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COURSE STRUCTURE

e Learning-based MPC (or data-driven MPC)

Course page:
http://cse.lab.imtlucca.it/~bemporad/mpc_course.html
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MPC AND ML

e MPC and ML = main trends in control R&D in industry !

model predictive control machine learning
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"Model Predictive Control" - © 202 ad. All rights reserved 4/85




MACHINE LEARNING (ML)

e Massive set of techniques to extract mathematical models from data

Ridge classification

. h‘gﬁﬁ;;?ﬁc,\ Di ionalit Logistic regression
g e Naive Bayes classification Classification

- Autoencoders Reduction

- Support vector machines
- K-nearest neighbors
- Decision trees

H - Ensemble methods (bagging,
Unsupervised MaCh ine Supervised bootstrap, random forests)

Learning Learning Learning Neural networks

Clustering Regression

Semi-
Supervised
Learning Linear regression (least-squares,

- K-means clustering ridge regression, Lasso, elastic-net)
- Density-based spatial clustering Reinforcement - Kernel least-squares
;e Learning - Support vector regression

- Gaussian process regression
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MACHINE LEARNING (ML)

e Good mathematical foundations from artificial intelligence, statistics,
optimization

e Works very well in practice (despite training is most often a nonconvex
optimization problem...)

e Used in myriads of very diverse application domains

e Availability of excellent open-source software tools also explains success
scikit-learn, TensorFlow/Keras, PyTorch, JAX,Flux.j1,.. @ python julia

porad. All rights reserved 6/85
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MPC DESIGN FROM DATA

1. Use machine learning to get a prediction model from data (system
identification)
- Autoencoders, recurrent neural networks (nonlinear models)
- Online learning of feedforward/recurrent neural networks by EKF

- Piecewise affine regression to learn hybrid models

2. Usereinforcement learning to learn the MPC law from data

- Q-learning: learn Q-function defining the MPC law from data

- Policy gradient methods: learn optimal policy coefficients directly from data using
stochastic gradient descent

- Global optimization methods: learn MPC parameters (weights, models, horizon,
solver tolerances, ...) by optimizing observed closed-loop performance

"Model Predictive Control All rights reserved 7/85




LEARNING PREDICTION MODELS FOR MPC



CONTROL-ORIENTED NONLINEAR MODELS

e Black-box models: purely data-driven. Use training data to fit a prediction
model that can explain them

r T icti Y
prediction

e Physics-based models: use physical principles to create a prediction model
(e.g.: weather forecast, chemical reaction, mechanical laws, ...)

1= Ry + Woge k) + Lop e

s ke Z | prediction | ¥
2= ka(lepy = Wegr = We+ W) *TI model

J )

e Gray-box (or physics-informed) models: mix of the two, can be quite effective

"All models are wrong, but some are useful."

"Model Predictive Control
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MODELS FOR CONTROL SYSTEMS DESIGN

Linear models

- linear I/0 models (ARX, ARMAX,...)
- subspace linear SYS-ID

e Prediction models for model predictive control:

- Complex model = complex controller
— model must be as simple as possible

L ) ] - linear regression
- Easy to linearize (to get Jacobian matrices (ridge, elastic-net, Lasso)
for nonlinear optimization)
e Prediction models for state estimation: Piecewise linear models

- decision-trees
- neural nets + (leaky)ReLU
- K-means + linear models

- Complex model = complex Kalman filter
- Easytolinearize

e Models for virtual sensing:

- No need to use simple models Nonlinear linear models

(except for computational reasons) - basis functions + linear regression
- neural networks

e Models for diagnostics: - feearestheighbers.

- Usually a classification problem to solve IPPORTVESOraERE

- Complexity is also less of an issue
"Model Predictive Control" - 3emporad. All rights reserved 9/85




NONLINEAR SYS-ID BASED ON NEURAL NETWORKS

e Neural networks proposed for nonlinear system identification since the '90s

o NNARX models: use a feedforward neural network to approximate the
nonlinear difference equation y; & N (Ys—1, -« Yt—n, s Ut—1,- - - > Ut—ny)
o Neural state-space models:

- w/state data: fit a neural network model ;41 & Ny (z¢,ut), yr ~ Ny(xt)

- /O dataonly: set x; = value of an inner layer of the network
such as an autoencoder

e Alternative for MPC: learn entire prediction

—

Yt+k = h’k(xtvutv' o 7“t+k:—1)7 k= 17 . 'aN _m

e Recurrent neural networks are more appropriate for accurate open-loop
predictions, but more difficult to train (see later ...)

23 A. Bemporad. All rights reserved 10/85
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NLMPC BASED ON NEURAL NETWORKS

e Approach: use a neural network model for prediction

neural

prediction i nonlinear
\ model :  optimization
e » :  algorithm H
P ;

model-based optimizer

process

set-points inputs outputs
Pt | o
() u(t) u(t)

state measurements

o MPC design workflow:

collect
—

train codegen
— —

past | future o

data neural model NLMPC controller
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MPC OF ETHYLENE OXIDATION PLANT

e Chemical process = oxidation of ethylene to ethylene oxide in a nonisothermal
continuously stirred tank reactor (CSTR)

CoHy + %OQ — C2H40
CoHy 4 302 — 2C 02 + 2H20
CyH40 + 302 — 2C02 4+ 2H>0

e Nonlinear model (dimensionless variables):

1 = gas density

1 = ui(l = xiwg) o = ethylene concentration
d2 = uilug — womy) — Alcz; (wowa)? — AQCL (IQId)i x3 = ethylene oxide concentration
b3 = —uypmsms A16T4 (m“); _ Age“ (ML4)2 x4 = temperature in reactor
o7 o7y
by = ‘wdsmodBie ”;””B”M (eazn: u = feed volumetric flow rate
4 B_ge%f (z_@iis“zﬁn) us = ethylene concentration in feed
Y = x3

e 1 = manipulated variables, x3 = controlled output, us = measured disturbance

Model Predic
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NEURAL NETWORK MODEL OF ETHYLENE OXIDATION PLANT

¢ Train state-space neural-network model

Tht+1 = N(xk,uk)

1,000 training samples { u, xx } ~ @

2 layers (6 neurons, 6 neurons) - \

6 inputs, 4 outputs ~ —
sigmoidal activation function /‘"‘"‘“
— 112 coefficients Tk

¢ NN model trained by ODYS Deep Learning toolset
(model fitting + Jacobians — neural model in C)

e Model validated on 200 samples.
x3 41 reproduced from zy,, uy, with max 0.4% error

"Model Predictive Control" - © 2023 A. Bemporad. Al rights reserved
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MPC OF ETHYLENE OXIDATION PLANT

o MPC settings:
sampling time T,=5s measured disturbance @t=200
prediction horizon N =10

control horizon N,=3
constraints 0.0704 < uq < 0.7042
cost function ZkN:_Ol(ka — Ti+1)? + 105 (U1k — U1 k—1)?

o We compare 3 different configurations:
- NLMPC based on physical model

- Switched linear MPC based on 3 linear models obtained by linearizing the
nonlinear model at C> H,O = {0.03, 0.04, 0.05}

