MODEL PREDICTIVE CONTROL

HYBRID MPC

Alberto Bemporad

imt.lu/ab
Basic concepts of model predictive control (MPC) and linear MPC

Linear time-varying and nonlinear MPC

Quadratic programming (QP) and explicit MPC

- Hybrid MPC
- Stochastic MPC
- Learning-based MPC

Course page:

http://cse.lab.imtlucca.it/~bemporad/mpc_course.html
HYBRID MPC
Use a hybrid dynamical model of the process to predict its future evolution and choose the “best” control action.
• Finite-horizon optimal control problem (regulation)

\[
\begin{align*}
\min_{k=0}^{N-1} & \quad y_k' Q y_k + u_k' R u_k \\
\text{s.t.} & \quad x_{k+1} = A x_k + B_1 u_k + B_2 \delta_k + B_3 z_k + B_5 \\
& \quad y_k = C x_k + D_1 u_k + D_2 \delta_k + D_3 z_k + D_5 \\
& \quad E_2 \delta_k + E_3 z_k \leq E_4 x_k + E_1 u_k + E_5 \\
& \quad x_0 = x(t)
\end{align*}
\]

\(Q = Q' \succ 0, \quad R = R' \succ 0 \)

• Treat \(u_k, \delta_k, z_k \) as free decision variables, \(k = 0, \ldots, N - 1 \)

• Predictions can be constructed \textbf{exactly as in the linear case}

\[
x_k = A^k x_0 + \sum_{j=0}^{k-1} A^j (B_1 u_{k-1-j} + B_2 \delta_{k-1-j} + B_3 z_{k-1-j} + B_5)
\]
MIQP formulation of Hybrid MPC

(Bemporad, Morari, 1999)

- After substituting x_k, y_k the resulting optimization problem becomes the following **Mixed-Integer Quadratic Programming (MIQP)** problem

 \[
 \begin{align*}
 \min_{\xi} & \quad \frac{1}{2} \xi' H \xi + x'(t) F' \xi + \frac{1}{2} x'(t) Y x(t) \\
 \text{s.t.} & \quad G \xi \leq W + S x(t)
 \end{align*}
 \]

- The optimization vector $\xi = [u_0, \ldots, u_{N-1}, \delta_0, \ldots, \delta_{N-1}, z_0, \ldots, z_{N-1}]$ has **mixed real and binary** components

 \[
 \begin{align*}
 u_k & \in \mathbb{R}^{m_c} \times \{0, 1\}^{m_b} \\
 \delta_k & \in \{0, 1\}^{r_b} \\
 z_k & \in \mathbb{R}^{r_c} \\
 \xi & \in \mathbb{R}^{N(m_c + r_c)} \times \{0, 1\}^{N(m_b + r_b)}
 \end{align*}
 \]
Consider the more general set-point tracking problem

\[
\min_{\xi} \sum_{k=0}^{N-1} \left(\|y_k - r\|_Q^2 + \|u_k - u_r\|_R^2 + \sigma \left(\|x_k - x_r\|_2^2 + \|\delta_k - \delta_r\|_2^2 + \|z_k - z_r\|_2^2 \right) \right)
\]

s.t.
MLD model equations
\[
\begin{align*}
x_0 &= x(t) \\
x_N &= x_r
\end{align*}
\]

with \(\sigma > 0\) and \(\|v\|_Q^2 = v'Qv\)

The equilibrium \((x_r, u_r, \delta_r, z_r)\) corresponding to \(r\) can be obtained by solving the following mixed-integer feasibility problem

\[
\begin{align*}
x_r &= Ax_r + B_1 u_r + B_2 \delta_r + B_3 z_r + B_5 \\
r &= C x_r + D_1 u_r + D_2 \delta_r + D_3 z_r + D_5 \\
E_2 \delta_r + E_3 z_r &\leq E_4 x_r + E_1 u_r + E_5
\end{align*}
\]
• **Theorem.** Let \((x_r, u_r, \delta_r, z_r)\) be the equilibrium corresponding to \(r\). Assume \(x(0)\) such that the MIQP problem is feasible at time \(t = 0\). Then \(\forall Q, R \succ 0, \sigma > 0\) the hybrid MPC closed-loop converges asymptotically

\[
\begin{align*}
\lim_{t \to \infty} y(t) &= r \\
\lim_{t \to \infty} x(t) &= x_r \\
\lim_{t \to \infty} \delta(t) &= \delta_r \\
\lim_{t \to \infty} u(t) &= u_r \\
\lim_{t \to \infty} z(t) &= z_r
\end{align*}
\]

and all constraints are fulfilled at each time \(t \geq 0\).

• The proof easily follows from standard Lyapunov arguments (see next slide)

• **Lyapunov asymptotic stability** and **exponential stability** follows if proper terminal cost and constraints are imposed (Lazar, Heemels, Weiland, Bemporad, 2006)
CONVERGENCE PROOF

- Main idea: Use the value function $V^*(x(t))$ as a Lyapunov function

- Let $\xi_t = [u_0^t, \ldots, u_{N-1}^t, \delta_0^t, \ldots, \delta_{N-1}^t, z_0^t, \ldots, z_{N-1}^t]$ be the optimal sequence at t

- By construction $\xi_{t+1} = [u_1^t, \ldots, u_{N-1}^t, u_r, \delta_1^t, \ldots, \delta_{N-1}^t, \delta_r, z_0^t, \ldots, z_{N-1}^t, z_r]$ is feasible, as it satisfies all MLD constraints + terminal constraint $x_N = x_r$

- The cost of ξ is
 \[
 V^*(x(t)) - \|y(t) - r\|_Q^2 - \|u(t) - u_r\|_R^2 \\
 - \sigma (\|\delta(t) - \delta_r\|_2^2 + \|z(t) - z_r\|_2^2 + \|x(t) - x_r\|_2^2) \geq V^*(x(t+1))
 \]

- $V^*(x(t))$ is monotonically decreasing and ≥ 0, so $\exists \lim_{t \to \infty} V^*(x(t)) \in \mathbb{R}$

- Hence $\|y(t) - r\|_Q^2, \|u(t) - u_r\|_R^2, \|\delta(t) - \delta_r\|_2^2, \|z(t) - z_r\|_2^2, \|x(t) - x_r\|_2^2 \to 0$

- Since $R, Q > 0$, $\lim_{t \to \infty} y(t) = r$ and all other variables converge. \(\square\)

Global optimum is not needed to prove convergence!
MILP FORMULATION OF HYBRID MPC

(Bemporad, Borrelli, Morari, 2000)

- Finite-horizon optimal control problem using infinity norms

\[
\begin{align*}
\min_{\xi} & \quad \sum_{k=0}^{N-1} \|Qy_k\|_\infty + \|Ru_k\|_\infty \\
\text{s.t.} & \quad \begin{cases}
x_{k+1} = Ax_k + B_1 u_k + B_2 \delta_k + B_3 z_k + B_5 \\
y_k = Cx_k + D_1 u_k + D_2 \delta_k + D_3 z_k + D_5 \\
E_2 \delta_k + E_3 z_k \leq E_4 x_k + E_1 u_k + E_5 \\
x_0 = x(t)
\end{cases}
\end{align*}
\]

- Introduce additional variables \(\epsilon^y_k, \epsilon^u_k, k = 0, \ldots, N - 1\)

\[
\begin{cases}
\epsilon^y_k \geq \|Qy_k\|_\infty \\
\epsilon^u_k \geq \|Ru_k\|_\infty
\end{cases} \quad \rightarrow \quad \begin{cases}
\epsilon^y_k \geq \pm Q^i y_k \\
\epsilon^u_k \geq \pm R^i u_k
\end{cases}
\]

\(Q \in \mathbb{R}^{m_y \times n_y}\)

\(R \in \mathbb{R}^{m_u \times n_u}\)

\(Q^i = \text{ith row of } Q\)
MILP FORMULATION OF HYBRID MPC

(Bemporad, Borrelli, Morari, 2000)

- After substituting x_k, y_k the resulting optimization problem becomes the following **Mixed-Integer Linear Programming (MILP)** problem

\[
\min_{\xi} \sum_{k=0}^{N-1} \epsilon_k^y + \epsilon_k^u \\
\text{s.t. } G\xi \leq W + Sx(t)
\]

- $\xi = [u_0, \ldots, u_{N-1}, \delta_0, \ldots, \delta_{N-1}, z_0, \ldots, z_{N-1}, \epsilon_0^y, \epsilon_0^u, \ldots, \epsilon_{N-1}^y, \epsilon_{N-1}^u]$ is the optimization vector, with **mixed real and binary** components

 - $u_k \in \mathbb{R}^{m_c} \times \{0, 1\}^{m_b}$
 - $\delta_k \in \{0, 1\}^{r_b}$
 - $z_k \in \mathbb{R}^{r_c}$
 - $\epsilon_k^y, \epsilon_k^u \in \mathbb{R}$

- Same approach applies to any **convex piecewise affine** stage cost

"Model Predictive Control" - © 2023 A. Bemporad. All rights reserved.
HYBRID MPC EXAMPLE

