MODEL PREDICTIVE CONTROL

LEARNING-BASED MPC

Alberto Bemporad

http://cse.lab.imtlucca.it/~bemporad/mpc_course.html

SCHOOL

I MT FOR ADVANCED
STUDIES

LUCCA

2025 A. Bemporad. Al

http://cse.lab.imtlucca.it/~bemporad/mpc_course.html

COURSE STRUCTURE

e Learning-based MPC (or data-driven MPC)

2/110

MACHINE LEARNING AND CONTROL ENGINEERING

mechanical design

complex
analysis

v
frequency domain

< fj s

0-1950

193

Bode, Nyquist
root locus

robust control

| linear
algebra

1960-1970

pole-placement

LR

an on

Kalman filtering

"Model Predictive Control” - © 2025 A. Bemporad. Al rights reserved.

state-space

1970

functional
analysis

numerical
optimization

>1990

Lyapunov methods

nonlinear control
i~

[N~

{ &=

1980

semidefinite
programming

LMI-based methods

stability analysis

feedback synthesis

robust control

learning-based control

machine
learning
(ML)

model predictive control (MPC)

MPC AND ML

e MPC and ML = main R&D trends in industry for control!

model predictive control machine learning

— 1970 1975 1980 1955 190 1995 2000 WS W10 005
1970 1975 1980 1965 1990 1965 2000 2005 2010 2015

nonlinear control system identification PID control
//\/\/v

(source: https://books.google.com/ngrams)

"Model Predictive Control" - © 2025 A. Bemporad. All rights reserved. 4/110

MACHINE LEARNING (M

e Massive set of techniques to extract mathematical models from data

- Linear PCA Ridge classification
. . o Logistic regression
- Nonlinear PCA [Tt ST EI 7 L -
- Autoencoders Reduction Naive Bayes classification Classification

- Support vector machines
- K-nearest neighbors

- Decision trees
H - Ensemble methods (bagging,
Unsuper.vised MaCh ine Supervised bootstrap, random forests)
Learning Learning Learning Neural networks

Clustering Regression

Semi-
Supervised
Learning Linear regression (least-squares,

- K-means clustering ridge regression, Lasso, elastic-net)
- Density-based spatial clustering Reinforcement - Kernel least-squares
- Learning - Support vector regression

- Gaussian process regression

"Model Predictive Control” - © 2025 A. Bemporad. All rights reserved. 5/110

MACHINE LEARNING (ML)

e Good mathematical foundations from artificial intelligence, statistics,
optimization

e Works very well in practice (despite training is most often a nonconvex
optimization problem...)

e Used in myriads of very diverse application domains

e Availability of excellent open-source software tools also explains success
scikit-learn, TensorFlow/Keras, PyTorch, JAX,Flux.j1,.. @ python julia

6/110

MPC DESIGN FROM DATA

1. Use machine learning to get a prediction model from data (system
identification)

- Autoencoders, recurrent neural networks (nonlinear models)
- Online learning of feedforward/recurrent neural networks by EKF

- Piecewise affine regression to learn hybrid models

2. Usereinforcement learning to learn the MPC law from data

- Q-learning: learn Q-function defining the MPC law from data

- Policy gradient methods: learn optimal policy coefficients directly from data using
stochastic gradient descent

- Global optimization methods: learn MPC parameters (weights, models, horizon,
solver tolerances, ...) by optimizing observed closed-loop performance

"Model Predictive Control" - © 2025 A. Bemporad. All rights reserved. 7/110

LEARNING PREDICTION MODELS FOR MPC

"All models are wrong, but some are useful."

(George E. P. Box)

CONTROL-ORIENTED NONLINEAR MODELS

e Black-box models: purely data-driven. Use training data to fit a prediction
model that can explain them (need good data to get a good model)

€z prediction i
data ? % § % % % model

e Physics-based models: use physical principles to create a prediction model
(fewer parameters to learn, better generalizes on unseen data)

- L
1= k(e + Wegr — kepr) + P

- prediction Y
= ha{keps = Wegr = We t W) = s ‘

#r= baflens = Wesr = Wet W) = e model
P.= YP. -1 P)

e Gray-box (or physics-informed) models: mix of the two, can be quite effective

"Model Predictive Control" - © 2025 A

emporad. Al rights

8/110

CONTROL-ORIENTED MODELS

e Complex model = complex controller (controller design and evaluation)
Example: Model Predictive Control (MPC)

e Typically look for small-scale models (e.g., < 10 states/inputs/outputs)
with a limited number of coefficients (vs. Large Language Models: 2-300 B params)

e Limit nonlinearities as much as possible (e.g., avoid very deep neural networks)

o Need to get the best model within a poor model class from a rich dataset
(= limited risk of overfit)

e Computation constraints: solve the learning problem using limited resources
(=our laptop, no supercomputing infrastructures)

Solving system identification problems requires different

algorithms compared to typical machine learning tasks

"Model Predictive Control" - © 2025 A. Bemporad. All rights reserved. 9/110

NONLINEAR SYS-1D BASED ON NEURAL NETWORKS

o Neural networks proposed for nonlinear system identification since the ’90s

NNARX models: use a feedforward neural network to approximate the
nonlinear difference equation y; & N (Ys—1, -« s Yt—n, s Ut—1,- - - > Ut—ny)

Neural state-space models:

- w/state data: fit a neural network model ;41 & Ny (ze,ut), yr = Ny(x¢)

- /O dataonly: set x; = value of an inner layer of the network
such as an autoencoder

Alternative for MPC: learn entire prediction

Yt+k = hk(xtvutv' o 7ut+k7—l)7 k= 1; .- 'aN : S

Recurrent neural networks are more appropriate for accurate open-loop
predictions, but more difficult to train (see later ...)

10/110

NLMPC BASED ON NEURAL NETWORKS

e Approach: use a neural network model for prediction

recurrent
neural
network

T \
'
J /xm
K)

set-points
—-

(1)

model-based optimizer

i nonlinear]
i optimization :
algorithm

process

inputs outputs
—_—
u(t) y(t)

state
o MPC design workflow:
collect
data neural model

"Mode

Predictive Control" - © 2025 A. Bemporad. All rights res

measurements

NLMPC controller

11/110

LEARNING NONLINEAR STATE-SPACE MODELS FOR MPC

e |dea: use autoencoders and artificial neural networks to learn a nonlinear

state-space model of desired order from input/output data

U1y =ovy U

ANN with hourglass structure

odel Predictive Control" - © 2025 A. Bemporad. All rig

Yy~ Yknt1 Yi+1 Tv Ykn+2
OOOOOOQ (0]0]0]0]0]0]0)
decoder| * D / D
0000@ é bopd
t
Tp——r 8 —>x7€+1<—>1’k+1
1N O state t
/OOOO\ = update QOOO
encoder [/ E map E
0000000 0000000
Yk1r =5 Yk Uy, Ypy «eey yk—n+1
ulﬁ RS uk—m+1

12/110

LEARNING NONLINEAR STATE-SPACE MODELS FOR MPC

Ok Ok

¢ Training problem: choose n,, s, n, and solve oooéooo Ooogooo
. d y. Nd
. = - . Oooo o oooo
min o (51(01“01@) +£1(Ok41, Ok+1)) , Q — s e—smin
,d, — 1
k=kg N . OOOO Q state map QOOQ
+B8L2(x} 1 Tht1) +103(Oky1,OF 4 1) SO e
3000000 0000000
s.t. xkze(lk,l),kzko,...,N I] IT
Iz+l :f(a:k,uk), k:ko,...,N—l Ok:[y; .”Hy;c_m]k, &
Oy = d(x), OF = d(x}), k = ko,..., N /
» Tk k7 ’ ’ In=[y}, .. yéinaJrl uj, "-“;c—anrl]l

¢ Model complexity can be reduced by adding group-LASSO penalties

|+ B2k, uk)uk

e Quasi-LPV structure for MPC:set f(zk,ux) = A(zk,ur)]
[F]

(A;j, B;j, C;; = feedforward NNs) ye = Claxur)

8,8
Hx P

o Different options for the state-observer:

- use encoder e to map past I/O into x, (deadbeat observer)
- design extended Kalman filter based on obtained model f, d
- simultaneously fit state observer Zx41 = s(zk, uk, yx) With loss L4 (Zx41, Tr41)

"Model Predictive Con

trol" - © 2025 A. Bemporad. All rights reserved. 13/110

LEARNING NONLINEAR NEURAL STATE-SPACE MODELS FOR MPC

e Example: nonlinear two-tank benchmark problem

==} 21 (t+1) = 21(t) — ki\/21(t) + kau(t)
X6 3 z2(t+1) = z2(t) + ksm — k4\/ﬂ?(t)
s y(t) = z2(t) + u(t)

“‘""‘”_E:u Model is totally unknown to learning algorithm

www.mathworks.com

e Artificial neural network (ANN): 3 hidden layers
60 exponential linear unit (ELU) neurons Lo

e For given number of model parameters, Bl
autoencoder approach is superior to NNARX i

e Jacobians directly obtained from ANN structure ™ L e =
for Kalman filtering & MPC problem construction LTV-MPC results

ghts rese 14/110

"Model Predictive Control" - © 2025 A. Bemporad. A

LEARNING AFFINE NEURAL PREDICTORS FOR MPC

o Alternative: learn the entire prediction L h

yr = hi(zo,uo, ..., uk—1), k=1,...,N

¢ LTV-MPC formulation: linearize hj around nominal inputs u;

N
=

)

_ _ hy _ _ _
Yk = hi(zo, o, - . ., Ug—1) + 87(9007@60, oy -1) (uy — uy)

J

I\
=)

Example: u;, = MPC sequence optimized @k — 1

e Avoid computing Jacobians by fitting i, in the affine form

Ug—ug
yr = fr(xo, To, - .., Uk—1) + gr(zo, Uo, - - -, Uk—1) [:]

Uk—1—Uk—1

A. Bemporad. Al jed. 15/110

LEARNING AFFINE NEURAL PREDICTORS FOR MPC

o Example: apply affine neural predictor to nonlinear Prediction step BFR
two-tank benchmark problem