- NLMPC based on black-box neural network model

"Model Predictive Control" - @
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MPC OF ETHYLENE OXIDATION PLANT - CLOSED-LOOP RESULTS

C2 H4O concentration C2 H4 O concentration C'2 H4 O concentration
0.06 T T T T 0.06 T T T T 0.06 T T T T

(

°**I model-based NLMPC T switched linear MPC ***" neural NLMPC

0035 k 4 0035 0035
0,08 —— A A MQJ
0

— 003 —

100 150 200 0 50 100 150 200 0 50 100 150
time (s) time (5) time (s)

o Neural and model-based NLMPC have similar closed-loop performance
e Neural NLMPC requires no physical model

"Model Predictive Control" - © 2023 A. Bemporad. All rights reserved 15/85



LEARNING NONLINEAR STATE-SPAGE MODELS FOR MPC

e |dea: use autoencoders and artificial neural networks to learn a nonlinear
state-space model of desired order from input/output data

ANN with hourglass structure

Yks -5 Ykn+1

0000000
decoder| D

0000
t

Lp——

0000

t
/OOOO
encoder | / E \
0000000
Y1 o5 Y Uy
Up1y +ovy Uy
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LEARNING NONLINEAR STATE-SPAGE MODELS FOR MPC

Ok1
¢ Training problem: choose n,, ns, n,, and solve T Q000000
\\\ d d
N-1 5 i ; /
) . . 0000 o oooo
min 3o (£1(01,01) + £1(Ok41,011) i - PG ¥
3@y k=ko N . OdOO QO statemap 0000
+BL2(xf 1 Th+1) +703(Ok41,OF 1) Sl N g
O000000 0000000
st. xp =e(lp_1), k=ko,...,N i ]
xz+1 :f(xk,uk), k:ko,...,N—l Ok=[y; .“Hy]/cim]k, k
Ok:d(mk)vozzd(x;)vk:kOv"'vN ’ , ’ , ,
In=[yl - Yh—ng+1 Wk - - ukfnb#»l]

Model complexity can be reduced by adding group-LASSO penalties

flre,ur) = A(zk,ur) [F] + B(zk, uk)uk

e Quasi-LPV structure for MPC: set [
y = Clok,ur) 7]

(Ai;, Bij, Ci; =feedforward NNs)

o Different options for the state-observer:
- use encoder e to map past I/0O into x; (deadbeat observer)
- design extended Kalman filter based on obtained model f, d
- simultaneously fit state observer Zx11 = s(xk, uk, yx) With loss L4 (£x+1, Tk41)

orad. All rights reserved 17/85
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LEARNING NONLINEAR NEURAL STATE-SPACE MODELS FOR MPC

e Example: nonlinear two-tank benchmark problem

ﬂ z1(t+1) = 21(t) — ki /1 (¢ +k2u
(

1
x) - z2(t+ 1) = 22(t) + ks /21 (t \/
s y(t) = z2(t) + ()
y(«)-xz(r)i:u Model is totally unknown to learning algorithm

www.mathworks.com

e Artificial neural network (ANN): 3 hidden layers
60 exponential linear unit (ELU) neurons o

e For given number of model parameters, N
autoencoder approach is superior to NNARX i

e Jacobians directly obtained from ANN structure B w W m
for Kalman filtering & MPC problem construction LTV-MPC results

"Model Predictive Control" - © 2023 A. Bemporad. All rights reserved 18/85



LEARNING AFFINE NEURAL PREDICTORS FOR MPC

o Alternative: learn the entire prediction " ———

—_— 2

¢ LTV-MPC formulation: linearize hj around nominal inputs u;

k1
oh
Yk = (@0, o, ., k1) + Y aij(ﬁco,ﬂm ey Ug—1) (uy — U )

j=0 ~ 7

Example: u;, = MPC sequence optimized @k — 1

e Avoid computing Jacobians by fitting i, in the affine form

uo—uUg
Yk = fr(z0, U0, - -, Uk—1) + gr(To, Uo, - - -, Uk—1) [ : ]
Up—1—Uk—1

cf.

"Model Predictive Control" - © 2023 A. Bemporad. All rights reserved 19/85



LEARNING AFFINE NEURAL PREDICTORS FOR MPC

e Example: apply affine neural predictor to nonlinear Predictionstep  BFR
two-tank benchmark problem

1 0.959
- . 2 0.958
10000 training samples, ANN with 2 layers of 20 ReLU neurons
4 0.948
5 =yl / 0915
Best fitrate BFR = max {0, 1- 77} 10 0.858
ly —7ll=

e Closed-loop LTV-MPC results:
e Model complexity reduction:
add group-LASSO term with penalty A os
A BFR (average # nonzero os
on all prediction steps) weights ;
01 0.853 328 — oacton
0005 0868 363 0 50 100 150 200 250 300 350
0.001 0.901 556
0.0005 0911 888
0 0.917 9000
"Model Predictive Control" - ghts reserved 20/85




ON THE USE OF NEURAL NETWORKS FOR MPC

e Neural prediction models can speed up the MPC design a lot

e Experimental data need to well cover the operating range
(as in linear system identification)

¢ No need to define linear operating ranges with NN’s,

itis a one-shot model-learning step ‘ /\4\

e Physical models may better predict unseen situations 5
than black box models

e Physical modeling can help driving the choice of the
nonlinear model structure to use ( models)

e NN model can be updated online for adaptive nonlinear MPC

"Model Predictive Control" - @
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LEARNING NEURAL NETWORK MODELS FOR CONTROL



TRAINING FEEDFORWARD NEURAL NETWORKS

e Feedforward neural network model:

vy = Az +b = /O D v
v, = Aafi(vig) +b2 RORT/ =g
. -9
yk:fy(mk’e): :
0= (A1,b1,...,AL,b
vk = Ap,fr—1(v 1) + b1 (A1, b1 z:be)
9 = fo(vew)
E.g.: ) = current state &input, or 2, = (Yk—1,- -+ » Yk—ny s Uk—1s - - - s Uk—ny )
e Training problem: given a dataset {xo, yo,...,ZNn—_1,Yyn—1} SOlve

N—1
mlnr )+ Z Uyk, f Hflm )
k=0

e |tis anonconvex, unconstrained, nonlinear programming problem that can be
solved by stochastic gradient descent, quasi-Newton methods, ... and EKF !
"Model Predictive Control" - © 2023 A. Bemporad. Al rights reserved 22/85



TRAINING RECURRENT NN'S VIA EKF



TRAINING FEEDFORWARD NEURAL NETWORKS BY EKF

o Key idea: treat parameter vector 6 of the feedforward neural network as a
constant state

Opk+1 = Op+m
Yk f(xw, 0r) + G

and use EKF to estimate 6, on line from a streaming dataset {z, yi }
e Ratio Var[n|/ Var[(y] is related to the learning-rate
o Initial matrix (Py|_;) ' is related to quadratic regularization on ¢