- PWA system:

\[
\begin{align*}
 x(t + 1) &= 0.8 \begin{bmatrix}
 \cos \alpha(t) & -\sin \alpha(t) \\
 \sin \alpha(t) & \cos \alpha(t)
 \end{bmatrix} x(t) + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u(t) \\
y(t) &= \begin{bmatrix} 0 & 1 \end{bmatrix} x(t) \\
\alpha(t) &= \begin{cases}
 \frac{\pi}{3} & \text{if } \begin{bmatrix} 1 & 0 \end{bmatrix} x(t) \geq 0 \\
 -\frac{\pi}{3} & \text{if } \begin{bmatrix} 1 & 0 \end{bmatrix} x(t) < 0
 \end{cases}
\end{align*}
\]

- Open-loop simulation:

go to demo demos/hybrid/bm99sim.m
/* 2x2 PWA system - Example from the paper
(C) 2003 by A. Bemporad, 2003 */

SYSTEM pwa {

INTERFACE {
 STATE {
 REAL x1 [-10,10];
 REAL x2 [-10,10];
 }

 INPUT {
 REAL u [-1.1,1.1];
 }

 OUTPUT {
 REAL y;
 }

 PARAMETER {
 REAL alpha = 1.0472; /* 60 deg in radians */
 REAL C = cos(alpha);
 REAL S = sin(alpha);
 }
}

IMPLEMENTATION {

 AUX {
 REAL z1, z2;
 BOOL sign;
 }

 AD {
 sign = x1<=0;
 }

 DA {
 z1 = {IF sign THEN 0.8*(C*x1+S*x2)
 ELSE 0.8*(C*x1-S*x2) };
 z2 = {IF sign THEN 0.8*(-S*x1+C*x2)
 ELSE 0.8*(S*x1+C*x2) };
 }

 CONTINUOUS {
 x1 = z1;
 x2 = z2+u;
 }

 OUTPUT {
 y = x2;
 }
}

goto demos/hybrid/bm99.hys
• Closed-loop MPC results:

\[
\begin{align*}
\text{min} & \quad \sum_{k=1}^{2} |y_k - r(t)| \\
\text{s.t.} & \quad -1 \leq u_k \leq 1, \ i = 0, 1
\end{align*}
\]

• Average CPU time to solve MILP: \(\approx 1\ \text{ms/step}\)

(Macbook Pro 3GHz Intel Core i7 using GLPK)
Hybrid MPC – Temperature control

>> refs.x=2; % just weight state #2
>> Q.x=1; % unit weight on state #2
>> Q.rho=Inf; % hard constraints
>> Q.norm=Inf; % infinity norms
>> N=2; % prediction horizon
>> limits.xmin=[25;-Inf];

>> C=hybcon(S,Q,N,limits,refs);

>> C

Hybrid controller based on MLD model S <heatcoolmodel.hys> [Inf-norm]

2 state measurement(s)
0 output reference(s)
0 input reference(s)
1 state reference(s)
0 reference(s) on auxiliary continuous z-variables

20 optimization variable(s) (8 continuous, 12 binary)
46 mixed-integer linear inequalities
sampling time = 0.5, MILP solver = 'glpk'

Type "struct(C)" for more details.

>> [XX,UU,DD,ZZ,TT]=sim(C,S,r,x0,Tstop);
• Average CPU time to solve MILP: $\approx 1\,\text{ms/step}$
(Macbook Pro 3GHz Intel Core i7 using GLPK)
Mixed-Integer Programming solvers

- Binary constraints make Mixed-Integer Programming (MIP) a hard problem (\mathcal{NP}-complete)

- However, excellent general purpose **branch & bound / branch & cut** solvers available for MILP and MIQP (Gurobi, CPLEX, FICO Xpress, GLPK, CBC, ...)

 (more solvers/benchmarks: see http://plato.la.asu.edu/bench.html)

- MIQP approaches tailored to embedded hybrid MPC applications:
 - B&B + (dual) active set methods for QP
 - B&B + interior point methods: (Frick, Domahidi, Morari, 2015)
 - B&B + fast gradient projection: (Naik, Bemporad, 2017)
 - B&B + ADMM: (Stellato, Naik, Bemporad, Goulart, Boyd, 2018)

- No need to reach global optimum (see convergence proof), although performance may deteriorate
• We want to solve the following MIQP

\[
\begin{align*}
\min \quad & V(z) \triangleq \frac{1}{2} z' Q z + c' z \\
\text{s.t.} \quad & A z \leq b \\
& z_i \in \{0, 1\}, \quad \forall i \in I
\end{align*}
\]

\[z \in \mathbb{R}^n\]

\[Q = Q' \succeq 0\]

\[I \subseteq \{1, \ldots, n\}\]

• **Branch & Bound (B&B)** is the simplest (and most popular) approach to solve the problem to optimality

• **Key idea:**

 - for each binary variable \(z_i, i \in I\), either set \(z_i = 0\), or \(z_i = 1\), or \(z_i \in [0, 1]\)

 - solve the corresponding **QP relaxation** of the MIQP problem

 - use QP result to decide the next combination of fixed/relaxed variables
Branch & Bound Method for MIQP

QP relaxation

\[\min \frac{1}{2} z'Qz + c'z \]
\[\text{s.t.} \quad Az \leq b \]
\[0 \leq z_i \leq 1, \quad \forall i \in I \]

\(z_i \in \{0, 1\}, \quad \forall i \in I \)

MIQP solution found (lucky case)

QP infeasible

MIQP infeasible

QP feasible

integer feasible?

no

yes

QP infeasible?

no

yes

start branching ...

(lucky case)

Model Predictive Control" - © 2023 A. Bemporad. All rights reserved.
• **Branching rule**: pick the index i such that z_i is closest to $\frac{1}{2}$ (max fractional part)
 (Breu, Burdet, 1974)

• Solve two new QP relaxations

\[
\begin{align*}
\text{min} & \quad \frac{1}{2} z' Q z + c' z \\
\text{s.t.} & \quad A z \leq b \\
& \quad z_i = 0 \\
& \quad 0 \leq z_j \leq 1, \forall j \in I, j \neq i \\
\end{align*}
\]

\[
\begin{align*}
\text{min} & \quad \frac{1}{2} z' Q z + c' z \\
\text{s.t.} & \quad A z \leq b \\
& \quad z_i = 1 \\
& \quad 0 \leq z_j \leq 1, \forall j \in I, j \neq i \\
\end{align*}
\]

• Possibly exploit **warm starting** from QP_0 when solving new relaxations QP_1 and QP_2
Branch & Bound Method for MIQP

- **QP₀**
- **QP₁**
- **QP₂**

Decision Diagram:

- **QP infeasible?**
 - yes: stop branching on subtree
 - no: **integer feasible?**
 - yes: update upper bound $V_0 \geq V^*$ on MIQP solution
 - no: keep branching...

"Model Predictive Control" - © 2023 A. Bemporad. All rights reserved.
The cost V_0 of the best integer-feasible solution found so far gives an upper bound $V_0 \geq V^*$ on MIQP solution.

Branch & Bound Method for MIQP

- **QP$_0$**
- **QP$_1$**
- **QP$_2$**

- Optimum $\geq V_0$?
 - Yes: **stop branching** (adding further equality constraints can only increase the optimal cost)
 - No: keep branching...

Branching decision:

- No further branching if $V_0 \geq V^*$
- Keep branching if $V_0 < V^*$
• While solving the QP relaxation, if the dual cost is available it gives a lower bound to the solution of the relaxed problem.

• The QP solver can be stopped whenever the dual cost $\geq V_0$!

This may save a lot of computations.

• When no further branching is possible, either the MIQP problem is recognized infeasible or the optimal solution z^* has been found.
SOLVING MIQP VIA NNLS

(Bemporad, 2015)

- B&B method + QP solver based on **nonnegative least squares** applied to solving the MIQP

\[
\begin{align*}
\min_{z} & \quad V(z) \triangleq \frac{1}{2} z'Qz + c'z \\
\text{s.t.} & \quad \ell \leq Az \leq u \\
& \quad Gz = g \\
& \quad \bar{A}_i z \in \{\bar{\ell}_i, \bar{u}_i\}, \quad i = 1, \ldots, q
\end{align*}
\]

- Binary constraints on \(z \) are a special case: \(\bar{\ell}_i = 0, \bar{u}_i = 1, \bar{A}_i = [0 \ldots 0 1 0 \ldots 0] \)

- Warm starting from parent node exploited when solving new QP relaxation

- QP solver interrupted when dual cost larger than best known upper-bound
Worst-case CPU time (ms) on random MIQP problems:

<table>
<thead>
<tr>
<th>n</th>
<th>m</th>
<th>q</th>
<th>NNLS(_{LDL})</th>
<th>NNLS(_{QR})</th>
<th>GUROBI</th>
<th>CPLEX</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>5</td>
<td>2</td>
<td>2.3</td>
<td>1.2</td>
<td>1.4</td>
<td>8.0</td>
</tr>
<tr>
<td>10</td>
<td>100</td>
<td>2</td>
<td>5.7</td>
<td>3.3</td>
<td>6.1</td>
<td>31.4</td>
</tr>
<tr>
<td>50</td>
<td>25</td>
<td>5</td>
<td>4.2</td>
<td>6.1</td>
<td>14.1</td>
<td>30.1</td>
</tr>
<tr>
<td>50</td>
<td>200</td>
<td>10</td>
<td>68.8</td>
<td>104.4</td>
<td>114.6</td>
<td>294.1</td>
</tr>
<tr>
<td>100</td>
<td>50</td>
<td>2</td>
<td>4.6</td>
<td>10.2</td>
<td>37.2</td>
<td>69.2</td>
</tr>
<tr>
<td>100</td>
<td>200</td>
<td>15</td>
<td>137.5</td>
<td>365.7</td>
<td>259.8</td>
<td>547.8</td>
</tr>
<tr>
<td>150</td>
<td>100</td>
<td>5</td>
<td>15.6</td>
<td>49.2</td>
<td>157.2</td>
<td>260.1</td>
</tr>
<tr>
<td>150</td>
<td>300</td>
<td>20</td>
<td>1174.4</td>
<td>3970.4</td>
<td>1296.1</td>
<td>2123.9</td>
</tr>
</tbody>
</table>