1 0.959
- . 2 0.958
10000 training samples, ANN with 2 layers of 20 ReLU neurons
4 0.948
I3~ yll2 / 091>
Best fitrate BFR = max {07 1- 77} 10 0.858
ly —7ll2

e Closed-loop LTV-MPC results: 2o
15
o Model complexity reduction: 10
add group-LASSO term with penalty A os
0.0
A BFR (average # nonzero s
on all prediction steps) weights ,
-1, —— controlled system
01 0.853 328 T caocion
0.005 0.868 363 [50 100 150 200 250 300 350
0.001 0.901 556
0.0005 0911 888
0 0917 9000

16/110

ON THE USE OF NEURAL NETWORKS FOR MPC

o Neural prediction models can speed up the MPC design a lot

e Experimental data need to well cover the operating range
(as in linear system identification)

¢ No need to define linear operating ranges with NN’s,
it is a one-shot model-learning step

e Physical models may better predict unseen situations 5

than black box models NJ

e Physical modeling can help driving the choice of the
nonlinear model structure to use (models)

o NN model can be updated online for adaptive nonlinear MPC

17/110

LEARNING NEURAL NETWORK MODELS FOR CONTROL

TRAINING FEEDFORWARD NEURAL NETWORKS

e Feedforward neural network model

o "
V1 Arzg + b < LOF S SO v
var, = Asfi(vig) +b2 RNORT/ =97
. .)
Yk = fy(zk,0) = : :
0= (A1, b,..., AL, b
vpk = Ap,fr-1(v-1)k) +bL (41,51 £-bc)
9% = fr(vrLk)
E.g.:) = current state &input, or 2 = (Yr—1, - -+, Yk—ny s Uk—1y - - - s Uk—ny)

e Training problem: given a dataset {x, yo,

., TN-1,YN—1} Solve

N-1
minr(0) + Y i f(@1.0))
k=0

e [tis anonconvex, unconstrained, nonlinear programming problem that can be
solved by stochastic gradient descent, quasi-Newton methods, ... and EKF !
"Model Predictive Control" - © 2025 A. Bemporad. All rights reserved.

18/110

TRAINING FEEDFORWARD NEURAL NETWORKS VIA EKF

o Keyidea: treat parameter vector 6 of the feedforward neural network as a
constant state

Or11 O + 1
ye = f(@k,0k) + G
and use EKF to estimate 6, on line from a streaming dataset {x, yx }

e Ratio Var[n;]/ Var[(x] is related to the learning-rate

e Initial matrix (Py ;)" is related to quadratic regularization on 6

19/110

RECURRENT NEURAL NETWORKS

e Recurrent Neural Network (RNN) model: v,

v

x) 3 / y
o
Tkl — fm(xkvukaem) !
e = fylzn,by) v; = Ajfj—1(vj-1) +b;
for fy = feedforward neural network

9: (A17b177AL7bL)

(e.g.. general RNNs, LSTMs, RESNETS, physics-informed NN, ...)

¢ Training problem: given an I/O dataset {ug, yo, - - ., un—1,yn—1} SOlve
| Nl
0{?,1;1 T(x();exaay)_'_N];)E(ykvfy(xkvey))
TOy L1y ITN-—-1 -

s.t. Th41 :fz(xkvukvem)

e Mainissue: zj are hidden states and hence also unknowns of the problem
"Model Pred Control" - © 2025 A. Bemporad. All rights reserved. 20/110

GRADIENT DESCENT METHODS FOR TRAINING RNNS

e Problem condensing: substitute z;1+1 = f.(2zk, ug, 0..) recursively and solve

1N

min T(Zanxao é y/mfy Jfk,) - Helln V(awaeywro)
02,0y ,x0 k:O z,0y,%0

H

o Gradient descent (GD) methods: update 8,,, 6,,, z:o by setting

0, 1+1 0"
o1 | = [‘)yt] -, VV (0", 0,)

t+1 t
Zg T

Example: Adam uses adaptive moment estimation to set the learning rate o

21/110

GRADIENT DESCENT METHODS FOR TRAINING RNNS

e Mainissue with GD methods: slow convergence (in theory and in practice)

e Stochastic gradient descent (SGD) can be even less efficient with RNNs:
- collect a high number of short independent experiments (often impossible)

- create mini-batches by using multiple-shooting ideas

o Newton’s method: very fast (2"4-order) local convergence but difficult to
implement, as we need the Hessian V2V (6,,*, 0, ", z)

e Quasi-Newton methods: good tradeoff between convergence speed / solution
quality and numerical complexity. Only requires the gradient VV (6,.",6,", 2})
"Model Predictive Control" - © 2

A. Bemporad. All rights 22/110

TRAINING RNNS VIA EXTENDED KALMAN FILTERING

TRAINING RNNS BY EKF

e |terating Extended Kalman Filter (EKF) based on the following model

Trpr = fo(@k, uk, Ouk) + &k Q = Var[[§ k]
Oty | _ | Oak . R = Var([(, k]
Oy(k+1) Oyt = Var ngﬂ

Yk = fy (.’Ek, eyk) + Ck ¥o

= applying Newton’s method incrementally to solve the relaxed problem

min H [ey]
0,0,

TO, L1y TN—1

2
| +Z||yk £ (@, 0,) 13- 1+Z\
0

Tt1— fa(Tp,up,0z) 2
0110k Q-1

e Theratio Q/ R determines the learning-rate of the training algorithm
¢ Theinverse of the initial matrix P, is related to /»-penalty on 6, 6,, and
e Generalization: train via Moving Horizon Estimation (MHE)

emporad. Al rights

erved.

23/110

TRAINING RNNS BY EKF

e EKF can be generalized to handle general strongly convex and smooth losses
£(yk, Ui) by taking a local quadratic approximation of the loss around gy:

Uye,§) ~ 3AyH(k)Ay + ¢}, Ay + const Ay = — G, ¢r = Zeie)
2 N
= Ly —H '(k)¢x — 3 + const H (k) = 2uk.di) ‘(ay@kgyk)

2
H(k)
e Strongly convex smooth regularization (o, 0, 6,) can be handled similarly

e Canhandle /;-penalties \ H [ZT} H , useful to sparsify 0, 6, by changing the
vl
EKF update into

&(klk) #(klk—1) 0
[ew(kk)} = [ez(k|k—1>]+M(k)e(k)AP(M —-1) {signwm(kk—l»]
0y (k|k) 0y (k|k—1) sign (6, (k|k—1))
—

The model 0, 8, can be learned offline by processing a given dataset multiple
times, and also adapted on line from streaming data (u, yx)

224/110

TRAINING RNNS BY EKF - EXAMPLES

e Dataset: magneto-rheological fluid damper
3499 1/0 data

N=2000 data used for training, 1499 for testing the model

Same data used in NNARX modeling demo of SYS-ID Toolbox for MATLAB

RNN model: 4 hidden states, shallow
state-update and output functions
6 neurons, atan activation, /O feedthrough

MSE loss

.
0 5 10 15 20
training time [s])

o Compare with gradient descent (Adam) —

MATLAB+CasADi implementation (Apple M1 Max CPU)

MSE loss

L

0 100 200 300 400 500

epoch 25/110

"Model Predictive Control" - © 2025 A. Bemporad. All rights reserve

TRAINING RNNS BY EKF - EXAMPLES

e RNN model: 4 states, shallow NNs with 6 neurons each,
atan activation, /O feedthrough

,,_Test data: open-| (on amodel instance)

o Compare BFR wrt NNARX model (SYS-IDTBX): . |

FKF = 92.82, Adam = 89.12, NNARX(6,2) = 88.18 (training) . |
FKF = 89.78, Adam = 85.51, NNARX(6,2) = 85.15 (test)

|
RELR
\ A
I'RIRN
Nl |\
l)& f ‘:&V% 4
.. . 0. ‘
e Repeat training with /;-penalty 7 H { 0; } ’ samples
95 100 o
90 = 3
— N
X e | o O
< 8T BFR (test data) o o
E g0 | —— BFR (training data) w0 =
M percentage of zeros in 6,0, E
75 20 g
70 L Ik ~
10 10° 10 103

{1-regularization parameter 7

"Mode 2025 A. Bemporad. All rights reserve

26/110

TRAINING LSTMS BY EKF - EXAMPLES

e Use EKF to train Long Short-Term Memory (LSTM) model

zo(k+1) = og(Wru(k)+ Uszyp(k) +bf) © za(k)
+oc(Wiu(k) + Urze(k) + br) © oc(Weu(k) + Ucap (k) + be)
zp(k+1) = oo(Wou(k) +Uoxy(k) +bo) @ oc(xa(k + 1))
y(k) = fy(@e(k), u(k),0y)

gate activation fcn o (o) = cell activation ftn o (o) = tanh(«)

1
1+e—a’

e Training results (mean and std over 20 runs):

BFR Adam EKF
RNN training | 89.12(1.83) | 92.82(0.33)
ng = 107 | test 85.51(2.89) | 89.78(0.58)
LST™M training | 89.60(1.34) | 92.63(0.43)
ng = 139 | test 85.56 (2.68) | 88.97(1.31)

e EKF training applicable to arbitrary classes of black/gray box recurrent models!

rol" - © 2025 A. Bemporad. All rights reserved. 27/110

TRAINING RNNS BY EKF - EXAMPLES

e Dataset: 2000 I/O data of linear system with binary outputs

—.1 1

e(k+1) = [§ 5 i] [51})+ &(k) Var[€; (k)] = o
(k) = {1 if [-21505]x

Vi k)] = o2
0 otherwise arl((k)] =

e N=1000 data used for training, 1000 for testing the model
EKF accuracy [%]

e Train linear state-space model with 3 states o test ‘ training
and sigmoidal output function 0.000 | 98.02 | 97.91
) L,y 0.001 | 95.33 98.66
f(y) = 1/(1 4 e~ A" (R) u(B)] 07 0010 | 97.99 | 9852

0.100 | 94.56 95.44
0.200 | 93.71 92.22

e Training loss: (modified) cross-entropy loss
Ny

Cone(y(k), §) =Y —yi(k)log(e +§;) — (1 — yi(k)) log(1 + € — ;)

=1

rol" - © 2025 A. Bemporad. All rights reserved. 28/110

EXAMPLE: MPC OF ETHYLENE OXIDATION PLANT

e Chemical process = oxidation of ethylene to ethylene oxide in a nonisothermal
continuously stirred tank reactor (CSTR)