"Model Predictive Control" - © 2023 A. Bemporad. All rights reserved 23/85



RECURRENT NEURAL NETWORKS

Vs
2
A
vL

e Recurrent Neural Network (RNN) model: ./ an® .
Try1 = fo(Tr, ur,0z) -
ve = fylor,0y) vj = Ajfj-1(vj—1) +b;
for fy = feedforward neural network

0= (A1,b1,...,AL,br)

(e.g.: general RNNs, LSTMs, RESNETS, physics-informed NN, ...)

e Training problem: given a dataset {uo, %o, ..., un—1,yn—_1} SOlve

N-1

. 1
min (w0, 0, 0) + > Uyk, fy(a, 0y))

Oz, 0y k=0
Lo, L1y, TN—1

s.t. Th41 :fz(xkvukvei)

e Mainissue: x;, are hidden states, i.e., are unknowns of the problem

24/85
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TRAINING RNNS VIA EXTENDED KALMAN FILTERING



TRAINING RNNS BY EKF

Estimate both hidden states x;, and parameters 6,,, 6, by EKF based on model

Thtr = Jo(@k, uk, Oak) + Sk Ratio Var([ny]/ Var|[(x] related to
0, 0, learning-rate of training algorithm
[9(:+1)] _ [0: + g gdig
y(kt1) Y Inverse of initial matrix Py related to
Y = fy(mkaeyk) +Ck

£>-penalty on 6., 6,

RNN and its hidden state xj, can be estimated on line from a streaming dataset
{uk, yx }, and/or offline by processing multiple epochs of a given dataset

Can handle general smooth strongly convex loss fncs/regularization terms

Can add /;-penalty A H {Zj } H . to sparsify 6,, 0, by changing EKF update into

2(k|k) 2(k|k—1) 0
[01(“)} — [ez<kk1>]+M(k)e(k)—AP(kk 1) {signww(mm]
0y (k|k) 0y (klk—1) sign(6, (k|k—1))

"Model Predictive Control" - © 2023 A. Bemporad. All rights reserved 25/85



TRAINING RNNS BY EKF - EXAMPLES

o Dataset: magneto-rheological fluid damper
3499 1/0 data

e N=2000 data used for training, 1499 for testing the model

e Same data used in NNARX modeling demo of SYS-ID Toolbox for MATLAB

e RNN model: 4 hidden states, shallow
state-update and output functions
6 neurons, atan activation, /O feedthrough

MSE loss

0 5 10 15 20
training time [s])

e Compare with gradient descent (Adam)

Adam

MATLAB+CasADi implementation (Macbook Pro 14" M1 Max)

MSE loss

:
R o 100 200 300 400 500
"Model Predictive Control" - © 2023 A. Bemporad. Al rights reserved epoch 26/85



TRAINING RNNS BY EKF - EXAMPLES

. "y
,,_Test data: op

ion (on a model instance)

e Compare BFR! wrt NNARX model (SYS-ID TBX):
at (i it f
L. [
EKF=92.82, Addam = 89.12, NNARX(6,2) = 88.18 (training) M |
» -
EKF=89.78, Adam = 85.51, NNARX(6,2) = 85.15 (test) | ’\ 'I‘ L
’ " | ‘\‘\‘ " | T
IR Rl
AT
o 0 L I R A R R
e Repeat training with ¢, -penalty 7 H {9’/} ‘ poov SRR R W 4
E 1 ) ED o a0
samples
95 100 ”
90 = 80 i
ey ——BFR (test data) &0 E[
E 80 {—— BFR (training data) 0
m percentage of zeros in 6,,0, _:_
75 20 E
70 L L 0 =~
10 10° 10 10
{1-regularization parameter 7
1Best fit rate BFR=100(1 — ‘h};:);‘llj ), averaged over 20 runs from different initial weights
"Model Predictive Control" - © 2023 A. Bemporad. All rights reserved 27/85




TRAINING LSTMS BY EKF - EXAMPLES

e Use EKF to train Long Short-Term Memory (LSTM) model

zo(k+1) = oc(Wrulk)+ Usxp(k) 4+ bs) © z4(k)
+oc(Wru(k) + Urzy(k) + br) © oc(Weu(k) + Ucxs(k) + be)
.%‘b(k + 1) = O’G(Wou(k) + UO,’L‘b(k) + bo) ® Uc(.');‘a(k‘ + 1))

y(k) = fy(xb(k)’u(k)vgy)
og(a) = 1Jr%,ac(oz) = tanh(«)

e Training results (mean and std over 20 runs):

BFR Adam EKF
RNN training | 89.12(1.83) | 92.82(0.33)
ng = 107 | test 85.51(2.89) | 89.78(0.58)
LSTM training | 89.60 (1.34) | 92.63(0.43)
ng = 139 | test 85.56 (2.68) | 88.97(1.31)

e EKF training applicable to arbitrary classes of black/gray box recurrent models!

"Model Predictive Control" - © 2023 A. Bemporad. All rights reserved 28/85



TRAINING RNNS BY EKF - EXAMPLES

e Dataset: 2000 I/O data of linear system with binary outputs
8 .2 —.
AR PN L
1 if|[-21505
y(k) = { - ]

0 otherwise

1

)+ |5 Juk+eky  Varlsi(k) = o
z(k) —2+C( ) >

Var[¢(k)] = o

e N=1000 data used for training, 1000 for testing the model

EKF accuracy [%]
o test ‘ training

0.000 | 98.02 97.91

AV () (e 0001 | 9533 | 9866
A y) = 1/(1 4 e~ ALl () ulB]'=b1) 0010 | 97.99 | 9852

0.100 | 94.56 95.44
0.200 | 93.71 92.22

e Train linear state-space model with 3 states
and sigmoidal output function

e Training loss: (modified) cross-entropy loss

Ny

Cone(y(k),9) =D —vi(k)log(e + §i) — (1 — yi(k)) log(1 + € — §i)

i=1

"Model Predictive Control" - © 2023 A. Bemporad. All rights reserved 29/85



TRAINING RNNS VIA SEQUENTIAL LEAST SQUARES



TRAINING RNNS BY SEQUENTIAL LEAST-SQUARES

e RNN training problem = optimal control problem:
N-1
minOz,Qy,zo,wl,.“,wN,l 7“(3?0, 0z, ay) + Z E(ykv gk)
k=0
st Tpy1 = fo(ag, ug,0z)
Uk = fy(xr, ur,0y)

- 0,0y, 0 =manipulated variables, g, = output, y;, = reference, u;, = meas. dist.
- r(z0, 0s,0y) = input penalty, £(yx, §r ) = output penalty
- N = prediction horizon, control horizon = 1

e Linearized model: given a current guess 0", Hy Jaho x’](,_l, approximate
A'Tk-i—l = (vxfr),Axk + (Vwaz)/AeT
Ay, = (vwk fy)/Axk + (VByfy)/A‘gy

"Model Predictive Control" - @
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http://arxiv.org/abs/2112.15348

TRAINING RNNS BY SEQUENTIAL LEAST-SQUARES

¢ Linearized dynamicresponse: Az, = My, Axy + Myg, Ab,

Mo, = I, Mo, =0
M(k:Jrl)ac = szz(l’z,uk,HZ)Mkz
My1y0, = Vo fu (@l ug, 00)Myo, + Vo, fo(zh, ug, 08)