Compiled Embedded MATLAB code (QP solver) + MATLAB code (B&B)
CPU results measured on Macbook Pro 3GHz Intel Core i7

NNLS-LDL = recursive LDL' factorization used to solve least-square problems in QP solver

NNLS-QR = recursive QR factorization used instead (numerically more robust)
SOLVING MIQP VIA NNLS

- **Worst-case** CPU time (ms) on **random purely binary QP** problems:

<table>
<thead>
<tr>
<th>n</th>
<th>m</th>
<th>q</th>
<th>NNLS$_{LDL}$</th>
<th>NNLS$_{QR}$</th>
<th>GUROBI</th>
<th>CPLEX</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>10</td>
<td>2</td>
<td>5.1</td>
<td>4.0</td>
<td>0.7</td>
<td>8.4</td>
</tr>
<tr>
<td>4</td>
<td>20</td>
<td>4</td>
<td>8.9</td>
<td>4.3</td>
<td>4.5</td>
<td>16.7</td>
</tr>
<tr>
<td>8</td>
<td>40</td>
<td>8</td>
<td>19.2</td>
<td>18.0</td>
<td>37.1</td>
<td>14.7</td>
</tr>
<tr>
<td>12</td>
<td>60</td>
<td>12</td>
<td>59.7</td>
<td>57.8</td>
<td>82.3</td>
<td>47.9</td>
</tr>
<tr>
<td>20</td>
<td>100</td>
<td>20</td>
<td>483.5</td>
<td>457.7</td>
<td>566.8</td>
<td>99.6</td>
</tr>
<tr>
<td>25</td>
<td>250</td>
<td>25</td>
<td>110.4</td>
<td>93.3</td>
<td>1054.4</td>
<td>169.4</td>
</tr>
<tr>
<td>30</td>
<td>150</td>
<td>30</td>
<td>1645.4</td>
<td>1415.8</td>
<td>2156.2</td>
<td>184.5</td>
</tr>
</tbody>
</table>

- **Worst-case** CPU time (ms) on a **hybrid MPC** problem

$N =$ prediction horizon

MIQP regularized to make Q strictly $\succ 0$

(solution difference is negligible)
Robustified approach

Use NNLS + proximal-point iterations to solve QP relaxations (Bemporad, 2018)

\[
 z_{k+1} = \operatorname{arg\,min}_z \quad \frac{1}{2} z'Qz + c'z + \frac{\epsilon}{2} \| z - z_k \|^2_2 \\
 \text{s.t.} \quad \ell \leq Az \leq u \\
 Gz = g
\]

CPU time (ms) on MIQP coming from hybrid MPC (bm99 demo):

<table>
<thead>
<tr>
<th>For $N = 10$:</th>
<th>N</th>
<th>prox-NNLS</th>
<th>prox-NNLS*</th>
<th>GUROBI</th>
<th>CPLEX</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>avg</td>
<td>max</td>
<td>avg</td>
<td>max</td>
</tr>
<tr>
<td>30 real vars</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 binary vars</td>
<td>2</td>
<td>2.0</td>
<td>2.6</td>
<td>2.0</td>
<td>2.6</td>
</tr>
<tr>
<td>160 inequalities</td>
<td>4</td>
<td>5.3</td>
<td>8.8</td>
<td>3.1</td>
<td>6.9</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>29.7</td>
<td>71.0</td>
<td>8.1</td>
<td>43.4</td>
</tr>
<tr>
<td>prox-NNLS* = warm</td>
<td>10</td>
<td>76.2</td>
<td>146.1</td>
<td>14.4</td>
<td>103.2</td>
</tr>
<tr>
<td>start of binary vars</td>
<td>12</td>
<td>155.8</td>
<td>410.8</td>
<td>26.9</td>
<td>263.4</td>
</tr>
<tr>
<td>exploited</td>
<td>15</td>
<td>484.2</td>
<td>1242.3</td>
<td>61.7</td>
<td>766.9</td>
</tr>
</tbody>
</table>

CPU time measured on Intel Core i7-4700MQ CPU 2.40 GHz
Consider again the MIQP problem with Hessian $Q = Q' \succ 0$

$$
\begin{align*}
\min_z & \quad V(z) \triangleq \frac{1}{2} z' Q z + c' z \\
\text{s.t.} & \quad \ell \leq Az \leq u \\
& \quad Gz = g \\
& \quad \bar{A}_i z \in \{\bar{\ell}_i, \bar{u}_i\}, \; i = 1, \ldots, p
\end{align*}
$$

Use B&B and fast gradient projection to solve dual of QP relaxation

- Constraint is relaxed: $\bar{A}_i z \leq \bar{u}_i \rightarrow y_{i}^{k+1} = \max \{w_{i}^{k} + s_{i}^{k}, 0\}$ \quad ($y_i \geq 0$)
- Constraint is fixed: $\bar{A}_i z = \bar{u}_i \rightarrow y_{i}^{k+1} = w_{i}^{k} + s_{i}^{k}$ \quad ($y_i \leq 0$)
- Constraint is ignored: $\bar{A}_i z = \bar{\ell}_i \rightarrow y_{i}^{k+1} = 0$ \quad ($y_i = 0$)

\[w^k = y^k + \beta_k (y^k - y^{k-1}) \]
\[z^k = -K w^k - J x \]
\[s^k = \ldots \]
\[y_{i}^{k+1} = \max \{w_{i}^{k} + s_{i}^{k}, 0\}, \; i \in I_{ineq} \]
• **Same dual QP matrices** at each node, **preconditioning** computed only once

• **Warm-start** exploited, **dual cost** used to stop QP relaxations earlier

• Criterion based on Farkas lemma to detect **QP infeasibility**

• Numerical results (time in ms):

<table>
<thead>
<tr>
<th>n</th>
<th>m</th>
<th>p</th>
<th>q</th>
<th>miqpGPAD</th>
<th>GUROBI</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>100</td>
<td>2</td>
<td>2</td>
<td>15.6</td>
<td>6.56</td>
</tr>
<tr>
<td>50</td>
<td>25</td>
<td>5</td>
<td>3</td>
<td>3.44</td>
<td>8.74</td>
</tr>
<tr>
<td>50</td>
<td>150</td>
<td>10</td>
<td>5</td>
<td>63.22</td>
<td>46.25</td>
</tr>
<tr>
<td>100</td>
<td>50</td>
<td>2</td>
<td>5</td>
<td>6.22</td>
<td>26.24</td>
</tr>
<tr>
<td>100</td>
<td>200</td>
<td>15</td>
<td>5</td>
<td>164.06</td>
<td>188.42</td>
</tr>
<tr>
<td>150</td>
<td>100</td>
<td>5</td>
<td>5</td>
<td>31.26</td>
<td>88.13</td>
</tr>
<tr>
<td>150</td>
<td>200</td>
<td>20</td>
<td>5</td>
<td>258.80</td>
<td>274.06</td>
</tr>
<tr>
<td>200</td>
<td>50</td>
<td>15</td>
<td>6</td>
<td>35.08</td>
<td>144.38</td>
</tr>
</tbody>
</table>

CPU time measured on Intel Core i7-4700MQ CPU 2.40 GHz

\(n = \# \text{ variables} \)
\(m = \# \text{ inequality constraints} \)
\(p = \# \text{ binary constraints} \)
\(q = \# \text{ equality constraints} \)
MIQP AND ADMM

- B&B + ADMM: solve QP relaxations via ADMM

 \[
 \begin{align*}
 \text{min} & \quad \frac{1}{2} x'Qx + c'x \\
 \text{s.t.} & \quad \ell \leq Ax \leq u \\
 & \quad A_ix \in \{\ell_i, u_i\}, \quad i \in I
 \end{align*}
 \]

- Simpler **heuristic** approach: only perform one set of ADMM iterations

\[
\begin{align*}
 x^{k+1} &= -(Q + \rho A^T A)^{-1} (\rho A^T (y^k - z^k) + c) \\
 z^{k+1} &= \min \{ \max \{ Ax^{k+1} + y^k, \ell \}, u \} \\
 z^{k+1}_i &= \begin{cases}
 \ell_i & \text{if } z^{k+1}_i < \frac{\ell_i + u_i}{2} \\
 u_i & \text{if } z^{k+1}_i \geq \frac{\ell_i + u_i}{2}, \quad i \in I
 \end{cases} \\
 y^{k+1} &= y^k + Ax^{k+1} - z^{k+1}
\end{align*}
\]

- Iterations converge to a (local) solution

- Similar heuristic idea also applicable to fast gradient methods

 (Naik, Bemporad, 2017)
Example: parallel hybrid electric vehicle control problem

- **Engine power**
- **Electrical power**
- **Energy stored in battery**
- **Engine on/off**

