MODEL PREDICTIVE CONTROL

HYBRID MPC

Alberto Bemporad

http://cse.lab.imtlucca.it/~bemporad/mpc_course.html

COURSE STRUCTURE

- Basic concepts of model predictive control (MPC) and linear MPC
- ✓ Linear time-varying and nonlinear MPC
- ✓ Quadratic programming (QP) and explicit MPC
- Hybrid MPC
- Stochastic MPC
- Learning-based MPC

HYBRID MPC

HYBRID MODEL PREDICTIVE CONTROL

Use a hybrid dynamical model of the process to predict its future evolution and choose the "best" control action

MIQP FORMULATION OF HYBRID MPC

(Bemporad, Morari, 1999)

• Finite-horizon optimal control problem (regulation)

min
$$\sum_{k=0}^{N-1} y'_k Q y_k + u'_k R u_k$$

s.t.
$$\begin{cases} x_{k+1} &= A x_k + B_1 u_k + B_2 \delta_k + B_3 z_k + B_5 \\ y_k &= C x_k + D_1 u_k + D_2 \delta_k + D_3 z_k + D_5 \\ E_2 \delta_k &+ E_3 z_k \le E_4 x_k + E_1 u_k + E_5 \\ x_0 &= x(t) \end{cases}$$

 $Q=Q'\succ 0, R=R'\succ 0$

- Treat u_k, δ_k, z_k as free decision variables, $k = 0, \dots, N-1$
- Predictions can be constructed exactly as in the linear case

$$x_k = A^k x_0 + \sum_{j=0}^{k-1} A^j (B_1 u_{k-1-j} + B_2 \delta_{k-1-j} + B_3 z_{k-1-j} + B_5)$$

MIQP FORMULATION OF HYBRID MPC

• After substituting x_k , y_k the resulting optimization problem becomes the following Mixed-Integer Quadratic Programming (MIQP) problem

$$\begin{split} \min_{\xi} \quad & \frac{1}{2}\xi'H\xi + x'(t)F'\xi + \frac{1}{2}x'(t)Yx(t) \\ \text{s.t.} \quad & G\xi \leq W + Sx(t) \end{split}$$

• The optimization vector $\xi = [u_0, \dots, u_{N-1}, \delta_0, \dots, \delta_{N-1}, z_0, \dots, z_{N-1}]$ has mixed real and binary components

$$u_k \in \mathbb{R}^{m_c} \times \{0,1\}^{m_b}$$

$$\delta_k \in \{0,1\}^{r_b}$$

$$z_k \in \mathbb{R}^{r_c}$$

$$\xi \in \mathbb{R}^{N(m_c+r_c)} \times \{0,1\}^{N(m_b+r_b)}$$

HYBRID MPC FOR REFERENCE TRACKING

• Consider the more general set-point tracking problem

$$\min_{\xi} \sum_{k=0}^{N-1} \|y_k - r\|_Q^2 + \|u_k - u_r\|_R^2 + \sigma \left(\|x_k - x_r\|_2^2 + \|\delta_k - \delta_r\|_2^2 + \|z_k - z_r\|_2^2\right)$$

s.t. MLD model equations $x_0 = x(t)$

$$x_N = x_r$$

with $\sigma>0$ and $\|v\|_Q^2=v'Qv$

• The equilibrium $(x_r, u_r, \delta_r, z_r)$ corresponding to r can be obtained by solving the following mixed-integer feasibility problem

$$\begin{aligned} x_r &= Ax_r + B_1 u_r + B_2 \delta_r + B_3 z_r + B_5 \\ r &= Cx_r + D_1 u_r + D_2 \delta_r + D_3 z_r + D_5 \\ E_2 \delta_r &+ E_3 z_r \leq E_4 x_r + E_1 u_r + E_5 \end{aligned}$$

CLOSED-LOOP CONVERGENCE

(Bemporad, Morari, 1999)

 Theorem. Let (x_r, u_r, δ_r, z_r) be the equilibrium corresponding to r. Assume x(0) such that the MIQP problem is feasible at time t = 0. Then ∀Q, R ≻ 0, σ > 0 the hybrid MPC closed-loop converges asymptotically

$$\lim_{t \to \infty} y(t) = r \qquad \qquad \lim_{t \to \infty} x(t) = x_r \\ \lim_{t \to \infty} \delta(t) = \delta_r \\ \lim_{t \to \infty} u(t) = u_r \qquad \qquad \lim_{t \to \infty} z(t) = z_r$$

and all constraints are fulfilled at each time $t \ge 0$.

• The proof easily follows from standard Lyapunov arguments (see next slide)

• Lyapunov asymptotic stability and exponential stability follows if proper terminal cost and constraints are imposed (Lazar, Heemels, Weiland, Bemporad, 2006)

CONVERGENCE PROOF

- Main idea: Use the value function $V^*(x(t))$ as a Lyapunov function
- Let $\xi_t = [u_0^t, \dots, u_{N-1}^t, \delta_0^t, \dots, \delta_{N-1}^t, z_0^t, \dots, z_{N-1}^t]$ be the optimal sequence @t
- By construction @t+1 $\bar{\xi} = [u_1^t, \dots, u_{N-1}^t, u_r, \delta_1^t, \dots, \delta_{N-1}^t, \delta_r, z_0^t, \dots, z_{N-1}^t, z_r]$ is feasible, as it satisfies all MLD constraints + terminal constraint $x_N = x_r$
- The cost of $\bar{\xi}$ is $V^*(x(t)) \|y(t) r\|_Q^2 \|u(t) u_r\|_R^2$ $-\sigma \left(\|\delta(t) - \delta_r\|_2^2 + \|z(t) - z_r\|_2^2 + \|x(t) - x_r\|_2^2\right) \ge V^*(x(t+1))$
- $V^*(x(t))$ is monotonically decreasing and ≥ 0 , so $\exists \lim_{t \to \infty} V^*(x(t)) \in \mathbb{R}$
- Hence $\|y(t) r\|_Q^2$, $\|u(t) u_r\|_R^2$, $\|\delta(t) \delta_r\|_2^2$, $\|z(t) z_r\|_2^2$, $\|x(t) x_r\|_2^2 \to 0$
- Since $R,Q\succ 0, \lim_{t\rightarrow\infty}y(t)=r$ and all other variables converge.

Global optimum is not needed to prove convergence !

П

MILP FORMULATION OF HYBRID MPC

(Bemporad, Borrelli, Morari, 2000)

• Finite-horizon optimal control problem using infinity norms

• Introduce additional variables $\epsilon^y_k, \epsilon^u_k, k = 0, \dots, N-1$

$$\begin{cases} \epsilon_k^y \geq \|Qy_k\|_{\infty} \\ \epsilon_k^u \geq \|Ru_k\|_{\infty} \end{cases} \longrightarrow \begin{cases} \epsilon_k^y \geq \pm Q^i y_k \\ \epsilon_k^u \geq \pm R^i u_k \end{cases} \qquad Q^i = i \text{th row of } Q \end{cases}$$

MILP FORMULATION OF HYBRID MPC

• After substituting x_k , y_k the resulting optimization problem becomes the following Mixed-Integer Linear Programming (MILP) problem

$$\min_{\xi} \quad \sum_{k=0}^{N-1} \epsilon_k^y + \epsilon_k^u \\ \text{s.t.} \quad G\xi \le W + Sx(t)$$

