Stochastic MPC
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Stochastic Model Predictive Control (SMPC)
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Use a stochastic dynamical model of the process to
predict its possible future evolutions and choose the
“best” control action
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Stochastic systems

¢ In many control problems decisions must be taken under uncertainty

¢ Robust control approaches do not model uncertainty (only assume that is
bounded) and pessimistically consider the worst case

e Stochastic models provide additional information about uncertainty

ahl Lo
wind/solar power" Y

prices huﬁ(inter)action

water

Need 2o include stochastic models in control probles Formulation
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Stochastic Model Predictive Control

¢ At time ¢: solve a stochastic optimal control problem over a finite future
horizon of N steps:

N-1

min - B | Y €y —r(t+k),up)
k=0

st apyr = flag, ug, wy)
Y = gy, up, wy)

z(t) = process state
u(t) = manipulated vars
)

y(t) = controlled output
Umin < Up4f < Umax

Ymin < Yk < Ymax, Yw
zo = z(t)

w(t) = stochastic disturbances

¢ Only apply the first optimal move u*(t), discard u*(t+1), u*(t+2), ...

¢ At time ¢+1: Get new measurement z(¢+1), repeat the optimization.
Andsoon...
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Linear stochastic MPC w/ discrete disturbance

e Linear stochastic prediction model

z(t+1) = A(w(®))z(t) + B(w@))u(t) + H (w(t))

¢ Discrete disturbance

w(t) € {wr,...,ws} p;(t) = Prlw(t) = wj] lej(t) =1,vt>0
=

¢ Probabilities p;(t) can have their own dynamics. Example: Markov chain

mp =Prlz(t+1) =z, | 2(t) = 2], i,h =
elj if z(t) =z
pi(t) =1 : :

eMj if Z(t):ZM

T
1,....M /12\
TT22
LLSNY
LLP)
¢ Discrete distributions can be estimated from historical data (and 1adapted on-line)
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Linear stochastic MPC formulation

N-1

. H / / /

e Performance index min By |2y Pry + Y #,Qxy + upRuy
k=0

¢ Goal: ensure mean-square convergencetlim E[z'(t)x(t)] = 0 (for H(w(t))=0)
—00

* The existence of a stochastic Lyapunov function V(z2) = z'Px

BV (@(t+1D)]-V (@) < —z(t)'La(t), vt>0 L=1L>0

. (Morozan, 1983)
ensures mean-square stability

e Existing SMPC approaches:

(Schwarme & Nikolaou, 1999) (Munoz de la Pena, Bemporad, Alamo, 2005)

(Ono, Williams, 2008)
(Wendt & Wozny, 2000)

(Couchman, Cannon, Kouvaritakis, 2006) (Oldewurtel, Jones, Morari, 2008)

(Batina, Stoorvogel, Weiland, 2002)  (Primbs, 2007) (Bernardini & Bemporad, 2009)

(van Hessem & Bosgra 2002) (Bemporad, Di Cairano, 2005)
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Cost functions for SMPC to minimize

N-1
performance > J(u,w) &Y Uyp —r(t+ k), up)
k=0
* Expected performance risk
min Ey [J(u, w)] P
CVaR
¢ Tradeoff between expected performance & risk guin max

,
average loss
muin Euw[J(u,w)] + pVar [J(u,w)]

¢ Conditional Value-at-Risk (CVaR)

p(w) ok things go wrong
1 J(u,w) =
I’L])io? {oz + mE[max(](u, w) — a, O)]} (Rockafellar, Uryasev, 2000) | /
= minimize expected loss when things go wrong (convex if J convex !) B=95% \p 5%
. J
. | i
* Min-max «
ran{rqs)x J(u,w)}  =minimize worst case performance
A. Bemporad Model Predictive Control 7-6
Stochastic program
* Enumerate all possible scenarios {w}, w},...,wh_1}, j=1,...,8 g = sV

N-1 ,
* Each scenario has probability p/ = [[ Prlwy, = wj]
k=0

e Each scenario has its own evolution x£+1 = A(w))a] + B(w])u)
(LTV system)

