MODEL PREDICTIVE CONTROL

LEARNING-BASED MPC

Alberto Bemporad

imt.lu/ab

COURSE STRUCTURE

- ✓ Basic concepts of model predictive control (MPC) and linear MPC
- ✓ Linear time-varying and nonlinear MPC
- ✓ Quadratic programming (QP) and explicit MPC
- ✓ Hybrid MPC
- ✓ Stochastic MPC
 - Learning-based MPC (or data-driven MPC)

Course page:

http://cse.lab.imtlucca.it/~bemporad/mpc_course.html

MACHINE LEARNING AND CONTROL ENGINEERING

MPC AND ML

MPC and ML = main trends in control R&D in industry!

(source: https://books.google.com/ngrams)

MACHINE LEARNING (ML)

Massive set of techniques to extract mathematical models from data

MACHINE LEARNING (ML)

Good mathematical foundations from artificial intelligence, statistics, optimization

 Works very well in practice (despite training is most often a nonconvex optimization problem ...)

• Used in myriads of very diverse application domains

• Availability of excellent open-source software tools also explains success scikit-learn, TensorFlow/Keras, PyTorch, JAX, Flux.jl,... • python julia

MPC DESIGN FROM DATA

- Use machine learning to get a prediction model from data (system identification)
 - Autoencoders, recurrent neural networks (nonlinear models)
 - Online learning of feedforward/recurrent neural networks by EKF
 - Piecewise affine regression to learn hybrid models
- 2. Use reinforcement learning to learn the MPC law from data
 - Q-learning: learn Q-function defining the MPC law from data
 - Policy gradient methods: learn optimal policy coefficients directly from data using stochastic gradient descent
 - Global optimization methods: learn MPC parameters (weights, models, horizon, solver tolerances, ...) by optimizing observed closed-loop performance

CONTROL-ORIENTED NONLINEAR MODELS

 Black-box models: purely data-driven. Use training data to fit a prediction model that can explain them

 Physics-based models: use physical principles to create a prediction model (e.g.: weather forecast, chemical reaction, mechanical laws, ...)

$$\begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \end{array} \begin{array}{c} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \\$$

Gray-box (or physics-informed) models: mix of the two, can be quite effective

"All models are wrong, but some are useful."

MODELS FOR CONTROL SYSTEMS DESIGN

- Prediction models for model predictive control:
 - Complex model = complex controller
 - \rightarrow model must be as **simple** as possible
 - Easy to linearize (to get Jacobian matrices for nonlinear optimization)
- Prediction models for state estimation:
 - Complex model = complex Kalman filter
 - Easy to linearize
- Models for virtual sensing:
 - No need to use simple models (except for computational reasons)
- Models for diagnostics:
 - Usually a classification problem to solve
 - Complexity is also less of an issue

Linear models

- linear I/O models (ARX, ARMAX,...)
- subspace linear SYS-ID
- linear regression (ridge, elastic-net, Lasso)

Piecewise linear models

- decision-trees
- neural nets + (leaky)ReLU
- K-means + linear models

Nonlinear linear models

- basis functions + linear regression
- neural networks
- K-nearest neighbors
- support vector machines
- kernel methods
- random forests

NONLINEAR SYS-ID BASED ON NEURAL NETWORKS

- Neural networks proposed for nonlinear system identification since the '90s (Narendra, Parthasarathy, 1990) (Hunt et al., 1992) (Suykens, Vandewalle, De Moor, 1996)
- NNARX models: use a feedforward neural network to approximate the nonlinear difference equation $y_t \approx \mathcal{N}(y_{t-1}, \dots, y_{t-n_a}, u_{t-1}, \dots, u_{t-n_b})$
- Neural state-space models:
 - w/ state data: fit a neural network model $x_{t+1} pprox \mathcal{N}_x(x_t, u_t), \ \ y_t pprox \mathcal{N}_y(x_t)$
 - I/O data only: set x_t = value of an inner layer of the network (Prasad, Bequette, 2003)
 such as an autoencoder (Masti, Bemporad, 2021)
- Alternative for MPC: learn entire prediction (Masti, Smarra, D'Innocenzo, Bemporad, 2020)

$$y_{t+k} = h_k(x_t, u_t, \dots, u_{t+k-1}), k = 1, \dots, N$$

 Recurrent neural networks are more appropriate for accurate open-loop predictions, but more difficult to train (see later ...)

NLMPC BASED ON NEURAL NETWORKS

Approach: use a neural network model for prediction

MPC design workflow:

MPC OF ETHYLENE OXIDATION PLANT

 Chemical process = oxidation of ethylene to ethylene oxide in a nonisothermal continuously stirred tank reactor (CSTR)

$$\begin{split} &C_2H_4 + \frac{1}{2}O_2 \to C_2H_4O \\ &C_2H_4 + 3O_2 \to 2CO_2 + 2H_2O \\ &C_2H_4O + \frac{5}{2}O_2 \to 2CO_2 + 2H_2O \end{split}$$

Nonlinear model (dimensionless variables): (Durand, Ellis, Christofides, 2016)

$$\begin{cases} \dot{x}_1 &=& u_1(1-x_1x_4) \\ \dot{x}_2 &=& u_1(u_2-x_2x_4)-A_1e^{\frac{\gamma_4}{x_4}}(x_2x_4)^{\frac{1}{2}}-A_2e^{\frac{\gamma_2}{x_4}}(x_2x_4)^{\frac{1}{4}} \\ \dot{x}_3 &=& -u_1x_3x_4+A_1e^{\frac{\gamma_4}{x_4}}(x_2x_4)^{\frac{1}{2}}-A_3e^{\frac{\gamma_4}{x_4}}(x_3x_4)^{\frac{1}{2}} \\ \dot{x}_4 &=& \frac{u_1(1-x_4)+B_1e^{\frac{\gamma_4}{x_4}}(x_2x_4)^{\frac{1}{2}}+B_3e^{\frac{\gamma_4}{x_4}}(x_2x_4)^{\frac{1}{4}}}{x_1} \\ &+& \frac{B_3e^{\frac{\gamma_4}{x_4}}(x_3x_4)^{\frac{1}{2}}-B_4(x_4-T_C)}{x_1} \\ \end{cases} \qquad u_1 = \text{feed volumetric flow rate} \\ &+& \frac{B_3e^{\frac{\gamma_4}{x_4}}(x_3x_4)^{\frac{1}{2}}-B_4(x_4-T_C)}{x_1} \\ \end{cases} \qquad u_2 = \text{ethylene concentration in feed}$$

ullet u_1 = manipulated variables, x_3 = controlled output, u_2 = measured disturbance

NEURAL NETWORK MODEL OF ETHYLENE OXIDATION PLANT

Train state-space neural-network model

$$x_{k+1} = \mathcal{N}(x_k, u_k)$$

1,000 training samples $\{u_k, x_k\}$ 2 layers (6 neurons, 6 neurons) 6 inputs, 4 outputs sigmoidal activation function

→ 112 coefficients

- NN model trained by **ODYS Deep Learning** toolset (model fitting + Jacobians \rightarrow neural model in C)
- Model validated on 200 samples. $x_{3,k+1}$ reproduced from x_k, u_k with max 0.4% error

validation sample

MPC OF ETHYLENE OXIDATION PLANT

MPC settings:

cost function

sampling time
$$T_s=5~{
m s}$$
 measured disturbance @t=200 prediction horizon $N=10$ control horizon $N_u=3$ constraints $0.0704 \le u_1 \le 0.7042$

 $\sum_{k=0}^{N-1} (y_{k+1} - r_{k+1})^2 + \frac{1}{100} (u_{1,k} - u_{1,k-1})^2$

- We compare 3 different configurations:
 - NLMPC based on physical model
 - Switched linear MPC based on 3 linear models obtained by linearizing the nonlinear model at $C_2H_4O=\{0.03,\ 0.04,\ 0.05\}$
 - NLMPC based on black-box neural network model

