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COURSE STRUCTURE

 Basic concepts of model predictive control (MPC) and linear MPC

 Linear time-varying and nonlinearMPC

 Quadratic programming (QP) and explicit MPC

 HybridMPC

 StochasticMPC

 Learning-basedMPC
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PREDICTION MODEL AND OPTIMIZATION PROBLEM
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DO WE REALLY NEED ADVANCED CONTROL ?

Perspective of the automotive industry:

• Increasingly demanding requirements (emissions/consumption, passenger

safety and comfort, …)

• Better control performance only achieved
by better coordination of actuators:

– increasing number of actuators

(e.g., due to electrification)

– take into account limited range of actuators

– resilience in case of some actuator failure

• Shorter development time for control solution

(market competition, changing legislation)

"Model Predictive Control" - © 2025 A. Bemporad. All rights reserved. 4/15



PROPORTIONAL INTEGRATIVE DERIVATIVE (PID) CONTROLLER

• PIDs are themost used controllers in industrial automation since the ’30s
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Pros:

 Single-loops are very easy to tune, just 3 parameters to calibrate

 Few lines of C code, minimal memory and throughput requirements

 No process model required, just output measurements

 Offset-free set-point tracking thanks to integral action
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PROPORTIONAL INTEGRATIVE DERIVATIVE (PID) CONTROLLER
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Cons: (1/2)

 Multi-input/multi-output systems: dynamical coupling requires tuning
multiple PID loops together

⌢ Surgically changing a PID loop tuningmay have bad consequences on other loops,

due to dynamical interactions

⌢ Lookup-table complexity increases exponentially

(e.g.: 5 inputs, 10 values each→ 10
5 entries)

⌢ Hard to coordinatemultiple actuators optimally

⌢ The calibrationmight need to be completely redone for a newmodel
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PROPORTIONAL INTEGRATIVE DERIVATIVE (PID) CONTROLLER
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PID controller 2
Cons: (2/2)

 Handling input constraints require additional anti-windup design

 Output constraints aremuch harder to handle

 Limited preview (derivative term =1st order extrapolation of future output)

 No explicit performance index optimized at runtime

 Resilience to actuator faults requires further design effort

Multivariable PID control design & calibration might be time consuming
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MODEL PREDICTIVE CONTROL (MPC)
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Pros:

 Naturally coordinatesmultiple inputs and outputs

 Naturally handles input and output constraints

 Very easily includes preview on references/measured disturbances

 Performance index optimized at runtime
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MODEL PREDICTIVE CONTROL (MPC)
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s.t. xk+1 = Axk + Buk

yk = Cxk

umin ≤ uk ≤ umax
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Pros:

 Offset-free set-point tracking thanks to disturbance models and observers

 Design easy to transfer to newmodels (no lookup tables)

 Controller easily reconfigurable online to handle faults (resilience)
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MODEL PREDICTIVE CONTROL (MPC)
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Cons:

 Multiple parameters to calibrate (models, weights, solver tolerances, ...)

Automatic calibration

 Nontrivial C code (QP solver), need to considermemory and throughput issues

Certifiable QP code

 Requires a process model (physical modeling, system identification)

as allmodel-based control-designmethods Model learning tools
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CONCLUSIONS

• MPC is a universal control methodology, same approach used for different

– models (linear, nonlinear, hybrid, stochastic, …)

– performance indices (quadratic, convex, nonlinear, stochastic)

– constraints (linear, nonlinear, robust, in probability)

• MPC research:

1. Linear, uncertain, explicit, hybrid, nonlinearMPC:mature theory

2. StochasticMPC, economicMPC: still open issues

3. Embedded optimizationmethods forMPC: still room for many new ideas

4. System identification forMPC: there is a lot to “learn” frommachine learning

5. Data-drivenMPC: still a lot of open issues

• MPC technology: rather mature, widely spread inmany industrial sectors
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The End

Linear MPC controller
of a DC-servomotor
(Hybrid Toolbox)


