, x_{2} \in S, \lambda \in[0,1]
\end{array}
$$

Jensen's inequality (Jensen, 1906)

- If f is convex and differentiable at x_{2}, take the limit $\lambda \rightarrow 0$ and get ${ }^{3}$

$$
f\left(x_{1}\right) \geq f\left(x_{2}\right)+\nabla f\left(x_{2}\right)^{\prime}\left(x_{1}-x_{2}\right)
$$

- A function f is strictly convex if $f\left(\lambda x_{1}+(1-\lambda) x_{2}\right)<\lambda f\left(x_{1}\right)+(1-\lambda) f\left(x_{2}\right)$, $\forall x_{1} \neq x_{2} \in S, \forall \lambda \in(0,1)$

$$
\left.\left.\overline{{ }^{3} f\left(x_{1}\right)-f\left(x_{2}\right) \geq \lim _{\lambda \rightarrow 0}\left(f \left(x_{2}+\lambda\right.\right.}\left(x_{1}-x_{2}\right)\right)-f\left(x_{2}\right)\right) / \lambda=\nabla f^{\prime}\left(x_{2}\right)\left(x_{1}-x_{2}\right)
$$

CONVEX FUNCTIONS

- A function $f: S \rightarrow \mathbb{R}$ is strongly convex with parameter $m \geq 0$ if

$$
f\left(\lambda x_{1}+(1-\lambda) x_{2}\right) \leq \lambda f\left(x_{1}\right)+(1-\lambda) f\left(x_{2}\right)-\frac{m \lambda(1-\lambda)}{2}\left\|x_{1}-x_{2}\right\|_{2}^{2}
$$

- If f strongly convex with parameter $m \geq 0$ and differentiable then

$$
f(y) \geq f(x)+\nabla f(x)^{\prime}(y-x)+\frac{m}{2}\|y-x\|_{2}^{2}
$$

- Equivalently, f is strongly convex with parameter $m \geq 0$ if and only if $f(x)-\frac{m}{2} x^{\prime} x$ convex
- Moreover, if f is differentiable twice this is equivalent to $\nabla^{2} f(x) \succeq m I$ (i.e., matrix $\nabla^{2} f(x)-m I$ is positive semidefinite), $\forall x \in \mathbb{R}^{n}$
- A function f is (strictly/strongly) concave if $-f$ is (strictly/strongly) convex

CONVEX PROGRAMMING

The optimization problem

$$
\begin{array}{cl}
\min & f(x) \\
\text { s.t. } & x \in S
\end{array}
$$

is a convex optimization problem if S is a convex set and $f: S \rightarrow \mathbb{R}$ is a convex function

- Often S is defined by linear equality constraints $A x=b$ and convex inequality constraints $g(x) \leq 0, g: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ convex
- Every local solution is also a global one (we will see this later)
- Efficient solution algorithms exist (we will see many later)
- Often occurring in many problems in engineering, economics, and science Excellent textbook: "Convex Optimization" (Boyd, Vandenberghe, 2002)

POLYHEDRA

DEFINITION

Convex polyhedron = intersection of a finite set of half-spaces of \mathbb{R}^{n}
Convex polytope = bounded convex polyhedron

- Hyperplane (H-)representation:

$$
P=\left\{x \in \mathbb{R}^{n}: A x \leq b\right\}
$$

- Vertex (V-)representation:

$$
\begin{aligned}
& P=\left\{x \in \mathbb{R}^{n}: x=\sum_{i=1}^{q} \alpha_{i} v_{i}+\sum_{j=1}^{p} \beta_{j} r_{j}\right\} \\
& \alpha_{i}, \beta_{j} \geq 0, \sum_{i=1}^{q} \alpha_{i}=1, v_{i}, r_{j} \in \mathbb{R}^{n} \\
& \text { when } q=0 \text { the polyhedron is a cone }
\end{aligned}
$$

Convex hull = transformation from V - to H -representation

Vertex enumeration = transformation from H - to
V-representation
$v_{i}=$ vertex, $r_{j}=$ extreme ray

LINEAR PROGRAMMING

- Linear programming (LP) problem:

$$
\begin{array}{cl}
\min & c^{\prime} x \\
\mathrm{s.t.} & A x \leq b, x \in \mathbb{R}^{n} \\
& E x=f
\end{array}
$$

$$
\begin{array}{cl}
\min & c^{\prime} x \\
\text { s.t. } & A x=b \\
& x \geq 0, x \in \mathbb{R}^{n}
\end{array}
$$

George Dantzig (1914-2005)

- LP in standard form:
- Conversion to standard form:

1. introduce slack variables

$$
\sum_{j=1}^{n} a_{i j} x_{j} \leq b_{i} \Rightarrow \sum_{j=1}^{n} a_{i j} x_{j}+s_{i}=b_{i}, s_{i} \geq 0
$$

2. split positive and negative part of x

$$
\left\{\begin{array} { l }
{ \sum _ { j = 1 } ^ { n } a _ { i j } x _ { j } + s _ { i } = b _ { i } } \\
{ x _ { j } \text { free, } s _ { i } \geq 0 }
\end{array} \Rightarrow \left\{\begin{array}{l}
\sum_{j=1}^{n} a_{i j}\left(x_{j}^{+}-x_{j}^{-}\right)+s_{i}=b_{i} \\
x_{j}^{+}, x_{j}^{-}, s_{i} \geq 0
\end{array}\right.\right.
$$

QUADRATIC PROGRAMMING (QP]

- Quadratic programming (QP) problem:

$$
\begin{aligned}
\min & \frac{1}{2} x^{\prime} Q x+c^{\prime} x \\
\mathrm{s.t.} & A x \leq b, x \in \mathbb{R}^{n} \\
& E x=f
\end{aligned}
$$

- Convex optimization problem if $Q \succeq 0(Q=\text { positive semidefinite matrix })^{4}$
- Without loss of generality, we can assume $Q=Q^{\prime}$:

$$
\begin{aligned}
\frac{1}{2} x^{\prime} Q x & =\frac{1}{2} x^{\prime}\left(\frac{Q+Q^{\prime}}{2}+\frac{Q-Q^{\prime}}{2}\right) x=\frac{1}{2} x^{\prime}\left(\frac{Q+Q^{\prime}}{2}\right) x+\frac{1}{4} x^{\prime} Q x-\frac{1}{4}\left(x^{\prime} Q^{\prime} x\right)^{\prime} \\
& =\frac{1}{2} x^{\prime}\left(\frac{Q+Q^{\prime}}{2}\right) x
\end{aligned}
$$

- Hard problem if $Q \nsucceq 0$
${ }^{4}$ A matrix $P \in \mathbb{R}^{n \times n}$ is positive semidefinite $(P \succeq 0)$ if $x^{\prime} P x \geq 0$ for all x. It is positive definite ($P \succ 0$) if in addition $x^{\prime} P x>0$ for all $x \neq 0$. It is negative (semi)definite ($P \prec 0, P \preceq 0$) if $-P$ is positive (semi)definite. It is indefinite otherwise.

CONTINUOUS VS DISCRETE OPTIMIZATION

- In some problems the optimization variables can only take integer values.