Take 2™d-order expansion of the loss £ and regularization term r

o Solve least-squares problem to get increments Az, Af,, Af,

Update 2™, 62+1, 02+ by applying either a

- line-search (LS) method based on Armijo rule
- oratrust-region method (Levenberg-Marquardt) (LM)

The resulting training method is a Generalized Gauss-Newton method
very good convergence properties

"Model Predictive Control" - ©
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TRAINING RNNS BY SEQUENTIAL LS AND ADMM

e Fluid-damper example: (4 states, shallow NNs w/ 4 neurons, I/O feedthrough)

NAILS AMSGrad
NAILM
EKF
AMSGrad -
MSE loss on training data,
mean value and range over 20
runs from different random
initial weights
TN Gagme (9 " taining tme (9
BFR training test
NAILS = GNN method with line search NAILS 94.41(0.27) | 89.35(2.63)
- . NAILM 94.07 (0.38) | 89.64 (2.30)
NAILM = GNN method with LM steps EKF 91.41(070) | 8717 3.06)
AMSGrad | 84.69 (0.15) | 80.56 (0.18)

"Model Predictive Control" - ©
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TRAINING RNNS BY SEQUENTIAL LS AND ADMM

e We also want to handle non-smooth (and non-convex) regularization terms

ming, g, (%0, 00:0y) + pg LUks o, 0y)) + 9(6s,6,)
s.t. Th+1 = fa:(xkaukﬂam)

e ldea: use alternating direction method of multipliers (ADMM) by splitting

Milg, o, vovey  T(%0s02:0y) + Snco LUks fy (T, 0y)) + 9(v2, 1vy)
s.t. Th4+1 = fa:(xkauka 91’)

=[5
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TRAINING RNNS BY SEQUENTIAL LS AND ADMM

e ADMM + Seq. LS = NAILS algorithm (Nonconvex ADMM lterations and Sequential LS)

F bl
To
t+1
9{1
t
.ey

pitl
Vt+1

arg ming, g,,0, V (o, 0z,0y) + 5 H [

t+1 t t+1 t
pI‘OX%g(eer +w279y+ +wy)

Wttt
hgt+1_ t+1
Wy, +9y 24

t t

Oy —v,+wy,
ot t
0y vy, twy

2
] H {sequehﬁc\t) LS
2
proxtmal sEaP

updo&a dual vars

e Fluid-damper example: Lasso regularization g(v,, vy) = ||V |1 + 7 |yl

100 -

80

60 [

40+

— BFR (test data)
——— BFR (training data)
—— percentage of zeros in GX,GY

107 10° 10
{1-regularization parameter 7

102

d. All rights reserved

100

80

60

40

20

0

Ty =Ty =T

(mean results over 20 runs
from different initial weights)

percentage of zeros
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TRAINING RNNS BY SEQUENTIAL LS AND ADMM

o Fluid-damper example: Lasso regularization g(v,, 1) = 0.2||vz||1 + 0.2||vy |1

training BFR BFR sparsity CPU #

algorithm training test % time epochs ~ same fit than
NAILS 91.00 (1.66) | 87.71(2.67) | 65.1(65) | 114s 250 ~

NAILM 91.32(1.19) | 87.80(1.86) | 64.1(7.4) | 11.7s 250 SGD/EKF but sparser
EKF 89.27(1.48) | 86.67(2.71) | 47.9(9.1) | 13.2s 50

AMSGrad | 9104(047) | 88.32(080) | 168(71) | e40s | 2000  mModelsand faster
Adam 9047 (0.34) | 87.79(044) | 83(3.5) | 639s | 2000  (CPU:Apple M1 Pro)
DiffGrad | 90.05(0.64) | 87.34(1.14) | 7.4(45) | 63.9s | 2000

e Fluid-damper example: group-Lasso regularization g(v)) = 7, >, ||7]|2
to zero entire rows and columns and reduce state-dimension automatically

100 T T T T

—_— T
< 9"% good choice: n, = 3
& I ——BFR (test data) (best fit on test data)
M L —BFR (training data)
final model order
0 . . . .
107 10 102 107 10° 10’

group-lasso regularization parameter 7,
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TRAINING RNNS BY SEQUENTIAL LS AND ADMM

¢ Fluid-damper example: quantization of 0, 6, for simplifying model arithmetic
+leaky-RelLU activation function

g(0;) = Q = multiples of 0.1 between -0.5 and 0.5

+o00  otherwise

{ 0 if, € Q

- BFR =84.36 (training), 78.43 (test) <« NAILS w/ quantization
- BFR=17.64 (training), 12.79 (test) < no ADMM, just quantize after training
- Training time: &~ 12 s (w/ quantization), 7 s (ho ADMM)

o Note: no convergence to a global minimum is guaranteed

o NAILS/LM = flexible & efficient algorithm for training control-oriented RNNs

"Model Predictive Control" - @
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TRAINING RNNS - SILVERBOX BENCHMARK

(Wigren, Schoukens, 2013)

e Silverbox benchmark (Duffin oscillator): 10 traces of ~8600 data used for
training, 40000 for testing

output [V]

trpining [dat

u + 1 2
x ms?+ds + ky
fay®
(b)

(Schoukens, Ljung, 2019)

test data

. .
0 2 4 6 8 10 12
sample «10%

Data download: http://www.nonlinearbenchmark.org
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TRAINING RNNS - SILVERBOX BENCHMARK

¢ RNN model: 8 states, 3 layers of 8 neurons, atan activation, no I/O feedthrough

¢ [nitial-state: encode x as the output of a NN with atan activation, 2 layers of 4
neurons, receiving 8 past inputs and 8 past outputs

M N-1 Y-1

mln(ﬁ,“ 02,0y 10701‘70 + E E £ ykayk :
4 =1 k=0 o v= |43

Jo Jo,J N Jo,J -

s.t. Thyr = Jo(@y,uz, 02), 9, = fy(wy,uy,0,) .

2 (0 :
‘L() - fl’o(Ujve-Tn) uU—_g8

o (y-regularization: r(0,,, 05, 0y) = %21 (162]13 + 1164 113) + %2020 113
e Total number of parameters ng, + ng, + no,, =296+225+128=649

e Training: use NAILM over 150 epochs (1 epoch = 77505 training samples)
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TRAINING RNNS - SILVERBOX BENCHMARK

e |dentification results on test data 2:

identification method RMSE [mV] BFR [%]

ARX (ml) [1] 16.29 [4.40] 69.22 [73.79] [1] Ljung, Zhang, Lindskog, Juditski, 2004
NLARX (ms) [1] 8.42[4.20] 83.67[92.06] [2] Ljung, Andersson, Tiels, Schén, 2020
NLARX (mlc) [1 1.75[1.70] 96.67 [96.79]

NLARX (ms8c50) [1] 1.05 [0.30] 98.01 [99.43] [3] Beintema, Toth, Schoukens, 2021
Recurrent LSTM model [2] 2.20 95.83

SS encoder [3] (ny, = 4) [1.40] [97.35]