• $\xi = [u_0, \dots, u_{N-1}, \delta_0, \dots, \delta_{N-1}, z_0, \dots, z_{N-1}, \epsilon_0^y, \epsilon_0^u, \dots, \epsilon_{N-1}^y, \epsilon_{N-1}^u]$ is the optimization vector, with mixed real and binary components

$$u_k \in \mathbb{R}^{m_c} \times \{0,1\}^{m_b}$$

$$\delta_k \in \{0,1\}^{r_b}$$

$$z_k \in \mathbb{R}^{r_c}$$

$$\xi \in \mathbb{R}^{N(m_c+r_c+2)} \times \{0,1\}^{N(m_b+r_b)}$$

$$\epsilon_k^y, \epsilon_k^u \in \mathbb{R}$$

• Same approach applies to any convex piecewise affine stage cost

HYBRID MPC EXAMPLE

• PWA system:

$$\begin{array}{rcl} x(t+1) &=& 0.8 \begin{bmatrix} \cos \alpha(t) & -\sin \alpha(t) \\ \sin \alpha(t) & \cos \alpha(t) \end{bmatrix} x(t) + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u(t) \\ y(t) &=& \begin{bmatrix} 0 & 1 \end{bmatrix} x(t) \\ \alpha(t) &=& \begin{cases} \frac{\pi}{3} & \text{if} & \begin{bmatrix} 1 & 0 \end{bmatrix} x(t) \ge 0 \\ -\frac{\pi}{3} & \text{if} & \begin{bmatrix} 1 & 0 \end{bmatrix} x(t) < 0 \end{cases}$$

• Open-loop simulation:

gotodemodemos/hybrid/bm99sim.m

HYBRID MPC EXAMPLE

```
SYSTEM pwa {
INTERFACE {
   STATE { REAL x1 [-10,10];
            REAL x2 [-10,10]; }
   INPUT { REAL u [-1.1,1.1]; }
   PARAMETER {
       REAL alpha = 1.0472; /* 60 deg in radiants */;
      REAL C = cos(alpha); \}
       REAL S = sin(alpha); }
   }
IMPLEMENTATION {
   AUX { REAL z1, z2;
          BOOL sign; }
   AD { sign = x1 \ge 0; }
                                                                                       [sign = 1] \leftrightarrow [x_1 \ge 0]
   DA { z1 = { IF sign THEN 0.8*(C*x1-S*x2)
                ELSE 0.8*(C*x1+S*x2) }:
         z_2 = \{ IF \text{ sign THEN } 0.8*(S*x1+C*x2) \}
                ELSE 0.8*(-S*x1+C*x2) }; }
   CONTINUOUS { x1 = z1;
                                                                                           x_1(t+1) = z_1(t)
                 x^2 = z^2 + u;
                                                                                     x_2(t+1) = z_2(t) + u(t)
   OUTPUT { y = x2; }
                                                                                                y(t) = x_2(t)
}
```

gotodemos/hybrid/bm99.hys

HYBRID MPC EXAMPLE

Closed-loop MPC results:

 Average CPU time to solve MILP: ≈ 1 ms/step (Macbook Pro 3GHz Intel Core i7 using GLPK)

HYBRID MPC – TEMPERATURE CONTROL

>> refs.x=2;	<pre>% just weight state #2</pre>
>> Q.x=1;	<pre>% unit weight on state #2</pre>
>> Q.rho=Inf;	<pre>% hard constraints</pre>
>> Q.norm=Inf;	<pre>% infinity norms</pre>
>> N=2;	% prediction horizon
>> limits.xmin=	[25;-Inf];

>> C=hybcon(S,Q,N,limits,refs);

>> [XX,UU,DD,ZZ,TT]=sim(C,S,r,x0,Tstop);

HYBRID MPC – TEMPERATURE CONTROL

• Average CPU time to solve MILP: \approx 1 ms/step (Macbook Pro 3GHz Intel Core i7 using GLPK)

MIXED-INTEGER PROGRAMMING SOLVERS

- Binary constraints make Mixed-Integer Programming (MIP) a hard problem (*NP*-complete)
- However, excellent general purpose branch & bound / branch & cut solvers available for MILP and MIQP (Gurobi, CPLEX, FICO Xpress, GLPK, CBC, ...)

(more solvers/benchmarks: see http://plato.la.asu.edu/bench.html)

- MIQP approaches tailored to embedded hybrid MPC applications:
 - B&B + (dual) active set methods for QP

(Leyffer, Fletcher, 1998) (Axehill, Hansson, 2006) (Bemporad, 2015) (Bemporad, Naik, 2018)

- B&B + interior point methods: (Frick, Domahidi, Morari, 2015)
- B&B + fast gradient projection: (Naik, Bemporad, 2017)
- B&B+ADMM: (Stellato, Naik, Bemporad, Goulart, Boyd, 2018)
- No need to reach global optimum (see convergence proof), although performance may deteriorate

(Dakin, 1965)

• We want to solve the following MIQP

$$\begin{array}{ll} \min \quad V(z) \triangleq \frac{1}{2} z' Q z + c' z \\ \text{s.t.} \quad A z \leq b \\ z_i \in \{0,1\}, \, \forall i \in I \end{array} \qquad \begin{array}{ll} z \in \mathbb{R}^n \\ Q = Q' \succeq 0 \\ I \subseteq \{1, \dots, n\} \end{array}$$

- Branch & Bound (B&B) is the simplest (and most popular) approach to solve the problem to optimality
- Key idea:
 - for each binary variable $z_i, i \in I$, either set $z_i = 0$, or $z_i = 1$, or $z_i \in [0, 1]$
 - solve the corresponding **QP relaxation** of the MIQP problem
 - use QP result to decide the next combination of fixed/relaxed variables

 Branching rule: pick the index i such that z_i is closest to ¹/₂ (max fractional part) (Breu, Burdet, 1974)

 Possibly exploit warm starting from QP₀ when solving new relaxations QP₁ and QP₂

The cost V_0 of the best integer-feasible solution found so fare gives an upper bound $V_0 \ge V^*$ on MIQP solution

• While solving the QP relaxation, if the **dual cost** is available it gives a **lower bound** to the solution of the relaxed problem

• The QP solver can be stopped whenever the dual cost $\geq V_0$!

This may save a lot of computations

• When no further branching is possible, either the MIQP problem is declared infeasible or an optimal solution z^* has been found

 B&B method + QP solver based on nonnegative least squares applied to solving the MIQP

$$\min_{z} \quad V(z) \triangleq \frac{1}{2}z'Qz + c'z \qquad \qquad Q = Q' \succ 0$$

s.t. $\ell \le Az \le u$
 $Gz = g$
 $\bar{A}_i z \in \{\bar{\ell}_i, \bar{u}_i\}, i = 1, \dots, q$

- Binary constraints on z are a special case: $\bar{\ell}_i = 0, \bar{u}_i = 1, \ \bar{A}_i = [0 \dots 0 \ 1 \ 0 \dots 0]$
- Warm starting from parent node exploited when solving new QP relaxation
- QP solver interrupted when dual cost larger than best known upper-bound

•	Worst-case	CPU time	(ms) on ran	dom MIQP	problems:
---	------------	----------	-------------	----------	-----------

n	m	q	$NNLS_{LDL}$	$NNLS_{QR}$	GUROBI	CPLEX	
10	5	2	2.3	1.2	1.4	8.0	n
10	100	2	5.7	3.3	6.1	31.4	m
50	25	5	4.2	6.1	14.1	30.1	q
50	200	10	68.8	104.4	114.6	294.1	
100	50	2	4.6	10.2	37.2	69.2	
100	200	15	137.5	365.7	259.8	547.8	
150	100	5	15.6	49.2	157.2	260.1	
150	300	20	1174.4	3970.4	1296.1	2123.9	

ı	=	# variables
ı	=	# inequalities
1	=	# binary vars
		(no equalities)

Compiled Embedded MATLAB code (QP solver) + MATLAB code (B&B) CPU results measured on Macbook Pro 3GHz Intel Core i7

NNLS-LDL = recursive LDL' factorization used to solve least-square problems in QP solver NNLS-QR = recursive QR factorization used instead (numerically more robust)

SOLVING MIQP VIA NNLS

• Worst-case CPU time (ms) on random purely binary QP problems:

n	m	q	$NNLS_{LDL}$	$NNLS_{QR}$	GUROBI	CPLEX
2	10	2	5.1	4.0	0.7	8.4
4	20	4	8.9	4.3	4.5	16.7
8	40	8	19.2	18.0	37.1	14.7
12	60	12	59.7	57.8	82.3	47.9
20	100	20	483.5	457.7	566.8	99.6
25	250	25	110.4	93.3	1054.4	169.4
30	150	30	1645.4	1415.8	2156.2	184.5