MPC OF ETHYLENE OXIDATION PLANT - CLOSED-LOOP RESULTS

- Neural and model-based NLMPC have similar closed-loop performance
- Neural NLMPC requires no physical model

LEARNING NONLINEAR STATE-SPACE MODELS FOR MPC

(Masti, Bemporad, 2021)

Idea: use autoencoders and artificial neural networks to learn a nonlinear state-space model of desired order from input/output data

ANN with hourglass structure

(Hinton, Salakhutdinov, 2006)

LEARNING NONLINEAR STATE-SPACE MODELS FOR MPC

• Training problem: choose n_a, n_b, n_x and solve

$$\min_{f,d,e} \sum_{k=k_0}^{N-1} \alpha \left(\ell_1(\hat{O}_k, O_k) + \ell_1(\hat{O}_{k+1}, O_{k+1}) \right) \\ + \beta \ell_2(x_{k+1}^{\star}, x_{k+1}) + \gamma \ell_3(O_{k+1}, O_{k+1}^{\star})$$
s.t.
$$x_k = \mathbf{e}(I_{k-1}), \ k = k_0, \dots, N \\ x_{k+1}^{\star} = \mathbf{f}(x_k, u_k), \ k = k_0, \dots, N-1 \\ \hat{O}_k = \mathbf{d}(x_k), \ O_k^{\star} = \mathbf{d}(x_k^{\star}), \ k = k_0, \dots, N$$

Model complexity can be reduced by adding group-LASSO penalties

• Quasi-LPV structure for MPC: set
$$f(x_k,u_k) = A(x_k,u_k) \left[\begin{smallmatrix} x_k \\ 1 \end{smallmatrix} \right] + B(x_k,u_k)u_k$$
 (A_{ij},B_{ij},C_{ij} = feedforward NNs) $y_k = C(x_k,u_k) \left[\begin{smallmatrix} x_k \\ 1 \end{smallmatrix} \right]$

- Different options for the **state-observer**:
 - use encoder e to map past I/O into x_k (deadbeat observer)
 - design extended Kalman filter based on obtained model f,d
 - simultaneously fit state observer $\hat{x}_{k+1} = s(x_k, u_k, y_k)$ with loss $\ell_4(\hat{x}_{k+1}, x_{k+1})$

LEARNING NONLINEAR NEURAL STATE-SPACE MODELS FOR MPC

• Example: nonlinear two-tank benchmark problem

$$\begin{cases} x_1(t+1) = x_1(t) - k_1\sqrt{x_1(t)} + k_2u(t) \\ x_2(t+1) = x_2(t) + k_3\sqrt{x_1(t)} - k_4\sqrt{x_2(t)} \\ y(t) = x_2(t) + u(t) \end{cases}$$

Model is totally unknown to learning algorithm

- Artificial neural network (ANN): 3 hidden layers 60 exponential linear unit (ELU) neurons
- For given number of model parameters, autoencoder approach is superior to NNARX
- Jacobians directly obtained from ANN structure for Kalman filtering & MPC problem construction

LTV-MPC results

LEARNING AFFINE NEURAL PREDICTORS FOR MPC

(Masti, Smarra, D'Innocenzo, Bemporad, 2020)

• Alternative: learn the entire prediction

$$y_k = h_k(x_0, \mathbf{u_0}, \dots, \mathbf{u_{k-1}}), k = 1, \dots, N$$

• LTV-MPC formulation: linearize h_k around nominal inputs \bar{u}_j

$$y_k = h_k(x_0, \bar{u}_0, \dots, \bar{u}_{k-1}) + \sum_{j=0}^{k-1} \frac{\partial h_k}{\partial u_j} (x_0, \bar{u}_0, \dots, \bar{u}_{k-1}) (\mathbf{u}_j - \bar{u}_j)$$

Example: \bar{u}_k = MPC sequence optimized @k-1

ullet Avoid computing Jacobians by fitting h_k in the affine form

$$y_k = f_k(x_0, \bar{u}_0, \dots, \bar{u}_{k-1}) + g_k(x_0, \bar{u}_0, \dots, \bar{u}_{k-1}) \begin{bmatrix} u_0 - \bar{u}_0 \\ \vdots \\ u_{k-1} - \bar{u}_{k-1} \end{bmatrix}$$

cf. (Liu, Kadirkamanathan, 1998)

LEARNING AFFINE NEURAL PREDICTORS FOR MPC

 Example: apply affine neural predictor to nonlinear two-tank benchmark problem

10000 training samples, ANN with 2 layers of 20 ReLU neurons

Best fit rate
$$\mathrm{BFR} = \max\left\{0, 1 - \frac{\|\hat{y} - y\|_2}{\|y - \bar{y}\|_2}\right\}$$

Prediction step	BFR
1	0.959
2	0.958
4	0.948
7	0.915
10	0.858

- Closed-loop LTV-MPC results:
- Model complexity reduction:
 add group-LASSO term with penalty λ

λ	BFR (average on all prediction steps)	# nonzero weights
.01	0.853	328
0.005	0.868	363
0.001	0.901	556
0.0005	0.911	888
0	0.917	9000

ON THE USE OF NEURAL NETWORKS FOR MPC

- Neural prediction models can speed up the MPC design a lot
- Experimental data need to well cover the operating range (as in linear system identification)
- No need to define linear operating ranges with NN's, it is a one-shot model-learning step
- Physical models may better predict unseen situations than black box models
- Physical modeling can help driving the choice of the nonlinear model structure to use (gray-box models)
- NN model can be updated online for adaptive nonlinear MPC

TRAINING FEEDFORWARD NEURAL NETWORKS

• Feedforward neural network model:

$$y_k = f_y(x_k, \theta) = \begin{cases} v_{1k} &= A_1 x_k + b_1 \\ v_{2k} &= A_2 f_1(v_{1k}) + b_2 \\ \vdots & \vdots \\ v_{Lk} &= A_{Ly} f_{L-1}(v_{(L-1)k}) + b_L \\ \hat{y}_k &= f_L(v_{Lk}) \end{cases}$$

E.g.:
$$x_k$$
 = current state & input, or $x_k = (y_{k-1}, \dots, y_{k-n_a}, u_{k-1}, \dots, u_{k-n_b})$

• Training problem: given a dataset $\{x_0, y_0, \dots, x_{N-1}, y_{N-1}\}$ solve

$$\min_{\theta} r(\theta) + \sum_{k=0}^{N-1} \ell(y_k, f(x_k, \theta))$$

 It is a nonconvex, unconstrained, nonlinear programming problem that can be solved by stochastic gradient descent, quasi-Newton methods, ... and EKF!

TRAINING FEEDFORWARD NEURAL NETWORKS BY EKF

(Singhal, Wu, 1989) (Puskorius, Feldkamp, 1994)

• **Key idea**: treat parameter vector θ of the feedforward neural network as a **constant state**

$$\begin{cases} \theta_{k+1} &= \theta_k + \eta_k \\ y_k &= f(x_k, \theta_k) + \zeta_k \end{cases}$$

and use EKF to estimate θ_k on line from a streaming dataset $\{x_k,y_k\}$

• Ratio $Var[\eta_k]/Var[\zeta_k]$ is related to the **learning-rate**

• Initial matrix $(P_{0|-1})^{-1}$ is related to quadratic regularization on θ

RECURRENT NEURAL NETWORKS

Recurrent Neural Network (RNN) model:

$$egin{array}{lcl} x_{k+1} &=& f_x(x_k,u_k, heta_x) \ y_k &=& f_y(x_k, heta_y) \ f_x,f_y &=& ext{feedforward neural network} \end{array}$$

(e.g.: general RNNs, LSTMs, RESNETS, physics-informed NNs, ...)