Optimal solution

ADMM solution
• **Example:** power converter control problem

\[
\begin{align*}
\text{minimize} & \quad \sum_{t=0}^{T} (v_{2,t} - v_{\text{des}})^2 + \lambda |u_t - u_{t-1}| \\
\text{subject to} & \quad \xi_{t+1} = G \xi_t + H u_t \\
& \quad \xi_0 = \xi_T \\
& \quad u_0 = u_T \\
& \quad u_t \in \{-1, 0, 1\}
\end{align*}
\]

input voltage sign \(u_t\)
output voltage \(v_2\)

optimal solution
ADMM solution
A SIMPLE EXAMPLE IN SUPPLY CHAIN MANAGEMENT

manufacturer A

manufacturer B

manufacturer C

inventory 1

inventory 2

retailer 1

U_{A11}(k)

U_{A12}(k)

U_{B11}(k)

U_{B12}(k)

U_{C11}(k)

U_{C12}(k)

U_{B21}(k)

U_{B22}(k)

U_{C21}(k)

U_{C22}(k)

x_{11}(k), x_{12}(k)

x_{21}(k), x_{22}(k)

u_{11}(k)

u_{12}(k)

u_{21}(k)

u_{22}(k)

y_{1}(k)

y_{2}(k)

go to demo demos/hybrid/supply_chain.m
• **Continuous states:**
\[x_{ij}(k) = \text{amount of } j \text{ hold in inventory } i \]
at time \(k \) (\(i = 1, 2, j = 1, 2 \))

• **Continuous outputs:**
\[y_j(k) = \text{amount of } j \text{ sold at time } k \] (\(j = 1, 2 \))

• **Continuous inputs:**
\[u_{ij}(k) = \text{amount of } j \text{ taken from inventory } i \text{ at time } k \] (\(i = 1, 2, j = 1, 2 \))

• **Binary inputs:**
\[U_{X_{ij}}(k) = 1 \text{ if manufacturer } X \text{ produces and send } j \text{ to inventory } i \text{ at time } k \]
• Max capacity of inventory i:

$$0 \leq \sum_{j=1}^{2} x_{ij} \leq x_{Mi}$$

• Max transportation from inventories:

$$0 \leq u_{ij}(k) \leq u_{M}$$

• A product can only be sent to one inventory:

$$U_{A11}(k) \text{ and } U_{A21}(k) \text{ cannot be both } = 1$$
$$U_{B11}(k) \text{ and } U_{B21}(k) \text{ cannot be both } = 1$$
$$U_{B12}(k) \text{ and } U_{B22}(k) \text{ cannot be both } = 1$$
$$U_{C12}(k) \text{ and } U_{C22}(k) \text{ cannot be both } = 1$$

• A manufacturer can only produce one type of product at one time:

$$[U_{B11}(k) \text{ or } U_{B21}(k) = 1], [U_{B12}(k) \text{ or } U_{B22}(k) = 1] \text{ cannot be both true}$$
• Let $P_{A1}, P_{B1}, P_{B2}, P_{C2} = \text{amount of product of type 1 (2) produced by } A (B, C)$ in one time interval.

• Level of inventories

\[
\begin{align*}
 x_{11}(k + 1) &= x_{11}(k) + P_{A1}U_{A11}(k) + P_{B1}U_{B11}(k) - u_{11}(k) \\
 x_{12}(k + 1) &= x_{12}(k) + P_{B2}U_{B12}(k) + P_{C2}U_{C12}(k) - u_{12}(k) \\
 x_{21}(k + 1) &= x_{21}(k) + P_{A1}U_{A21}(k) + P_{B1}U_{B21}(k) - u_{21}(k) \\
 x_{22}(k + 1) &= x_{22}(k) + P_{B2}U_{B22}(k) + P_{C2}U_{C22}(k) - u_{22}(k)
\end{align*}
\]

• Retailer: all items requested from inventories are sold

\[
\begin{align*}
 y_1 &= u_{11} + u_{21} \\
 y_2 &= u_{12} + u_{22}
\end{align*}
\]
SYSTEM supply_chain{
 INTERFACE {
 STATE {
 REAL x11 [0,10];
 REAL x12 [0,10];
 REAL x21 [0,10];
 REAL x22 [0,10];
 }
 INPUT {
 REAL u11 [0,10];
 REAL u12 [0,10];
 REAL u21 [0,10];
 REAL u22 [0,10];
 BOOL UA11, UA21, UB11, UB12, UB21, UB22, UC12, UC22;
 }
 OUTPUT {
 REAL y1, y2;
 }
 }
 PARAMETER {
 REAL PA1, PB1, PB2, PC2, xM1, xM2;
 }
 IMPLEMENTATION {
 AUX {
 REAL zA11, zB11, zB12, zC12, zA21, zB21, zB22, zC22;
 }
 DA {
 zA11 = (IF UA11 THEN PA1 ELSE 0);
 zB11 = (IF UB11 THEN PB1 ELSE 0);
 zB12 = (IF UB12 THEN PB2 ELSE 0);
 zC12 = (IF UC12 THEN PC2 ELSE 0);
 zA21 = (IF UA21 THEN PA1 ELSE 0);
 zB21 = (IF UB21 THEN PB1 ELSE 0);
 zB22 = (IF UB22 THEN PB2 ELSE 0);
 zC22 = (IF UC22 THEN PC2 ELSE 0);
 }
 CONTINUOUS {
 x11 = x11 + zA11 + zB11 - u11;
 x12 = x12 + zB12 + zC12 - u12;
 x21 = x21 + zA21 + zB21 - u21;
 x22 = x22 + zB22 + zC22 - u22;
 }
 OUTPUT {
 y1 = u11 + u21;
 y2 = u12 + u22;
 }
 MUST {
 ~(UA11 & UA21);
 ~(UC12 & UC22);
 ~(UB11 | UB21) & (UB12 | UB22));
 (UB11 & UB21);
 ~(UB12 & UB22);
 x11+x12 <= xM1;
 x11+x12 >=0;
 x21+x22 <= xM2;
 x21+x22 >=0;
 }
 }
}
- Meet customer demand as much as possible:

\[y_1 \approx r_1, \quad y_2 \approx r_2 \]

- Minimize transportation costs

- Fulfill all constraints
\[
\begin{align*}
\text{min} \sum_{k=0}^{N-1} & \quad \text{penalty on demand tracking error} \\
& 10(|y_{1,k} - r_1(t)| + |y_{2,k} - r_2(t)| + \\
& \text{shipping cost from inv. 1 to market} \\
& 4(|u_{11,k}| + |u_{12,k}|) + \\
& \text{shipping cost from inv. 2 to market} \\
& 2(|u_{21,k}| + |u_{22,k}|) + \\
& \text{cost from A to inventories} \\
& 1(|U_{A11,k}| + |U_{A21,k}|) + \\
& \text{cost from B to inventories} \\
& 4(|U_{B11,k}| + |U_{B12,k}| + U_{B21,k} + |U_{B22,k}|) + \\
& \text{cost from C to inventories} \\
& 10(|U_{C12,k}| + |U_{C22,k}|)
\end{align*}
\]
>> refs.y=[1 2]; % weights output2 #1, #2
>> Q.y=diag([10 10]); % output weights
...
>> Q.norm=Inf; % infinity norms
>> N=2; % optimization horizon
>> limits.umin=umin; % constraints
>> limits.umax=umax;
>> limits.xmin=xmin; % xij(k)>=0
>> limits.xmax=xmax; % xij(k)<=xMi (redundant)

>> C=hybcon(S,Q,N,limits,refs);

Hybrid controller based on MLD model S <supply_chain.hys>

[Inf-norm]

4 state measurement(s)
2 output reference(s)
12 input reference(s)
0 state reference(s)
0 reference(s) on auxiliary continuous z-variables

44 optimization variable(s) (8 continuous, 12 binary)
176 mixed-integer linear inequalities
sampling time = 1, MILP solver = 'glpk'

Type "struct(C)" for more details.

>>
Supply chain management - Simulation results

\[x_0 = [0; 0; 0; 0]; \] % Initial condition

\[r.y = [6 + 2 \sin((0:Tstop-1)'/5)
 5 + 3 \cos((0:Tstop-1)'/3)]; \] % Reference trajectories

\[[XX, UU, DD, ZZ, TT] = \text{sim}(C, S, r, x0, Tstop); \]

CPU time: \(\approx 13 \text{ ms/sample (GLPK)} \) or \(9 \text{ ms (CPLEX)} \) on Macbook Pro 3GHz Intel Core i7

"Model Predictive Control" - © 2023 A. Bemporad. All rights reserved.
• **Goal**: swing the pendulum up

• **Non-convex** input constraint

\[u \in [-\tau_{\text{max}}, -\tau_{\text{min}}] \cup \{0\} \cup [\tau_{\text{min}}, \tau_{\text{max}}] \]

• **Nonlinear** dynamical model

\[l^2 M \ddot{\theta} = M gl \sin \theta - \beta \dot{\theta} + u \]
Approximate \(\sin(\theta) \) as the piecewise linear function

\[
\sin \theta \approx s = \begin{cases}
-\alpha \theta - \gamma & \text{if } \theta \leq -\frac{\pi}{2} \\
\alpha \theta & \text{if } |\theta| \leq \frac{\pi}{2} \\
-\alpha \theta + \gamma & \text{if } \theta \geq \frac{\pi}{2}
\end{cases}
\]