• Worst-case CPU time (ms) on a hybrid MPC problem

N = prediction horizon	N	NNLS _{LDL}	$NNLS_{QR}$	GUROBI	CPLEX
	2	2.2	2.3	1.2	3.0
MIQP regularized to make	3	3.4	3.9	2.0	6.5
Q strictly $\succ 0$	4	5.0	6.5	2.6	8.1
(solution difference is negligible)	5	7.6	9.8	3.7	9.0
	6	12.3	17.7	4.3	11.0
	7	20.5	30.5	5.8	13.1
	8	28.9	47.1	7.3	17.3
	9	38.8	62.5	9.5	18.9
	10	55.4	98.2	10.9	22.4

SOLVING MIQP VIA NNLS AND PROXIMAL-POINT ITERATIONS

(Bemporad, Naik, 2018)

• Robustified approach: use NNLS + proximal-point iterations to solve QP

relaxations (Bemporad, 2018)

$$z_{k+1} = \arg\min_{z} \quad \frac{1}{2}z'Qz + c'z + \frac{\epsilon}{2}||z - z_{k}||_{2}^{2}$$

s.t. $\ell \leq Az \leq u$
 $Gz = g$

• CPU time (ms) on MIQP coming from hybrid MPC (bm99 demo):

For $N = 10$:	N	prox-NNLS		prox-	prox-NNLS*		GUROBI		CPLEX	
$30\mathrm{realvars}$		ave	max	avg	max	avg	max	avg	max	
$10{ m binaryvars}$	2	2.0	2.6	2.0	2.6	1.6	2.0	3.1	6.0	
160 inequalities	4	5.3	8.8	3.1	6.9	3.1	3.9	8.9	15.7	
	8	29.7	71.0	8.1	43.4	7.2	13.2	15.5	80.2	
prox-NNLS* = warm	10	76.2	146.1	14.4	103.2	11.1	17.6	35.1	95.3	
start of binary vars	12	155.8	410.8	26.9	263.4	14.9	31.2	61.7	103.7	
exploited	15	484.2	1242.3	61.7	766.9	25.9	109.8	89.9	181.1	

CPU time measured on Intel Core i7-4700MQ CPU 2.40 GHz

FAST GRADIENT PROJECTION FOR MIQP

(Naik, Bemporad, 2017)

• Consider again the MIQP problem with Hessian $Q = Q' \succ 0$

 $\begin{array}{c|c} \min_{z} & V(z) \triangleq \frac{1}{2}z'Qz + c'z & & & w^{k} \\ \text{s.t.} & \ell \leq Az \leq u & & & z^{k} \\ & Gz = g & & & & s^{k} \\ & \bar{A}_{i}z \in \{\bar{\ell}_{i}, \bar{u}_{i}\}, \ i = 1, \dots, p & & & y_{i}^{k+1} \end{array}$

$$w^{k} = y^{k} + \beta_{k}(y^{k} - y^{k-1})$$

$$z^{k} = -Kw^{k} - Jx$$

$$s^{k} = \dots$$

$$y_{i}^{k+1} = \max \left\{ w_{i}^{k} + s_{i}^{k}, 0 \right\}, i \in I_{\text{ineq}}$$

Use B&B and fast gradient projection to solve dual of QP relaxation

FAST GRADIENT PROJECTION FOR MIQP

- Same dual QP matrices at each node, preconditioning computed only once
- Warm-start exploited, dual cost used to stop QP relaxations earlier
- Criterion based on Farkas lemma to detect **QP infeasibility**
- Numerical results (time in ms):

	GUROBI	miqpGPAD	q	p	m	n
	6.56	15.6	2	2	100	10
	8.74	3.44	3	5	25	50
m - #wariablaa	46.25	63.22	5	10	150	50
n = # variables	26.24	6.22	5	2	50	100
<i>m</i> = # inequality constraints	188.42	164.06	5	15	200	100
b = # binary constraints	88.13	31.26	5	5	100	150
<i>¹</i> = # equality constraints	274.06	258.80	5	20	200	150
	144.38	35.08	6	15	50	200

CPU time measured on Intel Core i7-4700MQ CPU 2.40 GHz

MIQP AND ADMM

B&B + ADMM: solve QP relaxations via ADMM

(Stellato, Naik, Bemporad, Goulart, Boyd, 2018)

 $\begin{array}{ll} \min & \frac{1}{2}x'Qx + c'x \\ \text{s.t.} & \ell \leq Ax \leq u \\ & A_ix \in \{\ell_i, u_i\}, \ i \in I \end{array}$

• Simpler heuristic approach: only perform one set of ADMM iterations

(Takapoui, Moehle, Boyd, Bemporad, 2017)

quantization step
$$\begin{aligned} x^{k+1} &= -(Q + \rho A^T A)^{-1} (\rho A^T (y^k - z^k) + c) \\ z^{k+1} &= \min\{\max\{Ax^{k+1} + y^k, \ell\}, u\} \\ z^{k+1}_i &= \begin{cases} \ell_i & \text{if } z^{k+1}_i < \frac{\ell_i + u_i}{2} \\ u_i & \text{if } z^{k+1}_i \ge \frac{\ell_i + u_i}{2}, i \in I \\ y^{k+1} &= y^k + Ax^{k+1} - z^{k+1} \end{cases} \end{aligned}$$

- Iterations converge to a (local) solution
- Similar heuristic idea also applicable to fast gradient methods (Naik, Bemporad, 2017)

HEURISTIC ADMM METHOD FOR (SUBOPTIMAL) MIQP

(Takapoui, Moehle, Boyd, Bemporad, 2017)

• Example: parallel hybrid electric vehicle control problem

HEURISTIC ADMM METHOD FOR (SUBOPTIMAL) MIQP

(Takapoui, Moehle, Boyd, Bemporad, 2017)

• Example: power converter control problem

 $\begin{array}{ll} \text{minimize} & \sum_{t=0}^{T} (v_{2,t} - v_{\text{des}})^2 + \lambda |u_t - u_{t-1}| \\ \text{subject to} & \xi_{t+1} = G\xi_t + Hu_t \\ & \xi_0 = \xi_T \\ & u_0 = u_T \\ & u_t \in \{-1, 0, 1\} \end{array}$

A SIMPLE EXAMPLE IN SUPPLY CHAIN MANAGEMENT

SUPPLY CHAIN MANAGEMENT - SYSTEM VARIABLES

• Continuous states:

 $x_{ij}(k)$ = amount of j hold in inventory i at time k (i = 1, 2, j = 1, 2)

• Continuous outputs:

 $y_j(k)$ = amount of j sold at time k (j = 1, 2)

• Continuous inputs:

 $u_{ij}(k)$ = amount of j taken from inventory i at time k (i = 1, 2, j = 1, 2)

• Binary inputs:

 $U_{Xij}(k) = 1$ if manufacturer X produces and send j to inventory i at time k

SUPPLY CHAIN MANAGEMENT - CONSTRAINTS

- Max capacity of inventory *i*: $0 \leq \sum_{j=1}^{2} x_{ij} \leq x_{Mi}$
- Max transportation from inventories: $0 \le u_{ij}(k) \le u_M$
- A product can only be sent to one inventory:

 $U_{A11}(k)$ and $U_{A21}(k)$ cannot be both = 1 $U_{B11}(k)$ and $U_{B21}(k)$ cannot be both = 1 $U_{B12}(k)$ and $U_{B22}(k)$ cannot be both = 1 $U_{C12}(k)$ and $U_{C22}(k)$ cannot be both = 1

• A manufacturer can only produce one type of product at one time: $[U_{B11}(k) \text{ or } U_{B21}(k) = 1]$, $[U_{B12}(k) \text{ or } U_{B22}(k) = 1]$ cannot be both true