We call $x \in \mathbb{Z}$ an integrality constraint

- A special case is $x \in\{0,1\}$ (binary constraint)
- When all variables are integer (or binary) the problem is an integer programming problem (a special case of discrete optimization)
- In a mixed integer programming (MIP) problem some of the variables are real $\left(x_{i} \in \mathbb{R}\right)$, some are discrete/binary $\left(x_{i} \in \mathbb{Z}\right.$ or $\left.x_{i} \in\{0,1\}\right)$

Optimization problems with integer variables are more difficult to solve

MIXED-NITEGER PROGBAMMING (MIP]

$$
\begin{array}{cl}
\min & c^{\prime} x \\
\text { s.t. } & A x \leq b, x=\left[\begin{array}{l}
x_{c} \\
x_{b}
\end{array}\right] \\
& x_{c} \in \mathbb{R}^{n_{c}}, x_{b} \in\{0,1\}^{n_{b}}
\end{array}
$$

mixed-integer linear program (MILP)

$$
\begin{array}{cl}
\min & \frac{1}{2} x^{\prime} Q x+c^{\prime} x \\
\text { s.t. } & A x \leq b, x=\left[\begin{array}{l}
x_{c} \\
x_{b}
\end{array}\right] \\
& x_{c} \in \mathbb{R}^{n_{c}}, x_{b} \in\{0,1\}^{n_{b}}
\end{array}
$$

- Some variables are real, some are binary (0/1)
- MILP and MIQP are $\mathcal{N} \mathcal{P}$-hard problems, in general
- Many good solvers are available (CPLEX, Gurobi, GLPK, SCIP, FICO Xpress, CBC, ...) For comparisons see http://plato.la.asu.edu/bench.html

STOCHASTIC AND ROBUST OPTIMIZATION

- Relations affected by random numbers lead to stochastic models

$$
\min _{x} E_{w}[f(x, w)]
$$

- The model is enriched by the information about the probability distribution of w
- Other stochastic measures can be minimized (Var, conditional value-at-risk, ...)
- The deterministic version $\min _{x} f\left(x, E_{w}[w]\right)$ of the problem only considers the expected value of w, not its entire distribution

If f is convex w.r.t. w then $f\left(x, E_{w}[w]\right) \leq E_{w}[f(x, w)]$

- chance constraints are constraints enforced only in probability:

$$
\operatorname{prob}(g(x, w) \leq 0) \geq 99 \%
$$

- robust constraints are constraints that must be always satisfied:

$$
g(x, w) \leq 0, \forall w
$$

DYNAMIC OPTIMIZATION

- Dynamic optimization involves decision variables that evolve over time

Example: For a given a value of x_{0} we want to optimize

$$
\begin{aligned}
\min _{x, u} & x_{N}^{2}+\sum_{t=0}^{N-1} x_{t}^{2}+u_{t}^{2} \\
\text { s.t. } & x_{t+1}=a x_{t}+b u_{t}, t=0, \ldots, N-1
\end{aligned}
$$

where u_{t} is the control value (to be decided) and x_{t} the state at time t.
The decision variables are

$$
u=\left[\begin{array}{c}
u_{0} \\
\vdots \\
u_{N-1}
\end{array}\right], x=\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{N}
\end{array}\right]
$$

- Used to solve optimal control problems, such as in model predictive control

OPTIMIZATION ALGORITHM

- An optimization algorithm is a procedure to find an optimizer x^{*} of a given optimization problem $\min _{x \in \mathcal{X}} f(x)$
- It is usually iterative: starting from an initial guess x^{0} of x it generates a sequence x^{k} of "iterates", with hopefully $x^{N} \approx x^{*}$ after N iterations
- Good optimization algorithms should possess the following properties:
- Efficiency = do not require excessive CPU time/flops and memory allocation
- Robustness = perform well on a wide variety of problems in their class, for all reasonable values of the initial guess x^{0}
- Accuracy = find a solution close to the optimal one, in spite of roundoff errors due to finite precision arithmetic (numerical robustness)
- The above are often conflicting properties

OPTIMIZATION TAXONOMY

https://neos-guide.org/content/optimization-taxonomy

OPTIMIZATION SOFTWARE

- Comparison on benchmark problems:

```
http://plato.la.asu.edu/bench.html
```

- Taxonomy of many solvers for different classes of optimization problems: http://www.neos-guide.org
- NEOS server for remotely solving optimization problems:
http://www.neos-server.org
- Good open-source optimization software:

http: / /www. coin-or.org/
- GitHub

OPTIMIZATION MODEL

- An optimization model is a mathematical model that captures the objective function to minimize and the constraints imposed on the optimization variables
- It is a quantitative model, the decision problem must be formulated as a set of mathematical relations involving the optimization variables

FORMULATING AN OPTIMIZATION MODEL

Steps required to formulate an optimization model that solves a given decision problem:

1. Talk to the domain expert to understand the problem we want to solve
2. Single out the optimization variables x_{i} (what are we able to decide?) and their domain (real, binary, integer)
3. Treat the remaining variables as parameters (=data that affect the problem but are not part of the decision process)
4. Translate the objective(s) into a cost function of x to minimize (or maximize)
5. Are there constraints on the decision variables? If yes, translate them into (in)equalities involving x
6. Make sure we have all the required data available

FORMULATING AN OPTIMIZATION MODEL

- It may take several iterations to formulate the optimization model properly, as:
- A solution does not exist (anything wrong in the constraints?)
- The solution does not make sense (is any constraint missing or wrong?)
- The optimal value does not make sense (is the cost function properly defined?)
- It takes too long to find the solution (can we simplify the model?)

EXAMPLE: CHESS SET PROBLEM

A small joinery makes two different sizes of boxwood chess sets. The small set requires 3 hours of machining on a lathe, and the large set requires 2 hours. There are four lathes with skilled operators who each work a 40 hour week, so we have 160 lathe-hours per week. The small chess set requires 1 kg of boxwood, and the large set requires 3 kg . Unfortunately, boxwood is scarce and only 200 kg per week can be obtained. When sold, each of the large chess sets yields a profit of $\$ 20$, and one of the small chess set has a profit of $\$ 5$.

The problem is to decide how many sets of each kind should be made each week so as to maximize profit.

EXAMPLE: OHESS SET PROBLEM

- A small joinery makes two different sizes of boxwood chess sets. The small set requires 3 hours of machining on a lathe, and the large set requires 2 hours.
- There are four lathes with skilled operators who each work a 40 hour week, so we have 160 lathe-hours per week.
- The small chess set requires $\mathbf{1 k g}$ of boxwood, and the large set requires $\mathbf{3} \mathbf{~ k g}$. Unfortunately, boxwood is scarce and only 200 kg per week can be obtained.
- When sold, each of the large chess sets yields a profit of $\$ 20$, and one of the small chess set has a profit of $\$ 5$.
- The problem is to decide how many sets of each kind should be made each week so as to maximize profit.

EXAMPLE: CHESS SET PROBLEM

- Optimization variables: $x_{s}, x_{\ell}=$ produced quantities of small/large chess sets
- Cost function: $f(x)=5 x_{s}+20 x_{\ell}$ (profit)
- Constraints:

$$
\begin{aligned}
& 3 x_{s}+2 x_{\ell} \leq 4 \cdot 40 \text { (maximum lathe-hours) } \\
& x_{s}+3 x_{\ell} \leq 200 \text { (available kg of boxwood) } \\
& x_{s}, x_{\ell} \geq 0 \text { (produced quantities cannot be negative) }
\end{aligned}
$$

$$
\begin{array}{cl}
\max & 5 x_{s}+20 x_{\ell} \\
\mathrm{s.t.} & {\left[\begin{array}{ll}
3 & 2 \\
1 & 3
\end{array}\right]\left[\begin{array}{l}
x_{s} \\
x_{\ell}
\end{array}\right] \leq\left[\begin{array}{l}
160 \\
200
\end{array}\right]} \\
& x_{s}, x_{\ell} \geq 0
\end{array}
$$

EXAMPLE: GHESS SET PROBLEM

- What is the best decision ? Let us make some guesses:

	xs	xl	Lathe-hours	Boxwood	OK?	Profit	Notes
A	0	0	0	0	Yes	0	Unprofitable!
B	10	10	50	40	Yes	250	We won't get rich doing this.
C	-10	10	-10	20	No	150	Planning to make a negative number of small sets.
D	53	0	159	53	Yes	265	Uses all the lathe-hours. There is spare boxwood.
E	50	20	190	110	No	650	Uses too many lathe-hours.
F	25	30	135	115	Yes	725	There are spare lathe-hours and spare boxwood.
G	12	62	160	198	Yes	1300	Uses all the resources