CoHy + %02 — CoH4O
CoHy + 305 — 2C05 +2H20
CoH40 + gOQ — 2C05 +2H-0

e Nonlinear model (dimensionless variables):

1 = gas density

i1 = ui(l— wizy) x2 = ethylene concentration
1 1 2 ')
G2 = uy(us — moxwy) — AlE'T“ (zowg)? — A26w4 (224) ¢ 3 = ethylene oxide concentration
1 1 = i
b5 = —uymsws + AleT4 (zﬂd)z _ Ajea’/‘\ (h“)i 4 =temperature in reactor
o8 o2y
. _ u, (1— z/)+Bcz4(zz)z+Be‘n4(x:c/)4 .
Ea = .) . : = u, = feed volumetric flow rate
. . .
N B_,e?:‘ (24333 — Ba(ws—Te) us = ethylene concentration in feed
Ty
Y = xr3

e 11 = manipulated variables, x3 = controlled output, us = measured disturbance

"Model Predict trol" - © 2025 A. Bemporad. All righ ed 29/110

RNN MODEL OF ETHYLENE OXIDATION PLANT

e Train a black-box recurrent neural-network model

Tpr1 = Np(xg,ug) 23 (validation data)
Yk = Ny(xk) 0.06

1,000 training samples {ws, yx }, sample time T = 58 004
2 layers (6 neurons, 4 neurons), sigmoid activation

simulated X,

— 95 coefficients O T 00 a0 00 a0 1000
¢ NN model trained in MATLAB by EKF 002

(PU time ~ 12.58 s [Apple M1 Max] °-°: n
e Model validated on 1000 samples Zz

0 200 400 600 800 1000

BFR (Best Fit Rate) | training test sample
95.1611 84.3623

2025 A. Bemporad. All rights reserve 30/110

MPC OF ETHYLENE OXIDATION PLANT

¢ Nonlinear MPC: min ZZ:O 10(yps1 — Trr1)? + f—o(ul’k — Uy p-1)?

subject to RNN model and input constraints 0.0704 < u; < 0.7042

o EKF used to estimate the hidden state x;, and, possibly, the disturbance d.

C2H40 concentrations y(t), §([t), r(t)

C2H40 concentrations y(t), §(t|t), r(t
0058 T T . J(‘)J(U‘ ()‘

T T 0.058 T T T
oose|- | offset 1 ool | zero error
0054 - T 4 oosaf t
0.052 |- T(t) — 0.052 |- 7_({) —
nodisturbance model | ¥ oo w/ disturbance model |1
. feed volumetric flow rate u(t), feed C2H4 concentration v(t) e feed volumetric flow rate u(t), feed C2H4 concentration v(t)
0.6 06 —
04 4 04 4
021 1 02 1
- - - ----/------- -/ - - ------/----------/—--------
o 50 100 150 o 50 100 150

time 3] time [s]

o Model mismatch compensated by output integrator in steady-state

31/110

ADAPTIVE NONLINEAR MPC BASED ON EKF

By combining online EKF-based learning of the model parameters with
nonlinear MPC we get an adaptive nonlinear MPC controller

Do we really need to train the full model online?

Output integrators: only update the bias term dj, on the output. Conceived to
track constant set-points

Can we train more general nonlinear disturbance models to better track
time-varying references?

"Model Predictive Control" - © 202 32/110

NONLINEAR DISTURBANCE MODELS FOR MPC

e Consider the following general prediction model with unmeasured disturbance:

o Keyidea: only train the disturbance model online to refine the prediction
model only where the system is operating

e The nominal model f, g is trained offline and frozen

e Motivation: train the full model online may be difficult (lack of excitation,
catastrophic forgetting, computational demand, etc.)

e Under certain assumptions, we can show that the tracking error y (k) — r(k)
asymptotically converges to zero, even if (k) is not constant

2025 A. Bemporad. All rights reserved. 33/110

EXAMPLE: CSTR PROCESS

e MPC control of a diabatic continuous stirred tank reactor (CSTR)

Ty
F
} Cay

e Process model is nonlinear

dC'a F _AE
—— = —(Cay—Cyu)—Cauk RT

o V(Af A) Akoe

dT F UA AH

o STy = T) + —2(Tj = T) — S2Cakoe™ BT
dt Vv pCpV pCp

- T': temperature inside the reactor [K] (state)

- (4 : concentration of the reactant in the reactor [kgmol /m®] (state)

T} : jacket temperature [K] (input)
- Ty : feedstream temperature [K| (measured disturbance)

- Cay : feedstream concentration [kgmol /m?] (measured disturbance)

¢ Objective: manipulate 7’ to regulate C'4 ondesired setpoint

"Model Predictive Control" - © 2025 A. Bemporad. All rights reserved.

34/110

EXAMPLE: CSTR PROCESS

e Model: nominal (white-box) NL model with slightly different model coefficients
and three different disturbance models:

- Constant Disturbance Model: y = v+ d,0 =d
- Polynomial Disturbance Model: a polynomial function d, = hs(z, u,) entering

the white-box model in a way that, for a suitable (unknown) 6, it matches the exact
CSTR dynamics

- Feedforward Neural Network: perturb both y(k) and z(k + 1) by setting
dz = FNN with input (z, u), 2 layers with 6 neurons each, sigmoid activation,
dy = FNN with input z, single layer with 4 neurons. Total # parameters = 97

e NLMPC: N = 5,cost = (z — x,.)'(z — @) + (v — u,) (v — u,.), terminal
constraint z(k + N) = z,(k + N), no other constraints.

35/110

Generic trackable reference signal (k) (w/ preview)

-~
. .
10 ’ \ 10 ’)
N N
/ 1! ’ /o1
/ [/ [
E ' [1 | i [1
£ | £ I ’
=4 1 / 5
l 3 U
S} e ay v
= J /)
. Er(k . |-
0 50 100 150 200 0 50 100 150 0 50 100
Sample time & Sample time & Sample time &
0.3 .3 0.3 0.8 0.3
—lle(R)I —lle(k)
- 0.6 = E-lly(k)
02 02% 02 = _o02 <
= 041 =)
=01 01% = =0 0.1%
S 023 s
)) ol = 1\ d g J s =g
0 50 100 150 200 0 50 100 150 200 0 50 100 150 200
Sample time k Sample time k Sample time k
(a) White-box disturbance model (b) Constant disturbance model (c) FNN disturbance model

Constant disturbance model is worse than FNN disturbance model, especially
when (k) changes rapidly

36/110

\. Bemporad. Al

TRAINING RNNS VIA SEQUENTIAL LEAST SQUARES

TRAINING RNNS BY SEQUENTIAL LEAST-SQUARES

e RNN training problem = optimal control problem:

N-1
. " '\V\?\L’YS = 04,0y, x0
min r(xg,0z,0,) + /
02,0y,00,21,..., TN 1 (0> Y y) kZ:O (yk, yk) o\tﬁm)(=9
st. Tpy1 = fo(ag, ug, 0z) reference = y,
gk — fy(xkaukvgy) wmews. digh, = Up
- r(zo, 0s,0y) = input penalty
- 4(yx, Yr) = output penalty
- prediction horizon = N steps, control horizon = 1 step
o Linearized model: given a current guess th, Gyh, xg, e x’}\,_l, approximate
Amk+1 = (vxfm)/Axk + (Vax fm)lAgm
Ayk = (foy)/AIk + (ngfy)’AQy

37/110

TRAINING RNNS BY SEQUENTIAL LEAST-SQUARES

e Linearized dynamicresponse: Az, = My, Axg + Myg, Ab,

Mo, = I, Moy, =0
M(k+l)z - vzfz(x;clyukvelh)Mkw
M(k«l»l)gx - vzfz(x27uk701h)Mk9m + v@zfz(mgvuk791h)

o Take 2"d-order expansion of the loss ¢ and regularization term r

¢ Solve least-squares problem to get increments Axg, A6, Af,

h+1 h+1 h+1
+’0w+’9y+

¢ Update z; by applying either a

- line-search (LS) method based on Armijo rule

- oratrust-region method (Levenberg-Marquardt) (LM)

e Theresulting training method is a Generalized Gauss-Newton method
very good convergence properties

¢ No guarantee to converge to a global minimum (multiple runs may be required)
"Model Predictive Control" - © 2

A. Bemporad. All rights reserved. 38/110

TRAINING RNNS BY SEQUENTIAL LS AND ADMM

e Example: magneto-rheological fluid damper
N=2000 data used for training, 1499 for testing the model

e RNN model: 4 states, shallow NNs w/ 4 neurons, I/O feedthrough

NAILS AMSGrad
NAILM
EKF

Ausorad MSE loss on training data,
mean value and range over 20
runs from different random

initial weights

10! = _ ”Y_f/'”?