SUPPLY CHAIN MANAGEMENT - DYNAMICS

• Let P_{A1} , P_{B1} , P_{B2} , P_{C2} = amount of product of type 1 (2) produced by A(B, C)in one time interval

• Level of inventories

$$\begin{cases} x_{11}(k+1) = x_{11}(k) + P_{A1}U_{A11}(k) + P_{B1}U_{B11}(k) - u_{11}(k) \\ x_{12}(k+1) = x_{12}(k) + P_{B2}U_{B12}(k) + P_{C2}U_{C12}(k) - u_{12}(k) \\ x_{21}(k+1) = x_{21}(k) + P_{A1}U_{A21}(k) + P_{B1}U_{B21}(k) - u_{21}(k) \\ x_{22}(k+1) = x_{22}(k) + P_{B2}U_{B22}(k) + P_{C2}U_{C22}(k) - u_{22}(k) \end{cases}$$

• Retailer: all items requested from inventories are sold

$$\begin{cases} y_1 = u_{11} + u_{21} \\ y_2 = u_{12} + u_{22} \end{cases}$$
SUPPLY CHAIN MANAGEMENT - HYSDEL CODE

SYSTEM supply_chain{

INTERFACE {	Uan(E)
STATE { REAL x11 [0,10];	
REAL x12 [0,10];	
REAL x21 [0,10];	
REAL x22 [0,10]; }	
INPUT { REAL ull [0,10];	
REAL u12 [0,10];	inventory 2
REAL U21 [0,10];	
REAL 022 [0,10]; POOT HA11 HA21 HB11 HB12 HB21 HB22 HC12 HC22; }	
BOON 0A11,0A21,0B11,0B12,0B21,0B22,0C12,0C22, ;	manufacturerC
OUTPUT {REAL y1, y2;}	x21(k), x22
<pre>PARAMETER { REAL PA1, PB1, PB2, PC2, xM1, xM2; }</pre>	
IMPLEMENTATION (
··································	
AUX { REAL zAll, zBl1, zBl2, zCl2, zA21, zB21, zB2	22, zC22;}
DA { zAll = {IF UALL THEN PAL ELSE 0};	
zB11 = {IF UB11 THEN PB1 ELSE 0};	
$2B12 = \{1F \ 0B12 \ THEN \ FB2 \ ELSE \ 0\};$	
2C12 = (TF UD21 THEN PC2 FLSE 0);	(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
$zR21 = {IF UR21 THEN PRI ELSE 0},$ $zR21 = {IF UR21 THEN PRI ELSE 0}.$	$x_{12} = x_{12} + z_{212} + z_{212} - u_{12};$
zB22 = (IF UB22 THEN DB2 FLSE 0);	$x_{21} = x_{21} + z_{R21} + z_{B21} - u_{21};$ $x_{22} = x_{22} + z_{B22} + z_{C22} - u_{22};$
$zC22 = \{IF UC22 THEN PC2 ELSE 0\}; \}$	A22 = A22 + 2022 + 2022 - 022,
(,, , ,	OUTPUT ($v1 = u11 + u21$;
	$y^2 = u^{12} + u^{22};$
	MUST { ~ (UA11 & UA21);
	~ (UC12 & UC22);
	~((UB11 UB21) & (UB12 UB22));
	~(UB11 & UB21);
	~(UB12 & UB22);
	x11+x12 <= xM1;
	x11+x12 >=0;
	x21+x22 <= xM2;
	x21+x22 >=0; }

manufacturer A

inventory 1

u11(k)

421(k

retailer 1

SUPPLY CHAIN MANAGEMENT - OBJECTIVES

• Meet customer demand as much as possible:

 $y_1 \approx r_1, \quad y_2 \approx r_2$

• Minimize transportation costs

• Fulfill all constraints

SUPPLY CHAIN MANAGEMENT - PERFORMANCE INDEX

$$\min \sum_{k=0}^{N-1} \frac{\operatorname{peratty on demand tracking error}}{10(|y_{1,k} - r_1(t)| + |y_{2,k} - r_2(t)| + shipping cost from inv. 1 to market
4(|u_{11,k}| + |u_{12,k}|) + shipping cost from inv. 2 to market
2(|u_{21,k}| + |u_{22,k}|) + cost from A to invertories
1(|U_{A11,k}| + |U_{A21,k}|) + cost from B to invertories
4(|U_{B11,k}| + |U_{B12,k}| + U_{B21,k}| + |U_{B22,k}|) + cost from C to invertories
10(|U_{C12,k}| + |U_{C22,k}|)$$

SUPPLY CHAIN MANAGEMENT - SIMULATION SETUP

% weights output2 #1, #2
% output weights

% infinity norms
% optimization horizon
% constraints

% xij(k)>=0
% xij(k)<=xMi (redundant)</pre>

>> C=hybcon(S,Q,N,limits,refs);

>> C

>> refs.y=[1 2];

>> O.norm=Inf:

>> N=2;

>> 0.v=diag([10 10]):

>> limits.umin=umin;

>> limits.umax=umax;

>> limits.xmin=xmin;

>> limits.xmax=xmax:

Hybrid controller based on MLD model S <supply_chain.hys>

[Inf-norm]

```
4 state measurement(s)
2 output reference(s)
12 input reference(s)
0 state reference(s)
0 reference(s) on auxiliary continuous z-variables
44 optimization variable(s) (8 continuous, 12 binary)
176 mixed-integer linear inequalities
sampling time = 1, MILP solver = 'glpk'
Type "struct(C)" for more details.
>>
```

SUPPLY CHAIN MANAGEMENT - SIMULATION RESULTS

>> x0=[0;0;0;0]; >> r.y=[6+2*sin((0:Tstop-1)'/5) 5+3*cos((0:Tstop-1)'/3)]; % Initial condition
% Reference trajectories

>> [XX,UU,DD,ZZ,TT]=sim(C,S,r,x0,Tstop);

CPU time: \approx 13 ms/sample (GLPK) or 9 ms (CPLEX) on Macbook Pro 3GHz Intel Core i7

HYBRID MPC OF AN INVERTED PENDULUM

• Goal: swing the pendulum up

• Non-convex input constraint

$$u \in [-\tau_{\max}, -\tau_{\min}] \cup \{0\} \cup [\tau_{\min}, \tau_{\max}]$$

Nonlinear dynamical model

$$l^2 M \ddot{\theta} = M g l \sin \theta - \beta \dot{\theta} + u$$

INVERTED PENDULUM: NONLINEARITY

• Approximate $\sin(\theta)$ as the piecewise linear function

$$\sin \theta \approx s \triangleq \begin{cases} -\alpha \theta - \gamma & \text{if } \theta \leq -\frac{\pi}{2} \\ \alpha \theta & \text{if } |\theta| \leq \frac{\pi}{2} \\ -\alpha \theta + \gamma & \text{if } \theta \geq \frac{\pi}{2} \end{cases}$$

- Get optimal values for α and γ by minimizing fit error

$$\min_{\alpha} \qquad \int_{0}^{\frac{\pi}{2}} (\alpha\theta - \sin(\theta))^{2} d\theta$$

$$= \left. \frac{\theta}{2} - \frac{1}{2} \cos\theta \sin\theta - 2\alpha \sin\theta + \frac{1}{3} \alpha^{2} \theta^{3} + 2\alpha\theta \cos\theta \right|_{0}^{\frac{\pi}{2}} = \frac{1}{24} \pi^{3} \alpha^{2} - 2\alpha + \frac{\pi}{4}$$

- Zeroing the derivative with respect to α gives $\alpha = \frac{24}{\pi^3}$
- Requiring s = 0 for $\theta = \pi$ gives $\gamma = \frac{24}{\pi^2}$