- What is the best solution? A numerical solver provides the following solution

$$
x_{s}^{*}=0, x_{\ell}^{*}=66.6666 \Rightarrow f\left(x^{*}\right)=1333.3 \$
$$

OPTIMIZATION MODELS

- Optimization models, as all mathematical models, are never an exact representation of reality but a good approximation of it
- We need to make working assumptions, for example:
- Lathe hours are never more than 160
- Available wood is exactly 200 kg
- Prices are constant
- We sell all chess sets
- There are usually many different models for the same real problem

Optimization modeling is an art

MODELING LANGUAGES FOR OPTIMIZATION PROBLEMS

- AMPL (A Modeling Language for Mathematical Programming) most used modeling language, supports several solvers
- GAMS (General Algebraic Modeling System) is one of the first modeling languages
- GNU MathProg a subset of AMPL associated with the free package GLPK (GNU Linear Programming Kit)
- YALMIP MATLAB-based modeling language
- CVX/CVXPY/Convex.jI Convex problem modeling in MATLAB/? python/juliå

MODELING LANGUAGES FOR OPTIMIZATION PROBLEMS

- CASADI + IPOPT Nonlinear modeling + automatic differentiation, nonlinear programming solver (MATLAB, ᄅ python, C++)
- JAX + JAXOPT ? python automatic differentiation + optimization
- Optimization Toolbox' modeling language (part of MATLAB since R2017b)
- PYOMO python-based modeling language
- GEKKO python-based mixed-integer nonlinear modeling language
- PYTHON-MIP ~ python-based modeling language for mixed-integer linear programming
- PuLP A linear programming modeler for python
- JuMP A modeling language for linear, quadratic, and nonlinear constrained optimization problems embedded in julià

EXAMPLE: CHESS SET PROBLEM

- Model and solve the problem using YALMIP (Löfberg, 2004)

```
xs = sdpvar(1,1);
xl = sdpvar(1,1);
Constraints = [ 3*xs+2*xl <= 4* 40, 1*xs+3*xl <= 200, ...
        xs >= 0, xl >= 0]
Profit = 5*xs+20*xl;
optimize(Constraints,-Profit)
value(xs),value(xl),value(Profit)
```


EXAMPLE: CHESS SET PROBLEM

- Model and solve the problem using CVX (Grant, Boyd, 2013)

```
cvx_clear
cvx_begin
variable xs(1)
variable xl(1)
Profit = 5*xs+20*xl;
maximize Profit
subject to
3*xs+2*xl <= 4*40; % maximum lathe-hours
1*xs+3*xl <= 200; % available kg of boxwood
xs>=0;
xl>=0;
cvx_end
xs,xl,Profit
```


EXAMPLE: CHESS SET PROBLEM

- Model and solve the problem using CASADI + IPOPT
(Andersson, Gillis, Horn, Rawlings, Diehl, 2018) (Wächter, Biegler, 2006)

```
import casadi.*
xs=SX.sym('xs');
xl=SX.sym('xl');
Profit = 5*xs+20*xl;
Constraints = [3*xs+2*xl-4*40; 1*xs+3*xl-200];
prob=struct('x',[xs;xl],'f',-Profit,'g',Constraints);
solver = nlpsol('solver','ipopt', prob);
res = solver('lbx',[0;0],'ubg',[0;0]);
Profit = -res.f;
xs = res.x(1);
xl = res.x(2);
```


EXAMPLE: CHESS SET PROBLEM

- Model and solve the problem using Optimization Toolbox (The Mathworks, Inc.)

```
xs=optimvar('xs','LowerBound',0);
xl=optimvar('xl','LowerBound',0);
Profit = 5*xs+20*xl;
C1 = 3*xs+2*xl-4*40<=0;
C2= 1*xs+3*xl-200<=0;
prob=optimproblem('Objective',Profit,'ObjectiveSense','max');
prob.Constraints.C1=C1;
prob.Constraints.C2=C2;
[sol,Profit] = solve(prob);
xs=sol.xs;
xl=sol.xl;
```


EXAMPLE: CHESS SET PROBLEM

- Model and solve the problem in Python using PYTHON-MIP5:

```
from mip import *
m = Model(sense=MAXIMIZE, solver_name=CBC)
xs = m.add_var(lb=0)
xl = m.add_var(lb=0)
m += 3*xs+2*xl <= 4*40
m += 1*xs+3*xl <= 200
m.objective = 5*xs+20*xl
m.optimize()
print(xs.x, xl.x)
```

5https://python-mip.readthedocs.io/

EXAMPLE: OHESS SET PROBLEM

- In this case the optimization model is very simple and we can directly code the LP problem in plain MATLAB or Python:

```
A=[\begin{array}{lll}{1}&{3;3}&{2}\end{array}];
b=[ 200;160];
c=[[5 20];
[xopt,fopt]=linprog(...
    -c,A,b,[ ],[],[0;0])
```

```
import scipy as sc
import numpy as np
A=np.array([[ 1, 3],[3,2]])
b=np.array([[200],[160]])
c=np.array([5,20])
sol=sc.optimize.linprog(
    -c,A,b,bounds=[0,None ])
```

- The Hybrid Toolbox for MATLAB contains interfaces to various solvers for LP, QP, MILP, MIQP (http://cse.1ab. imtlucca.it/-bemporad/hybrid/toolbox) (Bemporad, 2003-today)
- However, when there are many variables and constraints forming the problem matrices manually can be very time-consuming and error-prone

EXAMPLE: OHESS SET PROBLEM

- We can even model and solve the optimization problem in Excel:

LINEAR OPTIMZATION MODELS

Reference:

C. Guéret, C. Prins, M. Sevaux, "Applications of optimization with Xpress-MP," Translated and revised by S.Heipcke, 1999

OPTIMIZATION MODELING: LINEAR CONSTRAINTS

- Constraints define the set where to look for an optimal solution
- They define relations between decision variables
- When formulating an optimization model we must disaggregate the restrictions appearing in the decision problem into subsets of constraints that we know how to model
- There are many types of constraints we know how to model ...

1. UPPER AND LOWER BOUNDS CBOX CONSTRAINTS)

- Box constraints are the simplest constraints: they define upper and lower bounds on the decision variables

$$
\ell_{i} \leq x_{i} \leq u_{i}
$$

$\ell_{i} \in \mathbb{R} \cup\{-\infty\}, u_{i} \in \mathbb{R} \cup\{+\infty\}$

- Example: "We cannot sell more than 100 units of Product A"
- Pay attention: some solvers assume nonnegative variables by default!
- When $\ell_{i}=u_{i}$ the constraint becomes $x_{i}=\ell_{i}$ and variable x_{i} becomes redundant. Still it may be worthwhile keeping in the model

2. FLOW CONSTRAINTS

- Flow constraints arise when an item can be divided in different streams, or vice versa many streams come together

$$
F_{\min } \leq \sum_{i=1}^{n} x_{i} \leq F_{\max }
$$

- Example: "I can get water from 3 suppliers, S1, S2 and S3. I want to have at least 1000 liters available." $x_{1}+x_{2}+x_{3} \geq 1000$
- Example: "I have so trucks available to rent to 3 customers C1, C 2 and $\mathrm{C} \mathrm{B}^{\prime \prime} x_{1}+x_{2}+x_{3} \leq 50$
- Losses can be included as well: " 2% water I get from suppliers gets Lost." $0.98 x_{1}+0.98 x_{2}+0.98 x_{3} \geq 1000$

3. RESOURCE CONSTRAINTS

- Resource constraints take into account that a given resource is limited

$$
\sum_{i=1}^{n} R_{j i} x_{i} \leq R_{\max , j}
$$

- The technological coefficients $R_{j i}$ denote the amount of resource j used per unit of activity i
- Example:
"Small chess sets require 1 kg boxwood, the large ones 3 kg , total available is $200 \mathrm{~kg} . "$
$x_{1}+3 x_{2} \leq 200$
"Small chess sets require 3
Lathe hours, the large ones 2 h , total time is $4 \times 40 \mathrm{~h}$."
$3 x_{1}+2 x_{2} \leq 160$

$$
R=\left[\begin{array}{ll}
2 & 3 \\
3 & 2
\end{array}\right], R_{\max }=\left[\begin{array}{c}
200 \\
160
\end{array}\right]
$$