$$v_1$$

$$v_2$$

$$v_L$$

$$v_J = A_j f_{j-1}(v_{j-1}) + b_j$$

$$\theta = (A_1, b_1, \dots, A_L, b_L)$$

• Training problem: given a dataset $\{u_0, y_0, \dots, u_{N-1}, y_{N-1}\}$ solve

$$\min_{\substack{\theta_x, \, \theta_y \\ x_0, \, x_1, \, \dots, \, x_{N-1} \\ \text{s.t.}}} r(x_0, \theta_x, \theta_y) + \frac{1}{N} \sum_{k=0}^{N-1} \ell(y_k, f_y(x_k, \theta_y))$$

• Main issue: x_k are hidden states, i.e., are unknowns of the problem

• Estimate both hidden states x_k and parameters θ_x, θ_y by **EKF** based on model

$$\begin{cases} x_{k+1} &= f_x(x_k, u_k, \theta_{xk}) + \xi_k \\ \begin{bmatrix} \theta_{x(k+1)} \\ \theta_{y(k+1)} \end{bmatrix} &= \begin{bmatrix} \theta_{xk} \\ \theta_{yk} \end{bmatrix} + \eta_k \\ y_k &= f_y(x_k, \theta_{yk}) + \zeta_k \end{cases}$$

Ratio $\operatorname{Var}[\eta_k]/\operatorname{Var}[\zeta_k]$ related to **learning-rate** of training algorithm

Inverse of initial matrix P_0 related to ℓ_2 -penalty on θ_x, θ_y

- RNN and its hidden state x_k can be estimated **on line** from a streaming dataset $\{u_k,y_k\}$, and/or **offline** by processing multiple epochs of a given dataset
- Can handle general smooth strongly convex loss fncs/regularization terms
- Can add ℓ_1 -penalty $\lambda \left\| \left[\frac{\theta_x}{\theta_y} \right] \right\|_1$ to sparsify θ_x, θ_y by changing EKF update into

$$\begin{bmatrix} \hat{x}(k|k) \\ \theta_x(k|k) \\ \theta_y(k|k) \end{bmatrix} = \begin{bmatrix} \hat{x}(k|k-1) \\ \theta_x(k|k-1) \\ \theta_y(k|k-1) \end{bmatrix} + M(k)e(k) - \lambda P(k|k-1) \begin{bmatrix} 0 \\ \operatorname{sign}(\theta_x(k|k-1)) \\ \operatorname{sign}(\theta_y(k|k-1)) \end{bmatrix}$$

TRAINING RNNS BY EKF - EXAMPLES

 Dataset: magneto-rheological fluid damper 3499 I/O data (Wang, Sano, Chen, Huang, 2009)

- N=2000 data used for training, 1499 for testing the model
- Same data used in NNARX modeling demo of SYS-ID Toolbox for MATLAB
- RNN model: 4 hidden states, shallow state-update and output functions
 6 neurons, atan activation, I/O feedthrough
- Compare with gradient descent (Adam)

MATLAB+CasADi implementation (Macbook Pro 14" M1 Max)

TRAINING RNNS BY EKF - EXAMPLES

Compare BFR¹ wrt NNARX model (SYS-ID TBX):

EKF: 90.67%
-Nar. 6, 2: 85.15%
-masured
-samples

• Repeat training with ℓ_1 -penalty $au \left\| \left[egin{array}{c} heta_y \end{array} \right] \right\|_1$

 $^{^{1}}$ Best fit rate BFR= $100(1-\frac{\|Y-\hat{Y}\|_{2}}{\|Y-\bar{y}\|_{2}})$, averaged over 20 runs from different initial weights

TRAINING LSTMS BY EKF - EXAMPLES

Use EKF to train Long Short-Term Memory (LSTM) model

(Hochreiter, Schmidhuber, 1997) (Bonassi et al., 2020)

$$\begin{array}{rcl} x_{a}(k+1) & = & \sigma_{G}(W_{F}u(k) + U_{f}x_{b}(k) + b_{f}) \odot x_{a}(k) \\ & & + \sigma_{G}(W_{I}u(k) + U_{I}x_{b}(k) + b_{I}) \odot \sigma_{C}(W_{C}u(k) + U_{C}x_{b}(k) + b_{C}) \\ x_{b}(k+1) & = & \sigma_{G}(W_{O}u(k) + U_{O}x_{b}(k) + b_{O}) \odot \sigma_{C}(x_{a}(k+1)) \\ y(k) & = & f_{y}(x_{b}(k), u(k), \theta_{y}) \end{array}$$

$$\sigma_G(\alpha) = \frac{1}{1 + e^{-\alpha}}, \sigma_C(\alpha) = \tanh(\alpha)$$

• Training results (mean and std over 20 runs):

	BFR	Adam	EKF
RNN	training	89.12 (1.83)	92.82 (0.33)
$n_{\theta} = 107$	test	85.51 (2.89)	89.78 (0.58)
LSTM	training	89.60 (1.34)	92.63 (0.43)
$n_{\theta} = 139$	test	85.56 (2.68)	88.97 (1.31)

• EKF training applicable to arbitrary classes of black/gray box recurrent models!

TRAINING RNNS BY EKF - EXAMPLES

Dataset: 2000 I/O data of linear system with binary outputs

$$\begin{aligned} x(k+1) &= \begin{bmatrix} .8 & .2 & -.1 \\ 0 & .9 & .1 \\ .1 & -.1 & .7 \end{bmatrix} x(k) + \begin{bmatrix} -1 \\ .5 \\ 1 \end{bmatrix} u(k) + \xi(k) & \operatorname{Var}[\xi_i(k)] = \sigma^2 \\ y(k) &= \begin{cases} \mathbf{1} & \text{if } [-2 \ 1.5 \ 0.5] \ x(k) - 2 + \zeta(k) \ge 0 \\ \mathbf{0} & \text{otherwise} \end{cases} & \operatorname{Var}[\zeta(k)] = \sigma^2 \end{aligned}$$

- N=1000 data used for training, 1000 for testing the model
- Train linear state-space model with 3 states and sigmoidal output function

$$f_1^y(y) = 1/(1 + e^{-A_1^y[x'(k) u(k)]' - b_1^y})$$

$$\ell_{\mathrm{CE}\epsilon}(y(k), \hat{y}) = \sum_{i=1}^{3} -y_i(k) \log(\epsilon + \hat{y}_i) - (1 - y_i(k)) \log(1 + \epsilon - \hat{y}_i)$$

EKF accuracy [%]

TRAINING RNNS BY SEQUENTIAL LEAST-SQUARES

(Bemporad, 2021 - http://arxiv.org/abs/2112.15348)

• RNN training problem = optimal control problem:

$$\min_{\theta_{x},\theta_{y},x_{0},x_{1},...,x_{N-1}} r(x_{0},\theta_{x},\theta_{y}) + \sum_{k=0}^{N-1} \ell(y_{k},\hat{y}_{k})$$
s.t. $x_{k+1} = f_{x}(x_{k},u_{k},\theta_{x})$

$$\hat{y}_{k} = f_{y}(x_{k},u_{k},\theta_{y})$$

- θ_x, θ_y, x_0 = manipulated variables, \hat{y}_k = output, y_k = reference, u_k = meas. dist.
- $r(x_0, \theta_x, \theta_y)$ = input penalty, $\ell(y_k, \hat{y}_k)$ = output penalty
- N = prediction horizon, control horizon = 1
- Linearized model: given a current guess $\theta_x^h, \theta_y^h, x_0^h, \dots, x_{N-1}^h$, approximate

$$\Delta x_{k+1} = (\nabla_x f_x)' \Delta x_k + (\nabla_{\theta_x} f_x)' \Delta \theta_x$$

$$\Delta y_k = (\nabla_{x_k} f_y)' \Delta x_k + (\nabla_{\theta_y} f_y)' \Delta \theta_y$$