Get optimal values for \(\alpha \) and \(\gamma \) by minimizing fit error

\[
\min_{\alpha} \quad \int_{0}^{\frac{\pi}{2}} (\alpha \theta - \sin(\theta))^2 d\theta
\]

\[
= \left. \frac{\theta}{2} - \frac{1}{2} \cos \theta \sin \theta - 2\alpha \sin \theta + \frac{1}{3} \alpha^2 \theta^3 + 2\alpha \theta \cos \theta \right|_{0}^{\frac{\pi}{2}} = \frac{1}{24} \pi^3 \alpha^2 - 2\alpha + \frac{\pi}{4}
\]

Zeroing the derivative with respect to \(\alpha \) gives \(\alpha = \frac{24}{\pi^3} \)

Requiring \(s = 0 \) for \(\theta = \pi \) gives \(\gamma = \frac{24}{\pi^2} \)
• Introduce the event variables

\[
\begin{align*}
\delta_3 = 1 \iff \theta \leq -\frac{\pi}{2} \\
\delta_4 = 1 \iff \theta \geq \frac{\pi}{2}
\end{align*}
\]

along with the logic constraint

\[
[\delta_4 = 1] \rightarrow [\delta_3 = 0]
\]

• Set \(s = \alpha \theta + s_3 + s_4 \) with

\[
\begin{align*}
s_3 &= \begin{cases}
-2\alpha \theta - \gamma & \text{if } \delta_3 = 1 \\
0 & \text{otherwise}
\end{cases} \\
s_4 &= \begin{cases}
-2\alpha \theta + \gamma & \text{if } \delta_4 = 1 \\
0 & \text{otherwise}
\end{cases}
\end{align*}
\]
• To model the constraint \(u \in [-\tau_{\text{max}}, -\tau_{\text{min}}] \cup \{0\} \cup [\tau_{\text{min}}, \tau_{\text{max}}] \) introduce the auxiliary variable

\[
\tau_A = \begin{cases}
 u & \text{if } -\tau_{\text{min}} \leq u \leq \tau_{\text{min}} \\
 0 & \text{otherwise}
\end{cases}
\]

and let \(u - \tau_A \) be the torque acting on the pendulum, with \(u \in [-\tau_{\text{max}}, \tau_{\text{max}}] \)

• The input \(u \) has no effect on the dynamics for \(u \in [-\tau_{\text{min}}, \tau_{\text{min}}] \). Hence, the solver will not choose values in that range if \(u \) is penalized in the MPC cost
• Introduce new event variables

\[
\begin{align*}
[\delta_1 = 1] & \iff [u \leq \tau_{\text{min}}] \\
[\delta_2 = 1] & \iff [u \geq -\tau_{\text{min}}]
\end{align*}
\]

along with the logic constraint \([\delta_1 = 0] \rightarrow [\delta_2 = 1]\) and set

\[
\tau_A = \begin{cases}
 u & \text{if } [\delta_1 = 1] \land [\delta_2 = 1] \\
 0 & \text{otherwise}
\end{cases}
\]

so that \(u - \tau_A\) is zero in for \(u \in [-\tau_{\text{min}}, \tau_{\text{min}}]\)
• Set \(x \triangleq [\theta \dot{\theta}] \), \(y \triangleq \theta \) and transform into linear model

\[
\frac{d}{dt} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ \frac{g}{l} \alpha & -\frac{\beta}{l^2 M} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ \frac{g}{l} & \frac{1}{l^2 M} \end{bmatrix} \begin{bmatrix} s_3 + s_4 \\ u - \tau_A \end{bmatrix}
\]

\[
y = \begin{bmatrix} 1 & 0 \end{bmatrix} x
\]

• Discretize in time with sample time \(T_s = 50 \text{ ms} \)

\[
\begin{bmatrix} x_1(k+1) \\ x_2(k+1) \end{bmatrix} = A \begin{bmatrix} x_1(k) \\ x_2(k) \end{bmatrix} + B \begin{bmatrix} s_3(k) + s_4(k) \\ u(k) - \tau_A(k) \end{bmatrix}
\]

\[
y(k) = \begin{bmatrix} 1 & 0 \end{bmatrix} x(k)
\]

\[
A \triangleq e^{T_s A_c}, \quad B \triangleq \int_0^{T_s} e^{t A_c} B_c dt
\]
/* Hybrid model of a pendulum
(C) 2012 by A. Bemporad, April 2012 */

SYSTEM hyb_pendulum {

INTERFACE {
STATE {
 REAL th [-2*pi,2*pi];
 REAL thdot [-20,20];
}
INPUT {
 REAL u [-11,11];
}
OUTPUT {
 REAL y;
}
PARAMETER {
 REAL tau_min,alpha,gamma;
 REAL a11,a12,a21,a22,b11,b12,b21,b22;
}
}

IMPLEMENTATION {
AUX {
 REAL tauA,s3,s4;
 BOOL d1,d2,d3,d4;
}
AD {
 d1 = u<=tau_min;
 d2 = u>=-tau_min;
 d3 = th <= -0.5*pi;
 d4 = th >= 0.5*pi;
}
DA {
 tauA = {IF d1 & d2 THEN u ELSE 0};
 s3 = {IF d3 THEN -2*alpha*th-gamma ELSE 0};
 s4 = {IF d4 THEN -2*alpha*th+gamma ELSE 0};
}
CONTINUOUS {
 th = a11*th+a12*thdot+b11*(s3+s4)+b12*(u-tauA);
 thdot = a21*th+a22*thdot+b21*(s3+s4)+b22*(u-tauA);
}
OUTPUT {
 y = th;
}
MUST {
 d4->~d3;
 ~d1->d2;
}
}

>> S=mld('pendulum',Ts);

go to demo demos/hybrid/pendulum_init.m

"Model Predictive Control" - © 2023 A. Bemporad. All rights reserved.
Inverted pendulum: model validation

- Open-loop simulation from initial condition $\theta(0) = 0, \dot{\theta}(0) = 0$
- Input torque excitation

\[
u(t) = \begin{cases}
2 \text{ Nm} & \text{if } 0 \leq t \leq 10 \text{ s} \\
0 & \text{otherwise}
\end{cases}
\]

```matlab
>> u0=2;
>> U=[2*ones(200,1);zeros(200,1)];
>> x0=[0;0];
>> [X,T,D,Z,Y]=sim(S,x0,U);
```

hybrid model (nominal)

nonlinear model
INVERTED PENDULUM: MPC DESIGN

- **MPC cost function**
 \[
 \sum_{k=0}^{4} |y_k - r(t)| + |0.01u_k|
 \]

- **MPC constraints** \(u \in [-\tau_{\text{max}}, \tau_{\text{max}}] \)

>> C=hybcon(S,Q,N,limits,refs);

```
>> C
Hybrid controller based on MLD model S <pendulum.hys> [Inf-norm]
2 state measurement(s)
1 output reference(s)
1 input reference(s)
0 state reference(s)
0 reference(s) on auxiliary continuous z-variables
55 optimization variable(s) (30 continuous, 25 binary)
155 mixed-integer linear inequalities
sampling time = 0.05, MILP solver = 'gurobi'
Type "struct(C)" for more details.
>>
```
INVERTED PENDULUM: CLOSED-LOOP RESULTS

- Nominal simulation

```matlab
>> [X,U,D,Z,T,Y]=sim(C,S,r,x0,4);
```

- Nonlinear simulation

CPU time:
- 51 ms per time step (GLPK)
- 22 ms per time step (CPLEX)
- 25 ms (GUROBI)

(Macbook Pro 3GHz Intel Core i7)
EXPLICIT HYBRID MPC
Explicit hybrid MPC (MLD formulation)

\[
\begin{align*}
\min_{\xi} \ J(\xi, x(t)) &= \sum_{k=0}^{N-1} \|Qy_k\|_\infty + \|Ru_k\|_\infty \\
\text{subject to} & \quad \begin{cases}
\quad x_{k+1} &= Ax_k + B_1 u_k + B_2 \delta_k + B_3 z_k + B_5 \\
\quad y_k &= Cx_k + D_1 u_k + D_2 \delta_k + D_3 z_k + D_5 \\
\quad E_2 \delta_k + E_3 z_k &\leq E_4 x_k + E_1 u_k + E_5 \\
\quad x_0 &= x(t)
\end{cases}
\end{align*}
\]

- **Online optimization**: solve the problem for a given state \(x(t) \) as the MILP

\[
\begin{align*}
\min_{\xi} \ & \sum_{k=0}^{N-1} \epsilon^y_k + \epsilon^u_k \\
\text{s.t.} & \quad G\xi \leq W + S \quad x(t)
\end{align*}
\]

- **Offline optimization**: solve the MILP in advance for all states \(x(t) \)

multiparametric Mixed-Integer Linear Program (mp-MILP)
MULTIPARAMETRIC MILP

- Consider the mp-MILP

\[
\begin{align*}
\min_{\xi_c, \xi_d} & \quad f'_c \xi_c + f'_d \xi_d \\
\text{s.t.} & \quad G_c \xi_c + G_d \xi_d \leq W + S \quad \Rightarrow \\
\end{align*}
\]

\[\xi_c \in \mathbb{R}^{n_c}, \quad \xi_d \in \{0, 1\}^{n_d}, \quad x \in \mathbb{R}^m\]

- A mp-MILP can be solved by alternating MILPs and mp-LPs

(Dua, Pistikopoulos, 1999)

- The multiparametric solution \(\xi^*(x)\) is PWA (but possibly discontinuous)

