MODEL PREDICTIVE CONTROL

LINEAR TIME-VARYING AND NONLINEAR MPC

Alberto Bemporad

imt.lu/ab
Basic concepts of model predictive control (MPC) and linear MPC

- Linear time-varying and nonlinear MPC
- Quadratic programming (QP) and explicit MPC
- Hybrid MPC
- Stochastic MPC
- Learning-based MPC

Course page:
http://cse.lab.imtlucca.it/~bemporad/mpc_course.html
LPV Models

- **Linear Parameter-Varying (LPV) model**

\[
\begin{align*}
 x_{k+1} &= A(p(t))x_k + B(p(t))u_k + B_v(p(t))v_k \\
y_k &= C(p(t))x_k + D_v(p(t))v_k
\end{align*}
\]

that depends on a vector \(p(t) \) of parameters

- The weights in the quadratic performance index can also be LPV

- The resulting optimization problem is still a QP

\[
\begin{align*}
 \min_z \quad & \frac{1}{2} z' H(p(t)) z + \left[\begin{array}{c} x(t) \\ r(t) \\ u(t-1) \end{array} \right]' F(p(t))' z \\
 \text{s.t.} \quad & G(p(t))z \leq W(p(t)) + S(p(t)) \left[\begin{array}{c} x(t) \\ r(t) \\ u(t-1) \end{array} \right]
\end{align*}
\]

- The QP matrices must be constructed online, contrarily to the LTI case
Linearizing a Nonlinear Model: LPV Case

- An LPV model can be obtained by linearizing the nonlinear model

\[
\begin{align*}
\frac{dx_c(t)}{dt} & = f(x_c(t), u_c(t), p_c(t)) \\
y_c(t) & = g(x_c(t), p_c(t))
\end{align*}
\]

- \(p_c \in \mathbb{R}^{n_p} \) = a vector of exogenous signals (e.g., ambient conditions)
- At time \(t \), let \(\bar{x}_c(t), \bar{u}_c(t), \bar{p}_c(t) \) be nominal values, that we assume constant in prediction, and linearize

\[
\frac{d}{dT}(x_c(t + \tau) - \bar{x}_c(t)) = \frac{d}{dT}(x_c(t + \tau)) \approx \left. \frac{\partial f}{\partial x} \right|_{\bar{x}_c(t), \bar{u}_c(t), \bar{p}_c(t)} (x_c(t + \tau) - \bar{x}_c(t)) + \left. \frac{\partial f}{\partial u} \right|_{\bar{x}_c(t), \bar{u}_c(t), \bar{p}_c(t)} (u_c(t + \tau) - \bar{u}_c(t)) + f(\bar{x}_c(t), \bar{u}_c(t), \bar{p}_c(t)) \cdot 1
\]

- Convert \((A_c, [B_c B_{vc}])\) to discrete-time and get prediction model \((A, [B B_v])\)
- Same thing for the output equation to get matrices \(C\) and \(D_v\)
LTV MODELS

- **Linear Time-Varying (LTV) model**

\[
\begin{align*}
 x_{k+1} &= A_k(t)x_k + B_k(t)u_k \\
 y_k &= C_k(t)x_k
\end{align*}
\]

- At each time \(t \) the model can also change over the prediction horizon \(k \)

- Possible measured disturbances are embedded in the model

- Online optimization is still a QP

\[
\begin{align*}
 \min_z & \quad \frac{1}{2} z' H(t) z + \begin{bmatrix} x(t) \\ r(t) \\ u(t-1) \end{bmatrix}' F(t)' z \\
 \text{s.t.} & \quad G(t) z \leq W(t) + S(t) \begin{bmatrix} x(t) \\ r(t) \\ u(t-1) \end{bmatrix}
\end{align*}
\]

- As for LPV-MPC, the QP matrices cannot be constructed offline
LPV/LTV models can be obtained by linearizing a nonlinear model

\[
\begin{align*}
\frac{dx_c(t)}{dt} &= f(x_c(t), u_c(t), p_c(t)) \\
y_c(t) &= g(x_c(t), p_c(t))
\end{align*}
\]