BFR=100(1 — 43—512)

BFR (Best Fit Rate) training test
. NAILS 94.41 (0.27) | 89.35(2.63)
NAILS = GNN method with line search NAILM 94.07 (0.38) | 89.64 (2.30)
NAILM = GNN method with LM steps AMSGrad 84.69(0.15) | 80.56(0.18)
EKF 91.41(0.70) | 87.17(3.06)

39/110

"Model Predictive Control" - © 2025 A. Bemporad. All rights reserve

TRAINING RNNS BY SEQUENTIAL LS AND ADMM

¢ We also want to handle non-smooth/non-convex regularization terms

min9m79y7$0 r(xo, 0z, Qy) + ZkN:_ol (Y, fy(xk? 9?/)) + 9(0a, 91’/)
s.t. Th41 = fm(xkvu/ﬁ ew)

E.g: g(0s,0,) = 7(||0z]l1 + [|18y]1) (Lasso regularization)

¢ ldea: use alternating direction method of multipliers (ADMM) by splitting

min0150y7m07yz7yy T(x()v O, Gy) + Ziv:Bl f(yk, fy(xka ey)) + g(Vﬂw Vy)

s.t. Th41 :f:c(xkaukaofb)

. 0z
[vy] = 0,

Vy

40/110

TRAINING RNNS BY SEQUENTIAL LS AND ADMM

e ADMM + Seq. LS = NAILS algorithm (Nonconvex ADMM lterations and Sequential LS)

t+1 7
R are min V(z0,00,0,) + 2 [emfu;jtw;] H2 ‘ tial) LS
0 = T Myg,0,,0 zo 5 ¢ sequemntia
i gninizg 0.0, V(20,00 00) + 5 [o) vl |, e
v
pitL] t+1 t t+1 t
x J— N o,
v+l = pI‘OX%g(GQc +wg, 0, +w,) proximal step
t+1] h t+1_ t41
wy, _ Wy +0g —v,
{MLH = |:w$+9yt+1_yz+1 u,ao\abe dual vars

o ADMM + Levenberg-Marquardt steps = NAILM algorithm

e Fluid-damper example: Lasso regularization g(v,, v,,) = 7(||vg|l1 + |vyll1)

100

BFR (%)

| — BFR (test data)

—— BFR (training data)
| —— percentage of zeros in GX,HY

10% 102 10! 10°

{-regularization parameter 7

100

80

60

40

20

0

(mean results over 20 runs
from different initial weights)

I)()I'(‘(‘,lltilg(‘ of zeros

41/110

TRAINING RNNS BY SEQUENTIAL LS AND ADMM

e Fluid-damper example: Lasso regularization g(v,, v,,) = 0.2(||v |1 + |vyll1)

training BFR BFR sparsity CPU #

algorithm training test % time epochs ~ same fit than
NAILS 91.00(1.66) | 87.71(267) | 65.1(65) | 11.4s | 250 ~

NAILM 91.32(1.19) | 87.80(1.86) | 64.1(7.4) | 11.7s 250 SGD/EKF but sparser
AMSGrad | 91.04(0.47) | 8832(0.80) | 16.8(7.1) | 64.0s | 2000

Adarn 90.47 (0.34) | 87.79 (0. 44) 8335 | 6395 | 2000 Modelsandfaster
DiffGrad | 90.05(0.64) | 8734(1.14) | 7.4(45) | 639s | 2000 (Apple M1 Pro)

EKF 8927 (1.48) | 86.67(2.71) | 47.9(9.1) | 1325 50

e Fluid-damper example: group-Lasso regularization g(v)) = 7, >, ||7]|2
to zero entire rows/columns and reduce the state-dimension automatically

100 7 T T T

9°\:/:/—% good choice: n, = 3

®I" ——BFR (test data) (best fit on test data)
— BFR (training data)
final model order

60 . . o
10 102 107! 10° 10’
group-lasso regularization parameter 7,

BFR (%)

70

Bemporad. All rig 42/110

TRAINING RNNS BY SEQUENTIAL LS AND ADMM

¢ Fluid-damper example: quantization of 6, 6, for simplifying model arithmetic
+leaky-RelLU activation function

g(6;) = Q = multiples of 0.1 between -0.5 and 0.5

+o00 otherwise

{ 0 ifg; €0

- BFR=84.36 (training), 78.43 (test) <« NAILS w/ quantization
- BFR=17.64 (training), 12.79 (test) <« no ADMM, just quantize after training

- Training time: &~ 12 s (w/ quantization), 7 s (ho ADMM)

e Note: no convergence to a global minimum is guaranteed

o NAILS/LM = flexible & efficient algorithm for training control-oriented RNNs

"Model Predictive Control" - © 2025 A. Bemporad. All rights reserved. 43/110

TRAINING RNNS - SILVERBOX BENCHMARK

(Wigren, Schoukens, 2013)

e Silverbox benchmark (Duffin oscillator): 10 traces (~8600 samples each) used
for training, 40000 for testing

output [V]

0.2 B
0 trpining [dat
0 2 4 6 8 10 12
4
10 & ms?+ds + ky
hay®
(b)

(Schoukens, Ljung, 2019)

test data

. .
0 2 4 6 8 10 12
sample «10%

Data download: http: //www.nonlinearbenchmark.org

"Model Predictive Control" - © 2025 A. Bemporad. All rights reserved. 44/110

http://www.nonlinearbenchmark.org

TRAINING RNNS - SILVERBOX BENCHMARK

o RNN model: 8 states, 3 layers of 8 neurons, atan activation, no 1/O feedthrough

o Initial-state: encode z(as the output of a NN with atan activation, 2 layers of 4
neurons, receiving 8 past inputs and 8 past outputs

M N-1 Y-1
minemvem-’ezf fc07 91’ 9 + Z Z £ yk’ yk .
. o=l ’“:0 o v= | u}
s.t. x?c—&-l fz(xkauivgz) = fy(x},uy,,0,) .
= fao (07, 0,)
[cf.]

e (y-regularization: (0, , 0., ey) = %(Hew”% + ||9yH%) + %‘|910||§
e Total number of parameters ng, + ng, + ne,, = 296 + 225 + 128 = 649

e Training: use NAILM over 150 epochs

emporad. All rights reserve 45/110

TRAINING RNNS - SILVERBOX BENCHMARK

e |dentification results on test data !

identification method RMSE [mV] BFR [%]

ARX (ml) [1] 16.29 [4.40] 69.22 [73.79] [1] Ljung, Zhang, Lindskog, Juditski, 2004
NLARX (ms) [1] 8.42[4.20] 83.67[92.06] [2] Ljung, Andersson, Tiels, Schén, 2020
NLARX (mlc) [1 1.75[1.70] | 96.67[96.79] _

NLARX (ms8c50) [1] 1.05[0.30] | 98.01[99.43] [3] Beintema, Toth, Schoukens, 2021

Recurrent LSTM model [2] 2.20 95.83 ~
SS encoder [3] (ng, = 4) [1.40] [97.35] RMSE = -
NAILM 0.35 99.33 g vs — G5)

o NAILM training time = 400 s (MATLAB+CasADi on Apple M1 Max CPU)

. 20g

e Repeat training with ¢;-regularization: 3
¢ (4

\.\u.\l‘ alSTM

0\
10 20 40 80 160 320 640 1280
number of model parameters

RMSE (mv

3
2
1
5

0.

1 Trained RNN: http://cse.lab.imtlucca.it/~bemporad/shared/silverbox/rnn888.zip

46/110

"Model Predictive Control" - © 2025 A. Bemporad. All righ ed

http://cse.lab.imtlucca.it/~bemporad/shared/silverbox/rnn888.zip

LINEAR AND NONLINEAR IDENTIFICATION VIA L-BFGS

SYSTEM IDENTIFICATION PROBLEM

¢ Class of dynamical models with n, states, n,, inputs, n, outputs:

Te+1 = Axk + Bug + fz(zr, uk; 02) Special cases:

Ur = Czi + Duk + fy (xk,uk; ey) Linear model, RNN, ..

e Loss function (open-loop prediction error + regularization)

1 N—1 = [ag)]
MmNz o, 2y T(Z) + N kz E(yk’ Cxi + Duy + fy(l’k,uk; 91/)) ggg
s.t. Tr+1 = Axg + Buk + fo (xk, Uk; O) o= g(;‘)
k=0,...,N—2 e(w')

9?4

—
e Condense the problem by eliminating the hidden states x;, and get
min f(z)+r(z) (nonconvex) nonlinear programming (NLP) problem
z

emporad. All rights reserve 47/110

NLP PROBLEM

o If f and r differentiable: use any state-of-the-art unconstrained NLP solver,
e.g., L-BFGS (Limited-memory Broyden—Fletcher—Goldfarb—Shanno)

The gradient V f(z) can be computed efficiently by automatic differentiation

However, sparsifying the model requires non-smooth regularizers:

r(z) =7z, rg(2) =74 32101 Mizl2

£1-regularization 3rouF—Lasso Fena&v

Examples of group-Lasso penalties:

m = n, and I; selected to reduce the number of states
m = n,, and I; selected to reduce the number of inputs

"Model Predictive Control" - © 2025 A. Bemporad. All rights reserved. 48/110

HANDLING NON-SMOOTH REGULARIZATION TERMS

1 Ifr(z) = X", ri(z;) and r; : R — Ris convex and positive semidefinite, the

{1 -regularized problem can be recast as a bound-constrained NLP:

min f(2)+7||z([1+r(z)

S min f(y=2)+7lL . 1) 2]+ () +r(2)

2 well-reqularized

Example: r(z) = [|z]|3 thenr(y) + r(—z) = [[[Z][l;

augmented Frobtem

2. If r(z) is convex and symmetric wrt each component z; and increasing for
x > 0,and 7 > 0, then we can solve instead

. {: r(x) dv’.fferehkiable {:OY‘ z # 0 then
)47l A [V (ytz)
yI’I;IZHO Fly=2)+7] [E]+r(y+2) r(y + z) differentiable if any yi,z; >0

Example: r(z) = group-Lasso penalty + constraint y, z > € = machine precision
49/110

EXAMPLE: LINEAR SYSTEM IDENTIFICATION

e Cascaded-Tanks benchmark:
z = (A, B,C, D, xg), mean-squared error loss + ¢5-regularization

R? (training) R? (test)

Ng 1lbfgs sippy2 MATLAB 3 1lbfgs sippy MATLAB

T | 8743 56.24 87.06 83.22 5238 3318 (ssest)

2 | 9407 28.97 93.81 9216 23.70 9217 (ssest)

3| 9407 74.09 93.63 9216 68.74 9156 (ssest)

4 | 9407 4834 9234 9216 4550 9033 (ssest)

5 | 9407 90.70 93.40 9216 89.51 8022 (ssest)

6 | 9407 94.00 93.99 92.17 9232 8849 (ndsid) .