TRAINING RNNS BY SEQUENTIAL LEAST-SQUARES

• Linearized dynamic response: $\Delta x_k = M_{kx} \Delta x_0 + M_{k\theta_x} \Delta \theta_x$

$$\begin{array}{rcl} M_{0x} & = & I, & M_{0\theta_x} = 0 \\ \\ M_{(k+1)x} & = & \nabla_x f_x(x_k^h, u_k, \theta_x^h) M_{kx} \\ \\ M_{(k+1)\theta_x} & = & \nabla_x f_x(x_k^h, u_k, \theta_x^h) M_{k\theta_x} + \nabla_{\theta_x} f_x(x_k^h, u_k, \theta_x^h) \end{array}$$

- ullet Take $2^{
 m nd}$ -order expansion of the loss ℓ and regularization term r
- Solve least-squares problem to get increments $\Delta x_0, \Delta \theta_x, \Delta \theta_y$
- Update x_0^{h+1} , θ_x^{h+1} , θ_y^{h+1} by applying either a
 - line-search (LS) method based on Armijo rule
 - or a **trust-region** method (Levenberg-Marquardt) (LM)
- The resulting training method is a Generalized Gauss-Newton method very good convergence properties (Messerer, Baumgärtner, Diehl, 2021)

(Bemporad, 2021 - http://arxiv.org/abs/2112.15348)

• Fluid-damper example: (4 states, shallow NNs w/ 4 neurons, I/O feedthrough)

MSE loss on training data, mean value and range over 20 runs from different random initial weights

NAILS = GNN method with line search **NAILM** = GNN method with LM steps

BFR	training	test
NAILS	94.41 (0.27)	89.35 (2.63)
NAILM	94.07 (0.38)	89.64 (2.30)
EKF	91.41 (0.70)	87.17 (3.06)
AMSGrad	84.69 (0.15)	80.56 (0.18)

(Bemporad, 2021 - http://arxiv.org/abs/2112.15348)

• We also want to handle non-smooth (and non-convex) regularization terms

$$\begin{aligned} \min_{\theta_{x},\theta_{y},x_{0}} & & r(x_{0},\theta_{x},\theta_{y}) + \sum_{k=0}^{N-1} \ell(y_{k},f_{y}(x_{k},\theta_{y})) + g(\theta_{x},\theta_{y}) \\ & \text{s.t.} & & x_{k+1} = f_{x}(x_{k},u_{k},\theta_{x}) \end{aligned}$$

Idea: use alternating direction method of multipliers (ADMM) by splitting

$$\begin{aligned} \min_{\theta_x,\theta_y,x_0,\nu_x,\nu_y} & & r(x_0,\theta_x,\theta_y) + \sum_{k=0}^{N-1} \ell(y_k,f_y(x_k,\theta_y)) + g(\nu_x,\nu_y) \\ \text{s.t.} & & x_{k+1} = f_x(x_k,u_k,\theta_x) \\ & & & \begin{bmatrix} \nu_x \\ \nu_y \end{bmatrix} = \begin{bmatrix} \theta_x \\ \theta_y \end{bmatrix} \end{aligned}$$

(Bemporad, 2021 - http://arxiv.org/abs/2112.15348)

ADMM + Seq. LS = NAILS algorithm (Nonconvex ADMM Iterations and Sequential LS)

$$\begin{bmatrix} \boldsymbol{x}_0^{t+1} \\ \boldsymbol{\theta}_1^{t+1} \\ \boldsymbol{\theta}_y^{t+1} \end{bmatrix} = \arg\min_{\boldsymbol{x}_0, \boldsymbol{\theta}_x, \boldsymbol{\theta}_y} V(\boldsymbol{x}_0, \boldsymbol{\theta}_x, \boldsymbol{\theta}_y) + \frac{\rho}{2} \left\| \begin{bmatrix} \boldsymbol{\theta}_x - \boldsymbol{\nu}_x^t + \boldsymbol{w}_x^t \\ \boldsymbol{\theta}_y - \boldsymbol{\nu}_y^t + \boldsymbol{w}_y^t \end{bmatrix} \right\|_2^2 \quad \text{(sequential) LS}$$

$$\begin{bmatrix} \boldsymbol{\nu}_x^{t+1} \\ \boldsymbol{\nu}_y^t + 1 \end{bmatrix} = \max_{\frac{\rho}{\rho}} (\boldsymbol{\theta}_x^{t+1} + \boldsymbol{w}_x^t, \boldsymbol{\theta}_y^{t+1} + \boldsymbol{w}_y^t) \quad \text{proximal step}$$

$$\begin{bmatrix} \boldsymbol{w}_x^{t+1} \\ \boldsymbol{w}_y^t + 1 \end{bmatrix} = \begin{bmatrix} \boldsymbol{w}_x^h + \boldsymbol{\theta}_x^{t+1} - \boldsymbol{\nu}_x^{t+1} \\ \boldsymbol{w}_y^h + \boldsymbol{\theta}_y^{t+1} - \boldsymbol{\nu}_y^{t+1} \end{bmatrix} \quad \text{update dual vars}$$

Fluid-damper example: Lasso regularization $g(\nu_x,\nu_y)= au_x\|\nu_x\|_1+ au_y\|\nu_y\|_1$

$$\tau_x = \tau_y = \tau$$

(mean results over 20 runs from different initial weights)

(Bemporad, 2021 - http://arxiv.org/abs/2112.15348)

Fluid-damper example: Lasso regularization $g(\nu_x, \nu_y) = 0.2 \|\nu_x\|_1 + 0.2 \|\nu_y\|_1$

training	BFR	BFR	sparsity	CPU	#	
algorithm	training	test	%	time	epochs	pprox same fit tha
NAILS	91.00 (1.66)	87.71 (2.67)	65.1 (6.5)	11.4 s	250	\sim same in the
NAILM	91.32 (1.19)	87.80 (1.86)	64.1 (7.4)	11.7 s	250	SGD/EKF but s
EKF	89.27 (1.48)	86.67 (2.71)	47.9 (9.1)	13.2 s	50	models and fa
AMSGrad	91.04 (0.47)	88.32 (0.80)	16.8 (7.1)	64.0 s	2000	
Adam	90.47 (0.34)	87.79 (0.44)	8.3 (3.5)	63.9 s	2000	(CPU: Apple M
DiffGrad	90.05 (0.64)	87.34 (1.14)	7.4 (4.5)	63.9 s	2000	

an sparser aster M1 Pro)

Fluid-damper example: group-Lasso regularization $g(\nu_i^g) = \tau_q \sum_{i=1}^{n_x} \|\nu_i^g\|_2$ to zero entire rows and columns and reduce state-dimension automatically

good choice: $n_r = 3$ (best fit on test data)

(Bemporad, 2021 - http://arxiv.org/abs/2112.15348)

• Fluid-damper example: quantization of θ_x , θ_y for simplifying model arithmetic +leaky-ReLU activation function

$$g(\theta_i) = \left\{ \begin{array}{cc} 0 & \text{if } \theta_i \in \mathcal{Q} \\ +\infty & \text{otherwise} \end{array} \right. \quad \mathcal{Q} = \text{multiples of 0.1 between -0.5 and 0.5}$$

- BFR = 84.36 (training), 78.43 (test) ← NAILS w/ quantization
- BFR = 17.64 (training), 12.79 (test) ← no ADMM, just quantize after training
- Training time: pprox 12 s (w/ quantization), 7 s (no ADMM)

- Note: no convergence to a global minimum is guaranteed
- NAILS/LM = flexible & efficient algorithm for training control-oriented RNNs

TRAINING RNNS - SILVERBOX BENCHMARK

(Wigren, Schoukens, 2013)

• Silverbox benchmark (Duffin oscillator): 10 traces of \approx 8600 data used for training, 40000 for testing

(Schoukens, Ljung, 2019)

Data download: http://www.nonlinearbenchmark.org

TRAINING RNNS - SILVERBOX BENCHMARK

(Bemporad, 2021 - http://arxiv.org/abs/2112.15348)