¢ Expectations become simple sums

min Ey

N-1

x?VPxN-i- Z x%sz+u%Ruk}
k=0

min > p/ ((mgv)/ngv+ > (mi)/Qmi + (ui)/Rugc)

j=1 k=0

This is again a quadratic function of the inputs
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Scenario tree Scenario tree generation from data

’ ) ¢ Scenario trees can be generated by clustering sample paths
w§ ¢ Paths can be obtained by Monte Carlo simulation of (arbitrarily complex) models,
ug L
iy = {7 or from historical data
1 .
S Ui wy_q ® scenario trees

: WN-1
; S
@ TN
k=0 k=1 k=N scenario “fan” (collection of sample paths)
S J

¢ Scenario = path on the tree

w,
0 : g €re; = 0.4

3

¢ Number S of scenarios = number of leaf nodes h Yrmin < yp, < ymax, Yw
-1

Heuristic
Multilevel
Clustering

e Some paths can be removed if their probability is very small (at your own risk)

e Causality constraint: u), = u' when scenarios j and h share the same node at

P ; J h (Heitsch, R&misch, 2009)
prediction time k (for example: uj = ug at root node k=0)
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Scenario enumeration Open-loop vs. closed-loop prediction
f . vha @k | scenario tree ( 4l vhis®e% ) closed-loop prediction
<: C lity i loited: decisi lvd d ug o @: . .
- ausality is exploited: decision ux only depends 20 = x(t)< 1 @ A proper move u is optimized to counteract each
i on past disturbance realizations {wg, w1, ..., wg_1} gl vk possible outcome of the disturbance w
_ k=0 k=1
p i
- : 1 —  deterministic : open-loop prediction
: Only a sequence of disturbances is considered . =w(})‘30 . g ® Only a sequence of inputs {ug, u1,...,un—1}
so=a() @0 et UN-l gy — L : is optimized, the same u must be good for all
: ‘ : e frozen-time: wy, = w(t), Vk (causal prediction) ’ i ‘ possible disturbance w
e anticipative action: wi, = w(t + k) (non-causal) L k=0 k=1 )
\ k=0 k=1 k=N e “expected” problem: wy, = Elw(t + k)[t]  (causal)
in ¢ ”
scenario “fan * Intuitively: OL prediction is more conservative than CL in handling constraints
e generate a set of scenarios (Monte Carlo simulation)
* decision u; also depends on future disturbance e OL problem = CL problem + additional constraints v/ = u, Vj = 1,...,5
realizations {wy, w41, wN-1} (=less degrees of freedom)

A. Bemporad Model Predictive Control 7-1 A. Bemporad Model Predictive Control 7-12




Linear stochastic stabilization

o Assume w(t) € {ws,...,ws} and constant probability p(t) = p, Vi

* The stochastic convergence condition E,,,) [V (z(t + 1)] — V(z(t)) < —x(t)' L (t)
can be recast as the LMI condition

Q Q VA(AQ+BY) -~ p(AQ+BY)

Q w 0 0
VPi(AQ+BY) 0 Q =0
VP (AQ+BY) 0 ' Q

Q=Q'>0, W=W'>0
e The Lyapunov functionis V(z) = 2/Q "=

e Mean-square stability guaranteed by linear feedback u(k) = Kz(k), K = yQ!
L=w1

e A minimum decrease rate L can be imposed
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Stabilizing SMPC
(Bernardini, Bemporad, CDC'09)

¢ Impose stochastic stability constraint in SMPC problem  (Bernardini, Bemporad, IEEETAC, 2012)
(=quadratic constraint w.r.t. up)

N-1 k/_—'—’_\
> Uz, uk‘):| -
k=0

min  Ey
U W performance and

s.t. Tpt1 = A(wk)xk =+ B(wk)uk SZ‘déll/llfy are c/eCoa//ec/

E[V(A(wg)zg + B(wg)ug)] < 16(Q71 — L)xo (—/

zg = z(t)