4. BALANCE CONSTRANTS

- Balance constraints model the fact that "what goes out must in total equal what comes in"

$$
\sum_{i=1}^{N} x_{i}^{\text {out }}=\sum_{i=1}^{M} x_{i}^{\text {in }}+L
$$

- Example: "I have 100 tons steel and can buy more from suppliers $1,2,3$ to serve customers A,B." $x_{A}+x_{B}=100+x_{1}+x_{2}+x_{3}$
- Balance can occur between time periods in a multi-time period model
- Example: "The cash I'll have komorrow is what I have now plus what I receive minus what I spend today." $x_{t+1}=x_{t}+u_{t}-y_{t}$

5. QUALITY CONSTRAINTS

- Quality constraints are requirements on the average percentage of a certain quality when blending several components

$$
\left.\frac{\sum_{i=1}^{N} \alpha_{i} x_{i}}{\sum_{i=1}^{N} x_{i}} \gtreqless p_{\min } \right\rvert\, \quad \sum_{i=1}^{N} \alpha_{i} x_{i} \gtreqless p_{\min } \sum_{i=1}^{N} x_{i}
$$

- Example: "The average risk of an investment in assels A, B, C, which have risks $25 \%, 5 \%$, and 12% respectively, must be smaller than $10 \% \%^{\prime \prime} \frac{0.25 x_{A}+0.05 x_{B}+0.12 x_{C}}{x_{A}+x_{B}+x_{C}} \leq 0.1$
- The nonlinear quality constraint is converted to a linear one under the assumption that $x_{i} \geq 0$ (if $x_{i}=0 \forall i$ the constraint becomes redundant)

Objectives and constraints can be often simplified by mathematical transformations and/or adding extra variables

6. ACCOUNTING VARIABLES AND CONSTRAINTS

- It is often useful to add extra accounting variables

$$
y=\sum_{i=1}^{N} x_{i}
$$

accounting constraint

- Of course we can replace y with $\sum_{i=1}^{N} x_{i}$ everywhere in the model (condensed form), but this would make it less readable
- Moreover, keeping y in the model (non-condensed form) may preserve some structural properties that the solver could exploit
- Example: "The profit at any given year is the difference between revenues and expenditures" $p_{t}=r_{t}-e_{t}$

7. BLENDING CONSTRAINTS

- Blending constraints occur when we want to blend a set of ingredients x_{i} in given percentages α_{i} in the final product

$$
\frac{x_{i}}{\sum_{j=1}^{N} x_{j}}=\alpha_{i}
$$

- Similar to quality constraints, blending constraints can be converted to linear equality constraints

$$
x_{i}=\sum_{j=1}^{N} \alpha_{i} x_{j}
$$

8. SOFT CONSTRAINTS

- So far we have seen are hard constraints, i.e., that cannot be violated.
- Soft constraints are a relaxation, in which the constraint can be violated, usually paying a penalty

$$
\sum_{i=1}^{N} a_{i j} x_{i} \leq b_{j}
$$

$$
\sum_{i=1}^{N} a_{i j} x_{i} \leq b_{j}+\epsilon_{j}
$$

- We call the new variable ϵ_{j} panic variable: it should be normally zero but can assume a positive value in case there is no way to fulfill the constraint set
- Example: "Only 200 kg boxwood are available bo make chess sets, but we can buy extra for $6 \$ / \mathrm{kg}$ "

$$
\begin{array}{rl}
\max _{x_{s}, x_{\ell}, \epsilon \geq 0} & 5 x_{s}+20 x_{\ell}-6 \epsilon \\
\text { s.t. } & x_{s}+3 x_{\ell} \leq 200+\epsilon \\
& 3 x_{s}+2 x_{\ell} \leq 160
\end{array}
$$

LINEAR OBJECTIVE FUNCTIONS

- Linear programs only allow minimizing a linear combination of the optimization variables
- However, by introducing new variables, we can minimize any convex piecewise affine (PWA) function

RESULT

Every convex piecewise affine function $\ell: \mathbb{R}^{n} \rightarrow \mathbb{R}$ can be represented as the max of affine functions, and vice versa
(Schechter, 1987)
Example:
$\ell(x)=\max \left\{a_{1}^{\prime} x+b_{1}, \ldots, a_{4}^{\prime} x+b_{4}\right\}$

CONVEX PWA OPTIMIZATION PROBLEMS AND LP

- Minimization of a convex PWA function $\ell(x)$:

$$
\begin{aligned}
\min _{\epsilon, x} & \epsilon \\
\text { s.t. } & \left\{\begin{array}{l}
\epsilon \geq a_{1}^{\prime} x+b_{1} \\
\epsilon \geq a_{2}^{\prime} x+b_{2} \\
\epsilon \geq a_{3}^{\prime} x+b_{3} \\
\epsilon \geq a_{4}^{\prime} x+b_{4}
\end{array}\right.
\end{aligned}
$$

- By construction $\epsilon \geq \max \left\{a_{1}^{\prime} x+b_{1}, a_{2}^{\prime} x+b_{2}, a_{3}^{\prime} x+b_{3}, a_{4}^{\prime} x+b_{4}\right\}$
- By contradiction it is easy to show that at the optimum we have that

$$
\epsilon=\max \left\{a_{1}^{\prime} x+b_{1}, a_{2}^{\prime} x+b_{2}, a_{3}^{\prime} x+b_{3}, a_{4}^{\prime} x+b_{4}\right\}
$$

- Convex PWA constraints $\ell(x) \leq 0$ can be handled similarly by imposing $a_{i}^{\prime} x+b_{i} \leq 0, \forall i=1,2,3,4$

1. MINMAX OBJECTIVE

- minmax objective: we want to minimize the maximum among M given linear objectives $f_{i}(x)=a_{i}^{\prime} x+b_{i}$

$$
\min _{x} \max _{i=1, \ldots, M}\left\{f_{i}(x)\right\} \text { s.t. linear constraints }
$$

- Example: asymmetric cost $\min _{x} \max \left\{a^{\prime} x+b, 0\right\}$
- Example: minimize the ∞-norm

$$
\min _{x}\|A x-b\|_{\infty}
$$

where $\|v\|_{\infty} \triangleq \max _{i=1, \ldots, n}\left|v_{i}\right|$ and $A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^{m}$.
This corresponds to

$$
\min _{x} \max \left\{A_{1} x-b_{1},-A_{1} x+b_{1}, \ldots, A_{m} x-b_{m},-A_{m} x+b_{m}\right\}
$$

2. MINIMIZE THE SUM OF MAX OBJECTIVES

- We want to minimize the sum of maxima among given linear objectives
$f_{i j}(x)=a_{i j}^{\prime} x+b_{i j}$

$$
\min _{x} \sum_{j=1}^{N} \max _{i=1, \ldots, M_{j}}\left\{f_{i j}(x)\right\} \text { s.t. linear constraints }
$$

- The equivalent reformulation is

$$
\begin{aligned}
\min _{\epsilon, x} & \sum_{j=1}^{N} \epsilon_{j} \\
\text { s.t. } & \epsilon_{j} \geq a_{i j}^{\prime} x+b_{i j}, i=1, \ldots, M_{j}, j=1, \ldots, N \\
& \text { (other linear constraints) }
\end{aligned}
$$

- Example: minimize the 1-norm

$$
\min _{x}\|A x-b\|_{1}
$$

where $\|v\|_{1} \triangleq \sum_{i=1, \ldots, n}\left|v_{i}\right|$ and $A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^{m}$, that corresponds to

$$
\min _{x} \sum_{i=1}^{m} \max \left\{A_{i} x-b_{i},-A_{i} x+b_{i}\right\}
$$

3. LINEAR-FRACTIONAL PROGRAM

- We want to minimize the ratio of linear objectives $\min _{x} \frac{c^{\prime} x+d}{e^{\prime} x+f}$

$$
\text { s.t. } \quad A x \leq b
$$

$$
G x=h
$$

over the domain $e^{\prime} x+f>0$

- We introduce the new variable $z=\frac{1}{e^{\prime} x+f}$ and replace x_{i} with the new variables $y_{i}=z x_{i}, i=1, \ldots, n$, where

$$
1=z\left(e^{\prime} x+f\right)=e^{\prime} y+f z, z \geq 0
$$

- Since $z \geq 0$ then $z A x \leq z b$, and the original problem is translated into the LP

$$
\begin{aligned}
\min _{z, y} & c^{\prime} y+d z \\
\text { s.t. } & A y-b z \leq 0 \\
& G y=h z \\
& e^{\prime} y+f z=1 \\
& z \geq 0
\end{aligned}
$$

from which we recover $x^{*}=\frac{1}{z^{*}} y^{*}$ in case $z^{*}>0$.