7| 0407 9247 93.82 9217 9081 <0 (ssest) 1024 training data
8 | 9449 <0 94.00 89.49 <0 <0 (ndsid) 1024 test data

9 | 9407 <0 <0 92.17 <0 <0 (ssest) ,
10 | 94.08 9339 <0 9217 9235 <0 (ssest) (standard scaling)

CPU time: 2.4 5 (Ibfgs), 30 ms (sippy), 50 ms (ndsid/pred.), 0.3 s (ndsid/sim.), 0.5s (ssest) [Apple M1 Max]
NLP with bounds solved in JAX/JAXOPT using the L-BFGS-B solver

P pip install jax-sysid github.com/bemporad/jax-sysid

served. 50/110

github.com/bemporad/jax-sysid

JAX-SYSID LIBRARY

e Python code to identify a linear time-invariant model:

- L
jax_sysid.models LinearModel JaX'SyS|d

jax_sysid.utils compute_scores

model = LinearModel(nx, ny, nu)
model.loss(rho_x0=1.e-3, rho th=l.e-2)
model.optimization(lbfgs_epochs=1000)
model.fit(Y,U)

Yhat, Xhat = model.predict(model.x0, U)

A,B,C,D = model.ssdata()

e Python code for testing the model:

x0_test = model.learn_x0(U_test, Y test)
Yhat_ test, Xhat_ test = model.predict(x0_test, U_test)

R2_train, R2_test, msg = compute_scores(Y, Yhat, Y test, Yhat test, fit='R2')
(msg)

51/110

JAX-SYSID LIBRARY

e Sample Python code to identify a nonlinear RNN model:

s o0 jax-sysid

jax_sysid.models Model
state_fen(x,u,params): state-update function, z(k + 1)
output_fcn(x,u,params): ouEPuE {um¢&h>h,y(k)

model = Model(nx, ny, nu, state_fcn=state fcn, output_ fcn=output_f£fcn)

A

0.5*np.eye(nx)
b4 = np.zeros(ny) # Parameter initialization:
model.init(params=[A,B,C,W1l,W2,W3,bl,b2,W4,W5,b3,bd])

model.loss(rho_x0=1.e-4, rho_th=l.e-4)
model.optimization(adam_epochs=1000, lbfgs_epochs=1000)
model.fit(Y, U)

Yhat, Xhat = model.predict(model.x0, U)

52/110

EXAMPLE: LINEAR SYSTEM IDENTIFICATION

o Synthetic data generated by the cascaded 2x2 linear system

i € N(0,0.01
0.96 0.26 0.04 0 0 0 0 Sk Tk ©,)
—0.260.70 026 0 0 0 0
_ 0 0 093 0.32 0.07 0 0.07
TE+1 = 0 -0.32061 032 0 |TkT|032
0 0 0 0.90 0.38 0

0
9 § up4€, N=2000 training data
8 0 0 0 —0.380.52 <13
]

0:38 {(ur, yr)}

o Group-lasso penalty for model-order reduction: =~ medel-group_lasso x()

Al N-1
10-16 A L _C
i oo =1+ 107 Tl bl | I Sy AT
i=1 o. . k=0
i e
100
80
60 best results out of 10 runs
401 — R2(training data) (PU time ~2 3.85 s per run
20 e final model order n, [/—\pp|€ M1 Max]
0 o) 0 0 0 0 0 T
1073 1072 107t g

"Model Predictive Cont Bemporad. All rig

53/110

EXAMPLE: LINEAR SYSTEM IDENTIFICATION

e Synthetic data generated by a random linear system with n,, = 3 states,
n, = 10inputs, n, = 1 outputs, noise in A/(0,0.01), N = 10000 training data

e Thelast 5 columns of the B matrix are 1000x smaller than the first 5

o Group-lasso penalty for input selection; ~ ™°del-group_lasso_u()

Ny N-—1

. _ 16 1
min 1078(|z)|3 + 107 0|zl + 7 D 1Boilla+ = D lluk — Cill3
02,0y,z0 i—1 N =
100 Tk
80
60 best results out of 10 runs
a0{- —— R2(training data) (PU time /= 3.71 s per run
0t o final #inputs [Apple M1 Max]
° 107° 1074 1073 102 1071 100 10t Tg

e Can be useful to identify Hammerstein models using basis functions on u

54/110

LINEAR SYSTEM IDENTIFICATION W/ STABILITY CONSTRAINTS

e Wetryenforcing || Al|> < 1 by adding the loss p4 max{||A||2 — 1+ €4,0}?

e Example: 1000 training + 1000 test data generated by the unstable LTI system
1.0001 0.5 0.5

Tht1 = 0 0.9 —0.2 | xx + Bug + &
0 0 0.7
Yk = C-Tk + 2k
where the entries of B,C € N(0,1), & € N(0,0.012), ¢, € N(0,0.05%), and
uy, uniformly generated in [— 3, 1]

° Training setup: model.force_stability(rho_A=1.e3, epsilon_A=l.e-3)

- pa=10%e4 =103 BFR (Best FitRate) | training test
98.2930 | 91.7369

- 3000 Adam +5000 L-BFGS iters

_ (PUtime~5.38's [Apple M1 Max] Eigenvalues of identified matrix A:

0.99997,0.92747,0.59781

rol" - © 2025 A. Bemporad. All rights reserve 55/110

QUASI-LPV MODEL IDENTIFICATION

e Quasi-LPV (qLPV) models are defined by:

Try1 = Alpr)zr + B(pr)ug
yr = C(pr)xi + D(pr)us

A(pr) B(pk) A B
{C@ﬁ)D(pZ)} [c5 Do +Z ¢t p.] Phi

where p,, € R™ is the scheduling parameter vector, such as

1

m’izl""vnp_l

Pki =
where f(xy, ug; 0;) is a FNN with linear output layer and parameters 6;
e gLPV models are a powerful class of control-oriented nonlinear models

emporad. All rights reserve 56/110

EXAMPLE: QLPV MODEL IDENTIFICATION

e Generate 5000 training data and 1000 test data from the NL dynamics

0.5sin(z1) + 1.7 cos(0.5z25) ur
Try1 = | 0.6sin(z1p + x3x) + 0.4 atan(zik + w2r) | + &k
0.4e %2k +0.9sin(—0.521%)ux

yr = atan(2.22%,) + atan(1.8z5;) + atan(—z3;) + 2zx

where &, z; € N'(0,0.01%) and uy, uniformly generatedin [—1, 1]
e p; = 2-layer FNN (6 neurons each) + swish activation + sigmoid output function

e Training setup:
- warm start: identify LTI model BFR (BestFitRate) | m
(2000 L-BFGS iters) LTI
qLPV
- 1000 Adam + 5000 L-BFGS iters for qLPV-SYSID qLPV

LPV
~ CPUtime~20's [Apple M1 Max] g

training test

747374 | 74.9277
94.5179 | 94.5059
96.3040 | 94.3056
96.5766 | 96.4442

S

w N = O

"Model Predictive Control" - © 2025 A. Bemporad. All rights 57/110

EXAMPLE: QUASI-LPV MODEL OF SILVERBOX BENCHMARK

(Bemporad, NL-SYSID Workshop, 2024)

output [V]

e Quasi-LPV model structure (n, = 8 states):

Zr+1 = (Ao+ Aipr)zk + (Bo + Bipr)uk
ye = Cuxyi
pr = swish(Waswish(Wizk + b1) + b2)
e Training setup: swish(r) = o= o
- Lo-regularization (p = 10™*)
- warm start on first experiment (8,600 samples) ZZ — p,(testdata)
500 Adam + 500 L-BFGS iterations 04
- 5000 L-BFGS iterations on full dataset 22
(86,114 samples) o1
- (PUtime ~ 265 s [Apple M1 Max] RIS 156°§ai‘;‘;‘i§1é56°° 3000 35000 40000
e RMSE on test data: 0.397 mV (LTI model: 14.090 mV)

(Il 40ll2 = 1.96, || A1 |2 = 0.35, || Bo||2 = 0.79, || B1||2 = 0.09)

"Model Predictive Control" - © 2025 A. Bemporad. All rights reserved. 58/110

INDUSTRIAL ROBOT BENCHMARK

¢ KUKA KR300 R2500 ultra SE industrial robot,
full robot movement

e 6inputs (torques), 6 outputs (joint angles), w/ backlash,
highly nonlinear and coupled, slightly over-sampled
(llyx — yr—1]| is often very small)

¢ Identification benchmark dataset (forward model): N
nonlinearbenchmark.org

- Sample time: Ts = 100 ms
- N =39988 training samples
- Niest = 3636 test samples

o Very challenging NL-SYSID benchmark onnonlinearbenchmark.org

59/110

nonlinearbenchmark.org
nonlinearbenchmark.org

RECURRENT NEURAL NETWORKS IN RESIDUAL FORM

e Recurrent Neural Network (RNN) model in residual form:

v
vy
vy
J

Tey1 = Axp + Bup + fo(Tw, ur, 9;) : : v Ne
Yo = Car+ fy(zw,0y) /
fo, fy = feedforward neural network

vj =Ajfj-1(vj-1) +b;

0 = (A1,b1,...,AL,br)

e Goal: minimize open-loop simulation error under elastic net regularization

N
. 1 o2 1 2 2
o B, 7 2 I =l 510215+ 10,18) + (10l + 1041

s.t. model equations

e /;-regularization introduced to reduce # model coefficients (=simpler model)

"Model Predictive Control" - © 2025 A. Bemporad. All right jed 60/110

TRAINING RNN W/ 7, -PENALTIES - INDUSTRIAL ROBOT

e Mainissues with industrial robot benchmark:

- many parameters to train, large dataset = complex NLP

high sensitivity wrt weights (dynamics gets easily unstable)

local minima (solution depends on initial guess)

cannot easily use mini-batches: open-loop simulation cost is not separable,
long-term memory effects present due to small sample time

e More general residual networks + ¢, /group-Lasso regularization possible

61/110

SOLUTION APPROACH

yz‘*ﬂf,

7
Ty

i

Ui — [y,
i
T

1. Standard-scale I/O data for numerical reasons u; <
i=1,...,6

Y Yi

2. Train (A, B, C, z) by jax-sysid (1000 L-BFGS iters) w/o ¢; -regularization
(z € R1?) (CPUtime: 9.125) [Apple M1 Max]

For comparison: ndsid takes 36.21 s and gives lower R2-scores on training & test data in MATLAB
sippy fails

3. Fix (4, B, C) and train simple RESNET model with shallow NNs:
Tr+1 = Az + Bug + fo(zr, ug, 05), yr = Cy + fy(zr,0,)

e Optimization: to handle 7|6]|1, use jax-sysid running 2000 Adam iters first (for
warm-start) and then 2000 L-BGFS-B iters

62/110

INDUSTRIAL ROBOT BENCHMARK: RESULTS

e Statex € R'?, f,, fy with 36 and 24 neurons, swish activation fcn H%

¢ Total number of training parameters: dim(0,,) + dim(6,) = 1590

100

— R2(test data)
— R2((training data)
% zeros in model

o
=)

(%)" (best B2 in 30 runs)