INVERTED PENDULUM: NONLINEARITY

• Introduce the event variables

$$\begin{bmatrix} \delta_3 = 1 \end{bmatrix} & \leftrightarrow \quad \begin{bmatrix} \theta \le -\frac{\pi}{2} \end{bmatrix} \\ \begin{bmatrix} \delta_4 = 1 \end{bmatrix} & \leftrightarrow \quad \begin{bmatrix} \theta \ge \frac{\pi}{2} \end{bmatrix}$$

along with the logic constraint

$$[\delta_4=1] \to [\delta_3=0]$$

• Set
$$s = \alpha \theta + s_3 + s_4$$
 with

$$s_3 = \begin{cases} -2\alpha\theta - \gamma & \text{if } \delta_3 = 1 \\ 0 & \text{otherwise} \end{cases}$$

$$s_4 = \begin{cases} -2\alpha\theta + \gamma & \text{if } \delta_4 = 1 \\ 0 & \text{otherwise} \end{cases}$$

INVERTED PENDULUM: NON-CONVEX CONSTRAINT

• To model the constraint $u \in [-\tau_{\max}, -\tau_{\min}] \cup \{0\} \cup [\tau_{\min}, \tau_{\max}]$ introduce the auxiliary variable

$$\tau_A = \begin{cases} u & \text{if } - \tau_{\min} \le u \le \tau_{\min} \\ 0 & \text{otherwise} \end{cases}$$

and let $u - \tau_A$ be the torque acting on the pendulum, with

$$u \in [-\tau_{\max}, \tau_{\max}]$$

• The input u has no effect on the dynamics for $u \in [-\tau_{\min}, \tau_{\min}]$. Hence, the solver will not choose values in that range if u is penalized in the MPC cost

INVERTED PENDULUM: NON-CONVEX CONSTRAINT

Introduce new event variables

$$au_A = \left\{ egin{array}{cc} u & ext{if } [\delta_1 = 1] \wedge [\delta_2 = 1] \\ 0 & ext{otherwise} \end{array}
ight.$$

so that
$$u - \tau_A$$
 is zero in for $u \in [-\tau_{\min}, \tau_{\min}]$

 au_{min}

INVERTED PENDULUM: DYNAMICS

• Set $x \triangleq \begin{bmatrix} \theta \\ \dot{\theta} \end{bmatrix}$, $y \triangleq \theta$ and transform into linear model

$$\frac{d}{dt} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ \frac{g}{l}\alpha & -\frac{\beta}{l^2M} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ \frac{g}{l} & \frac{1}{l^2M} \end{bmatrix} \begin{bmatrix} s_3 + s_4 \\ u - \tau_A \end{bmatrix}$$
$$y = \begin{bmatrix} 1 & 0 \end{bmatrix} x$$

- Discretize in time with sample time $T_s=50\ {\rm ms}$

$$\begin{bmatrix} x_1(k+1) \\ x_2(k+1) \end{bmatrix} = A \begin{bmatrix} x_1(k) \\ x_2(k) \end{bmatrix} + B \begin{bmatrix} s_3(k) + s_4(k) \\ u(k) - \tau_A(k) \end{bmatrix}$$
$$y(k) = \begin{bmatrix} 1 & 0 \end{bmatrix} x(k)$$
$$A \triangleq e^{T_s A_c}, B \triangleq \int_0^{T_s} e^{tA_c} B_c dt$$

INVERTED PENDULUM: HYSDEL MODEL

```
/* Hybrid model of a pendulum
   (C) 2012 by A. Bemporad, April 2012 */
SYSTEM hyb pendulum {
                                                DA {
                                                  tauA = {IF d1 \& d2 THEN u ELSE 0};
INTERFACE (
                                                  s3 = {IF d3 THEN -2*alpha*th-gamma ELSE 0};
                                                  s4 = {IF d4 THEN -2*alpha*th+gamma ELSE 0};
 STATE (
   REAL th
            [-2*pi,2*pi];
                                                3
    REAL thdot [-20,201;
                                                CONTINUOUS (
 INPUT (
                                                  th
                                                        = al1*th+al2*thdot+bl1*(s3+s4)+bl2*(u-tauA);
    REAL u [-11,11];
                                                  thdot = a21*th+a22*thdot+b21*(s3+s4)+b22*(u-tauA):
                                                3
 OUTPUT (
                                                OUTPUT (
   REAL y;
                                                  y = th:
 PARAMETER (
                                                ъ
    REAL tau min, alpha, gamma;
   REAL all, al2, a21, a22, b11, b12, b21, b22;
                                                MUST (
                                                  d4->~d3;
 3
                                                  ~d1->d2;
IMPLEMENTATION (
                                              3
  AUX (
     REAL tauA, s3, s4;
     BOOL d1, d2, d3, d4;
   3
  AD {
     d1 = u<=tau min;
                                                       >> S=mld('pendulum',Ts);
     d2 = u > = -tau min;
     d3 = th <= -0.5*pi;
     d4 = th >= 0.5*pi;
   }
```

gotodemodemos/hybrid/pendulum_init.m

INVERTED PENDULUM: MODEL VALIDATION

- Open-loop simulation from initial condition $\theta(0) = 0$, $\dot{\theta}(0) = 0$
- Input torque excitation

$$u(t) = \left\{ egin{array}{cc} 2\,{
m Nm} & {
m if}\, 0 \leq t \leq 10\,{
m s} \\ 0 & {
m otherwise} \end{array}
ight.$$

>> u0=2; >> U=[2*ones(200,1);zeros(200,1)]; >> x0=[0;0];

>> [X,T,D,Z,Y]=sim(S,x0,U);

INVERTED PENDULUM: MPC DESIGN

MPC cost function

$$\sum_{k=0}^{4} |y_k - r(t))| + |0.01u_k|$$

• MPC constraints $u \in [-\tau_{\max}, \tau_{\max}]$

>> C=hybcon(S,Q,N,limits,refs);

```
>> C
Hybrid controller based on MLD model S <pendulum.hys> [Inf-norm]
2 state measurement(s)
1 output reference(s)
1 output reference(s)
0 state reference(s)
0 reference(s) on auxiliary continuous z-variables
55 optimization variable(s) (30 continuous, 25 binary)
155 mixed-integer linear inequalities
sampling time = 0.05, MLTP solver = 'gurobi'
Type "struct(c)" for more details.
>>
```

- >> refs.y=1;
- >> refs.u=1;
- >> Q.y=1;
- >> Q.y=0.01;
- >> Q.rho=Inf;
- >> Q.norm=Inf;
- >> N=5;
- >> limits.umin=-10;
- >> limits.umax=10;

INVERTED PENDULUM: CLOSED-LOOP RESULTS

Nominal simulation

>> [X,U,D,Z,T,Y]=sim(C,S,r,x0,4);

input torque

Nonlinear simulation

- CPU time:
- 51 ms per time step (GLPK)
- 22 ms per time step (CPLEX)
- 25 ms (GUROBI)
- (Macbook Pro 3GHz Intel Core i7)

EXPLICIT HYBRID MPC

EXPLICIT HYBRID MPC (MLD FORMULATION)

$$\min_{\xi} J(\xi, \mathbf{x}(t)) = \sum_{k=0}^{N-1} \|Qy_k\|_{\infty} + \|Ru_k\|_{\infty}$$

subject to
$$\begin{cases} x_{k+1} = Ax_k + B_1u_k + B_2\delta_k + B_3z_k + B_5 \\ y_k = Cx_k + D_1u_k + D_2\delta_k + D_3z_k + D_5 \\ E_2\delta_k + E_3z_k \leq E_4x_k + E_1u_k + E_5 \\ x_0 = \mathbf{x}(t) \end{cases}$$

Online optimization: solve the problem for a given state x(t) as the MILP

$$\min_{\xi} \quad \sum_{k=0}^{N-1} \epsilon_k^y + \epsilon_k^u$$

s.t. $G\xi \le W + S(x(t))$

• Offline optimization: solve the MILP in advance for all states x(t)multiparametric Mixed-Integer Linear Program (mp-MILP)