¢ SMPC approach:
1. Solve LMI problem off-line to find stochastic Lyapunov fcn V(z) = 2/Q 1z
2. Optimize stochastic performance based on scenario tree

Theorem: The closed-loop system is as. stable in the mean-square sense

* SMPC can be generalized to handle input and state constraints

Note: recursive feasibility guaranteed by backup solution u(k) = Kz(k)
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Linear stochastic stabilization

¢ The approach can be generalized to uncertain probabilities p(t) € P
(Example: time-varying probabilities)

uncertain or time-varying

no probability distribution
probability distribution is known probability distribution

is known, w(t) can vary arbitrarily

¢ If P = D we have a robust control problem (robust convergence)

* The more information we have about the probability distribution p(t) of w(t)
the less conservative is the control action
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A few sample applications of SMPC

* Financial engineering: dynamic hedging of portfolios replicating synthetic
H (Bemporad, Bellucci, Gabbriellini, 2009)
OptlonS (Bemporad, Gabbriellini, Puglia, Bellucci, 2010)
(Bemporad,Puglia, Gabbriellini, 2011)

* Energy systems: power dispatch in smart grids, optimal bidding on

eIectricity markets (Patrinos, Trimboli, Bemporad 2011)

(Puglia, Bernardini, Bemporad 2011)

¢ Automotive control: energy management in HEVs, adaptive cruise control
(human-machine interaction)

(Bichi, Ripaccioli, Di Cairano, Bernardini, Bemporad, Kolmanovsky, CDC 2010)

¢ Networked control: improve robustness against communication
imperfections

(Bernardini, Donkers, Bemporad, Heemels, NECSYS 2010)
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SMPC for real-time market-based power dispatch

* A Balance Responsible Party (BRP) is the only legal entity trading on the
energy (PX) and ancillary service (AS) markets

e Objective: Minimize (expected) costs via efficient use of intermittent
resources, and maximize (expected) profits by trading on PX and AS markets

¢ Constraints: Grid capacity constraints, rate limits, load balancing, AS balancing

power generators  intermittent resources loads

power injection (decision)

; /= reserve capacity (decision)

= intermittent generation (stochastic)
d_= demand (stochastic)

‘\= power exchanged (decision)

— power exchanged (decision)

4 = required reserve for BRP (given)

. . require
energy prices are also stochastic
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Energy
Market
(PX)

Ancillary
Services
(AS) Market

SMPC for market-based optimal power dispatch

photovoltaic

S1 Ry
hydro-storage
y g TABLE I: Generator Cost Data
Unit [[ Q: (8/MWh?) [ ¢; (8/MWh) [ ¢ (8)
PI 0.009 30375 398.025
P2 0.0225 7335 292275
P3 0.0488 61.488 189.952
Ry p TABLE II: Generator Data
H 3
wind farm
Unit [ oo [ 7o [ Ape™ | Apr®
P 450 [ 1100 | -250 250
natural gas P2 [ 50 | 500 | 200 | 200
P3 50 100 75 75
TABLE III: Storage Data
Unit [ @ [ o7 [ A [ A | o [ af [ o
ST 15 | 300 | 120 120 | 095 | 085 | 090
P P
0 300
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SMPC for real-time market-based power dispatch

(Patrinos, Trimboli, Bemporad 2011)

¢ Stochastic MPC architecture

Market/System

operator energy exchanged on
I the PX and AS markets

stochastic price

\
’

It Scenario-based SMPC A
[ i
1 1
1 1
1 1
| i
' QP solver [
1 il ]
! ! . Scenario Tree |
1 \ Scenario Generation . i Power system
1 Construction )
\\ ',
\\ ’

stochastic load and intermittent resources
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SMPC for market-based optimal power dispatch