- The MPC controller is piecewise affine in \(x = x(t)\)

\[
u(x) = \begin{cases}
F_1 x + g_1 & \text{if } H_1 x \leq K_1 \\
\vdots & \vdots \\
F_M x + g_M & \text{if } H_M x \leq K_M
\end{cases}
\]

(More generally, the parameter vector \(x\) includes states and reference signals)
• Consider the MPC formulation using a PWA prediction model

\[
\min_\xi J(\xi, x(t)) = \sum_{k=0}^{N-1} \|Qy_k\|_\infty + \|Ru_k\|_\infty
\]

subject to

\[
\begin{align*}
x_{k+1} & = A_{i(k)}x_k + B_{i(k)}u_k + f_{i(k)} \\
y_k & = C_{i(k)}x_k + D_{i(k)}u_k + g_{i(k)} \\
i(k) & \text{ such that } H_{i(k)}x_k + W_{i(k)}u_k \leq K_{i(k)} \\
x_0 & = x(t)
\end{align*}
\]

• **Method #1**: The explicit solution can be obtained by using a combination of dynamic programming (DP) and mpLP (Borrelli, Baotic, Bemporad, Morari, 2005)

• Clearly the explicit hybrid MPC law is again piecewise affine, as PWA systems \(\equiv\) MLD systems
Explicit Hybrid MPC (PWA formulation)

- **Method #2:** (Bemporad, Hybrid Toolbox, 2003)

 1. Use backwards (=DP) **reachability analysis** for enumerating all feasible mode sequences \(I = \{i(0), i(1), \ldots, i(N)\} \)

 2. For each fixed sequence \(I \), solve the explicit finite-time optimal control problem for the corresponding linear time-varying system (**mpQP** or **mpLP**)

 3a. **Case of \(1 / \infty \)-norms or convex PWA costs:** Compare value functions and **split regions**

 3b. **Case of quadratic costs:** the partition may not be fully polyhedral, better **keep overlapping polyhedra** and compare online quadratic cost functions when overlaps are detected

- **Comparison of quadratic costs** can be avoided by lifting the parameter space
 (Fuchs, Axehill, Morari, 2015)
- **PWA system:**

\[
\begin{align*}
 x(t+1) &= 0.8 \begin{bmatrix} \cos \alpha(t) & -\sin \alpha(t) \\ \sin \alpha(t) & \cos \alpha(t) \end{bmatrix} x(t) + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u(t) \\
 y(t) &= \begin{bmatrix} 0 & 1 \end{bmatrix} x(t) \\
 \alpha(t) &= \begin{cases} \frac{\pi}{3} & \text{if } \begin{bmatrix} 1 & 0 \end{bmatrix} x(t) \geq 0 \\ -\frac{\pi}{3} & \text{if } \begin{bmatrix} 1 & 0 \end{bmatrix} x(t) < 0 \end{cases}
\end{align*}
\]

subject to \(-1 \leq u(t) \leq 1\)

- **MPC objective:** \(\min \sum_{k=1}^{2} |y_k - r(t)|\)

- **Open-loop behavior:**

```
go to demo demos/hybrid/bm99sim.m```

"Model Predictive Control" - © 2023 A. Bemporad. All rights reserved.
HYBRID MPC EXAMPLE - EXPPLICIT VERSION

\[ u(x, r) = \begin{cases} 
\begin{bmatrix} 0.6928 & -0.4 & 1 
\end{bmatrix} \begin{bmatrix} x \\ r \end{bmatrix} & \text{if } \begin{bmatrix} 0.6928 & -0.4 & 1 
0 & -1 & 0 
-0.6928 & 0.4 & -1 
1 & 0 & 0 
\end{bmatrix} \begin{bmatrix} x \\ r \end{bmatrix} \leq \begin{bmatrix} 10 \\ 10 \\ 1 \\ 1 \\ 1e-006 \end{bmatrix} 
\text{(Region #1)} \\
1 & \text{if } \begin{bmatrix} -0.6928 & 0 & -1 
0 & 0 & 1 
0 & 0 & -1 
0 & -1 & 0 
\end{bmatrix} \begin{bmatrix} x \\ r \end{bmatrix} \leq \begin{bmatrix} -1 \\ 1 \\ 1 \\ 1 \end{bmatrix} 
\text{(Region #2)} \\
-1 & \text{if } \begin{bmatrix} -0.4 & -0.6928 & 0 
0 & -1 & 0 
1 & 0 & 0 
0.6928 & -0.4 & 1 
0 & 0 & -1 
-1 & 0 & 0 
\end{bmatrix} \begin{bmatrix} x \\ r \end{bmatrix} \leq \begin{bmatrix} 10 \\ 10 \\ 1e-006 \\ 10 \\ 1 \\ 1 \\ 10 \end{bmatrix} 
\text{(Region #3)} \\
-1 & \text{if } \begin{bmatrix} -1 & 0 & 0 
0.4 & -1 & 0 
-0.6928 & -0.4 & 1 
0 & 0 & -1 
1 & 0 & 0 
\end{bmatrix} \begin{bmatrix} x \\ r \end{bmatrix} \leq \begin{bmatrix} 0 \\ 10 \\ 10 \\ 10 \\ 1 \end{bmatrix} 
\text{(Region #4)} \\
\begin{bmatrix} -0.6928 & -0.4 & 1 
0.4 & -0.6928 & 0 
0.6928 & 0 & -1 
-1 & 0 & 0 
\end{bmatrix} \begin{bmatrix} x \\ r \end{bmatrix} \leq \begin{bmatrix} 1 \\ 10 \\ 10 \\ 1 \\ 1 \\ 0 \end{bmatrix} 
\text{(Region #5)} 
\end{cases} \]

goto to /demos/hybrid/bm99sim.m

Offline CPU time = 1.51 s (Macbook Pro 3GHz Intel Core i7)

PWA law \equiv MPC law!
• Closed-loop explicit MPC
Explicit PWA Regulator

MPC problem:

\[
\begin{align*}
\min & \quad 10 \|x_N\|_\infty + \sum_{k=0}^{N-1} 10 \|x_k\|_\infty + \|u_k\|_\infty \\
\text{s.t.} & \quad -1 \leq u_k \leq 1, \ k = 0, \ldots, N - 1 \\
& \quad -10 \leq x_k \leq 10, \ k = 1, \ldots, N \\
Q &= \begin{bmatrix} 10 & 0 \\ 0 & 10 \end{bmatrix} \\
R &= 1
\end{align*}
\]

Prediction horizon \( N = 1 \)

Prediction horizon \( N = 2 \)

Prediction horizon \( N = 3 \)

goto demos/hybrid/bm99benchmark.m

"Model Predictive Control" - © 2023 A. Bemporad. All rights reserved.
>> E=expcon(C,range,options);

>> E

Explicit controller (based on hybrid controller C)
3 parameter(s)
1 input(s)
12 partition(s)
sampling time = 0.5

The controller is for hybrid systems (tracking)
This is a state-feedback controller.
Type "struct(E)" for more details.

\[
\text{min} \quad \sum_{k=0}^{2} \| x_{2k} - r(t) \|_{\infty} \\
\text{s.t.} \quad \begin{cases} 
\quad x_{1k} \geq 25, \quad k = 1, 2 \\
\quad \text{hybrid model}
\end{cases}
\]

384 numbers to store in memory

\((T_1, T_2)\) section for \(T_{\text{ref}} = 30\)
Explicit Hybrid MPC – Temperature Control

generated C-code

utils/expcon.h

#define EXPCON_REG 12
#define EXPCON_NTH 3
#define EXPCON_NYM 2
#define EXPCON_NH 72
#define EXPCON_NP 12
static double EXPCON_F[] = {
    -1,0,0,0,-1,0,
    -1,-1,-1,-1,-1,0,-3,-3,
    -3,0,-3,0,0,0,0,
    0,0,4,4,0,0,0,0,
    0,0,0,0,0,0
};

static double EXPCON_G[] = {
101.6,1.6,1.6,1.6,90.4,999.9,0,100,51.6,
101.6,51.6,98.4,50};

static double EXPCON_H[] = {
0,0,-0.0000099999,0,-0.00333333,
0.02,0.000999999,-0.02,0,0,-0.00333333,0.02,0.009999999,
0,0,-0.02,0.02,0,-1,0.009999999,0,
PARC - CART & BUMPERS EXAMPLE

- MPC problem with prediction horizon $N = 9$:
  \[
  \min_{F_0, \ldots, F_{N-1}} \sum_{k=0}^{N-1} |c_k - 1| + 0.25|F_k|
  \]
  s.t. $F_k \in \{-\bar{F}, 0, \bar{F}\}$
  PWA model equations

- MILP solution time: 0.37-1.9 s (CPLEX)
  (Intel Core i9-10885H CPU @2.40GHz)

- Data-driven hybrid MPC controller can keep temperature in yellow zone

- Approximate explicit MPC: fit a decision tree on 10,000 samples
  (accuracy: 99.7%). CPU time = 73 ÷ 88 µs. Closed-loop trajectories very similar.
Implementation aspects of hybrid MPC

- Alternatives:
  1. solve MIP online
  2. evaluate a PWA function (explicit solution)

- Small problems (short horizon $N = 1, 2$, one or two inputs, 4-6 binary vars):
  explicit PWA control law is preferable
    - CPU time to evaluate the control law is shorter than by MIP
    - control code is simpler (no complex solver must be included in the control software!)
    - more insight in controller behavior

- Medium/large problems (longer horizon, many inputs and binary variables):
  online MIP is preferable

- Further alternative: collect MIP solutions and fit an approximate explicit form
MOVING HORIZON ESTIMATION AND FAULT DETECTION
**STATE ESTIMATION / FAULT DETECTION**

(Bemporad, Mignone, Morari, 1999) (Ferrari-Trecate, Mignone, Morari, 2002)

- **Goal**: estimate the state of a hybrid system from past I/O measurements
- **Moving horizon estimation** based on MLD models solves the problem

![Diagram showing measurements and estimates]

MLD model augmented by
- state disturbance $\xi \in \mathbb{R}^n$
- output disturbance $\zeta \in \mathbb{R}^p$

At each time $t$ get the estimate $\hat{x}(t)$ by solving the **MIQP**

$$\min_{\hat{x}(t-T|t)} \sum_{k=0}^{T} \|\hat{y}(t - k|t) - y(t - k)\|^2_2 + \ldots$$

s.t. constraints on $\hat{x}(t - T + k|t), \hat{y}(t - T + k|t)$

- For **fault detection** also include unknown binary disturbances $\phi \in \{0, 1\}^{n_f}$
• Can only measure tank levels $h_1, h_2$

• The system has two faults:
  - $\phi_1$: leak in tank 1 between $20 \leq t \leq 60$ s
  - $\phi_2$: valve $V_1$ blocked for $t \geq 40$ s

• Add logic constraint
  \[ [h_1 \leq h_v] \rightarrow \phi_2 = 0 \]

(COSY benchmark problem)
MHE EXAMPLE - THREE TANK SYSTEM

- Can only measure tank levels \( h_1, h_2 \)

- The system has two faults:
  - \( \phi_1 \): leak in tank 1 between \( 20 \text{ s} \leq t \leq 60 \text{ s} \)
  - \( \phi_2 \): valve \( V_1 \) blocked for \( t \geq 40 \text{ s} \)

- Add logic constraint
  \[ h_1 \leq h_v \] \( \rightarrow \phi_2 = 0 \)
A FEW (HYBRID) MPC TRICKS
• A measured disturbance $v(t)$ enters the hybrid system
• Augment the hybrid prediction model with the constant state

$$
\begin{align*}
    x_{k+1}^v &= x_k^v \\
    x_0^v &= v(t)
\end{align*}
$$

• HYSDEL model