NAILM 0.35 99.33

o NAILM training time = 400 s (MATLAB+CasADi on Apple M1 Max CPU)

i
o e . . . — 10F
e Repeat training with ¢; -regularization: = . R
g g: NAGM  gLSTM
Z MER N
05F \
5 10 20 40 80 160 320 640 1280

number of model parameters

2Trained RNN: http://cse.lab.imtlucca.it/~bemporad/shared/silverbox/rnn888.zip

ghts reserved 39/85
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TRAINING RNNS

e Computation time (Intel Core i9-10885H CPU @2.40GHz):

EKF /time step | seq. LS /epoch
language autodiff CPU time CPU time
Python 3.8.1 PyTorch ~30 ms (N/A)
Python 3.8.1 JAX ~ 9 ms ~10s
Julia 1.7.1 Fluxjl ~ 2 ms ~08s
MATLAB R2021a | CasADi ~ 0.5ms ~0.1s

Several sparsity patterns can be exploited in EKF updates
(supported by ODYS EKF and ODYS Deep Learning libraries)

Note: Extension to gray-box identification + state-estimation is immediate

Note: RNN training by EKF can be used to generalize output disturbance
models for offset-free set-point tracking to nonlinear I/0O disturbance models

"Model Predictive Control" - @
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DEEP NONLINEAR MPC FOR AUTONOMOUS DRIVING

¢ Goal: track desired longitudinal speed (v, ), lateral
displacement (e,) and orientation (A W)

Y

¢ Inputs: wheel torque T}, and steering angle §

e Constraints: on e, and lateral displacement s (for
obstacle avoidance) and manipulated inputs T, §

e Sampling time: 100 ms

. VxCOSAY — v, sin My
2= 1—xe,
¢ Model: bicycle model &y = vy sin A + vy cos A

AJ:(A)-KS'

kinematics is simple to model (white box)

- tire forces harder to model + stiff wheel slip ratio
dynamics (k¢, k) = small integration step required

- learn a black-box neural-network model !

"Model Predictive Control" - ©
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DEEP NONLINEAR MPC FOR AUTONOMOUS DRIVING

ODYS Deep Learning Toolset used to learn a neural-network with input
(Vg, Uy, w, kg, kr, Ty, 6) @k and output (v, vy, w, ky, ky) @k + 1

Data generated from high-fidelity simulation model with noisy measurements,
sampled @10Hz

Neural network model: 2 hidden layers, 55 neurons each

vehicle body states

e Advantages of black-box (neural network) model: —
201y [m/s] —— measured
- No physical model required describing 1
tire-road interaction o
- directly learn the model in discrete-time 050 —
(Ts = 100 ms) 02 fﬂﬁﬂ e Bt
06 w [rad/s]
> 7 T : -
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DEEP NONLINEAR MPC FOR AUTONOMOUS DRIVING

e Model validation on test data:

one-step ahead prediction on test data open-loop predictions
oy —— true 7 —— tue
EZDJ WWI’M«— ann £ 151 Mﬂ_ e
5 .- X
10 10
7 05 —— true 7 o3 —— tue
E o0 —+— ann E oo —— ann
2 -05 vy v -} 5B
7 o0 e e MR o o I a1
2 oo — am T —— amn
T -025 W & o
| N W EE | ¢ [ e .
= 00000 —ann = ——"ann
x 1 x
=0.0001 -0.0001
- 0025 —— true - —— true
T 0000 S — i 0.025 B
¥ -0.025 vy 2
0.000
o 20 40 60 80 100 0.0 0.5 10 15 20 25 3.0
sample time [s]

e C-code (network+Jacobians) automatically generated for ODYS MPC

e A automatic E E Embedded MPC
PyTorch C-code gen
scikit-learn

- __ ODvg %

ODYS-NN training

porad. All rights rese
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DEEP NONLINEAR MPC FOR AUTONOMOUS DRIVING

e Closed-loop MPC: overtake vehicle #1, keep safety distance from vehicle #2

SQP iterations

& [deg] T, [Nm] tot #QP iterations
1000
—

500

“o 0 2 % 4 ) 10
tme [s]

Ay [deg]

=ym(k)

ykik)

s} — )
0 A==

time [s] time [s] time [s]
¢ Good reference tracking, constraints on e, v,, satisfied, ¢

smooth command action
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DIRECT DATA-DRIVEN MPC

optimization
algorithm

process

set-points outputs
—p —p
r(?) y(t)

T measurements

e Canwe design an MPC controller without first identifying a model of the
open-loop process ?

"Model Predictive Control
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DATA-DRIVEN DIRECT CONTROLLER SYNTHESIS

_____________________________

e Collectasetof data {u(t),y(t),p(¢)},t=1,...,N
o Specify a desired closed-loop linear model M fromr toy
e Computer,(t) = M#y(t) from pseudo-inverse model M?#* of M

o |dentify linear (LPV) model K, from e,, = r,, — y (virtual tracking error) to u
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DIRECT DATA-DRIVEN MPC

e Design alinear MPC (reference governor) to generate the reference r

p
_— -l e 1 e d y
! U~ Yo.
70 — MPC % Kp — 5
desired | M T_) l !
reference i 1 Linear prediction model
i - (totally known 1)
A 4
[ «-'*1'—"—'*———-—*-_1
T: l
T0 MPC ‘*{ M Yy
! .
| Kj Uu
| M |

o MPC designed to handle input/output constraints and improve performance

"Model Predictive Control
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DIRECT DATA-DRIVEN MPC - AN EXAMPLE

o Experimental results: MPC handles soft constraints on u, Au and y Al

(motor equipment by courtesy of TU Delft)

0 u
45 5
v
with MPC —
o without MPC Zo
| 5L . . .
=35 5 10 15 20 25 30
B
= Au
s Ll 0.5 T
= b "N
S o0 {
25 a V W
0.5 - -
2 5 10 15 20 25 30
5 10 15 20 25 30 Time [s]
Time fs] )

desired bracking cownstrainks on meu&

performance achieved tncrements satisfied

No open-loop process model is identified to design the MPC controller!
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OPTIMAL DIRECT DATA-DRIVEN MPC

e Question: How to choose the reference model M ?

_____________________________

¢ Canwe choose M from data so that K, is an optimal controller ?