MULTIPARAMETRIC MILP

• Consider the mp-MILP

$$\min_{\xi_c,\xi_d} \quad \begin{array}{l} f'_c \xi_c + f'_d \xi_d \\ \text{s.t.} \quad G_c \xi_c + G_d \xi_d \le W + S \end{array} \qquad \begin{array}{l} \xi_c \in \mathbb{R}^{n_c} \\ \xi_d \in \{0,1\}^{n_d} \\ x \in \mathbb{R}^m \end{array}$$

- A mp-MILP can be solved by alternating MILPs and mp-LPs (Dua, Pistikopoulos, 1999)
- The multiparametric solution $\xi^*(x)$ is PWA (but possibly discontinuous)
- The MPC controller is piecewise affine in x = x(t)

 $u(x) = \begin{cases} F_1 x + g_1 & \text{if} \quad H_1 x \leq K_1 \\ \vdots & \vdots \\ F_M x + g_M & \text{if} \quad H_M x \leq K_M \end{cases}$

(More generally, the parameter vector x includes states and reference signals)

EXPLICIT HYBRID MPC (PWA FORMULATION)

• Consider the MPC formulation using a PWA prediction model

$$\begin{split} \min_{\xi} J(\xi, x(t)) &= \sum_{k=0}^{N-1} \|Qy_k\|_{\infty} + \|Ru_k\|_{\infty} \\ \text{subject to} &\begin{cases} x_{k+1} &= A_{i(k)}x_k + B_{i(k)}u_k + f_{i(k)} \\ y_k &= C_{i(k)}x_k + D_{i(k)}u_k + g_{i(k)} \\ &i(k) \operatorname{such that} H_{i(k)}x_k + W_{i(k)}u_k \leq K_{i(k)} \\ x_0 &= x(t) \end{cases} \end{split}$$

 Method #1: The explicit solution can be obtained by using a combination of dynamic programming (DP) and mpLP (Borrelli, Baotic, Bemporad, Morari, 2005)

 Clearly the explicit hybrid MPC law is again piecewise affine, as PWA systems MLD systems

EXPLICIT HYBRID MPC (PWA FORMULATION)

• Method #2: (Bemporad, Hybrid Toolbox, 2003)

(Alessio, Bemporad, 2006) (Mayne, ECC 2001) (Mayne, Rakovic, 2002)

- 1 Use backwards (=DP) reachability analysis for enumerating all feasible mode sequences $I = \{i(0), i(1), \dots, i(N)\}$
- 2 For each fixed sequence *I*, solve the explicit finite-time optimal control problem for the corresponding linear time-varying system (mpQP or mpLP)
- 3a Case of 1 / ∞-norms or convex PWA costs: Compare value functions and split regions
- 3b Case of quadratic costs: the partition may not be fully polyhedral, better keep overlapping polyhedra and compare online quadratic cost functions when overlaps are detected
- Comparison of quadratic costs can be avoided by lifting the parameter space (Fuchs, Axehill, Morari, 2015)

HYBRID MPC EXAMPLE - EXPLICIT VERSION

• PWA system:

$$\begin{array}{rcl} x(t+1) & = & 0.8 \begin{bmatrix} \cos \alpha(t) & -\sin \alpha(t) \\ \sin \alpha(t) & \cos \alpha(t) \end{bmatrix} x(t) + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u(t) \\ y(t) & = & \begin{bmatrix} 0 & 1 \end{bmatrix} x(t) \\ \alpha(t) & = & \begin{cases} \frac{\pi}{3} & \text{if} & \begin{bmatrix} 1 & 0 \end{bmatrix} x(t) \ge 0 \\ -\frac{\pi}{3} & \text{if} & \begin{bmatrix} 1 & 0 \end{bmatrix} x(t) < 0 \end{cases}$$

subject to
$$-1 \le u(t) \le 1$$

- MPC objective: $\min \sum_{k=1} |y_k r(t)|$
- Open-loop behavior:

gotodemodemos/hybrid/bm99sim.m

Closed-loop MPC

HYBRID MPC EXAMPLE - EXPLICIT VERSION

PWA law \equiv MPC law !

goto to /demos/hybrid/bm99sim.m

Offline CPU time = 1.51 s (Macbook Pro 3GHz Intel Core i7)

HYBRID MPC EXAMPLE - EXPLICIT VERSION

Closed-loop explicit MPC

EXPLICIT PWA REGULATOR

• MPC problem:

min
$$10||x_N||_{\infty} + \sum_{k=0}^{N-1} 10||x_k||_{\infty} + ||u_k||_{\infty}$$

s.t. $\begin{cases} -1 \leq u_k \leq 1, \ k = 0, \dots, N-1 \\ -10 \leq x_k \leq 10, \ k = 1, \dots, N \end{cases}$

$$Q = \begin{bmatrix} 10 & 0 \\ 0 & 10 \end{bmatrix}$$
$$R = 1$$

gotodemos/hybrid/bm99benchmark.m

EXPLICIT HYBRID MPC – TEMPERATURE CONTROL

>> E=expcon(C,range,options);

>> E

Explicit controller (based on hybrid controller C)
3 parameter(s)
1 input(s)
12 partition(s)
sampling time = 0.5

The controller is for hybrid systems (tracking) This is a state-feedback controller.

```
Type "struct(E)" for more details.
```

384 numbers to store in memory

EXPLICIT HYBRID MPC – TEMPERATURE CONTROL

PARC - CART & BUMPERS EXAMPLE

 MPC problem with prediction horizon N = 9: (Bemporad, 2022)

$$\begin{array}{ll} \min_{F_0,...,F_{N-1}} & \sum_{k=0}^{N-1} |c_k - \mathbf{1}| + 0.25 |F_k| \\ \text{s.t.} & F_k \in \{-\bar{F}, 0, \bar{F}\} \\ & \mathsf{PWA} \text{ model equations} \end{array}$$

- MILP solution time: 0.37-1.9 s/step (CPLEX) (Intel Core i9-10885H CPU @2.40GHz)
- Data-driven hybrid MPC controller can keep temperature in yellow zone

• Approximate explicit MPC: fit a decision tree on 10,000 samples (accuracy: 99.7%). CPU time = $73 \div 88 \ \mu$ s. Closed-loop trajectories very similar.

IMPLEMENTATION ASPECTS OF HYBRID MPC

- Alternatives:
 - 1. solve MIP online
 - 2. evaluate a PWA function (explicit solution)
- Small problems (short horizon N = 1, 2, one or two inputs, 4-6 binary vars): explicit PWA control law is preferable
 - CPU time to evaluate the control law is shorter than by MIP
 - control code is simpler (no complex solver must be included in the control software!)
 - more insight in controller behavior
- Medium/large problems (longer horizon, many inputs and binary variables): online MIP is preferable
- Further alternative: collect MIP solutions and fit an approximate explicit form

MOVING HORIZON ESTIMATION AND FAULT DETECTION

STATE ESTIMATION / FAULT DETECTION

(Bemporad, Mignone, Morari, 1999) (Ferrari-Trecate, Mignone, Morari, 2002)

- Goal: estimate the state of a hybrid system from past I/O measurements
- Moving horizon estimation based on MLD models solves the problem

MLD model augmented

by

- state disturbance $\xi \in \mathbb{R}^n$
- output disturbance $\zeta \in \mathbb{R}^p$
- At each time t get the estimate $\hat{x}(t)$ by solving the **MIQP**

$$\begin{split} \min_{\hat{x}(t-T|t)} & \sum_{k=0}^{T} \|\hat{y}(t-k|t) - y(t-k)\|_{2}^{2} + \dots \\ \text{s.t.} & \text{constraints on } \hat{x}(t-T+k|t), \hat{y}(t-T+k|t) \end{split}$$

• For fault detection also include unknown binary disturbances $\phi \in \{0,1\}^{n_f}$

MHE EXAMPLE - THREE TANK SYSTEM

- Can only measure tank levels h_1, h_2
- The system has two faults:
 - ϕ_1 : leak in tank 1 between 20 s $\leq t \leq$ 60 s
 - ϕ_2 : valve V_1 blocked for $t > 40 \, \mathrm{s}$