```plaintext
INTERFACE {
 STATE {
 REAL x [-1e3, 1e3];
 REAL xv [-1e3, 1e3];
 }
 ...
}
IMPLEMENTATION {
 CONTINUOUS {
 x = A*x + B*u + Bv*xv
 xv= xv;
 ...
 }
}
```

• Same trick applies to linear MPC

`go to demo demos/hybrid/hyb_meas_dist.m`
• Hybrid MPC formulation for reference tracking

\[
\min \sum_{k=0}^{N-1} \|Wy(y_{k+1} - r(t))\|_2^2 + \|W^\Delta u \Delta u_k\|_2^2 \\
\text{s.t.} \quad \text{hybrid dynamics} \\
\Delta u_k = u_k - u_{k-1}, \ k = 0, \ldots, N - 1, \ u_{-1} = u(t - 1) \\
u_{\text{min}} \leq u_k \leq u_{\text{max}}, \ k = 0, \ldots, N - 1 \\
y_{\text{min}} \leq y_k \leq y_{\text{max}}, \ k = 1, \ldots, N \\
\Delta u_{\text{min}} \leq \Delta u_k \leq \Delta u_{\text{max}}, \ k = 0, \ldots, N - 1
\]

• The resulting optimization problem is the MIQP

\[
\min_{\xi} \ J(\xi, x(t)) = \frac{1}{2} \xi' H \xi + [x'(t) \ r'(t) \ u'(t - 1)] F \xi \\
\text{s.t.} \quad G\xi \leq W + S \begin{bmatrix} x(t) \\
r(t) \\
u(t - 1) \end{bmatrix} \\
\xi = \begin{bmatrix} \Delta u_0 \\
\delta_0 \\
z_0 \\
\vdots \\
\Delta u_{N-1} \\
\delta_{N-1} \\
z_{N-1} \end{bmatrix}
\]

• Same trick as in linear MPC
Integral Action

- Augment hybrid prediction model with integrals of output tracking errors

\[ \epsilon_{k+1} = \epsilon_k + T_s (r(t) - y_k) \]

- Treat set point \( r(t) \) as a measured disturbance (= constant state)
- Add weight on \( \epsilon_k \) in cost function
- HYSDEL model:

```plaintext
INTERFACE
STATE{
 REAL x [-100,100];
 ...
 REAL epsilon [-1e3, 1e3];
 REAL r [0, 100];
}
OUTPUT{
 REAL y;
 ...
}
IMPLEMENTATION{
 CONTINUOUS{
 epsilon=epsilon+Ts*(r-(c*x));
 r=r;
 ...
 }
 OUTPUT{
 y=c*x;
 }
}
```

- Same trick applies to linear MPC