At time \(t\), consider **nominal trajectories**

\[
\begin{align*}
U &= \{ \bar{u}_c(t), \bar{u}_c(t + T_s), \ldots, \bar{u}_c(t + (N - 1)T_s) \} \\
(\text{example: } U = \text{shifted previous optimal sequence or input ref. trajectory})
\end{align*}
\]

\[
\begin{align*}
P &= \{ \bar{p}_c(t), \bar{p}_c(t + T_s), \ldots, \bar{p}_c(t + (N - 1)T_s) \} \\
(\text{no preview: } \bar{p}_c(t + k) \equiv \bar{p}_c(t))
\end{align*}
\]

Integrate the model from \(\bar{x}_c(t)\) and get nominal state/output trajectories

\[
\begin{align*}
X &= \{ \bar{x}_c(t), \bar{x}_c(t + T_s), \ldots, \bar{x}_c(t + (N - 1)T_s) \} \\
Y &= \{ \bar{y}_c(t), \bar{y}_c(t + T_s), \ldots, \bar{y}_c(t + (N - 1)T_s) \}
\end{align*}
\]

Examples: \(\bar{x}_c(t) = \text{current state / equilibrium state / reference state}\)
Linearization and time-discretization

- **Linearize** the nonlinear model around the nominal states and inputs at each prediction time \(t + kT_s, k = 0, \ldots, N - 1 \):

\[
\begin{align*}
\frac{dx_c}{dt} &= f(x_c, u_c, \bar{p}_c) \approx f(\bar{x}_c, \bar{u}_c, \bar{p}_c) + \left[\frac{\partial f}{\partial x_c} \right]_{\bar{x}_c, \bar{u}_c, \bar{p}_c} (x_c - \bar{x}_c) + \left[\frac{\partial f}{\partial u_c} \right]_{\bar{x}_c, \bar{u}_c, \bar{p}_c} (u_c - \bar{u}_c) \\
y &= g(x_c) \approx g(\bar{x}_c, \bar{p}_c) + \left[\frac{\partial g}{\partial x_c} \right]_{\bar{x}_c, \bar{p}_c} (x_c - \bar{x}_c)
\end{align*}
\]

- Define \(x \triangleq x_c - \bar{x}_c, u \triangleq u_c - \bar{u}_c, y \triangleq y_c - \bar{y}_c \) and get the linear system

\[
\frac{dx}{dt} = A_c(t + kT_s)x + B_c(t + kT_s)u \\
y = C(t + kT_s)x
\]

- Convert linear model to **discrete-time** and get matrices \((A_k(t), B_k(t), C_k(t))\)
Finally, we have approximated the NL model as the LTV model:

\[
\begin{aligned}
 \begin{cases}
 x_{k+1} &= A_k(t) (x_c(k) - \bar{x}_c(k)) + B_k(t) (u_c(k) - \bar{u}_c(k)) \\
 y_c(k) - \bar{y}_c(k) &= C_k(t) (x_c(k) - \bar{x}_c(k))
 \end{cases}
\end{aligned}
\]

(the notation “(k)” is a shortcut for “(t + kT_s)”)

Alternative: while integrating, also compute the sensitivities:

\[
\begin{align*}
 A_k(t) &= \frac{\partial \bar{x}_c(t + (k + 1)T_s)}{\partial \bar{x}_c(t + kT_s)} \\
 B_k(t) &= \frac{\partial \bar{u}_c(t + (k + 1)T_s)}{\partial \bar{u}_c(t + kT_s)} \\
 C_k(t) &= \frac{\partial \bar{y}_c(t + kT_s)}{\partial \bar{x}_c(t + kT_s)}
\end{align*}
\]
Integration, linearization, and time discretization

• **Forward Euler method**

\[
\bar{x}_c(k + 1) = \bar{x}_c(k) + T_s f(\bar{x}_c(k), \bar{u}_c(k), \bar{p}_c(k)) \\
A(k) = I + T_s A_c(k) \\
B(k) = T_s B_c(k)
\]

• For improved accuracy we can use smaller integration steps \(\frac{T_s}{N}\), \(N \geq 1\):