¢ Numerical results

Exact knowledge future ‘ Algorithm [ Storage | No Storage | |
uncertaint L | Cost | Cost | Avg # of nodes |
y =
I Prescient-OC 6427979 ) 6879741 | \
TE-MPC 9778750 ) 9819518 | |
/ SSMPC (e, = 0.1) 7134582 7245962 350
SSMPC (eye) = 0.2) 7144011 7249401 335
Time-varying expectations used SSMPC (e, = 0.3) [J| 7148494 7250207 172
for future uncertainty SSMPC (eye1 = 0.4) || 7179848 | 7264505 87
SSMPC (erel = 0.5) K 7224912 3 7267497 50
SSMPC (e,e] = 0.6) 7239985 7277410 38
SSMPC (ee) = 0.7) 7259491 7298023 31
SSMPC (e, = 0.8) 7255246 7312092 26
. SSMPC (ee] = 0.9) 7260424 7318643 22
SMPC: as tree density increases, SSMPC (e,q = 1.0) || 7260424 7318642 30

performance gets better,
although numerical complexity
gets larger

power exchanged with grid
1000

@
2
8

5 (5) (W)

o

-500
0

50 100
FTU & (10 mins)
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Dynamic hedging problem for financial options

* The financial institution sells a synthetic option to a customer and gets x(0) (€)

¢ Such money z(0) is used to create a portfolio z(¢) of n underlying assets
(e.g., stocks) whose prices at time t are wi(t), wa(t), ..., wa(t)

* At the expiration date 7, the option is worth the payoff 7(T) = wealth (€) to be
returned to the customer

/ayoff T(T)

80

14 O/Z‘fon /9)‘1‘6&
How to adjust dynamically

the portfolio so that
wealth z(T) = payoff r(T) 2 ...

0

porttolio wealth

coealth x(T)

0 0,‘05 0‘1 0‘15 0‘2 0,‘25 0‘3 0‘35 0‘4 0.45 20 40 60 80 IOOb 120 140 1.60 1‘80 200
time (years) asset price at expiration

.. for any price realization w;(t) ?
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Option hedging = linear stochastic control

¢ Block diagram of dynamic option hedging problem:

2(1) asset w(t) stock prices
dynamics 1

A

T(t) > u(t)

option pricing hedging wealth a(t)
engine »| controller dynamics

» Payoff function example: (7)) = max{w(T) — K, 0} European call

* Control objective: z(T) should be as close as possible to r(T), for any possible
realization of the asset prices w(t) (“tracking w/ disturbance rejection”)
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Portfolio dynamics

¢ Portfolio wealth at time ¢: n
x(t) = uo(t) + ‘Z w; (H)u;(t)

i=1

Example: wi(t) = log-normal model (used in Black-Scholes’ theory)

dw; = (udt + odz;)w;  geometric Brownian motion

* Assets traded at discrete-time intervals under the self-balancing constraint:

> z(t+1) = 1+r)z()+ Zn: bi(t‘) i(t)  r=interestrate
=0 N

bi(1) £ wi(t + 1) — (1 + r)w;(t)
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SMPC for dynamic option hedging

e Stochastic finite-horizon optimal control problem:

min Var; [z(t+ N,z) —r(t + N, 2)]

{u(k,z)} n
st. w(k+1,2) = A +nralk,2) + D bilk, 2uik,2), k=t,...,t+ N
a(t, ) = x(t) =0
( (T, ()NBLI ) z(T,z) r(Tz)\
2(14+N,2)=~r(1+N,z) (B4 NJz)=r(3+N,2) o)A
PRN—— , |
x(N,z)=r(lV,~ (24N, 2)=r(2+N,z) .<<
(1) é g z(3)
2(0) 2(2) |
;ﬁt J J
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SMPC for dynamic option hedging

* Drawback: the longer the horizon N, the largest the number of scenarios !

e Special case: use N=1! mir)] Var, [z(t+ 1,2) —r(t+ 1,2)]

w(t n
PR P T o(t+1,2) = A +n)z() + D bi(t, 2)u(t)
variance =0
control !
pu

"
Only one vector u(t) to optimize z(Le)=r(T:2)

t+1;z)

z(t+1,2)=r

(

No further branching, so we can generate
a lot of scenarios for z! (example: 1000)