"Model Predictive Control" - © 2023 A. Bemporad. All rights reserved 49/85



OPTIMAL DIRECT DATA-DRIVEN MPC

o |dea: parameterize desired closed-loop model M (#) and optimize

N-1
min J (6) N Z Wy (r(t) — yp(6, 1)) + WauAul(0,t) + Wae(u(t) — uy(6,1))*

Parformav\ce index identification error

e Evaluating J(6) requires synthesizing K, (¢) from data and simulating the
nominal model and control law

Yp(0,1) = M(O)r(t)  up(8,t) = Kp(0)(r(t) — yp(0,1))
Auy(0,t) = up(0,t) —up(6,t — 1)

e Optimal 6 obtained by solving a (non-convex) nonlinear programming problem
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OPTIMAL DIRECT DATA-DRIVEN MPC

e Results: linear process

z—0.4
22 +0.152 — 0.325

G(z) =

Data-driven controller only 1.3% worse than
model-based LQR (=SYS-ID on same data +
LQR design)

7(t), ylt)

e Results: nonlinear (Wiener) process

yr(t) = G(2)u(t) o V
y(t) = |yc(t)|arctan(yr(t)) £ o
The data-driven controller is 24% better than ;
LQR based on identified open-loop model ! N O
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DATA-DRIVEN OPTIMAL POLICY SEARCH

e Plant + environment dynamics (unknown):

- s¢ states of plant & environment
Si11 = h(s Uy, d .
t+1 (3¢, pe, e, dy) - p: exogenous signal (e.g., reference)

- wu control input

- d¢ unmeasured disturbances

e Control policy: 7 : R®s+t"™» — R™= deterministic control policy

Ut = W(Stvpt)
e Closed-loop performance of an execution is defined as
o0
joo (71—7 S0, {pb dZ}Z:O) = Z P(Séap& 77(347]7[))
£=0

p(se,pe, m(se,pe)) = stage cost

"Model Predictive Control" - © 2023 A. Bemporad. All rights reserved 52/85



OPTIMAL POLICY SEARCH PROBLEM

e Optimal policy:
7 = argmin, J(7)

J(r) = ]Eso,{pbdz} [Too (7, S0, {pe, de})] expected Par-formomce

o Simplifications:

- Finite parameterization: m = 7 (s¢, p+) with K = parameters to optimize
L—1
. . . L—-1
- Finite horizon: Ji (7, so, {pe,de}e—o ) = Z p(se,pe, (se,pe))

£=0

e Optimal policy search: use stochastic gradient descent (SGD)

K+ Ki_1— O[tD(thl)

with D(K;_) = descent direction
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DESCENT DIRECTION

o The descent direction D(K;_1) is computed by generating:

() around the current state St

- N, perturbations s
- N, random reference signals rm of length L,

- Ngrandom disturbance signals déh) of length L,

N. N, N, p \\/\ )

N,
k
Kt 1 vI(u7L TK; 1780 7{T ) g)}) m\)\/\ >
=1 j=1 k=1 "

SGD step = mini-batch of size M = N - N,. - Ny
e Computing V g J1, requires predicting the effect of m over L future steps

e We use alocal linear model just for computing V i J1,, obtained by running
recursive linear system identification

"Model Predictive Control" - ©
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OPTIMAL POLICY SEARCH ALGORITHM

e Ateachstept:
1. Acquire current s;
2. Recursively update the local linear model
3. Estimate the direction of descent D(K;_1)

4. Update policy: K¢ < K¢t—1 — v D(K¢—1)

e If policy is learned online and needs to be applied to the process:

- Compute the nearest policy K to K that stabilizes the local model

Kf = argmin|[K — K73

s.t. K stabilizes local linear model Linear matrix inequality

e When policy is learned online, exploration is guaranteed by the reference r;

"Model Predictive Control
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SPECIAL CASE: QUTPUT TRACKING

® Xy = [yt; Yt—15 « -y Yt—nyy Ut—1, Ut—2, ~~~,Ut7n,;]

Au; = up —ups—1 controlinput increment

Stagecost: || yrr —7e [I5, + [ Aur % + [ aria [13,

Integral action dynamics ¢;11 = g+ + (y¢+1 — 7¢)

Tt
St = , Pt =Tt
qt

Linear policy parametrization:

KS
i (86, 1) = —K° -84 — K" -1y, K= [Kr}
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EXAMPLE: RETRIEVE LOR FROM DATA

—0.669 0.378 0.233 ~0.295
Tiy1 = [—0288—0147—0638}xt4—[—0325}ut
—0.337  0.589 0.043 —0.258
model is unknown
ye = [-1.139 0.319 —0.571] x4

Online tracking performance (no disturbance, d; = 0):

4 T T
Qy =1
2 f — R=0.1
| | [ Qq =1
! i |
| |:| L 1 ! | 'l
0 ‘ NI : 5'\ i : :
) | n; no L
—9 | ‘ ! ro 3 3 20
[ rt
Ng Ny Ng
4 ‘ ‘ --- Y 50 1 10
0 10000 20000 30000
Time t
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EXAMPLE: RETRIEVE LOR FROM DATA

Evolution of the error || K; — Kop |2

4 — K= Kopt [[;
2 |
O |
0 10000 20000 30000

Time t

Ksap = [—1.255,0.218,0.652, 0.895, 0.050, 1.115, —2.186]

Kopt = [—1.257,0.219,0.653,0.898,0.050, 1.141, —2.196]

"Model Predictive Control" - © 2023 A. Bemporad. All rights reserved
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NONLINEAR EXAMPLE

B nputs
I States

model is unkinown
Cooling Jacket

Reaction Feed:
ATTB - concentration: 10kg mol/m?

Product - temperature: 298.15K

Continuously Stirred Tank Reactor (CSTR)

apmonitor.com

T:T—l—nT7 CA:dA+nc, nr, nc ~N(0,6%), o=0.01

0 0 0 0

Qy_[1 0] R0l Qq_[o.m o]

"Model Predictive Control
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NONLINEAR EXAMPLE

I nputs
n; no L
Online learning B) 3 10 I States
concentration C' 4 and reference Tt Ng N, N, T Cooling Jacket
-0 v g9 3
9l 50 20 20 Reaction
A—B
= 8 Product
Validation phase
i n— 1
5, |
: Costof Kggp = 4.3 - 103 Continuously Stirred Tank Reactor (CSTR)

temperature T°
330

Jwfly -

290

(courtesy: apmonitor.com)

coolant temperature T
320 T

300 o
8
) -6

260 - 4

SGD beats SYS-ID + LQR

0 5000 10000 |
Time t 0 10000 20000
Time t

e Extended to switching-linear and nonlinear policy, and to collaborative
learning

"Model Predictive Control
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MPC CALIBRATION PROBLEM

e The design depends on a vector = of MPC parameters

e Parameters can be many things:
- MPC weights, prediction model coefficients, horizons
- Covariance matrices used in Kalman filters

- Tolerances used in numerical solvers

o Define a performance index f over a closed-loop simulation or real experiment.
For example:

T
F@) =" lly(t) = r@)I?
t=0

(Eracking quality)

e Auto-tuning = find the best combination of parameters by solving
the global optimization problem
min f(x)
23 A. Bemporad. All rights reserved ’ 61/85
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GLOBAL OPTIMIZATION ALGORITHMS FOR AUTO-TUNING

What is a good optimization algorithm to solve min f(z)?