CHEBYCHEV GENTER OF A POLYHEDRON

- The Chebychev center of a polyhedron $P=\{x: A x \leq b\}$ is the center x^{*} of the largest ball $B\left(x^{*}, r^{*}\right)=\left\{x: x=x^{*}+u\right.$, $\left.\|u\|_{2} \leq r^{*}\right\}$ contained in P

- The radius r^{*} is called the Chebychev radius of P
- A ball $B(x, r)$ is included in P if and only if

$$
\sup _{\|u\|_{2} \leq r} A_{i}(x+u)=A_{i} x+r\left\|A_{i}\right\|_{2} \leq b_{i}, \forall i=1, \ldots, m,
$$

where $A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^{m}$, and A_{i} is the i th row of A.

- Therefore, we can compute the Chebychev center/radius by solving the LP

$$
\begin{array}{rl}
\max _{x, r} & r \\
\text { s.t. } & A_{i} x+r\left\|A_{i}\right\|_{2} \leq b_{i}, i=1, \ldots, m
\end{array}
$$

CONVEX OPIIIIIZATION MODELS

References:

S. Boyd, L. Vandenberghe, "Convex Optimization," 2004
S. Boyd, "Convex Optimization," lecture notes, http://ee364a.stanford.edu, http://ee364b.stanford.edu

CONVEX SETS

- Convex set: A set $S \subseteq \mathbb{R}^{n}$ is convex if for all $x_{1}, x_{2} \in S$

$$
\lambda x_{1}+(1-\lambda) x_{2} \in S, \forall \lambda \in[0,1]
$$

- The convex hull of N points $\bar{x}_{1}, \ldots, \bar{x}_{N}$ is the set of all their convex combinations

$$
\begin{array}{ll}
S=\left\{x \in \mathbb{R}^{n}: \exists \lambda \in \mathbb{R}^{N}:\right. & x=\sum \lambda_{i} \bar{x}_{i}, \\
& \left.\lambda_{i} \geq 0, \sum_{i=1}^{N} \lambda_{i}=1\right\}
\end{array}
$$

- A convex cone of N points $\bar{x}_{1}, \ldots, \bar{x}_{N}$ is the set

$$
S=\left\{x \in \mathbb{R}^{n}: \exists \lambda \in \mathbb{R}^{N}: x=\sum \lambda_{i} \bar{x}_{i}, \lambda_{i} \geq 0\right\}
$$

CONVEX SETS

- hyperplane $\left\{x: a^{\prime} x=b\right\}, a \neq 0$
- halfspace $\left\{x: a^{\prime} x \leq b\right\}, a \neq 0$

- polyhedron $\mathcal{P}=\{x: A x \leq b, E x=f\}$
- (Euclidean) ball $B\left(x_{0}, r\right)=\left\{x:\left\|x-x_{0}\right\|_{2} \leq r\right\}$ $=\left\{x_{0}+r y:\|y\|_{2} \leq 1\right\}$
- ellipsoid $\mathcal{E}=\left\{x:\left(x-x_{0}\right)^{\prime} P\left(x-x_{0}\right) \leq 1\right\}$ with $P=P^{\prime} \succ 0$, or equivalently $\mathcal{E}=\left\{x_{0}+A y:\|y\|_{2} \leq 1\right\}$, A square and $\operatorname{det} A \neq 0$

PROPERTIES OF CONVEX SETS

- The intersection of (any number of) convex sets is convex

- Any set $S=\left\{x \in \mathbb{R}^{n}: g(x) \leq 0\right\}$ with $g: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is convex
- The image of a convex set under an affine function $f(x)=A x+b$ $\left(A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^{m}\right.$) is convex

$$
S \subseteq \mathbb{R}^{n} \text { convex } \Rightarrow f(S)=\{y: y=f(x), x \in S\} \text { convex }
$$

for example: scaling (A diagonal, $b=0$), translation ($A=0, b \neq 0$), projection $\left(A=[I 0], b=0\right.$, i.e., $\left.f(S)=\left\{y=\left[x_{1} \ldots x_{i}\right]^{\prime}: x \in S\right\}\right)$

CONVEX FUNCTIONS

- Recall: $f: S \rightarrow \mathbb{R}$ is a convex function if S is convex and

$$
\begin{aligned}
f\left(\lambda x_{1}+(1-\lambda) x_{2}\right) \leq & \lambda f\left(x_{1}\right)+(1-\lambda) f\left(x_{2}\right) \\
& \forall x_{1}, x_{2} \in S, \lambda \in[0,1]
\end{aligned}
$$

Jensen's inequality

- Sublevel sets C_{α} of convex functions are convex sets (but not vice versa)

$$
C_{\alpha}=\{x \in S: f(x) \leq \alpha\}
$$

- Therefore linear equality constraints $A x=b$ and inequality constraints $g(x) \leq 0$, with g a convex (vector) function, define a convex set

CONVEX FUNCTIONS

- Examples of convex functions
- affine $f(x)=a^{\prime} x+b$, for any $a \in \mathbb{R}^{n}, b \in \mathbb{R}$
- exponential $f(x)=e^{a x}, x \in \mathbb{R}$, for any $a \in \mathbb{R}$
- power $f(x)=x^{\alpha}, x \in \mathbb{R}$, for any $\alpha>1$ or $\alpha \leq 0$. Example: $x^{2}, 1 / x$ for $x>0$
- powers of absolute value $f(x)=|x|^{p}, x \in \mathbb{R}$, for $p \geq 1$
- negative entropy $f(x)=x \log x, x \in \mathbb{R}$
- any norm $f(x)=\|x\|$
- maximum $f(x)=\max \left(x_{1}, \ldots, x_{n}\right)$
- Examples of concave functions
- affine $f(x)=a^{\prime} x+b$, for any $a \in \mathbb{R}^{n}, b \in \mathbb{R}$
- logarithm $f(x)=\log x, x \in \mathbb{R}$
- power $f(x)=x^{\alpha}, x \in \mathbb{R}$, for any $0 \leq \alpha \leq 1$. Example: $\sqrt{x}, x \geq 0$
- minimum $f(x)=\min \left(x_{1}, \ldots, x_{n}\right)$

CONVEX FUNCTIONS

- Recall the first-order condition of convexity: $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ with convex domain dom f and differentiable is convex if and only if

$$
f(y) \geq f(x)+\nabla f(x)^{\prime}(y-x), \forall x, y \in \operatorname{dom} f
$$

- Second-order condition: Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ with convex domain $\operatorname{dom} f$ be twice differentiable and $\nabla^{2} f(x)$ its Hessian matrix, $\left[\nabla^{2} f(x)\right]_{i j}=\frac{\partial^{2} f(x)}{\partial x_{i} \partial x_{j}}$. Then f is convex if and only if

$$
\nabla^{2} f(x) \succeq 0, \forall x \in \operatorname{dom} f
$$

If $\nabla^{2} f(x) \succ 0$ for all $x \in \operatorname{dom} f$ then f is strictly convex.