3

™

percentage of zeros

1

17=0.008

1074 1073 1072 107t 100
T

=)

e Model quality measured by average R?-score on all outputs:
_ b nzy 100 (1— Sy Yk — Prito)”)
- N 1 N 2
Ny i=1 Zk:1(yk,i - N Zi:1 yk,i)

e Training time ~ 12 min on a single core per run [Apple M1 Max]
(3192 variables, 2000 Adam iterations + 2000 L-BFGS-B iterations)

"Model Predictive Contro

63/110

)025A. Be mpora d. All rights reserve

INDUSTRIAL ROBOT BENCHMARK: RESULTS

e Open-loop simulation errors (p = 0.01, 7 = 0.008):

R? (training) R? (test) R? (training) R? (test)
RNN model ~ RNN model | linear model linear model
average 77.1493 57.1784 48.2789 43.8573 jax-sysid

More parameters/smaller regularization leads to overfitting training data

e Pure Adam vs LBFG-B+Adam vs OWL-QN 2 (7 = 0.008)
adam fcn R2 R? # zeros CPU
solver iters | evals | training test (0x,0y) | time(s)

L-BFGS-B | 2000 | 2000 | 77.1493 | 57.1784 | 556/1590 | 309.87
OWL-QN 2000 | 2000 | 74.7816 | 54.0531 | 736/1590 | 449.17
Adam 6000 0 | 71.0687 | 54.3636 1/1590 | 389.39

Adam is unable to sparsify the model

"Model Predictive Control" - G Bemporad. All rights ved 64/110

INDUSTRIAL ROBOT BENCHMARK: RESULTS

e Compute p-step ahead prediction gy, |1, with hidden state z;,;, estimated by
an Extended Kalman Filter based on identified RNN model

—— RNN model (test data)

—— Linear model (test data)

80
R2 70

0 10 20 30 40 50
prediction step

e Thisis a more relevant indicator of model quality for MPC purposes than
open-loop simulation error g0 — Y&

65/110

mporad. Al

DEEP NONLINEAR MPC: AN EXAMPLE

DEEP NONLINEAR MPC FOR AUTONOMOUS DRIVING

¢ Goal: track desired longitudinal speed (v,), lateral Yy
displacement (e,) and orientation (A)

¢ Inputs: wheel torque T}, and steering angle §

¢ Constraints: on ¢, and lateral displacement s (for
obstacle avoidance) and manipulated inputs T, §

e Sampling time: 100 ms

. VxCOSAY — v, sin My
2= 1—xe,
¢ Model: bicycle model éy = vesin A + vy cos &

Ad:fw—t(s'

kinematics is simple to model (white box)

- tire forces harder to model + stiff wheel slip ratio
dynamics (k¢, k) = small integration step required

- learn a black-box neural-network model !

66/110

DEEP NONLINEAR MPC FOR AUTONOMOUS DRIVING

e ODYS Deep Learning Toolset used to learn a neural-network with input
(Vz, Uy, w, kg, ky, Ty, 6) @k and output (vg, vy, w, ky, ky) @k + 1

Data generated from high-fidelity simulation model with noisy measurements,
sampled @10Hz

Neural network model: 2 hidden layers, 55 neurons each

vehicle body states

e Advantages of black-box (neural network) model: o
201y [m/s] —— measured
- No physical model required describing »
tire-road interaction 0

- directly learn the model in discrete-time o
(T = 100 ms) s ’

time [s]

67/110

DEEP NONLINEAR MPC FOR AUTONOMOUS DRIVING

e Model validation on test data:

one-step ahead prediction on test data open-loop predictions
T —— e T e
Ezoj hmwwww’m—* Bn“‘ Elsj //’-—‘M+ ann‘
5 v 3
10 10
7 05 —— true 7 o3 —— true
E oo ZeVann E oo —— amn
% o5 vy # % os
Z 025 —— true Tos '—M_‘_ il
® 000 —— ann 3 —— amn
T -025 W & =y
- 0.0001 = ;ue _ 0.0000 ———
T 00000 wreiy z t=vain
¥ —0.0001 + —0.0001
0025 e - tue
0.000 Wl \rn s, 1
~0.025 vy H
0000
o 20 40 60 80 100 0.0 0.5 10 15 20 25 3.0
sample time [s]

e C-code (network+Jacobians) automatically generated for ODYS MPC

o A automatic E E Embedded MPC
PyTorch C-code gen
scikit-learn

- ~_ ODvg w

ODYS-NN training

"Model Predictive Control" - © 2025 A. Bemporad. All rights reserved.

68/110

DEEP NONLINEAR MPC FOR AUTONOMOUS DRIVING

e Closed-loop MPC: overtake vehicle #1, keep safety distance from vehicle #2

4 [deg] T, [Nm] tot #QP iterations | SQP iterations
1000 s 4

time 5]

Ay [deg]

10

time [s] time [s] time [s]
. . . b 4
¢ Good reference tracking, constraints on e, v, satisfied,
smooth command action 7
' o

"Model Predictive Control" - © 2025 A. Bemp! 69/110

DIRECT DATA-DRIVEN MPC

DIRECT DATA-DRIVEN MPC

optimization
algorithm

process

set-points inputs outputs
—
r(t) u(t) y(t)
T measurements

e Canwe design an MPC controller without first identifying a model of the
open-loop process ?

"Model Predictive Control" - © 2025 A. Bemporad. All rights reserved. 70/110

DATA-DRIVEN DIRECT CONTROLLER SYNTHESIS

e Collect asetof data {u(t),y(t),p(¢)},t=1,...,N

o Specify a desired closed-loop linear model M fromr toy

e Computer,(t) = M#y(t) from pseudo-inverse model M*# of M

o |dentify linear (LPV) model K, from e,, = r,, — y (virtual tracking error) to u

"Model Predictive Control" - © 2025 A. Bemporac 71/110

DIRECT DATA-DRIVEN MPC

e Design alinear MPC (reference governor) to generate the reference r

p
ik 1 1 e d y
T e u Y
ro — | MPC H—s0— K,) S
desired i M l !
reference | i Linear Fredich’.on model
I - (totally known !)

72/110

DIRECT DATA-DRIVEN MPC - AN EXAMPLE

o Experimental results: MPC handles soft constraints on u, Au and y

(motor equipment by courtesy of TU Delft)

0 u
45 5
v
with MPC —
4F without MPC Zo0
5
=33 1 5 10 15 20 25 30
- Au
N 05 T
= h,
i Z ok |
25 : '@ W
05
2 5 10 15 20 25 30
5 10 15 20 25 30 Time [s]

Time [s]
desired tracking performance achieved constraints on input increments satisfied

No open-loop process model was identified to design the MPC controller!

"Mode 73/110

OPTIMAL DIRECT DATA-DRIVEN MPC

e Question: How to choose the reference model M ?

¢ Canwe choose M from data so that K, is an optimal controller ?

74/110

OPTIMAL DIRECT DATA-DRIVEN MPC

e ldea: parameterize desired closed-loop model M (6) and optimize

meinJ =N Z Wy (r(t) — yp(0,1))* + WauAup (0, 1) + Wae(u(t) — uo(0,1))?

Parfcrmav\ce index identification error

e Evaluating J(6) requires synthesizing K, (¢) from data and simulating the
nominal model and control law

yp(0,1) = M(O)r(t) up(6,t) = Kp(0)(r(t) — yp(6,1))
Aup(0,t) = up(0,t) — up(0,t — 1)

e Optimal 6 obtained by solving a (non-convex) nonlinear programming problem

rol" - © 2025 A. Bemporad. All rights reserved. 75/110

OPTIMAL DIRECT DATA-DRIVEN MPC

e Results: linear process

z—04

G(z) = .
()= 5 015: — 0% . J/[

(t), u(t

Data-driven controller only 1.3% worse than
model-based LQR (=SYS-ID on same data +
LQR design)

e Results: nonlinear (Wiener) process

<
=
—~
~
~—
I

G(2)u(t) ! V

lyr(t)| arctan(yz (1)) E

<

—~
~+

=

The data-driven controller is 24% better than
LQR based on identified open-loop model ! K SR O T

"Model Predictive Control" - © 2025 A. Bemporad. All rights reserve 76/110

DATA-DRIVEN OPTIMAL POLICY SEARCH

DATA-DRIVEN OPTIMAL POLICY SEARCH

e Plant + environment dynamics (unknown):

- s¢ states of plant & environment

s = h(s U, d .
i+l (8¢, pr, ur, do) - p: exogenous signal (e.g., reference)

- wuy control input

- d; unmeasured disturbances

e Control policy: 7 : R?s+t™» — R™= deterministic control policy

uy = W(Stvpt)
o Closed-loop performance of an execution is defined as
oo
\700 (71-7 50, {p€7 d@}€:0> = Z P(Séapéa 7"(367172))
£=0

p(se,pe, m(s¢,pe)) = stage cost
emporad. Al rights reserve

77/110

OPTIMAL POLICY SEARCH PROBLEM

e Optimal policy:

3
I

argmin, J ()

j(ﬂ') = Eso,{pe,dz} [._700 (7T, S0, {pg, dz})] expec&ed Perfcrmahce

¢ Simplifications:

- Finite parameterization: m = 7 (s¢, p+) with K = parameters to optimize
- L—1
- Finite horizon: Ji (7, so, {pe, de}e—o) = p(se,pe,m(se,p2))
(=0

e Optimal policy search: use stochastic gradient descent (SGD)

Ky Ky 1 — OétD(Kt_l)

with D(K;_1) = descent direction

"Model Predictive Control” - © 202

5A. Bemporad. All rights reserve

78/110

DESCENT DIRECTION

e The descent direction D(K;_1) is computed by generating:
- N, perturbations s((]i> around the current state s;
- N, random reference signals r(]) of length L,
- Ngrandom disturbance signals déh) of length L,
Ns NP q

Kt 1 VKJL TK,_ 1,80 ,{T s g)}) ,,l\’\/\ 9
=1 j=1 k=1 "

SGD step = mini-batch of size M = N - N,. - Ny
e Computing V g Jr, requires predicting the effect of m over L future steps

e We use alocal linear model just for computing V i J1,, obtained by running
recursive linear system identification

79/110

OPTIMAL POLICY SEARCH ALGORITHM

e Ateachstept:
1. Acquirecurrent s,
2. Recursively update the local linear model
3. Estimate the direction of descent D(K;—1)