¢ The algorithm should not require the gradient V f (x) of f(x), in particular if
experiments are involved (derivative-free or black-box optimization)

e The algorithm should not get stuck on local minima (global optimization)

o The algorithm should make the fewest evaluations of the cost function f
(which is expensive to evaluate)
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AUTO-TUNING - GLOBAL OPTIMIZATION ALGORITHMS

e Several derivative-free global optimization algorithms exist:

- Lipschitzian-based partitioning techniques:
e DIRECT (Dlvide in RECTangles)
e Multilevel Coordinate Search (MCS)

Response surface methods
o Kriging ,DACE
e Efficient global optimization (EGO)
e Bayesian optimization

- Genetic algorithms (GA)

Particle swarm optimization (PSO)

o New method: radial basis function surrogates + inverse distance weighting

(GLIS) cse.lab.imtlucca.it/~bemporad/glis
‘\ ﬁ pip install glis

23 A. Bemporad. All rights reserved 63/85
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cse.lab.imtlucca.it/~bemporad/glis

AUTO-TUNING - GLIS

25

e Goal: solve the global optimization problem "o 1o

min, f(z) .
st. f<zx<u
g(x) <0

o Step #0: Get random initial samples z1, ...,z N, v
(Latin Hypercube Sampling) N R B

o Step #1: given N samples of f atzq, ...,z N, build the surrogate function

¢ = radial basis function

N
flz) = Z;@z‘(ﬁ(f”x — zil|2) Example: ¢(ed) = 1+(1ed)2

(inverse quadratic)
Vector 3 solves f(x;) = f(x;)foralli=1,..., N (=linear system)

o CAVEAT: build and minimize f(:z:z) iteratively may easily miss global optimum!
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AUTO-TUNING - GLIS

25

e Step #2: construct the IDW exploration function

z2(x) = %AF tan~! (72?’:11%@)) E
orOifz € {z1,...,zn}
o llz—i]?
where U}z(l') = m

AF = observed range of f(z;)
e Step #3: optimize the acquisition function

TN41 = argmin f(x) — 02(x) 6= exploitation vs
st. £<x<u,g(x)<0 exploration tradeoff

to get new sample x 11

e |terate the procedure to get new samples zny 42, ..., TN,

"Model Predictive Control" - @
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GLIS VS BAYESIAN OPTIMIZATION

200

100

1500

1000 A\

500

ackley ; adjiman
0
——— -
A\ . 2 \
10 20 30 40 50 60 5 10 15
brani ;
branin 5000 camelsixhumps
4000
2000
0

5 10 15

hartman6

«10% stepfunction2

styblinski-tang5

=

5 10 15 20
number of function evaluations

Control" -

25

10 20 30 40 50 60
number of function evaluations

problem n BO [s] GLIS [s]
ackley 2 2939 313
adjiman 2 3.29 0.68
branin 2 9.66 117
camelsixhumps 2 4.82 0.62
hartman3 3 26.27 335
hartmané 6 54.37 8.80
himmelblau 2 7.40 0.90
rosenbrock8 8 63.09 13.73
stepfunction2 4 1172 1.81
styblinski-tang5 5 37.02 6.10

Results computed on 20 runs per test

BO = MATLAB's bayesopt fcn
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AUTO-TUNING: MPC EXAMPLE

¢ We want to auto-tune the linear MPC controller

50—1
min 3" (g — (1)) + (V> (g — )
k=0
s.t.  xp41 = Az + Bug

Ye = Cay,
—15<u, <15 iy
ur = un,, Vk=Ny,...,N—1 t LN, t+N

Calibration parameters: = = [log,, W2", N,

Range: —5 < z; <3and1 < x5 <50

e Closed-loop performance objective:
L 1
fl)=> () —rt)?+ 5 (u(t) —ult ~ 1))+ 2N,
g ~~
=0 frok well swadl QY

swmootle control ackion
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AUTO-TUNING: EXAMP

15 out‘put

1
0.5
0
-0.5

tput
reference | 7

best function value
220

200 g

180 g

10 20 30 40 50 60

input

70

0.5+

.1 5 L L L L L L
0 10 20 30 40 50 60

e Result: 2* = [—0.2341, 2.3007]

"Model Pre

70

23 A. Bemporad. All rights reserved

80

90

60
100 0 50 100 150

function evaluations

WAu = (.5833, N,, = 2
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MPC AUTOTUNING EXAMPLE

e Linear MPC applied to cart-pole system: 14 parameters to tune

- sample time

- weights on outputs and input increments
- prediction and control horizons

- covariance matrices of Kalman filter

- absolute and relative tolerances of QP solver

T
Closed-loop performance score: J = / [p(t) — pret(t)| + 30| (2)|dt
0

MPC parameters tuned using 500 iterations of GLIS

Performance tested with simulated cart on two hardware platforms
(PC, Raspberry PI)

"Model Predictive Control" - ©
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MPC AUTOTUNING EXAMPLE

MPC optimized for desktop PC MPC optimized for Raspberry PI

1

ition (m)

Angle (deg)
% |
Angle (deg)
g

Force (N)
Force (N)

optimal sample time = 6 ms optimal sample time = 22 ms

e MPC parameters tuned by GLIS global optimizer (500 fcn evals)
e Auto-calibration can squeeze max performance out of the available hardware

o Bayesian optimization gives similar results, but with larger computation effort

3 A. Bemporad. All rights reserved 70/85
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AUTO-TUNING: PROS AND CONS

e Pros:

sy Selection of calibration parameters x to test is fully automatic
ss Applicable to any calibration parameter (weights, horizons, solver tolerances, ...)

sl Rather arbitrary performance index f(x) (tracking performance, response time,
worst-case number of flops, ...)

e Cons:

i@ Need to quantify an objective function f(z)
i® No room for qualitative assessments of closed-loop performance

i® Often have multiple objectives, not clear how to blend them in a single one

3emporad. All rights reserved 71/85
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ACTIVE PREFERENCE LEARNING

Objective function f(x) is not available (latent function)

We can only express a preference between two choices:

—1 if z1 “better” than x4 [f(z1) < f(z2)]
m(x1,22) =¢ 0  ifx; “asgoodas” z [f(z1) = f(x2)]
1 if zo “better” than z; [f(x1) > f(x2)]

We want to find a global optimum z* (=“better” than any other x)

find 2* suchthat w(2*,2) <0, Vz e X, <z <u

Active preference learning: iteratively propose a new sample to compare

Key idea: learn a surrogate of the (latent) objective function from preferences

3 A. Bemporad. All rights reserved 72/85
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PREFERENCE-LEARNING EXAMPLE

o Realisticimage synthesis of material appearance are based on models with
many parameterszy,...,z,

¢ Defining an objective function f(x) is hard, while a human can easily assess
whether an image resembles the target one or not

o Preference gallery tool: at each iteration, the user compares two images
generated with two different parameter instances
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ACTIVE PREFERENCE LEARNING ALGORITHM

latent function f(x)

e Fitasurrogate f(x) that respects the preferences expressed by the decision
maker at sampled points (by solving a QP)

e Minimize an acquisition function f(x) — 6z(x) to get anew sample 1

e Compare x 1 to the current “best” point and iterate
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SEMI-AUTOMATIC CALIBRATION BY PREFERENCE-BASED LEARNING

Use preference-based optimization (GLISp) algorithm for semi-automatic

tuning of MPC

Latent function = calibrator’s (unconscious) score
of closed-loop MPC performance

GLISp proposes a new combination z 1 of MPC
parameters to test

By observing test results, the calibrator expresses a

preference, telling if x 11 is “better”, “similar”, or
“worse” than current best combination

Preference learning algorithm: update the
surrogate f(z) of the latent function, optimize the
acquisition function, ask preference, and iterate

3 A. Bemporad. All rights reserved

testing &
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PREFERENCE-BASED TUNING: MPC EXAMPLE

output

e Semi-automatic tuning of "
r = [log,, WA N,]inlinear MPC os

50—1
. 2 A 2
min 3 (a1 — 70+ (VA% —wp1))? ol e
k=0

s.t.  xp41 = Az + Buy

ye = Cxy, '
—15<u, <15 °
up = un,, Vb= Ny,...,N -1 !