CHECKING CONVEXITY

1. Check directly whether the definition is satisfied (Jensen's inequality)
2. Check if the Hessian matrix is positive semidefinite (only for twice differentiable functions)
3. Show that f is obtained by combining known convex functions via operations that preserve convexity

CALCULUS RULES FOR CONVEX FUNCTIONS

- nonnegative scaling: f convex, $\alpha \geq 0 \Rightarrow \alpha f$ convex
- sum: f, g convex $\Rightarrow f+g$ convex
- affine composition: f convex $\Rightarrow f(A x+b)$ convex
- pointwise maximum: f_{1}, \ldots, f_{m} convex $\Rightarrow \max _{i} f_{i}(x)$ convex
- composition: h convex increasing, f convex $\Rightarrow h(f(x))$ convex

General composition rule: $h\left(f_{1}(x), \ldots, f_{k}(x)\right)$ is convex when h is convex and h is increasing w.r.t. its i th argument, and f_{i} convex, or h is decreasing w.r.t. its i th argument, and f_{i} concave, or f_{i} is affine
for each $i=1, \ldots, k$

See also dcp.stanford.edu (Diamond 2014)

CONVEX PROGRAMMING

- The optimization problem

\min	$f(x)$	or, more	min	$f(x)$
s.t.	$g(x) \leq 0$			
	$A x=b$	generally,	s.t. $x \in S$	
		S convex set		

$$
g: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}, g_{i} \text { convex }
$$

with $f: \mathcal{X} \rightarrow \mathbb{R}$ convex is a convex optimization problem, where $\mathcal{X}=\left\{x \in \mathbb{R}^{n}: g(x) \leq 0, A x=b\right\}$ or, more generally, $\mathcal{X}=S$.

- Convex programs can be solved to global optimality and many efficient algorithms exist for this (we will see many later)
- Although convexity may sound like a restriction, it occurs very frequently in practice (sometimes after some transformations or approximations)

DISCIPLINED CONVEX PROGRAMMING

- The objective function has the form
- minimize a scalar convex expression, or
- maximize a scalar concave expression
- Each of the constraints (if any) has the form
- convex expression \leq concave expression, or
- concave expression \geq convex expression, or
- affine expression = affine expression

This framework is used in the CVX, CVXPY, and Convex.jl packages.

LEAST SQUARES

- least squares (LS) problem

$$
\min \|A x-b\|_{2}^{2} \Longrightarrow x^{*}=\underbrace{\left(A^{\prime} A\right)^{-1} A^{\prime}}_{\text {pseudoinverse of } A} b
$$

- nonnegative least squares (NNLS) (Lawson, Hanson, 1974)

$$
\begin{aligned}
\text { min } & \|A x-b\|_{2}^{2} \\
\text { s.t. } & x \geq 0
\end{aligned}
$$

- bounded-variable least squares (BVLS) (Stark,Parker, 1995)

$$
\begin{aligned}
\min & \|A x-b\|_{2}^{2} \\
\mathrm{s.t.} & \ell \leq x \leq u
\end{aligned}
$$

J. Carl Friedrich Gauss (1777-1855)

- constrained least squares

$$
\begin{aligned}
\min & \|A x-b\|_{2}^{2} \\
\text { s.t. } & A x \leq b, E x=f
\end{aligned}
$$

QUADBATIC PROGRAMMING

- The least squares cost is a special case of quadratic cost

$$
\frac{1}{2}\|A x-b\|_{2}^{2}=\frac{1}{2} x^{\prime} A^{\prime} A x-b^{\prime} A x+b^{\prime} b
$$

- A generalization of constrained least squares is quadratic programming (QP)

$$
\begin{array}{cll}
\min & \frac{1}{2} x^{\prime} Q x+c^{\prime} x & \\
\text { s.t. } & A x \leq b & Q=Q^{\prime} \succeq 0 \\
& E x=f &
\end{array}
$$

- If $Q=L^{\prime} L \succ 0$ we can complete the squares by setting $y=L x+\left(L^{-1}\right)^{\prime} c$ and convert the QP into a LS problem:

$$
\frac{1}{2} x^{\prime} Q x+c^{\prime} x=\frac{1}{2}\left\|L x-\left(-L^{-1}\right)^{\prime} c\right\|_{2}^{2}-\frac{1}{2} c^{\prime} Q^{-1} c
$$

LINEAR PROGRAM WITH RANDOM COST = QP

- We want to solve the LP with random cost c

$$
\begin{aligned}
\min _{x} & c^{\prime} x \\
\text { s.t. } & A x \leq b, E x=f \quad E[c]=\bar{c}, \operatorname{Var}[c]=E\left[(c-\bar{c})(c-\bar{c})^{\prime}\right]=\Sigma
\end{aligned}
$$

- $c^{\prime} x$ is a random variable with expectation $E\left[c^{\prime} x\right]=\bar{c}^{\prime} x$ and variance $\operatorname{Var}\left[c^{\prime} x\right]=x^{\prime} \Sigma x$
- We want to trade off the expectation of $c^{\prime} x$ with its variance (=risk) with a risk aversion coefficient $\gamma \geq 0$
- This is equivalent to a QP:

$$
\begin{array}{rll}
\min _{x} & E\left[c^{\prime} x\right]+\gamma \operatorname{Var}\left[c^{\prime} x\right] \\
\text { s.t. } & A x \leq b, E x=f
\end{array} \quad \square \begin{aligned}
\min _{x} & \bar{c}^{\prime} x+\gamma x^{\prime} \Sigma x \\
\text { s.t. } & A x \leq b, E x=f
\end{aligned}
$$

LASSO OPTIMIZATION = QP

- The following ℓ_{1}-penalized linear regression problem is called LASSO (least absolute shrinkage and selection operator):

$$
\min _{x} \frac{1}{2}\|A x-b\|_{2}^{2}+\lambda\|x\|_{1} \quad A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^{m}
$$

- The tuning parameter $\lambda \geq 0$ determines the tradeoff between fitting $A x \approx b$ (λ small) and making x sparse (λ large)
- By splitting x in the difference of its positive and negative parts, $x=y-z$, $y, z \geq 0$ we get the positive semidefinite QP with $2 n$ variables

$$
\min _{y, z \geq 0} \frac{1}{2}\|A(y-z)-b\|_{2}^{2}+\lambda 1^{\prime}(y+z)
$$

where $1^{\prime}=\left[\begin{array}{lll}1 & \ldots\end{array}\right]$. At optimality at least one of y_{i}^{*}, z_{i}^{*} will be zero

- A small Tikhonov regularization $\sigma\left(\|y\|_{2}^{2}+\|z\|_{2}^{2}\right)$ makes the QP strictly convex

LASSO - EXAMPLE

- Solve LASSO problem

$$
\begin{aligned}
& \min _{x} \frac{1}{2}\|A x-b\|_{2}^{2}+\lambda\|x\|_{1} \\
& A \in \mathbb{R}^{3000 \times 1000}, b \in \mathbb{R}^{3000}
\end{aligned}
$$

- $A, B=$ random matrices
- A sparse with 3000 nonzero entries
- Problem solved by QP for different λ 's
- CPU time ranges from 8.5 ms to 1.17 s using osQP (http: / /osqp. org)
(Stellato, Banjac, Goulart, Bemporad, Boyd, 2020)

QUADBATICALLY CONSTRAINED QUADRATIC PROGRAM CQCQP]

- If we add quadratic constraints in a QP we get the quadratically constrained quadratic program (QCQP)

$$
\begin{array}{cl}
\min & \frac{1}{2} x^{\prime} Q x+c^{\prime} x \\
\text { s.t. } & \frac{1}{2} x^{\prime} P_{i} x+d_{i}^{\prime} x+h_{i} \leq 0, i=1, \ldots, m \\
& A x=b
\end{array}
$$