4. Update policy: Ky < Ki—1 — ayD(K¢—1)

e [f policy is learned online and needs to be applied to the process:

- Compute the nearest policy K to K that stabilizes the local model

K{ = argmin|| K — K73

s.t. K stabilizes local linear model Linear matrix inequality

e When policy is learned online, exploration is guaranteed by the reference r;

"Model Predictive Control" - G Bemporad. All rights ved 80/110

SPECIAL CASE: OUTPUT TRACKING

& Xy = [yta Yt—1y s Yt—n,s Ut—1, Ut—2, ~~~,Ut7n,;]

Au; = up —uz—1 control input increment

o Stagecost: |l yer1 =1 1, + 1 Aue % + [l aeen [,

e Integral action dynamics ¢;+1 = ¢ + (ye+1 — 7¢)

Tt
St = , Pt =Tt
qt

e Linear policy parametrization:

KS
WK(St,Tt):*KS‘St*KT'Th K: KT

81/110

EXAMPLE: RETRIEVE LQR FROM DATA

—0.669 0.378 0.233 —0.295
Tip1 = |:—0.288 —0.147 —0.638:| Ty + [—0.325} Uy
—0.337 0.589 0.043 —0.258
model is unknown
yr = [-1.139 0.319 —0.571] x4
Online tracking performance (no disturbance, d; = 0):
4 T T
Qy =1
2+ b . R=0.1
| I ! Qg =1
| i ,r
¢ | :v I | ! i
0 ‘ ‘ Il : i ! : I
} ! n; no L
—9L) r 3 3 20
R rl
f Ng Np Ng
--- Y 50 1 10
4 | |
0 10000 20000 30000

"Model Predictive Control" - © 2025 A 82/110

EXAMPLE: RETRIEVE LQR FROM DATA

Evolution of the error || K; — K,pt|2:

[
o — [IKi = Kopt [[;
2 |
0]
0 10000 20000 30000

Time t

Ksap = [—1.255,0.218,0.652, 0.895, 0.050, 1.115, —2.186]

Kopr = [—1.257,0.219,0.653, 0.898,0.050, 1.141, —2.196]

83/110

NONLINEAR EXAMPLE

B nputs
I States

model is unknown
Cooling Jacket

Reaction Feed:
ATTB - concentration: 10kg mol/m?

Product - temperature: 298.15K

Continuously Stirred Tank Reactor (CSTR)

apmonitor.com

T=T+nr, Ca=Ca+nec, nr,nc~N(00%), o=0.01

1 0
Qy:|:0 0

R=01 Q= [0.01 0]

0 0

Bemporad. All rights ved 84/110

NONLINEAR EXAMPLE

Online learning

concentration C 4 and reference ry

I

-7, |

330

320
310
300
290
320
300

= a0

260

0 5000 10000

temperature T

S,

coolant temperature TC

;

Time t

Validation phase

Costof Kggp = 4.3 - 103

10000 20000
Time t

I nputs
I States
Cooling Jacket

Reaction
A—B

Product

Continuously Stirred Tank Reactor (CSTR)

(courtesy: apmonitor.com)

SGD beats SYS-ID + LQR

e Extended to switching-linear and nonlinear policy, and to collaborative
learning

Bemporad. /

85/110

LEARNING OPTIMAL MPC CALIBRATION

MPC CALIBRATION PROBLEM

e The design depends on a vector x of MPC parameters

Parameters can be many things:
- MPC weights, prediction model coefficients, horizons
- Covariance matrices used in Kalman filters
- Tolerances used in numerical solvers

Define a performance index f over a closed-loop simulation or real experiment.
For example:

Z ly(t) = r(®)]?

(Erackwxg quality)

Automatic calibration = find the best combination of parameters by solving
the global optimization problem

mzin f(x)

"Model Predictive Control" - © 2025 A. Bemporad. All rights reserve 86/110

GLOBAL OPTIMIZATION ALGORITHMS FOR AUTO-TUNING

What is a good optimization algorithm to solve min f(z)?

e The algorithm should not require the gradient V f (z) of f(x), in particular if
experiments are involved (derivative-free or black-box optimization)

e The algorithm should not get stuck on local minima (global optimization)

o The algorithm should make the fewest evaluations of the cost function f
(which is expensive to evaluate)

87/110

AUTO-TUNING - GLOBAL OPTIMIZATION ALGORITHMS

e Several derivative-free global optimization algorithms exist:

Lipschitzian-based partitioning techniques:
e DIRECT (Dlvide in RECTangles)
e SHGO (Simplicial Homology Global Optimisation)
e Multilevel Coordinate Search (MCS)

Response surface methods
o Kriging ,DACE
e Efficient Global Optimization (EGO)
e Bayesian Optimization (BO)

Genetic Algorithms (GA)

Particle Swarm Optimization (PSO)

e GLIS method - radial basis function surrogates + inverse distance weighting
cse.lab.imtlucca.it/~bemporad/glis

)

edictive Control" - © 20

ﬁ pip install glis

A. Bemporad. Al rights reserved. 88/110

cse.lab.imtlucca.it/~bemporad/glis

AUTO-TUNING - GLIS

25

e Goal: solve the global optimization problem)
R —)
min, f(z) "
st. L<zxz<u)
g(z) <0
e Step #0: Get random initial samples z1,...,znN,,., . Y
(Latin Hypercube Sampling)
o Step #1: given N samples of f atzq, ...,z N, build the surrogate function

¢ = radial basis function

Zﬂz €llz — 4[2) Example: ¢(ed) =

(inverse quadratlc)

(ed)

Vector B solves f(z;) = f(z;)foralli = 1,..., N (=linear system)

o Note: build and minimize f(:vl-) iteratively may easily miss global optimum!

emporad. Al rights 89/110

AUTO-TUNING - GLIS

e Step #2: construct the IDW exploration function

z(z) = %AFtan_l (m)

orOifz € {z1,..., 25}

o lle—ai|?

where (o (.T) = m
K2

AF = observed range of f(z;)

e Step #3: optimize the acquisition function

TN41 = argmin f(:c) —dz(x) 6= exploitation vs
st. £<x<u,g(z)<0 exploration tradeoff

to get new sample x 11

o |terate the procedure to get new samples xy 42, ..., TN,

"Model Predictive Control" - © 2025 A. Bemporad. All rights reserved. 90/110

GLIS VS BAYESIAN OPTIMIZATION

ackley . adjiman

0 o problem n BO [s] GLIS [s]
s 4 — ackley 2 2939 3.13
0 N | » adjiman 2 3.29 0.68
10 20 30 40 50 60 5 10 15 TET > 566 77
200 6000 camelsixhumps 2 4.82 0.62
4000 hartman3 3 26.27 335

100
2000 Rartman6 6 5437 8.80
T T] 0 5 o is Rimmelblau 2 7.40 090
o hartman3 hartman6 rosenbrock8 8 63.09 13.73
stepfunction2 4 11.72 1.87
2 styblinski-tang5 5 37.02 6.10

Results computed on 20 runs per test
BO = MATLAB's bayesopt fcn

1500
1000 f\
500

4 %104 stepfunction2 styblinski-tangh

e Comparable performance

e GLIS is computationally lighter
K p ylig

e s wm ™ w wowow o *® GLISismore flexible
number of function evaluations number of function evaluations
"Model Predictive Control" - © 2025 A. Bemporad. Al 91/110

AUTO-TUNING: MPC EXAMPLE

¢ We want to auto-tune the linear MPC controller

50—1

min > (grpr — (D) + (W (wp — wg-1))?
k=0
S.t. Tp41 = Az + Buy

yczcxk D
—15<u, <15]
ur = un,, k=N,,...,N -1

[t t+Nu t+N'
e Calibration parameters: = = [log;, W2", N,/]
e Range: -5 <z; <3and1 < z5 <50
e Closed-loop performance objective:
a 1
fla)=>" ((t) —r(t)*+ 5 (u(t) —ult — 1))*+ 2N,
————— ~~
=0 et el small Q9

SW\DVHA control action
emporad. Al rights

reserved. 92/110

AUTO-TUNING: EXAMPLE

15 oquut
best function value
200 4
180 q
-15 L L L L L L L L L
10 20 30 40 50 60 70 80 90 100
15 input
l 4
0.5F +
ol b
0.5+ di
Ak 4
15 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ " ‘ ‘
0 10 20 30 40 50 60 70 80 90 100 o 50 100 150
function evaluations
e Result: 2* = [~0.2341,2.3007] WAY = (.5833, N, = 2

"

el Predictive Co

)25 A. Bemporad. A

93/110

MPC AUTOTUNING EXAMPLE

e Linear MPC applied to cart-pole system: 14 parameters to tune

- sample time

- weights on outputs and input increments
- prediction and control horizons

- covariance matrices of Kalman filter

- absolute and relative tolerances of QP solver

T
Closed-loop performance score: J = / [p(t) — pret(t)| + 30| (2)|dt
0

MPC parameters tuned using 500 iterations of GLIS

Performance tested with simulated cart on two hardware platforms
(PC, Raspberry PI)

"Model Predictive Control" - © 2025 A. Be

94/110

MPC AUTOTUNING EXAMPLE

MPC optimized for desktop PC MPC optimized for Raspberry PI

ion (m)
1
i

Angle (deg) Po
Angle (deg)

Force (N)
Force (N)

optimal sample time = 6 ms optimal sample time = 22 ms

e MPC parameters tuned by GLIS global optimizer (500 fcn evals)
e Auto-calibration can squeeze max performance out of the available hardware

e Bayesian optimization gives similar results, but with larger computation effort

"Model Predictive Control" - © 2025 A. Bemporad. All rights reserved. 95/110

AUTO-TUNING: PROS AND CONS

e Pros:

sy Selection of calibration parameters x to test is fully automatic
sy Applicable to any calibration parameter (weights, horizons, solver tolerances, ...)