) 10 2 3 40 5 60 70 8 90 100

e Same performance index to assess closed-loop quality, but unknown:
only preferences are available

e Result: W2% = (.6888, N,, = 2
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PREFERENCE-BASED TUNING: MPC EXAMPLE

50 points during preference learning Best function value
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tested combinations of MPC params (latent) performance index
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PREFERENCE-BASED TUNING: MPC EXAMPLE

e Example: calibration of a simple MPC for lane-keeping (2 inputs, 3 outputs)

vcos(f + 0) A $0

vsin(6 + 0) /

6 = Lvsin(6) i

e Multiple control objectives:

» o« » o«

“optimal obstacle avoidance”, “pleasant drive”, “CPU time small enough’, ...
not easy to quantify in a single function

e 5MPC parameters to tune:

- sampling time
- prediction and control horizons

- weights on input increments Av, A§

"Model Predictive Control" - @
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PREFERENCE-BASED TUNING: MPC EXAMPLE

e Preference query window:

T,=03325, N, =16,N_ =17, log(q,,,) = 0.06,
109(d,)) = 2024, 0.0867 s
vehicle
obstacle
. 6 m— vechicle OA
é W obstacle OA
-3
0
0 50 100 150 200 250
80
=l Refe
E70 eference
gso
> 50
40
0 50 100 150 200 250
50
25
=0 _/\/\/—_
w
-25
-50
0 50 100 150 200 250
X, [m]
"Model Predictive Control" - © 2023 A. Bemporad. All

T,=0.2435,N, =12,N_ =17, log(q,,,) = 0.19,
log(g,) = 0.70, ., :0.0846 s
obstacle
. 6 m— yehicle OA
E m— obstacle OA
=3
0
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80 put
=l Ref
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40
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MPC closed-l..  —

u Which tuning do you prefer ?
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PREFERENCE-BASED TUNING: MPC EXAMPLE

e Convergence after 50 GLISp iterations (=49 queries):

i —venie Optimal MPC parameters:

— —— obstacle

E 2 m vehicle OA

= :], = obstacle OAﬁ
F - g s o o - sample time =85 ms (CPU time = 80.8 ms)
75

o ‘ [ [ = - prediction horizon =16
o ] - control horizon =5
50 T i | I 4 . _
50 100 150 200 250 Welght on AU - 182
ol ‘ [ [ [ - weighton A§=8.28
S
ot
5‘0 1(; 1‘50 260

-20
0 0 250
X, [m]

o Note: no need to define a closed-loop performance index explicitly!

v [km/hr]
3

e Extended to handle also unknown constraints
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CORNER-CASE DETECTION



CORNER-CASE DETECTION PROBLEM

e Goal: detect undesired simulation scenarios (=corner-cases)

Let = = parameters defining the scenario, Xopp = operational design domain
z € Xopp C R"”

critical scenario = vector z* for which the closed-loop behavior is critical

Example:
- 1z = (initial distance between ego car and obstacle, obstacle acceleration, ...)

- Critical scenario: time-to-collision is too short, excessive jerk of ego car, ...

Key idea: use global optimizer GLIS to generate critical corner-cases

z* € argmin  f(x) f(z) = criticality of closed-loop simulation (or
veXopp experiment) determined by scenario z
(the smaller f (), the more critical  is)

st. (<zx<u

edictive Control
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CORNER-CASE DETECTION: CASE STUDY

e Problem: find critical scenarios in automated driving w/ obstacles

e MPC controller for lane-keeping and obstacle-avoidance based on simple
kinematic bicycle model

& ¢ =vcos(f +9)
Wy =vsin( + 9)
_ wsin(d)

L

(xg,wy) = fromk—wl«eei FOSEHOV\

e Black-box optimization problem: given k obstacles, solve

. SV, SV, @7 _______
Zglwlgu Z d:cf crltlcal dwf ,critical (3?) I

s.t. other constraints
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CORNER-CASE DETECTION: CASE STUDY

e Cost function terms to minimize: for each obstacle #: define

teg“lin div’l(xyt) collision min time of collision with #i
collision
SV,i i . . . .-
dzf,lcritical ('T) =4qL ~ Igollision & Leoliision  collision with other #HjF Hi
> di‘f;’(x,t) ~ Zeollision no collision
tETsim
: SV, 7
min dw’ (I t) collision
t€Teollision ’
dSV,i ()_ w ~ 1&1 .
w g critical T) = fsafe collision collision
SV, i
Z dwfl (l‘, t) ~ Lecollision
tETsim
IZollision =true if Jtec Tymst Yy o ____

SV,i SV, i
(de (z,1) < L)&(dwf (z, 1) < W)

I
-—

&Y (wscone, 1) '

Ty

i [dfy H(Tscones 1)
O

I

I

. h
Zeolision = true if Jh st Zgison = true
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CORNER-CASE DETECTION: CASE STUDY

e Logical scenario 1: GLIS identifies 64 collision cases within 100 simulations

wy

. x
iter U T T T T T w
T vy Tio vy T5s vy | e A
51 | 15.00 | 30.00 | 44.14 | 10.00 | 49.10 | 47.39 | i EwD OEp,,
79 | 2809 | 3000 | 7029 | 1000 | 7479 | 31.74 i
40 | 3430 | 3000 | 60.59 | 1000 | 77.80 | 3597 | vl e

red = optimal solution found by GLIS solver .
: Y Fgo car changes lane to avoid #1, but

cannot brake fast enough to avoid #2

e Logical scenario 2: GLIS identifies 9 collision cases within 100 simulations

_ z wy
tter x?cl 'u? te [
28 1257 | 4694 | 16.75 =
16 17.53 | 47.48 | 23.65 . _SV_ _%___' ______
88 4454 | 41.26 | 16.02 Wl lane 1

T
Ego car changes lane to avoid #1, but cannot decelerate
in time for the sudden lane-change of #1

red = optimal solution found by GLIS solver
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LEARNING-BASED MPC: FINAL REMARKS

e Learning-based MPC is a formidable combination for advanced control:

- MPC/ online optimization is an extremely powerful control methodology

- ML extremely useful to get control-oriented models and control laws from data

e |gnoring ML tools would be a mistake (a lot to “learn” from machine learning)

e ML cannot replace control engineering:
- Black-box modeling can be afailure. Better use models when possible
- Approximating the control law can be a failure. Don’t abandon online optimization

- Pure Al-based reinforcement learning methods can be also a failure

e A wide spectrum of research opportunities
and new practices is open !

past [ future

-
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