® Need to compute target wealth r(¢t+1,z)
forall z

VAR )
[ Perfect hedging assumption
/ front time 41 2o T

On-line optimization: very simple least squares
problem with n variables !

pr/m/Ze up Zo Cime I
(n = number of traded assets)
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Example: Hedging an exotic option

Portfolio wealth vs. payoff at expiration
T T T

o ‘ * Black-Scholes model (=log-normal)
e volatility=0.2
018 o T'=24 weeks (hedging every week)
g * 50 simulations
g ot e M =100 scenarios
g ¢ risk-free=0.04
¢ ool ¢ Pricing method: Monte Carlo sim.
g * SMPC: Trade underlying stock &
ol European call with maturity t+7'
%05 0 005 01 015 0.2

Payoff

p(T) = max {07 C 4+ min x(tZ)_M} “Napoleon cliquet”
i€{1,...,Nfix} z(ti-1) option

. t;=0,8,16,24 weeks
e CPU time = 1625 ms per SMPC step

(Matlab R2009 on this mac)
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Example: Hedging an European call

B d, Gabbriellini, Puglia, Bellucci
Portfolio wealth vs. payoff at expiration (Bemporad, Gabbriellini, Puglia, Bellucci, 2010)
. .

100 T

¢ Black-Scholes model (=log-normal)
e volatility=0.2, risk-free=0.04
o T'=24 weeks (At=1 week)

801 B

60f 4 50 simulations
* M =100 scenarios

4of 1 e Pricing method: Monte Carlo sim.
* SMPC

20+ B Portfolio wealth, option price

50

opf/.or) pl‘/.ce p(t)

i i i
50 100 150 200
Stock price at expiration

® CPU time = 7.52 ms per SMPC step
(Matlab R2009 on this mac)
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SMPC for hybrid electric vehicles

(Bichi, Ripaccioli, Di Cairano, Bernardini, Bemporad, Kolmanovsky, CDC 2010)

How to split power optimally among different power sources in HEVs
(hybrid electric vehicles) to match power demanded by driver?

battery
Existing approaches

® Deterministic Dynamic Programming (DDP)
e Stochastic Dynamic Programming (SDP)

¢ Rule-based

® Game Theory

® Deterministic (hybrid) MPC

motor

series hybrid configuration

Lreq controller | AP | T P
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Stochastic model of power demand

¢ Power demanded by driver modeled as a Markov chain

o o o
A OO

o
N

Transition Probability

Current Markov chain 4 )
16
state index

A. Bemporad

Next Markov chain
state index

Model Predictive Control

e requested power quantized in
16 levels

¢ Markov chain is modeling the
probabilities of transition
from one level to another

e transition probabilities
estimated off-lineon a
collection of driving cycles
(FTP, NEDC, 10-15 Mode)

Stochastic vs. prescient and deterministic MPC

o
N
o

o
N

o

Fuel consumption [kg]
o

0.05

A. Bemporad

deterministic MPC (frozen-time) ;

stochastic MPC

prescient MPC
5

/ ] driver model

’ frozen-time MPC

fuel cons. [kg] | fuel improv. [%]
0.281
stochastic MPC 0.243 13.5
prescient MPC 0.197 29.8

600 800 1000 1200

0 200 400

600 800 1000 1200

A single Markov chain is tuned off-line

Model Predictive Control

7-8@

SMPC results (NEDC driving cycle)

2 adaptive Markov c.
02 1 adaptive Markov c.
1 off-line trained Markov c.

sumption [K

0.1 s

pretty close to having
the crystal ball !

A. Bemporad

adaptive Markov chain

driver model NEDC | FTP 10-15 mode
deterministic 0.281 | 0.533 0.125
1Markov chain | 0.244 | 0.323 0.091
2 Ma qu 0.224. | 0.323 0.089
2 MC adaptivé/ 0.198 | 0.325 0.088
prescient 0.197 | 0.320 0.071
P —
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