- RNN model: 8 states, 3 layers of 8 neurons, atan activation, no I/O feedthrough
- Initial-state: encode x_0 as the output of a NN with atan activation, 2 layers of 4 neurons, receiving 8 past inputs and 8 past outputs

$$\min_{\substack{\theta_{x_0}, \theta_x, \theta_y \\ x_0}} r(\frac{\theta_{x_0}, \theta_x, \theta_y)}{r(\theta_{x_0}, \theta_x, \theta_y)} + \sum_{j=1}^{M} \sum_{k=0}^{N-1} \ell(y_k^j, \hat{y}_k^j) \\ \text{s.t.} \quad x_{k+1}^j = f_x(x_k^j, u_k^j, \theta_x), \ \hat{y}_k^j = f_y(x_k^j, u_k^j, \theta_y) \\ x_0^j = f_{x_0}(v^j, \theta_{x_0}) \end{aligned} v = \begin{bmatrix} y_{-1} \\ \vdots \\ y_{-8} \\ u_{-1} \\ \vdots \\ u_{-8} \end{bmatrix}$$

- ℓ_2 -regularization: $r(\theta_{x_0}, \theta_x, \theta_y) = \frac{0.01}{2}(\|\theta_x\|_2^2 + \|\theta_y\|_2^2) + \frac{0.1}{2}\|\theta_{x_0}\|_2^2$
- Total number of parameters $n_{\theta_x} + n_{\theta_y} + n_{\theta_{x_0}}$ =296+225+128=649
- Training: use NAILM over 150 epochs (1 epoch = 77505 training samples)

TRAINING RNNS - SILVERBOX BENCHMARK

(Bemporad, 2021 - http://arxiv.org/abs/2112.15348)

• Identification results on test data 2:

identification method	RMSE [mV]	BFR [%]
ARX (ml) [1]	16.29 [4.40]	69.22 [73.79]
NLARX (ms) [1]	8.42 [4.20]	83.67 [92.06]
NLARX (mlc) [1]	1.75 [1.70]	96.67 [96.79]
NLARX (ms8c50) [1]	1.05 [0.30]	98.01 [99.43]
Recurrent LSTM model [2]	2.20	95.83
SS encoder [3] ($n_x = 4$)	[1.40]	[97.35]
NAILM	0.35	99.33

[1] Ljung, Zhang, Lindskog, Juditski, 2004 [2] Liung, Andersson, Tiels, Schön, 2020

[3] Beintema, Toth, Schoukens, 2021

- ullet NAILM training time pprox 400 s (MATLAB+CasADi on Apple M1 Max CPU)
- Repeat training with ℓ_1 -regularization:

 $^{{}^2} Trained\ RNN:\ http://cse.lab.imtlucca.it/~bemporad/shared/silverbox/rnn888.zip$

TRAINING RNNS

Computation time (Intel Core i9-10885H CPU @2.40GHz):

language	autodiff	EKF /time step CPU time	seq. LS /epoch CPU time
Python 3.8.1	PyTorch	≈ 30 ms	(N/A)
Python 3.8.1	JAX	≈ 9 ms	≈ 1.0 s
Julia 1.7.1	Flux.jl	≈ 2 ms	≈ 0.8 s
MATLAB R2021a	CasADi	≈ 0.5 ms	≈ 0.1 s

- Several sparsity patterns can be exploited in EKF updates (supported by ODYS EKF and ODYS Deep Learning libraries)
- Note: Extension to gray-box identification + state-estimation is immediate
- Note: RNN training by EKF can be used to generalize output disturbance models for offset-free set-point tracking to nonlinear I/O disturbance models

- Goal: track desired longitudinal speed (v_y) , lateral displacement (e_y) and orientation $(\Delta\Psi)$
- Inputs: wheel torque T_w and steering angle δ
- Constraints: on e_y and lateral displacement s (for obstacle avoidance) and manipulated inputs T_w , δ
- Sampling time: 100 ms
- Model: gray-box bicycle model
- kinematics is simple to model (white box)
- tire forces harder to model + stiff wheel slip ratio dynamics $(k_f, k_r) \Rightarrow$ small integration step required
- learn a black-box neural-network model!

(Boni, Capelli, Frascati @ODYS, 2021)

$$\begin{split} \dot{s} &= \frac{v_x \cos \Delta \psi - v_y \sin \Delta \psi}{1 - \kappa e_y} \\ \dot{e}_y &= v_x \sin \Delta \psi + v_y \cos \Delta \psi \\ \Delta \dot{\psi} &= \omega - \kappa \dot{s} \end{split}$$

 y_b δx_b $\Delta \psi$

- ODYS Deep Learning Toolset used to learn a neural-network with input $(v_x, v_y, \omega, k_f, k_r, T_w, \delta)$ @k and output $(v_x, v_y, \omega, k_f, k_r)$ @k+1
- Data generated from high-fidelity simulation model with noisy measurements, sampled @10Hz
- Neural network model: 2 hidden layers, 55 neurons each
- Advantages of black-box (neural network) model:
 - No physical model required describing tire-road interaction
 - directly learn the model in discrete-time $(T_s = 100 \text{ ms})$

• Model validation on test data:

C-code (network+Jacobians) automatically generated for ODYS MPC

Closed-loop MPC: overtake vehicle #1, keep safety distance from vehicle #2

• Good reference tracking, constraints on e_y, v_x satisfied, smooth command action

DIRECT DATA-DRIVEN MPC

 Can we design an MPC controller without first identifying a model of the open-loop process?

DATA-DRIVEN DIRECT CONTROLLER SYNTHESIS

(Campi, Lecchini, Savaresi, 2002) (Formentin et al., 2015)

- Collect a set of data $\{u(t), y(t), p(t)\}, t = 1, \dots, N$
- Specify a desired closed-loop linear model ${\mathcal M}$ from r to y
- $\bullet \;\; \mathsf{Compute} \; r_v(t) = \mathcal{M}^\# y(t) \, \mathsf{from} \, \mathsf{pseudo-inverse} \, \mathsf{model} \, \mathcal{M}^\# \, \mathsf{of} \, \mathcal{M}$
- Identify linear (LPV) model K_p from $e_v = r_v y$ (virtual tracking error) to u

DIRECT DATA-DRIVEN MPC

ullet Design a linear MPC (reference governor) to generate the reference r

(Bemporad, Mosca, 1994) (Gilbert, Kolmanovsky, Tan, 1994)

• MPC designed to handle input/output constraints and improve performance

(Piga, Formentin, Bemporad, 2017)

DIRECT DATA-DRIVEN MPC - AN EXAMPLE

 \bullet Experimental results: MPC handles soft constraints on $u,\Delta u$ and y (motor equipment by courtesy of TU Delft)

desired tracking performance achieved

constraints on input increments satisfied

No open-loop process model is identified to design the MPC controller!

OPTIMAL DIRECT DATA-DRIVEN MPC

Question: How to choose the reference model M?

• Can we choose ${\mathcal M}$ from data so that K_p is an optimal controller?

• Idea: parameterize desired closed-loop model $\mathcal{M}(\theta)$ and optimize

$$\min_{\theta} J(\theta) = \frac{1}{N} \sum_{t=0}^{N-1} \underbrace{W_y(r(t) - y_p(\theta, t))^2 + W_{\Delta u} \Delta u_p^2(\theta, t)}_{\text{performance index}} + \underbrace{W_{\text{fit}}(u(t) - u_v(\theta, t))^2}_{\text{identification error}}$$

• Evaluating $J(\theta)$ requires synthesizing $K_p(\theta)$ from data and simulating the nominal model and control law

$$y_p(\theta, t) = \mathcal{M}(\theta)r(t) \qquad u_p(\theta, t) = K_p(\theta)(r(t) - y_p(\theta, t))$$
$$\Delta u_p(\theta, t) = u_p(\theta, t) - u_p(\theta, t - 1)$$

• Optimal θ obtained by solving a (non-convex) nonlinear programming problem

(Selvi, Piga, Bemporad, 2018)

• Results: linear process

$$G(z) = \frac{z - 0.4}{z^2 + 0.15z - 0.325}$$

Data-driven controller only 1.3% worse than model-based LQR (=SYS-ID on same data + LQR design)

Results: nonlinear (Wiener) process

$$y_L(t) = G(z)u(t)$$

 $y(t) = |y_L(t)| \arctan(y_L(t))$

The data-driven controller is 24% better than LQR based on identified open-loop model!