- QCQP is a convex problem if $Q, P_{i} \succeq 0, i=1, \ldots, m$
- If $P_{1}, \ldots, P_{m} \succ 0$, the feasible region \mathcal{X} of the QCQP is the intersection of m ellipsoids and p hyperplanes $\left(b \in \mathbb{R}^{p}\right)$
- Polyhedral constraints (halfspaces) are a special case when $P_{i}=0$

SECOND-ORDER CONE PROGRAMMING

- A generalization of LP, QP, and QCQP is second-order cone programming (SOCP)

$$
\begin{aligned}
\min & c^{\prime} x \\
\text { s.t. } & \left\|F_{i} x+g_{i}\right\|_{2} \leq d_{i}^{\prime} x+h_{i}, i=1, \ldots, m \\
& A x=b
\end{aligned}
$$

with $F_{i} \in \mathbb{R}^{n_{1} \times n}, A \in \mathbb{R}^{p \times n}$

- If $F_{i}=0$ the SOC constraint becomes a linear inequality constraint
- If $d_{i}=0\left(h_{i} \geq 0\right)$ the SOC constraint becomes a quadratic constraint
- The quadratic constraint $x^{\prime} F^{\prime} F x+d^{\prime} x+h \leq 0$ is equivalent to the SOC constraint

$$
\left\|\left[\begin{array}{c}
\frac{1}{2}\left(1+d^{\prime} x+h\right) \\
F x
\end{array}\right]\right\|_{2} \leq \frac{1}{2}\left(1-d^{\prime} x-h\right)
$$

EXAMPLE: ROBUST LINEAR PROGRAMMING

- We want to solve the LP with uncertain constraint coefficients a_{i}

$$
\begin{array}{cl}
\min & c^{\prime} x \\
\text { s.t. } & a_{i}^{\prime} x \leq b_{i}, i=1, \ldots, m
\end{array}
$$

- Assume a_{i} can be anything in the ellipsoid $\mathcal{E}_{i}=\left\{\bar{a}_{i}+P_{i} y,\|y\|_{2} \leq 1\right\}$, $P_{i} \in \mathbb{R}^{n \times n}$, where $\bar{a}_{i} \in \mathbb{R}^{n}$ is the center of \mathcal{E}_{i}

$$
\begin{array}{cl}
\min & c^{\prime} x \\
\mathrm{s.t.} & a_{i}^{\prime} x \leq b_{i}, \forall a_{i} \in \mathcal{E}_{i}, i=1, \ldots, m
\end{array}
$$

- The constraint is equivalent to $\sup _{a_{i} \in \mathcal{E}_{i}}\left\{a_{i}^{\prime} x\right\} \leq b_{i}$, where

$$
\sup _{a_{i} \in \mathcal{E}_{i}}\left\{a_{i}^{\prime} x\right\}=\sup _{\|y\|_{2} \leq 1}\left\{\left(\bar{a}_{i}+P_{i} y\right)^{\prime} x\right\}=\bar{a}_{i}^{\prime} x+\left\|P_{i}^{\prime} x\right\|_{2}
$$

- The original robust LP is therefore equivalent to the SOCP

$$
\begin{aligned}
\min & c^{\prime} x \\
\text { s.t. } & \bar{a}_{i}^{\prime} x+\left\|P_{i}^{\prime} x\right\|_{2} \leq b_{i}, i=1, \ldots, m
\end{aligned}
$$

EXAMPLE: LP WITH RANDOM CONSTRAINTS

- Assume a_{i} Gaussian, $a_{i} \sim \mathcal{N}\left(\bar{a}_{i}, \Sigma_{i}\right), \Sigma_{i}=L_{i}^{\prime} L_{i} \quad\left(L_{i}=\Sigma^{\frac{1}{2}}\right.$ if Σ is diagonal)
- For given $\eta_{i} \in\left[\frac{1}{2}, 1\right]$ we want to solve the LP with chance constraints

$$
\begin{array}{cl}
\min & c^{\prime} x \\
\text { s.t. } & \operatorname{prob}\left(a_{i}^{\prime} x \leq b_{i}\right) \geq \eta_{i}, i=1, \ldots, m
\end{array}
$$

- Let $\alpha=a_{i}^{\prime} x-b_{i}, \bar{\alpha}=\bar{a}_{i}^{\prime} x-b_{i}, \bar{\sigma}^{2}=x^{\prime} \Sigma_{i} x$. The cumulative distribution function (CDF) of $\alpha \sim \mathcal{N}(\bar{\alpha}, \bar{\sigma})$ is $F(\alpha)=\Phi\left(\frac{\alpha-\bar{\alpha}}{\bar{\sigma}}\right), \Phi(\beta)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\beta} e^{-t^{2} / 2} d t$

$$
\operatorname{prob}\left(a_{i}^{\prime} x-b_{i} \leq 0\right)=F(0)=\Phi\left(\frac{-\bar{\alpha}}{\bar{\sigma}}\right)=\Phi\left(\frac{b_{i}-\bar{a}_{i}^{\prime} x}{\left\|L_{i} x\right\|_{2}}\right) \geq \eta_{i}
$$

- The original LP with random constraints is equivalent to the SOCP

$$
\begin{aligned}
\min & c^{\prime} x \\
\text { s.t. } & \bar{a}_{i}^{\prime} x+\Phi^{-1}\left(\eta_{i}\right)\left\|L_{i} x\right\|_{2} \leq b_{i}, i=1, \ldots, m
\end{aligned}
$$

where the inverse CDF $\Phi^{-1}\left(\eta_{i}\right) \geq 0$ since $\eta_{i} \geq \frac{1}{2}$

(Boyd, Vandenberghe, 2004)

SEMIDEFINITE PROGRAM [SDP]

- A semidefinite program (SDP) is an optimization problem in which we have constraints on positive semidefiniteness of matrices

$$
\begin{aligned}
\min _{x} & c^{\prime} x \\
\text { s.t. } & x_{1} F_{1}+x_{2} F_{2}+\ldots+x_{n} F_{n}+G \preceq 0 \\
& A x=b
\end{aligned}
$$

where $F_{1}, F_{2}, \ldots, F_{n}, G$ are (wlog) symmetric $m \times m$ matrices

- The constraint is called linear matrix inequality $(\mathrm{LMI})^{6}$
- Multiple LMIs can be combined in a single LMI using block-diagonal matrices

$$
\begin{aligned}
& x_{1} F_{1}^{1}+\ldots+x_{n} F_{n}^{1}+G^{1} \preceq 0 \\
& x_{1} F_{1}^{2}+\ldots+x_{n} F_{n}^{2}+G^{2} \preceq 0
\end{aligned} \quad \longrightarrow\left[\begin{array}{cc}
F_{1}^{1} & 0 \\
0 & F_{1}^{2}
\end{array}\right] x_{1}+\ldots\left[\begin{array}{cc}
F_{n}^{1} & 0 \\
0 & F_{n}^{2}
\end{array}\right] x_{n}+\left[\begin{array}{cc}
G^{1} & 0 \\
0 & G^{2}
\end{array}\right] \preceq 0
$$

Many interesting problems can be formulated (or approximated) as SDPs

[^1]
SEMIDEFINITE PROGRAM [SDP]

SDP generalizes LP, QP, QCQP, SOCP:

- an LP can be recast as an SDP

- an SOCP can be recast as an SDP

$$
\begin{array}{clll}
\min & c^{\prime} x & \min & c^{\prime} x \\
\text { s.t. } & \left\|F_{i} x+g_{i}\right\|_{2} \leq d_{i}^{\prime} x+h_{i} \\
& i=1, \ldots, m & \text { s.t. } & {\left[\begin{array}{ll}
\left(d_{i}^{\prime} x+h_{i}\right) I & F_{i} x+g_{i} \\
\left(F_{i} x+g_{i}\right)^{\prime} & d_{i}^{\prime} x+h_{i}
\end{array}\right] \succeq 0} \\
& & i=1, \ldots, m
\end{array}
$$

- Good SDP packages exist (SeDuMi, SDPT3, Mathworks LMI Toolbox, ...)