(COSY benchmark problem)

The estimated fault \u00e91 (t-1it)

MHE EXAMPLE - THREE TANK SYSTEM

- Can only measure tank levels h_1, h_2
- The system has two faults:
 - ϕ_1 : leak in tank 1 between 20 s $\leq t \leq$ 60 s
 - ϕ_2 : valve V_1 blocked for $t \ge 40$ s

(COSY benchmark problem)

A FEW (HYBRID) MPC TRICKS

MEASURED DISTURBANCES

- A measured disturbance v(t) enters the hybrid system
- Augment the hybrid prediction model with the constant state

$$\begin{array}{rcl} x_{k+1}^v &=& x_k^v \\ x_0^v &=& v(t) \end{array}$$

HYSDEL model

• Same trick applies to linear MPC

gotodemodemos/hybrid/hyb_meas_dist.m

• Hybrid MPC formulation for reference tracking

$$\min \sum_{k=0}^{N-1} \|W^{y}(y_{k+1} - r(t))\|_{2}^{2} + \|W^{\Delta u}\Delta u_{k}\|_{2}^{2}$$
s.t. hybrid dynamics
$$\Delta u_{k} = u_{k} - u_{k-1}, \ k = 0, \dots, N-1, \ u_{-1} = u(t-1),$$

$$u_{\min} \leq u_{k} \leq u_{\max}, \ k = 0, \dots, N-1$$

$$y_{\min} \leq y_{k} \leq y_{\max}, \ k = 1, \dots, N$$

$$\Delta u_{\min} \leq \Delta u_{k} \leq \Delta u_{\max}, \ k = 0, \dots, N-1$$

• The resulting optimization problem is the MIQP

$$\min_{\xi} \quad J(\xi, x(t)) = \frac{1}{2} \xi' H \xi + [x'(t) r'(t) u'(t-1)] F \xi \\ \text{s.t.} \quad G\xi \le W + S \begin{bmatrix} x(t) \\ r(t) \\ u(t-1) \end{bmatrix} \qquad \qquad \xi = \begin{bmatrix} \frac{\Delta u_0}{\delta_0} \\ \vdots \\ \frac{\Delta u_{N-1}}{\delta_{N-1}} \\ \frac{\delta_{N-1}}{\delta_{N-1}} \end{bmatrix}$$

• Same trick as in linear MPC

INTEGRAL ACTION

• Augment hybrid prediction model with integrals of output tracking errors

$$\epsilon_{k+1} = \epsilon_k + T_s(r(t) - y_k)$$

- Treat set point r(t) as a measured disturbance (= constant state)
- Add weight on ϵ_k in cost function
- HYSDEL model:

• Same trick applies to linear MPC

go to demo demos/hybrid/hyb_integral_action.m
TIME-VARYING CONSTRAINTS

• Consider the time-varying constraint

$$u(t) \le u_{\max}(t)$$

$$\begin{array}{rcl} x_{k+1}^u &=& x_k^u \\ x_0^u &=& u_{\max}(t) \end{array}$$

and output $y_k^u = x^u(k) - u_k$, subject to the constraint $y_k^u \ge 0, k = 0, 1, \dots, N$

- Same trick applies to linear MPC go to demo demos/linear/varbounds.m
- Alternative: in HYSDEL simply impose MUST {u <= xu;}

REFERENCE/DISTURBANCE PREVIEW

- Measured disturbance v(t) is known M steps in advance
- Augment the model with the following buffer dynamics
- The predicted state x^{M-1} of the buffer is

$$x_k^{M-1} = \begin{cases} v(t+k) & k = 0, \dots, M-1 \\ v(t+M-1) & k = M, \dots, N-1 \end{cases}$$

- Preview of reference signal r(t+k) can be dealt with in a similar way
- Same trick applies to linear MPC

DELAYS - METHOD #1

• Hybrid model with delays

$$\begin{aligned} x(t+1) &= Ax(t) + B_1 u(t-\tau) + B_2 \delta(t) + B_3 z(t) + B_5 \\ E_2 \delta(t) &+ E_3 z(t) \le E_1 u(t-\tau) + E_4 x(t) + E_5 \end{aligned}$$

• Map delays to poles in z = 0:

$$x_k(t) \triangleq u(t-k) \Rightarrow x_k(t+1) = x_{k-1}(t), \ k = 1, \dots, \tau$$

 $\begin{bmatrix} x(t+1) \\ x_{\tau}(t+1) \\ x_{\tau-1}(t+1) \\ \vdots \\ x_{1}(t+1) \end{bmatrix} = \begin{bmatrix} A & B_{1} & 0 & 0 & \dots & 0 \\ 0 & 0 & I_{m} & 0 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \dots & 0 \end{bmatrix} \begin{bmatrix} x(t) \\ x_{\tau}(t) \\ \vdots \\ x_{1}(t) \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 0 \\ \vdots \\ I_{m} \end{bmatrix} u(t) + \begin{bmatrix} B_{2} \\ 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix} \delta(t) + \begin{bmatrix} B_{3} \\ 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix} z(t) + \begin{bmatrix} B_{5} \\ 0 \\ \vdots \\ 0 \end{bmatrix}$

- Apply MPC to the extended MLD system
- Same trick as in linear MPC

DELAYS - METHOD #2

• Delay-free model:

$$\bar{x}(t) \triangleq x(t+\tau) \Longrightarrow \begin{cases} \bar{x}(t+1) = A\bar{x}(t) + B_1 u(t) + B_2 \bar{\delta}(t) + B_3 \bar{z}(t) + B_5 \\ E_2 \bar{\delta}(t) + E_3 \bar{z}(t) \le E_1 u(t) + E_4 \bar{x}(t) + E_5 \end{cases}$$

- Design MPC for delay-free model, $u(t) = f_{MPC}(\bar{x}(t))$
- Compute the predicted state

$$\bar{x}(t) = \hat{x}(t+\tau) = A^{\tau}x(t) + \sum_{j=1}^{\tau-1} A^{j}(B_{1} \underbrace{u(t-1-j)}_{\text{past inputs}} + B_{2}\bar{\delta}(t+j) + B_{3}\bar{z}(t+j) + B_{5})$$

where $\bar{\delta}(t+j), \bar{z}(t+j)$ are obtained from MLD inequalities or by simulation

• Compute the MPC control move $u(t) = f_{MPC}(\hat{x}(t+\tau))$

CHOICE CONSTRAINTS

- Logic constraint: make one or more choices out of a set of alternatives:
 - make at most one choice: $\delta_1 + \delta_2 + \delta_3 \leq 1$
 - make at least two choices: $\delta_1 + \delta_2 + \delta_3 \ge 2$
 - exclusive or constraint: $\delta_1 + \delta_2 + \delta_3 = 1$
- More generally:

$$\begin{split} \sum_{i=1}^{N} \delta_i &\leq m & \text{choose at most } m \text{ items out of } N \\ \sum_{i=1}^{N} \delta_i &= m & \text{choose exactly } m \text{ items out of } N \\ \sum_{i=1}^{N} \delta_i &\geq m & \text{choose at least } m \text{ items out of } N \end{split}$$

"NO-GOOD" CONSTRAINTS

• Given a binary vector $\bar{\delta} \in \{0,1\}^n$ we want to impose the constraint

$$\delta \neq \bar{\delta}$$

- This may be useful for example to extract different solutions from an MIP that has multiple optima
- The "no-good" condition can be expressed equivalently as

$$\sum_{i \in T} \delta_i - \sum_{i \in F} \delta_i \le -1 + \sum_{i=1}^n \bar{\delta}_i \qquad F = \{i : \bar{\delta}_i = 0\}$$
$$T = \{i : \bar{\delta}_i = 1\}$$

or

$$\sum_{i=1}^{n} (2\bar{\delta}_i - 1)\delta_i \le \sum_{i=1}^{n} \bar{\delta}_i - 1$$

ASYMMETRIC WEIGHTS

- Asymmetric weight: only weight a variable u_k if $u_k \ge 0$
- We can introduce a binary variable $[\delta_k = 1] \leftrightarrow [u_k \ge 0]$ and

$$z_k = \max\{u_k, 0\} = \begin{cases} u_k & \text{if } \delta_k = 1\\ 0 & \text{otherwise} \end{cases}$$

then weight z_k instead of u_k

• Better solution: only introduce auxiliary variable z_k and optimize

min
$$(\ldots) + \sum_{k=0}^{N-1} z_k^2$$

s.t. $z_k \ge u_k$
 $z_k \ge 0$

- Similar approach when $\|\cdot\|_\infty$ or $\|\cdot\|_1$ are used as penalties
- Same trick applies to linear MPC

GENERAL REMARKS ABOUT MIP MODELING

- The complexity of solving a mixed-integer program largely depends on the number of integer (binary) variables involved in the problem
- Hence, when creating a hybrid model one has to

Be thrifty with binary variables !