Plant + environment dynamics (unknown):

$$s_{t+1} = h(s_t, p_t, u_t, d_t)$$

$$- s_t \text{ states of plant \& environment}$$

$$- p_t \text{ exogenous signal (e.g., reference)}$$

$$- u_t \text{ control input}$$

$$- d_t \text{ unmeasured disturbances}$$

• Control policy: $\pi: \mathbb{R}^{n_s+n_p} \longrightarrow \mathbb{R}^{n_u}$ deterministic control policy

$$u_t = \pi(s_t, p_t)$$

Closed-loop performance of an execution is defined as

$$\mathcal{J}_{\infty}(\pi, s_0, \{p_{\ell}, d_{\ell}\}_{\ell=0}^{\infty}) = \sum_{\ell=0}^{\infty} \rho(s_{\ell}, p_{\ell}, \pi(s_{\ell}, p_{\ell}))$$
$$\rho(s_{\ell}, p_{\ell}, \pi(s_{\ell}, p_{\ell})) = \text{stage cost}$$

OPTIMAL POLICY SEARCH PROBLEM

Optimal policy:

$$\begin{array}{lcl} \pi^* &=& \arg\min_{\pi} \mathcal{J}(\pi) \\ \\ \mathcal{J}(\pi) &=& \mathbb{E}_{s_0,\{p_\ell,d_\ell\}} \left[\mathcal{J}_{\infty}(\pi,s_0,\{p_\ell,d_\ell\}) \right] \end{array} \hspace{0.5cm} \text{expected performance} \end{array}$$

• Simplifications:

- Finite parameterization: $\pi=\pi_K(s_t,p_t)$ with K = parameters to optimize
- Finite horizon: $\mathcal{J}_L(\pi,s_0,\{p_\ell,d_\ell\}_{\ell=0}^{L-1}) = \sum_{\ell=0}^{L-1} \rho(s_\ell,p_\ell,\pi(s_\ell,p_\ell))$
- Optimal policy search: use stochastic gradient descent (SGD)

$$K_t \leftarrow K_{t-1} - \alpha_t \mathcal{D}(K_{t-1})$$

with $\mathcal{D}(K_{t-1})$ = descent direction

DESCENT DIRECTION

- The descent direction $\mathcal{D}(K_{t-1})$ is computed by generating:
 - N_s perturbations $s_0^{(i)}$ around the current state s_t
 - N_r random reference signals $r_\ell^{(j)}$ of length L,
 - N_d random disturbance signals $d_\ell^{(h)}$ of length L,

$$\mathcal{D}(K_{t-1}) = \sum_{i=1}^{N_s} \sum_{j=1}^{N_p} \sum_{k=1}^{N_q} \nabla_K \mathcal{J}_L(\pi_{K_{t-1}}, s_0^{(i)}, \{r_\ell^{(j)}, d_\ell^{(k)}\})$$

SGD step = mini-batch of size $M=N_s\cdot N_r\cdot N_d$

- Computing $\nabla_K \mathcal{J}_L$ requires predicting the effect of π over L future steps
- We use a local linear model just for computing $\nabla_K \mathcal{J}_L$, obtained by running recursive linear system identification

OPTIMAL POLICY SEARCH ALGORITHM

- At each step *t*:
 - 1. Acquire current s_t
 - 2. Recursively update the local linear model
 - 3. Estimate the direction of descent $\mathcal{D}(K_{t-1})$
 - 4. Update policy: $K_t \leftarrow K_{t-1} \alpha_t \mathcal{D}(K_{t-1})$
- If policy is **learned online** and needs to be applied to the process:
 - Compute the nearest policy K_t^{\star} to K_t that stabilizes the local model

$$K_t^\star = \underset{K}{\arg\min} \|K - K_t^s\|_2^2$$
 s.t. K stabilizes local linear model Linear matrix inequality

• When policy is learned online, exploration is guaranteed by the reference r_t

SPECIAL CASE: OUTPUT TRACKING

- $x_t = [y_t, y_{t-1}, \dots, y_{t-n_o}, u_{t-1}, u_{t-2}, \dots, u_{t-n_i}]$ $\Delta u_t = u_t - u_{t-1}$ control input increment
- $\bullet \ \ \text{Integral action dynamics} \ q_{t+1} = q_t + (y_{t+1} r_t) \\$

$$s_t = \begin{bmatrix} x_t \\ q_t \end{bmatrix}, \quad p_t = r_t.$$

• Linear policy parametrization:

$$\pi_K(s_t, r_t) = -K^s \cdot s_t - K^r \cdot r_t, \qquad K = \begin{bmatrix} K^s \\ K^r \end{bmatrix}$$

EXAMPLE: RETRIEVE LQR FROM DATA

$$\left\{ \begin{array}{ll} x_{t+1} & = & \left[\begin{smallmatrix} -0.669 & 0.378 & 0.233 \\ -0.288 & -0.147 & -0.638 \\ -0.337 & 0.589 & 0.043 \end{smallmatrix} \right] x_t + \left[\begin{smallmatrix} -0.295 \\ -0.325 \\ -0.258 \end{smallmatrix} \right] u_t \\ y_t & = & \left[\begin{smallmatrix} -1.139 & 0.319 & -0.571 \end{smallmatrix} \right] x_t \end{array} \right. \quad \text{model is unknown}$$

Online tracking performance (no disturbance, $d_t = 0$):

$$Q_y = 1$$

$$R = 0.1$$

$$Q_q = 1$$

n_i	n_o	L
3	3	20
N_0	N_r	N_q
50	1	10

EXAMPLE: RETRIEVE LQR FROM DATA

Evolution of the error $||K_t - K_{opt}||_2$:

$$K_{\text{SGD}} = [-1.255, 0.218, 0.652, 0.895, 0.050, 1.115, -2.186]$$

$$K_{\text{opt}} = [-1.257, 0.219, 0.653, 0.898, 0.050, 1.141, -2.196]$$

NONLINEAR EXAMPLE

model is unknown

Feed:

- concentration: 10kg mol/m³
- temperature: 298.15K

Continuously Stirred Tank Reactor (CSTR)

apmonitor.com

$$T = \hat{T} + \eta_T$$
, $C_A = \hat{C}_A + \eta_C$, η_T , $\eta_C \sim \mathcal{N}(0, \sigma^2)$, $\sigma = 0.01$

$$Q_y = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \qquad R = 0.1 \qquad Q_q = \begin{bmatrix} 0.01 & 0 \\ 0 & 0 \end{bmatrix}$$

NONLINEAR EXAMPLE

Continuously Stirred Tank Reactor (CSTR) (courtesy: apmonitor.com)

SGD beats SYS-ID + LQR

Extended to switching-linear and nonlinear policy, and to collaborative learning

(Ferrarotti, Bemporad, 2020a) (Ferrarotti, Bemporad, 2020b) (Ferrarotti, Breschi, Bemporad, 2021)

MPC CALIBRATION PROBLEM

- The design depends on a vector x of MPC parameters
- Parameters can be many things:
 - MPC weights, prediction model coefficients, horizons
 - Covariance matrices used in Kalman filters
 - Tolerances used in numerical solvers
 - ..

Define a performance index f over a closed-loop simulation or real experiment.
 For example:

$$f(x) = \sum_{t=0}^{T} \|y(t) - r(t)\|^2$$
 (tracking quality)

 Auto-tuning = find the best combination of parameters by solving the global optimization problem

$$\min_{x} f(x)$$

GLOBAL OPTIMIZATION ALGORITHMS FOR AUTO-TUNING

What is a good optimization algorithm to solve $\min f(x)$?