EXAMPLE OF CONVEX PROGRAM: MAX BOX IN A POLYHEDRON

- Goal: find the largest box \mathcal{B} contained inside a polyhedron $\mathcal{P}=\left\{x \in \mathbb{R}^{n}: A x \leq b\right\}$
- Let $y \in \mathbb{R}^{n}=$ vector of dimensions of \mathcal{B} and $x \in \mathbb{R}^{n}$ = vertex of \mathcal{B} with lowest coordinates

- Problem to solve:

$$
\begin{aligned}
\max _{x, y} & \prod_{i=1}^{n} y_{i} \\
\text { s.t. } & A(x+\operatorname{diag}(v) y) \leq b, \forall v \in\{0,1\}^{n} \\
& y \geq 0
\end{aligned}
$$

- Reformulate as maximize log(volume), remove redundant constraints:

$$
\begin{array}{rll}
\min _{x, y} & -\sum_{i=1}^{n} \log \left(y_{i}\right) & \\
\text { convex problem } \\
\text { s.t. } & A x+A^{+} y \leq b, \quad y \geq 0 & A_{i j}^{+}=\max \left\{A_{i j}, 0\right\}
\end{array}
$$

GEOMETRIC PROGRAMMING

- A monomial function $f: \mathbb{R}_{++}^{n} \rightarrow \mathbb{R}_{++}$, where $\mathbb{R}_{++}=\{x \in \mathbb{R}: x>0\}$, has the form

$$
f(x)=c x_{1}^{a_{1}} x_{2}^{a_{2}} \ldots x_{n}^{a_{n}}, c>0, a_{i} \in \mathbb{R}
$$

- A posynomial function $f: \mathbb{R}_{++}^{n} \rightarrow \mathbb{R}_{++}$is the sum of monomials

$$
f(x)=\sum_{k=1}^{K} c_{k} x_{1}^{a_{1 k}} x_{2}^{a_{2 k}} \ldots x_{n}^{a_{n k}}, c_{k}>0, a_{i k} \in \mathbb{R}
$$

- A geometric program (GP) is the following optimization problem

$$
\begin{array}{cl}
\min & f(x) \\
\text { s.t. } & g_{i}(x) \leq 1, i=1, \ldots, m \\
& h_{i}(x)=1, i=1, \ldots, p
\end{array}
$$

with f, g_{i} posynomials, h_{i} monomials.

GEOMETRIC PROGRAMMING - EQUIVALENT CONVEX PROGRAM

- Introduce the change of variables $y_{i}=\log x_{i}$. The optimizer is the same if we minimize $\log f$ instead of f and take the log of both sides of the constraints
- The logarithm of a monomial $f_{M}(x)=c x_{1}^{a_{1}} \ldots x_{n}^{a_{n}}$ becomes affine in y

$$
\log f_{M}(x)=\log \left(c x_{1}^{a_{1}} \ldots x_{n}^{a_{n}}\right)=\log \left(c e^{a_{i} y_{1}} \ldots e^{a_{n} y_{n}}\right)=a^{\prime} y+b, b=\log c
$$

- The logarithm of a posynomial $f_{P}(x)=\sum_{k=1}^{K} c_{k} x_{1}^{a_{1 k}} \ldots x_{n}^{a_{n k}}$ becomes

$$
\log f_{P}(x)=\log \left(\sum_{k=1}^{K} e^{a_{k}^{\prime} y+b_{k}}\right), b_{k}=\log c_{k}
$$

- One can prove that $F(y)=\log f_{P}\left(e^{y}\right)$ is convex and so it is the program

$$
\begin{array}{cl}
\min & \log \left(\sum_{k=1}^{K} e^{a_{k}^{\prime} y+b_{k}}\right) \\
\text { s.t. } & \log \left(\sum_{k=1}^{K} e^{c_{i k}^{\prime} y+d_{i k}}\right) \leq 0, i=1, \ldots, m \\
& E y+f=0
\end{array}
$$

GEOMETRIC PROGRAMMING - EXAMPLE

- Maximize the volume of a box-shaped structure with height h, width w, depth d
- Constraints:
- total wall area $2(h w+h d) \leq A_{\text {wall }}$

- floor area $w d \leq A_{\text {flr }}$
- upper and lower bounds on aspect ratios $\alpha \leq h / w \leq \beta, \gamma \leq w / d \leq \delta$
- The problem can be cast as the following GP

$$
\begin{aligned}
\min & h^{-1} w^{-1} d^{-1} \\
\text { s.t. } & \frac{2}{A_{\text {wall }}} h w+\frac{2}{A_{\text {wall }}} h d \leq 1 \\
& \frac{1}{A_{\text {flr }}} w d \leq 1 \\
& \alpha h^{-1} w \leq 1, \frac{1}{\beta} h w^{-1} \leq 1 \\
& \gamma w d^{-1} \leq 1, \frac{1}{\delta} w^{-1} d \leq 1
\end{aligned}
$$

GEOMETRIC PROGRAMMING EXAMPLE

- We solve the problem in MATLAB:

```
alpha=0.5; beta=2; gamma=0.5; delta=2; Awall=1000; Afloor=500;
```


CVX

```
cvx_begin gp quiet
variables h w d
% obj. function = box volume
maximize(h*w*d)
subject to
2*(h*w + h*d) <= Awall;
w*d <= Afloor;
alpha <= h/w <= beta;
gamma <= d/w <= delta;
cvx_end
opt_volume = cvx_optval;
```

YALMIP

```
sdpvar h w d
    C = [alpha <= h/w <= beta,
    gamma <= d/w <= delta, h>=0,
    w>=0];
    C = [C, 2*(h*W+h*d) <= Awall,
    w*d <= Afloor];
    optimize(C,-(h*W*d))
```

yalmip.github.io/tutorial/geometricprogramming

- Result: max volume $=5590.17, h^{*}=11.1803, w^{*}=22.3599, d^{*}=22.3614$

GEOMETRIC PROGRAMMING - EXAMPLE

- We solve the problem in PYTHON:

CVXPY

```
import cvxpy as cp
alpha = 0.5
beta = 2.0
gamma = 0.5
delta = 2.0
Awall = 1000.0
Afloor = 500.0
h = cp.Variable(pos=True)
w = cp.Variable(pos=True)
d = cp.Variable(pos=True)
obj = h * w * d
```

```
constraints = [
2*(h*w + h*d) <= Awall,
w*d <= Afloor,
alpha <= h/w, h/w <= beta,
gamma <= d/w, d/w <= delta]
problem = cp.Problem(cp.Maximize
    (obj), constraints)
problem.solve(gp=True)
print("h: ", h.value)
print("w: ", w.value)
print("d: ", d.value)
print("volume: ", problem.value)
```


CHANGE OF FUNCTION/VARIABLES

- Substituting the objective f with a monotonically increasing function of f can simplify the problem
- Example: $\min \sqrt{x}$ with $x \geq 0$, is a nonconvex problem, but we can minimize $(\sqrt{x})^{2}=x$ instead
- Example: max $f(x)=\prod_{i=1}^{n} x_{i}$ is a nonconvex problem, but the function $\log (f(x))=\sum_{i=1}^{n} \log \left(x_{i}\right)$ is concave
- Sometimes a nonconvex problem can be transformed into a convex problem by making a nonlinear transformation of the optimization variables (as in GP)

[^0]: ${ }^{1}$ Neighborhood of $x=$ open set containing x

[^1]: ${ }^{6}$ The LMI constraint means $z^{\prime}\left(x_{1} F_{1}+x_{2} F_{2}+\ldots+x_{n} F_{n}+G\right) z \leq 0, \forall z \geq 0$