»f Rather arbitrary performance index f(x) (tracking performance, response time,
worst-case number of flops, ...)

e Cons:

i@ Need to quantify an objective function f(z)
i® No room for qualitative assessments of closed-loop performance

i@ Often have multiple objectives, not clear how to blend them in a single one

96/110

ACTIVE PREFERENCE LEARNING

e Objective function f(x) is not available (latent function)

e We can only express a preference between two choices:

—1 ifzq “better” than zo [f(x1) < f(x2)]
m(x1,22) =4 0 if 1 “as good as” - [f(z1) = f(x2)]
1 ifzo “better” than z; [f(z1) > f(z2)]

e We want to find a global optimum z* (=“better” than any other x)
find z* suchthat r(z*,2) <0, Vz e X, { <z <u

o Active preference learning: iteratively propose a new sample to compare
e Key idea: learn a surrogate of the (latent) objective function from preferences

emporad. All rights reserve 97/110

PREFERENCE-LEARNING EXAMPLE

e Realisticimage synthesis of material appearance are based on models with
many parameters xy, ..., T,

¢ Defining an objective function f(x) is hard, while a human can easily assess
whether an image resembles the target one or not

o Preference gallery tool: at each iteration, the user compares two images
generated with two different parameter instances

"Model Predictive Control" - © 2025 A. Bemporad. All rights reserved. 98/110

ACTIVE PREFERENCE LEARNING ALGORITHM

latent function f(x)

1

0s .

5 2 E o T 2 3

surrogate function f(x)

02 T T T T T
of]

: W .
) 2 2 3

of

El o T
exploration function z(x)

o4 f f] i N . | |]
oal 3 2 m" A 0 1 2 3
02 N+1
ol

0

a > T 0 1 2 s

e Fitasurrogate f (z) that respects the preferences expressed by the decision
maker at sampled points (by solving a QP)

e Minimize an acquisition function f(z) — 6z(z) to get a new sample z v 41

e Compare x 1 to the current “best” point (sls, ¥, ~) and iterate

"Model Predictive Control" - © 2025 A. Bemporad. Al jed. 99/110

SEMI-AUTOMATIC CALIBRATION BY PREF.-BASED LEARNING

e Use preference-based optimization (GLISp) algorithm for semi-automatic

"Mode

tuning of MPC

Latent function = calibrator’s (unconscious) score
of closed-loop MPC performance

GLISp proposes a new combination z 41 of MPC
parameters to test

By observing test results, the calibrator expresses a

preference, telling if x 11 is “better”, “similar”, or
“worse” than current best combination

Preference learning algorithm: update the
surrogate f(z) of the latent function, optimize the
acquisition function, ask preference, and iterate

erved.

Predictive Control" - © 2025 A. Bemporad. All rights

testing &
assessment

control preference

parameters [
[preference-

L based learning |

L algorithm

100/110

PREFERENCE-BASED TUNING: MPC EXAMPLE

¢ Semi-automatic tuning of

x = [log;, WA", N,]inlinear MPC os
[

50—1 o

e

. 2 A 2
min § : (yk+1 - T(t)> + (W u(uk - uk_l)) S0 20 30 40 50 6 70 80 80 100
k=0

st Tyl = Axyp + Buy,

ye = Cxy, !
—15<u; <15 ’
up =un,, k= Ny,...,N—1 !

)

2
0 10 20 30 40 50 60 70 8 90 100

e Same performance index to assess closed-loop quality, but unknown:
only preferences are available

e Result: WA% = (.6888, N,, = 2

101/110

PREFERENCE-BASED TUNING: MPC EXAMPLE

50 Sampled points during preference learning Best function value
I o 170
“ 1 160
o
a0l 150
sl O | 140
D 130
EUS o o |
g o 120
£25 o
£ 110
§20F
© 100
15
EY
10} 5
s 80
0 6 4 2 0 2 4 L L L L
0 107 107 10 10 10 0 20 40 60 80 100 120 140
Wdu
tested combinations of MPC params (latent) performance index

102/110

PREFERENCE-BASED TUNING: MPC EXAMPLE

e Example: calibration of a simple MPC for lane-keeping (2 inputs, 3 outputs)

vcos(f + 0)
vsin(d + 0)
6 = +vsin(6)

e Multiple control objectives:

» o« » o«

“optimal obstacle avoidance”, “pleasant drive”, “CPU time small enough’, ...
not easy to quantify in a single function

e 5MPC parameters to tune:
- sampling time
- prediction and control horizons
- weights on input increments Av, Ad
"Model Predictive Control” - © 2025 A

emporad. Al rights reserved. 103/110

PREFERENCE-BASED TUNING: MPC EXAMPLE

Preference query window:

T,=03325,N, =16,N, =17, log(q,,,) = 0.06,

log(a,,,) = 202t .0 0.0867 s

hicl
obstacle
‘v chicle OA
W obstacle OA

0 50 100 150 200 250

put

frend Ref
E70 eference
£ 60
> 50

40

0 50 100 150 200 250
50
25

= o\~
w

0 50 100 150 200 250
X, [m]

©

2025 A. Bempora

=0 /\ A~ Hﬂ
o
-25

T =0.2435,N, =12, N, =17,10g(q,;,) = 019,

Iog(quzz) = 0.70, \comp: 0.0846 s

obstacle
‘mm—chicle OA
W obstacle OA

6

3

y; [m]

0

80

=70

Eeo0

> 50

0 50 100 150 200 250

0 50 100 150 200 250
X, [m]

MPC closed-I...

9 Which tuning do you prefer ?

Left Equal |

104/110

PREFERENCE-BASED TUNING: MPC EXAMPLE

e Convergence after 50 GLISp iterations (=49 queries):

—veniie Optimal MPC parameters:
——obstacle

mm—chicle OA
mm— obstacle OA

y, [m]

- sample time =85 ms (CPU time = 80.8 ms)

0 50 100 150 200 250

i e - prediction honzon =16
£ o] - control horizon =5
50 - | | - 1 . _

50 100 150 200 250 - Welght onAv =182
! ‘ [[‘ - weighton A§ =828
L«- 0
TS

5‘0 16 1;;0 260

-20
0 0 250
X, [m]

e Note: no need to define a closed-loop performance index explicitly!

e Extended to handle also unknown constraints

105/110

WORST-CASE SCENARIO DETECTION

CORNER-CASE SCENARIO DETECTION PROBLEM

e Goal: detect undesired simulation scenarios (=corner-cases)

e Let x = parameters defining the scenario, Xopp = operational design domain
z € Xopp € R"

e critical scenario = vector z* for which the closed-loop behavior is critical

e Example:

- 1z = (initial distance between ego car and obstacle, obstacle acceleration, ...)
- Critical scenario: time-to-collision is too short, excessive jerk of ego car, ...

e Key idea: use global optimizer GLIS to generate critical corner-cases

x* € argmin f(x) f(z) = criticality of closed-loop simulation (or
veXopp experiment) determined by scenario
st. {<z=<u (the smaller f (), the more critical z is)

Bemporad. All rights ved 106/110

CORNER-CASE DETECTION: CASE STUDY

e Problem: find critical scenarios in automated driving w/ obstacles

e MPC controller for lane-keeping and obstacle-avoidance based on simple
kinematic bicycle model

&y =vcos(+9)
wy =vsin(f + 9)
__wsin(d)

L

(zf,wy) = front-wheel position
e Black-box optimization problem: given k obstacles, solve

k

. SV, i SV, i @ :
zg;lgu dzf,critical(z) + dwf,critical(x) | Id’s‘f/ (scene, 1)
I
|

s.t. other constraints g
Ty
o - © 20254

emporad. Al rights

107/110

CORNER-CASE DETECTION: CASE STUDY

e Cost function terms to minimize: for each obstacle #i define

,Jhin dif”(w,t) eollision min diskt, @collision with #i
collision
SV, i i)
dzfycritical (1:) =qL ~ Igollision & Leoliision collision with other #i# Hi
Z di\;’z(x, t) ~ Teollision no collision
tETsim
: SV, i 7
min dw ; (1‘, t) collision
t € Teollision s
SV,i _ i .
dwf,critical () = Wy,sate ~ Zotiision& Leolision
SV, i
Z dwf2 (.I', t) ~ ZLeollision
t€T5im

Igollision =true if 3t € Tynst
SV,i SV,i
(27" (1) < L) & (d}' (z, 1) < W)

48V (2 gcemest)

:

I
. | -
Teoliision = true if Jh st Ig,..ision = true | (I:‘_
I<—>

"Mode

108/110

CORNER-CASE DETECTION: CASE STUDY

e Logical scenario 1: GLIS identifies 64 collision cases within 100 simulations

wy
N xT
iter 0 0) 0 T 0 w?
Th vy Ty vy Ty vy | e a
51 | 15.00 | 30.00 | 44.14 | 10.00 | 49.10 | 47.39 | i EwD e,
79 | 2809 | 3000 | 7029 | 10.00 | 7479 | 31.74 (9
40 | 3430 | 30,00 | 60.59 | 10.00 | 77.80 | 3597 | vl __

red = optimal solution found by GLIS solver

Ego car changes lane to avoid #1, but
cannot brake fast enough to avoid #2

o Logical scenario 2: GLIS identifies 9 collision cases within 100 simulations

p wy
fter z(}l ’U;) te Wiond
28 12,57 | 4694 | 16.75 lane 2
16 17.53 | 47.48 | 23.65 7 _SV ______ 1_ oo
88 4454 | 4126 | 16.02 oo . lane 1

red = optimal solution found by GLIS solver
Ego car changes lane to avoid #1, but cannot decelerate
in time for the sudden lane-change of #1

"Model Predictive C 109/110

LEARNING-BASED MPC: FINAL REMARKS

LEARNING-BASED MPC: FINAL REMARKS

e ML very useful to get control-oriented models (and control laws) from data
e ML cannot replace control engineering:

- Blindly applying deep NNs can lead to useless models for embedded control
- Approximating MPC laws by NN'’s can fail, often still need online optimization

- Model-free reinforcement learning can fail wrt model-based control design,
which is more sample-efficient and better performs tasks it wasn'’t trained for

YannLeCun @ @

Indeed, | do favor MPC over RL.
I've been making that point since at least 2016.
RL requires ridiculously large numbers of trials to learn any new task.

In contrast MPC is zero shot: If you have a good world model and a good
task objective, MPC can solve new tasks without any task-specific
learning.

That's the magic of planning.

It doesn't mean that RL is useless, but its use should be a last resort.

redictive Control” - © 2025 A. Bemporad. All rights reserved. 110/110