• The algorithm should not require the gradient $\nabla f(x)$ of f(x), in particular if experiments are involved (derivative-free or black-box optimization)

The algorithm should not get stuck on local minima (global optimization)

The algorithm should make the fewest evaluations of the cost function f
(which is expensive to evaluate)

AUTO-TUNING - GLOBAL OPTIMIZATION ALGORITHMS

- Several derivative-free global optimization algorithms exist: (Rios, Sahidinis, 2013)
 - Lipschitzian-based partitioning techniques:
 - DIRECT (DIvide in RECTangles) (Jones, 2001)
 - Multilevel Coordinate Search (MCS) (Huyer, Neumaier, 1999)
 - Response surface methods
 - Kriging (Matheron, 1967), DACE (Sacks et al., 1989)
 - Efficient global optimization (EGO) (Jones, Schonlau, Welch, 1998)
 - Bayesian optimization (Brochu, Cora, De Freitas, 2010)
 - Genetic algorithms (GA) (Holland, 1975)
 - Particle swarm optimization (PSO) (Kennedy, 2010)
 - .
- New method: radial basis function surrogates + inverse distance weighting

(GLIS) (Bemporad, 2020)

cse.lab.imtlucca.it/~bemporad/glis

pip install glis

AUTO-TUNING - GLIS

• Goal: solve the global optimization problem

$$\begin{aligned} \min_{x} & f(x) \\ \text{s.t.} & \ell \leq x \leq u \\ & g(x) \leq 0 \end{aligned}$$

• Step #1: given N samples of f at x_1, \ldots, x_N , build the surrogate function

$$\hat{f}(x) = \sum_{i=1}^{N} \beta_i \phi(\epsilon ||x - x_i||_2)$$

 $\phi={
m radial}$ basis function

Example:
$$\phi(\epsilon d) = \frac{1}{1 + (\epsilon d)^2}$$
 (inverse quadratic)

Vector β solves $\hat{f}(x_i) = f(x_i)$ for all $i = 1, \dots, N$ (=linear system)

• CAVEAT: build and minimize $\hat{f}(x_i)$ iteratively may easily miss global optimum!

AUTO-TUNING - GLIS

Step #2: construct the IDW exploration function

$$\begin{array}{rcl} z(x) & = & \frac{2}{\pi} \Delta F \tan^{-1} \left(\frac{1}{\sum_{i=1}^N w_i(x)} \right) \\ & \text{ or 0 if } x \in \{x_1, \dots, x_N\} \end{array}$$

where
$$w_i(x) = \frac{e^{-\|x - x_i\|^2}}{\|x - x_i\|^2}$$

 ΔF = observed range of $f(x_i)$

• Step #3: optimize the acquisition function

$$x_{N+1} = \underset{\text{arg min}}{\operatorname{arg min}} \quad \hat{f}(x) - \delta z(x)$$

s.t. $\ell \le x \le u, \ g(x) \le 0$

 δ = exploitation vs exploration tradeoff

to get new sample x_{N+1}

ullet Iterate the procedure to get new samples $x_{N+2},\dots,x_{N_{\max}}$

GLIS VS BAYESIAN OPTIMIZATION

problem	n	BO [s]	GLIS [s]
ackley	2	29.39	3.13
adjiman	2	3.29	0.68
branin	2	9.66	1.17
camelsixhumps	2	4.82	0.62
hartman3	3	26.27	3.35
hartman6	6	54.37	8.80
himmelblau	2	7.40	0.90
rosenbrock8	8	63.09	13.73
stepfunction2	4	11.72	1.81
styblinski-tang5	5	37.02	6.10

Results computed on 20 runs per test

BO = MATLAB's **bayesopt** fcn

AUTO-TUNING: MPC EXAMPLE

• We want to auto-tune the linear MPC controller

min
$$\sum_{k=0}^{50-1} (y_{k+1} - r(t))^2 + (W^{\Delta u}(u_k - u_{k-1}))^2$$
s.t.
$$x_{k+1} = Ax_k + Bu_k$$

$$y_c = Cx_k$$

$$-1.5 \le u_k \le 1.5$$

$$u_k \equiv u_{N_u}, \forall k = N_u, \dots, N-1$$

- ullet Calibration parameters: $x = [\log_{10} W^{\Delta u}, N_u]$
- $\bullet \ \ \mathsf{Range:} \ -5 \leq x_1 \leq 3 \ \mathsf{and} \ 1 \leq x_2 \leq 50$
- Closed-loop performance objective:

$$f(x) = \sum_{t=0}^{T} \underbrace{(y(t) - r(t))^2}_{\text{track well}} + \underbrace{\frac{1}{2}(u(t) - u(t-1))^2}_{\text{smooth control action}} + \underbrace{2N_u}_{\text{small } Q}$$

AUTO-TUNING: EXAMPLE

• Result:
$$x^* = [-0.2341, 2.3007]$$

$$W^{\Delta u} = 0.5833, N_u = 2$$

MPC AUTOTUNING EXAMPLE

(Forgione, Piga, Bemporad, 2020)

• Linear MPC applied to cart-pole system: 14 parameters to tune

- sample time
- weights on outputs and input increments
- prediction and control horizons
- covariance matrices of Kalman filter
- absolute and relative tolerances of QP solver

 Closed-loop performance score:

$$J = \int_0^T |p(t) - p_{\rm ref}(t)| + 30 |\phi(t)| dt$$

- MPC parameters tuned using 500 iterations of GLIS
- Performance tested with simulated cart on two hardware platforms (PC, Raspberry PI)

MPC AUTOTUNING EXAMPLE

- MPC parameters tuned by GLIS global optimizer (500 fcn evals)
- Auto-calibration can squeeze max performance out of the available hardware
- Bayesian optimization gives similar results, but with larger computation effort

AUTO-TUNING: PROS AND CONS

- Pros:
 - \bullet Selection of calibration parameters x to test is fully automatic
 - Applicable to any calibration parameter (weights, horizons, solver tolerances, ...)
 - A Rather arbitrary performance index f(x) (tracking performance, response time, worst-case number of flops, ...)
- Cons:
 - \P Need to quantify an objective function f(x)
 - No room for qualitative assessments of closed-loop performance
 - Often have multiple objectives, not clear how to blend them in a single one

ACTIVE PREFERENCE LEARNING

(Bemporad, Piga, Machine Learning, 2021)

- Objective function f(x) is not available (latent function)
- We can only express a **preference** between two choices:

$$\pi(x_1, x_2) = \begin{cases} -1 & \text{if } x_1 \text{ "better" than } x_2 & [f(x_1) < f(x_2)] \\ 0 & \text{if } x_1 \text{ "as good as" } x_2 & [f(x_1) = f(x_2)] \\ 1 & \text{if } x_2 \text{ "better" than } x_1 & [f(x_1) > f(x_2)] \end{cases}$$

• We want to find a global optimum x^* (="better" than any other x)

find
$$x^*$$
 such that $\pi(x^*, x) \leq 0, \ \forall x \in \mathcal{X}, \ \ell \leq x \leq u$

- Active preference learning: iteratively propose a new sample to compare
- Key idea: learn a surrogate of the (latent) objective function from preferences

PREFERENCE-LEARNING EXAMPLE

(Brochu, de Freitas, Ghosh, 2007)

- Realistic image synthesis of material appearance are based on models with many parameters x_1, \ldots, x_n
- $\bullet \;$ Defining an objective function f(x) is hard, while a human can easily assess whether an image resembles the target one or not
- Preference gallery tool: at each iteration, the user compares two images generated with two different parameter instances

ACTIVE PREFERENCE LEARNING ALGORITHM

(Bemporad, Piga, Machine Learning, 2021)

- Fit a surrogate $\hat{f}(x)$ that respects the preferences expressed by the decision maker at sampled points (by solving a QP)
- Minimize an acquisition function $\hat{f}(x) \delta z(x)$ to get a new sample x_{N+1}
- Compare x_{N+1} to the current "best" point and iterate