- Adding logical constraints usually helps
- Generally speaking

modeling is an art

VERIFICATION (REACHABILITY ANALYSIS)

HYBRID VERIFICATION PROBLEM

VERIFICATION ALGORITHM #1

- Query: Is the target set X_f reachable in N steps from some initial state $x_0 \in X_0$ for some input $u_0, \ldots, u_{N-1} \in U$?
- The query can be answered by solving the mixed-integer feasibility test

$$\min_{\xi} \quad 0 \\ \text{s.t.} \quad x_{k+1} = Ax_k + B_1u_k + B_2\delta_k + B_3z_k + B_5 \\ E_2\delta_k + E_3z_k \le E_4x_k + E_1u_k + E_5 \\ S_uu_k \le T_u \quad (u_k \in U), \quad k = 0, 1, \dots, N-1 \\ S_0x_0 \le T_0 \quad (x_0 \in X_0) \\ S_fx_N \le T_f \quad (x_N \in X_f)$$

with respect to $\xi = [x_0, ..., x_N, u_0, ..., u_{N-1}, \delta_0, ..., \delta_{N-1}, z_0, ..., z_{N-1}]$

- Other approaches:
 - Exploit structure and use polyhedral computation (Torrisi, 2003)
 - Use abstractions (LPs) + SAT solvers (Giorgetti, Pappas, Bemporad)

VERIFICATION EXAMPLE

- MLD model: room temperature control system
- Set of unsafe states:

$$X_f = \left\{ \begin{bmatrix} T_1 \\ T_2 \end{bmatrix} : \ 10 \le T_1, T_2 \le 15 \right\}$$

• Set of initial states:

$$X_0 = \left\{ \begin{bmatrix} T_1 \\ T_2 \end{bmatrix} : \ 35 \le T_1, T_2 \le 40 \right\}$$

• Set of possible inputs:

$$U = \{T_{\text{amb}} : 10 \le T_{\text{amb}} \le 30\}$$

• Time horizon: N = 10 steps

>> [flag,x0,U]=reach(S,N,Xf,X0,umin,umax);

VERIFICATION EXAMPLE

"Model Predictive Control" - © 2025 A. Bemporad. All rights reserved.

>> umin=20; >> reach(S,N,Xf,X0,umin,umax); Hybrid Toolbox v.1.4.2 [February 2, 2020] Elapsed time is 0.023282 seconds. Xf is not reachable from X0

>>

$$U = \{T_{\rm amb} : 20 \le T_{\rm amb} \le 30\}$$

VERIFICATION ALGORITHM #2

- Query: Is the target set X_f reachable within N steps from some initial state $x_0 \in X_0$ for some input $u_0, \ldots, u_{N-1} \in U$?
- Augment the MLD system to register the entrance of the target (unsafe) set $X_f = \{x : A_f x \le b_f\}$:
 - Add a new variable $\delta_k^f,$ with $[\delta_k^f=1] \to [A_f x_{k+1} \leq b_f]$

$$\underbrace{\qquad}_{\text{big-M}} A_f(Ax_k + B_1u_k + B_2\delta_k + B_3z_k + B_5) \le b_f + M(1 - \delta_k^f)$$

- Add the constraint
$$\sum_{k=0}^{N-1} \delta_k^f \geq 1$$
 (i.e., $x_k \in X_f$ for at least one k)

- Solve MILP feasibility test
- Note: the verification problem is a **bounded model-checking** problem with continuous and binary variables

A MORE COMPLEX VERIFICATION EXAMPLE

• States $x_1, x_2, x_3 \in \mathbb{R}, x_4, x_5 \in \{0, 1\}$, inputs $u_1, u_2 \in \mathbb{R}, u_3 \in \{0, 1\}$

• Events:
$$\begin{bmatrix} \delta_1 = 1 \end{bmatrix} \leftrightarrow \begin{bmatrix} x_1 \leq 0 \end{bmatrix}$$

 $\begin{bmatrix} \delta_2 = 1 \end{bmatrix} \leftrightarrow \begin{bmatrix} x_2 \geq 1 \end{bmatrix}$
 $\begin{bmatrix} \delta_3 = 1 \end{bmatrix} \leftrightarrow \begin{bmatrix} x_3 - x_2 \leq 1 \end{bmatrix}$

• Switched dynamics

$$\begin{array}{lll} x_1(k+1) & = & \left\{ \begin{array}{ll} 0.1x_1(k) + 0.5x_2(k) & \mbox{if } (\delta_1(k) \wedge \delta_2(k)) \vee x_4(k) \mbox{ true} \\ -0.3x_3(k) - x_1(k) + u_1(k) & \mbox{otherwise} \end{array} \right. \\ x_2(k+1) & = & \left\{ \begin{array}{ll} -0.8x_1(k) + 0.7x_3(k) - u_1(k) - u_2(k) & \mbox{if } \delta_3(k) \vee x_5(k) \mbox{ true} \\ -0.7x_1(k) - 2x_2(k) & \mbox{otherwise} \end{array} \right. \\ x_3(k+1) & = & \left\{ \begin{array}{ll} -0.1x_3(k) + u_2(k) & \mbox{if } (\delta_3(k) \wedge x_5(k)) \vee (\delta_1(k) \wedge x_4(k)) \mbox{ true} \\ x_3(k) - 0.5x_1(k) - 2u_1(k) & \mbox{otherwise} \end{array} \right. \end{array}$$

• Automaton

$$\begin{array}{lll} x_4(k+1) &=& \delta_1(k) \wedge x_4(k) \\ x_5(k+1) &=& ((x_4(k) \lor x_5(k)) \land (\delta_1(k) \lor \delta_2(k)) \lor (\delta_3(k) \land u_3(k))) \end{array}$$

A MORE COMPLEX VERIFICATION EXAMPLE

• Query: Verify if it possible that, starting from the set X_0

$$X_0 = \{x : -0.1 \le x_1, x_3 \le 0.1, x_2 = 0.1, x_4, x_5 \in \{0, 1\}\}$$

the state $x(k) \in X_f$

$$X_f = \{x: -1 \le x_1, x_3 \le 1, \ 0.5 \le x_2 \le 1, \ x_4, x_5 \in \{0, 1\}\}$$

at some $k \leq N, N=5,$ under the restriction that $\forall k \leq N$

$$egin{aligned} &x_3(k)+x_2(k)\leq 0\ &\delta_1(k)ee \delta_2(k)ee x_5(k)=\texttt{true}\ &
egin{aligned} &
egi$$

>> [flag,x0,U,xf,X,T,D,Z,Y,reachtime]=reach(S,[1 N],Xf,X0);

go to demo demos/hybrid/reachtest.m

A MORE COMPLEX VERIFICATION EXAMPLE

>> reachtest
Hybrid Toolbox v.1.4.2 [February 2, 2020]
Elapsed time is 0.038049 seconds.
>> reachtime
reachtime =
3
4
>>

The set X_f is reached by x(k) at time steps k = 3, 4