```
goto demo demos/hybrid/hyb_integral_action.m
```

"Model Predictive Control" - © 2023 A. Bemporad. All rights reserved.
• Consider the time-varying constraint

\[ u(t) \leq u_{\text{max}}(t) \]

• Augment the hybrid prediction model
  with the constant state

\[
\begin{align*}
x^{u}_{k+1} &= x^{u}_{k} \\
x^{u}_{0} &= u_{\text{max}}(t)
\end{align*}
\]

and output \( y^{u}_{k} = x^{u}(k) - u_{k} \), subject to the constraint \( y^{u}_{k} \geq 0, k = 0, 1, \ldots, N \)

• Same trick applies to linear MPC

  go to demo demos/linear/varbounds.m

• Alternative: in HYSDEL simply impose \( \text{MUST} \ \{ u \leq xu; \} \)
• Measured disturbance $v(t)$ is known $M$ steps in advance

• Augment the model with the following buffer dynamics

\[
\begin{align*}
    x_{M-1}^k &= x_{k}^{M-2} \\
    x_{M-2}^k &= x_{k}^{M-3} \\
    &\vdots \\
    x_1^k &= x_0^k \\
    x_0^k &= x_0^k \\
    x_1^{k+1} &= x_0^{k+1}
\end{align*}
\]

with initial condition

\[
\begin{align*}
    x_{0}^{M-1} &= v(t) \\
    x_{0}^{M-2} &= v(t + 1) \\
    &\vdots \\
    x_0^1 &= v(t + M - 2) \\
    x_0^0 &= v(t + M - 1)
\end{align*}
\]

• The predicted state $x_{M-1}^k$ of the buffer is

\[
x_{M-1}^k = \begin{cases} 
    v(t + k) & k = 0, \ldots, M - 1 \\
    v(t + M - 1) & k = M, \ldots, N - 1
\end{cases}
\]

• Preview of reference signal $r(t + k)$ can be dealt with in a similar way

• Same trick applies to linear MPC
DELAYS - METHOD #1

- Hybrid model with **delays**

\[
x(t + 1) = Ax(t) + B_1 u(t - \tau) + B_2 \delta(t) + B_3 z(t) + B_5 E_2 \delta(t) + E_3 z(t) \leq E_1 u(t - \tau) + E_4 x(t) + E_5
\]

- Map delays to poles in \( z = 0 \):

\[
x_k(t) \triangleq u(t - k) \quad \Rightarrow \quad x_k(t + 1) = x_{k-1}(t), \ k = 1, \ldots, \tau
\]

\[
\begin{bmatrix}
x(t+1) \\
x(\tau)(t+1) \\
x(\tau-1)(t+1) \\
\vdots \\
x_1(t+1)
\end{bmatrix}
= 
\begin{bmatrix}
A & B_1 & 0 & 0 & \cdots & 0 \\
0 & 0 & I_m & 0 & \cdots & 0 \\
0 & 0 & 0 & I_m & \cdots & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & 0 & \cdots & 0
\end{bmatrix}
\begin{bmatrix}
x(t) \\
x(\tau)(t) \\
x(\tau-1)(t) \\
\vdots \\
x_1(t)
\end{bmatrix}
+ 
\begin{bmatrix}
0 \\
0 \\
0 \\
\vdots \\
I_m
\end{bmatrix}
u(t) + 
\begin{bmatrix}
B_2 \\
0 \\
0 \\
\vdots \\
0
\end{bmatrix}\delta(t) + 
\begin{bmatrix}
B_3 \\
0 \\
0 \\
\vdots \\
0
\end{bmatrix}z(t) + 
\begin{bmatrix}
B_5 \\
0 \\
0 \\
\vdots \\
0
\end{bmatrix}
\]

- Apply MPC to the extended MLD system

- Same trick as in linear MPC
• **Delay-free** model:

\[
\bar{x}(t) \triangleq x(t + \tau) \rightarrow \\
\begin{cases}
\bar{x}(t + 1) = A\bar{x}(t) + B_1 u(t) + B_2 \bar{\delta}(t) + B_3 \bar{z}(t) + B_5 \\
E_2 \bar{\delta}(t) + E_3 \bar{z}(t) \leq E_1 u(t) + E_4 \bar{x}(t) + E_5
\end{cases}
\]

• Design MPC for delay-free model, \( u(t) = f_{\text{MPC}}(\bar{x}(t)) \)

• Compute the predicted state

\[
\bar{x}(t) = \hat{x}(t + \tau) = A^\tau x(t) + \sum_{j=1}^{\tau-1} A^j (B_1 u(t - 1 - j) + B_2 \bar{\delta}(t+j) + B_3 \bar{z}(t+j) + B_5)
\]

where \( \bar{\delta}(t + j), \bar{z}(t + j) \) are obtained from MLD inequalities or by simulation

• Compute the MPC control move \( u(t) = f_{\text{MPC}}(\hat{x}(t + \tau)) \)
**CHOICE CONSTRAINTS**

- **Logic constraint**: make one or more *choices* out of a set of alternatives:
  - make **at most one** choice: $\delta_1 + \delta_2 + \delta_3 \leq 1$
  - make **at least two** choices: $\delta_1 + \delta_2 + \delta_3 \geq 2$
  - **exclusive or** constraint: $\delta_1 + \delta_2 + \delta_3 = 1$

- More generally:

$$\sum_{i=1}^{N} \delta_i \leq m \quad \text{choose at most } m \text{ items out of } N$$

$$\sum_{i=1}^{N} \delta_i = m \quad \text{choose exactly } m \text{ items out of } N$$

$$\sum_{i=1}^{N} \delta_i \geq m \quad \text{choose at least } m \text{ items out of } N$$
"NO-GOOD" CONSTRAINTS

• Given a binary vector $\bar{\delta} \in \{0, 1\}^n$ we want to impose the constraint

\[
\delta \neq \bar{\delta}
\]

• This may be useful for example to extract different solutions from an MIP that has multiple optima

• The "no-good" condition can be expressed equivalently as

\[
\sum_{i \in T} \delta_i - \sum_{i \in F} \delta_i \leq -1 + \sum_{i=1}^{n} \bar{\delta}_i
\]

\[
F = \{ i : \bar{\delta}_i = 0 \}
\]

\[
T = \{ i : \bar{\delta}_i = 1 \}
\]

or

\[
\sum_{i=1}^{n} (2\bar{\delta}_i - 1) \delta_i \leq \sum_{i=1}^{n} \bar{\delta}_i - 1
\]
**Asymmetric weights**

- **Asymmetric weight**: only weight a variable $u_k$ if $u_k \geq 0$

- We can introduce a binary variable $[\delta_k = 1] \leftrightarrow [u_k \geq 0]$ and

  $$z_k = \max\{u_k, 0\} = \begin{cases} u_k & \text{if } \delta_k = 1 \\ 0 & \text{otherwise} \end{cases}$$

  then weight $z_k$ instead of $u_k$

- **Better solution**: only introduce auxiliary variable $z_k$ and optimize

  $\min \ldots + \sum_{k=0}^{N-1} z_k^2$

  s.t. $z_k \geq u_k$

  $z_k \geq 0$

- Similar approach when $\| \cdot \|_{\infty}$ or $\| \cdot \|_1$ are used as penalties

- Same trick applies to linear MPC
The complexity of solving a mixed-integer program largely depends on the number of integer (binary) variables involved in the problem.

Hence, when creating a hybrid model one has to

Be thrifty with binary variables!

Adding logical constraints usually helps.

Generally speaking, modeling is an art.
VERIFICATION (REACHABILITY ANALYSIS)
Hybrid Verification Problem

Hybrid process

- Continuous disturbances
- Continuous states
- Binary disturbances
- Binary states

Verification algorithm

- Set of possible initial states
- Set of possible disturbances
- Safety query
- Answer
- Counter-example

Always safe!
**Verification Algorithm #1**

- **Query:** Is the target set $X_f$ reachable in $N$ steps from some initial state $x_0 \in X_0$ for some input $u_0, \ldots, u_{N-1} \in U$?

- The query can be answered by solving the **mixed-integer feasibility test**

\[
\begin{align*}
\min_\xi & \quad 0 \\
\text{s.t.} & \quad x_{k+1} = Ax_k + B_1 u_k + B_2 \delta_k + B_3 z_k + B_5 \\
& \quad E_2 \delta_k + E_3 z_k \leq E_4 x_k + E_1 u_k + E_5 \\
& \quad S_u u_k \leq T_u \quad (u_k \in U), \quad k = 0, 1, \ldots, N - 1 \\
& \quad S_0 x_0 \leq T_0 \quad (x_0 \in X_0) \\
& \quad S_f x_N \leq T_f \quad (x_N \in X_f)
\end{align*}
\]

with respect to $\xi = [x_0, \ldots, x_N, u_0, \ldots, u_{N-1}, \delta_0, \ldots, \delta_{N-1}, z_0, \ldots, z_{N-1}]$

- **Other approaches:**
  - Exploit structure and use polyhedral computation (Torrisi, 2003)
  - Use abstractions (LPs) + SAT solvers (Giorgetti, Pappas, Bemporad)
• MLD model: room temperature control system

• Set of unsafe states:

\[ X_f = \{ \left[ \frac{T_1}{T_2} \right] : 10 \leq T_1, T_2 \leq 15 \} \]

• Set of initial states:

\[ X_0 = \{ \left[ \frac{T_1}{T_2} \right] : 35 \leq T_1, T_2 \leq 40 \} \]

• Set of possible inputs:

\[ U = \{ T_{amb} : 10 \leq T_{amb} \leq 30 \} \]

• Time horizon: \( N = 10 \) steps

>> [flag,x0,U]=reach(S,N,Xf,X0,umin,umax);
>> umin=20;
>> reach(S,N,Xf,X0,umin,umax);

Hybrid Toolbox v.1.4.2 [February 2, 2020]
Elapsed time is 0.023282 seconds.

Xf is not reachable from X0

\[ U = \{T_{amb} : 10 \leq T_{amb} \leq 30\} \]

\[ U = \{T_{amb} : 20 \leq T_{amb} \leq 30\} \]
• **Query**: Is the target set $X_f$ reachable within $N$ steps from some initial state $x_0 \in X_0$ for some input $u_0, \ldots, u_{N-1} \in U$?

• Augment the MLD system to register the entrance of the target (unsafe) set $X_f = \{ x : A_f x \leq b_f \}$:

  - Add a new variable $\delta^f_k$, with $\delta^f_k = 1 \rightarrow [A_f x_{k+1} \leq b_f]$

    
    \[
    A_f (Ax_k + B_1 u_k + B_2 \delta_k + B_3 z_k + B_5) \leq b_f + M(1 - \delta^f_k)
    \]

  - Add the constraint $\sum_{k=0}^{N-1} \delta^f_k \geq 1$ (i.e., $x_k \in X_f$ for at least one $k$)

  - Solve MILP feasibility test

• **Note**: the verification problem is a **bounded model-checking** problem with continuous and binary variables
• States $x_1, x_2, x_3 \in \mathbb{R}, x_4, x_5 \in \{0, 1\}$, inputs $u_1, u_2 \in \mathbb{R}, u_3 \in \{0, 1\}$

\[
[\delta_1 = 1] \leftrightarrow [x_1 \leq 0]
\]

• Events:

\[
[\delta_2 = 1] \leftrightarrow [x_2 \geq 1]
\]

\[
[\delta_3 = 1] \leftrightarrow [x_3 - x_2 \leq 1]
\]

• Switched dynamics

\[
x_1(k + 1) = \begin{cases} 
0.1x_1(k) + 0.5x_2(k) & \text{if } (\delta_1(k) \land \delta_2(k)) \lor x_4(k) \text{ true} \\
-0.3x_3(k) - x_1(k) + u_1(k) & \text{otherwise}
\end{cases}
\]

\[
x_2(k + 1) = \begin{cases} 
-0.8x_1(k) + 0.7x_3(k) - u_1(k) - u_2(k) & \text{if } \delta_3(k) \lor x_5(k) \text{ true} \\
-0.7x_1(k) - 2x_2(k) & \text{otherwise}
\end{cases}
\]

\[
x_3(k + 1) = \begin{cases} 
-0.1x_3(k) + u_2(k) & \text{if } (\delta_3(k) \land x_5(k)) \lor (\delta_1(k) \land x_4(k)) \text{ true} \\
x_3(k) - 0.5x_1(k) - 2u_1(k) & \text{otherwise}
\end{cases}
\]

• Automaton

\[
x_4(k + 1) = \delta_1(k) \land x_4(k)
\]

\[
x_5(k + 1) = ((x_4(k) \lor x_5(k)) \land (\delta_1(k) \lor \delta_2(k)) \lor (\delta_3(k) \land u_3(k))
\]
A MORE COMPLEX VERIFICATION EXAMPLE

• **Query:** Verify if it possible that, starting from the set $X_0$

$$X_0 = \{x : -0.1 \leq x_1, x_3 \leq 0.1, x_2 = 0.1, x_4, x_5 \in \{0, 1\}\}$$

the state $x(k) \in X_f$

$$X_f = \{x : -1 \leq x_1, x_3 \leq 1, 0.5 \leq x_2 \leq 1, x_4, x_5 \in \{0, 1\}\}$$

at some $k \leq N, N = 5$, under the restriction that $\forall k \leq N$

\[
x_3(k) + x_2(k) \leq 0
\]

\[
\delta_1(k) \lor \delta_2(k) \lor x_5(k) = true
\]

\[
\neg x_4(k) \lor x_5(k) = true
\]

\[
>> [\text{flag,x0,U,xf,X,T,D,Z,Y,reachtime}]=\text{reach}(S,[1 \ N],Xf,X0);
\]

go to demo demos/hybrid/reachtest.m
A MORE COMPLEX VERIFICATION EXAMPLE

The set $X_f$ is reached by $x(k)$ at time steps $k = 3, 4$