SEMI-AUTOMATIC CALIBRATION BY PREFERENCE-BASED LEARNING

- Use preference-based optimization (GLISp) algorithm for semi-automatic tuning of MPC (Zhu, Bemporad, Piga, 2021)
- Latent function = calibrator's (unconscious) score of closed-loop MPC performance
- GLISp proposes a new combination x_{N+1} of MPC parameters to test
- By observing test results, the calibrator expresses a **preference**, telling if x_{N+1} is "**better**", "**similar**", or "**worse**" than current best combination
- Preference learning algorithm: update the surrogate $\hat{f}(x)$ of the latent function, optimize the acquisition function, ask preference, and iterate

PREFERENCE-BASED TUNING: MPC EXAMPLE

 • Semi-automatic tuning of $x = [\log_{10} W^{\Delta u}, N_u] \text{ in linear MPC}$

min
$$\sum_{k=0}^{50-1} (y_{k+1} - r(t))^2 + (W^{\Delta u}(u_k - u_{k-1}))^2$$
s.t.
$$x_{k+1} = Ax_k + Bu_k$$

$$y_c = Cx_k$$

$$-1.5 < u_k < 1.5$$

 $u_k \equiv u_{N_u}, \forall k = N_u, \dots, N-1$

Same performance index to assess closed-loop quality, but unknown:
 only preferences are available

• Result: $W^{\Delta u} = 0.6888$, $N_u = 2$

PREFERENCE-BASED TUNING: MPC EXAMPLE

tested combinations of MPC params

(latent) performance index

(Zhu, Bemporad, Piga, 2021)

• Example: calibration of a simple MPC for lane-keeping (2 inputs, 3 outputs)

$$\left\{ \begin{array}{lcl} \dot{x} & = & v\cos(\theta+\delta) \\ \dot{y} & = & v\sin(\theta+\delta) \\ \dot{\theta} & = & \frac{1}{L}v\sin(\delta) \end{array} \right.$$

- Multiple control objectives:
 - "optimal obstacle avoidance", "pleasant drive", "CPU time small enough", ...
 - not easy to quantify in a single function
- 5 MPC parameters to tune:
 - sampling time
 - prediction and control horizons
 - weights on input increments Δv , $\Delta \delta$

PREFERENCE-BASED TUNING: MPC EXAMPLE

• Preference query window:

PREFERENCE-BASED TUNING: MPC EXAMPLE

• Convergence after 50 GLISp iterations (=49 queries):

Optimal MPC parameters:

- sample time = 85 ms (CPU time = 80.8 ms)
- prediction horizon = 16
- control horizon = 5
- weight on Δv = 1.82
- weight on $\Delta \delta$ = 8.28

- Note: no need to define a closed-loop performance index explicitly!
- Extended to handle also unknown constraints (Zhu, Piga, Bemporad, 2021)

- Goal: detect undesired simulation scenarios (=corner-cases)
- Let x = parameters defining the scenario, $\mathcal{X}_{\mathrm{ODD}}$ = operational design domain $x \in \mathcal{X}_{\mathrm{ODD}} \subseteq \mathbb{R}^n$
- **critical scenario** = vector x^* for which the closed-loop behavior is critical
- Example:
 - x = (initial distance between ego car and obstacle, obstacle acceleration, ...)
 - Critical scenario: time-to-collision is too short, excessive jerk of ego car, ...
- Key idea: use global optimizer GLIS to generate critical corner-cases

$$x^* \in \operatorname*{arg\,min}_{x \in \mathcal{X}_{\mathrm{ODD}}} f(x)$$

s.t. $\ell < x < u$

f(x) = criticality of closed-loop simulation (or experiment) determined by scenario x (the smaller f(x), the more critical x is)

CORNER-CASE DETECTION: CASE STUDY

- **Problem**: find critical scenarios in automated driving w/ obstacles
- MPC controller for lane-keeping and obstacle-avoidance based on simple kinematic bicycle model (Zhu, Piga, Bemporad, 2021)

$$\begin{split} \dot{x}_f = &v\cos(\theta + \delta) \\ \dot{w}_f = &v\sin(\theta + \delta) \\ \dot{\theta} = &\frac{v\sin(\delta)}{L} \\ &(x_f, w_f) = \text{front-wheel position} \end{split}$$

• Black-box optimization problem: given k obstacles, solve

$$\min_{\ell \leq x \leq u} \quad \sum_{i=1}^k d^{\mathrm{SV},i}_{x_f, \mathrm{critical}}(x) + d^{\mathrm{SV},i}_{w_f, \mathrm{critical}}(x)$$

s.t. other constraints

CORNER-CASE DETECTION: CASE STUDY

Cost function terms to minimize: for each obstacle #i define

$$d_{x_f, \text{critical}}^{\text{SV}, i}(x) = \begin{cases} \min\limits_{t \in T_{\text{collision}}} d_{x_f}^{\text{SV}, i}(x, t) & \mathcal{I}_{\text{collision}}^i & \text{min time of collision with } \#i \\ L & \sim \mathcal{I}_{\text{collision}}^i \& \mathcal{I}_{\text{collision}} & \text{collision with other } \#j \neq \#i \\ \sum\limits_{t \in T_{\text{sim}}} d_{x_f}^{\text{SV}, i}(x, t) & \sim \mathcal{I}_{\text{collision}} & \text{no collision} \\ d_{w_f, \text{critical}}^{\text{SV}, i}(x) = \begin{cases} \min\limits_{t \in T_{\text{collision}}} d_{w_f}^{\text{SV}, i}(x, t) & \mathcal{I}_{\text{collision}}^i \\ w_f, \text{safe} & \sim \mathcal{I}_{\text{collision}}^i \& \mathcal{I}_{\text{collision}} \end{cases}$$

$$\left(\sum_{t \in T_{\sf sim}} d_{w_f}^{{\sf SV},i}(x,t)\right) \qquad \sim \mathcal{I}_{\sf collis}$$

$$\mathcal{I}_{\sf collision}^i = {\sf true} \quad \text{if} \quad \exists t \in T_{\sf sim} \ {\sf s.t.}$$

$$(d_{x_f}^{\text{SV},i}(x,t) \le L) \& (d_{w_f}^{\text{SV},i}(x,t) \le W)$$

 $\mathcal{I}_{ ext{collision}} = ext{true} \quad ext{if} \quad \exists h \quad ext{s.t.} \quad \mathcal{I}_{ ext{collision}}^h = ext{true}$

CORNER-CASE DETECTION: CASE STUDY

• Logical scenario 1: GLIS identifies 64 collision cases within 100 simulations

x						iter				
v_{3}^{0}	x_{f3}^0	v_2^0	x_{f2}^{0}	v_1^0	x_{f1}^{0}	itel				
47.39	49.10	10.00	44.14	30.00	15.00	51				
31.74	74.79	10.00	70.29	30.00	28.09	79				
35.97	77.80	10.00	60.59	30.00	34.30	40				
				30.00						

red = optimal solution found by GLIS solver

Ego car changes lane to avoid #1, but cannot brake fast enough to avoid #2

Logical scenario 2: GLIS identifies 9 collision cases within 100 simulations

iter	x				
itei	x_{f1}^{0}	v_1^0	t_c		
28	12.57	46.94	16.75		
16	17.53	47.48	23.65		
88	44.54	41.26	16.02		

red = optimal solution found by GLIS solver

Ego car changes lane to avoid #1, but cannot decelerate in time for the sudden lane-change of #1

LEARNING-BASED MPC: FINAL REMARKS

- Learning-based MPC is a formidable combination for advanced control:
 - MPC / online optimization is an extremely powerful control methodology
 - ML extremely useful to get control-oriented models and control laws from data
- Ignoring ML tools would be a mistake (a lot to "learn" from machine learning)
- ML cannot replace control engineering:
 - Black-box modeling can be a failure. Better use gray-box models when possible
 - Approximating the control law can be a failure. Don't abandon online optimization
 - Pure AI-based reinforcement learning methods can be also a failure

 A wide spectrum of research opportunities and new practices is open!