1. \(x = \bar{x}_c(k), A = I, B = 0\)
2. for \(n = 1\) to \(N\) do
 • \(A \leftarrow \left(I + \frac{T_s}{N} \frac{\partial f}{\partial x_c}(x, \bar{u}_c(k), \bar{p}_c(k)) \right) A \)
 • \(B \leftarrow \left(I + \frac{T_s}{N} \frac{\partial f}{\partial x_c}(x, \bar{u}_c(k), \bar{p}_c(k)) \right) B + \frac{T_s}{N} \frac{\partial f}{\partial u}(x, \bar{u}_c(k), \bar{p}_c(k)) \)
 • \(x \leftarrow x + \frac{T_s}{N} f(x, \bar{u}_c(k), \bar{p}_c(k)) \)
3. return \(\bar{x}_c(k + 1) \approx x\) and matrices \(A(k) = A, B(k) = B\)

• Note that integration, linearization, and time-discretization are combined

• See also references in (Gros, Zanon, Quirynen, Bemporad, Diehl, 2020)

Leonhard Paul Euler (1707-1783)
• Process model is LTV

\[
\frac{d^3 y}{dt^3} + 3 \frac{d^2 y}{dt^2} + 2 \frac{dy}{dt} + (6 + \sin(5t))y = 5 \frac{du}{dt} + \left(5 + 2 \cos \left(\frac{5}{2} t \right)\right) u
\]

• LTI-MPC cannot track the setpoint, LPV-MPC tries to catch-up with time-varying model, LTV-MPC has preview on future model values

>> openExample('mpc/TimeVaryingMPCControlOfATimeVaryingLinearSystemExample')
• Define LTV model

```matlab
Models = tf; ct = 1;
for t = 0:0.1:10
    Models(:,:,ct) = tf([5 5+2*cos(2.5*t)],[1 3 2 6+sin(5*t)]);
    ct = ct + 1;
end

Ts = 0.1; % sampling time
Models = ss(c2d(Models,Ts));
```

• Design MPC controller

```matlab
sys = ss(c2d(tf([5 5],[1 3 2 6]),Ts)); % average model time
p = 3; % prediction horizon
m = 3; % control horizon
mpcobj = mpc(sys,Ts,p,m);

mpcobj.MV = struct('Min',-2,'Max',2); % input constraints
mpcobj.Weights = struct('MV',0,'MVRate',0.01,'Output',1);
```
• Simulate LTV system with **LTI-MPC** controller

```matlab
for ct = 1:(Tstop/Ts+1)
    real_plant = Models(:,:,ct); % Get the current plant
    y = real_plant.C*x;
    u = mpcmove(mpcobj,xmpc,y,1); % Apply LTI MPC
    x = real_plant.A*x + real_plant.B*u;
end
```

• Simulate LTV system with **LPV-MPC** controller

```matlab
for ct = 1:(Tstop/Ts+1)
    real_plant = Models(:,:,ct); % Get the current plant
    y = real_plant.C*x;
    u = mpcmoveAdaptive(mpcobj,xmpc,real_plant,nominal,y,1);
    x = real_plant.A*x + real_plant.B*u;
end
```
LTV-MPC EXAMPLE

• Simulate LTV system with **LTV-MPC** controller

```matlab
for ct = 1:(Tstop/Ts+1)
    real_plant = Models(:,:,ct); % Get the current plant
    y = real_plant.C*x;
    u = mpcmoveAdaptive(mpcobj,xmpc,Models(:,:,ct:ct+p), ...  
        Nominals,y,1);
    x = real_plant.A*x + real_plant.B*u;
end
```

• Simulate in Simulink

LTV-MPC EXAMPLE

- Simulink block

need to provide 3D array of future models

mpc_timevarying.mdl
EXAMPLE: LPV-MPC OF A NONLINEAR CSTR SYSTEM

- MPC control of a diabatic **continuous stirred tank reactor (CSTR)**
- Process model is nonlinear

\[
\frac{dC_A}{dt} = \frac{F}{V} (C_{Af} - C_A) - C_A k_0 e^{-\frac{\Delta E}{RT}} \\
\frac{dT}{dt} = \frac{F}{V} (T_f - T) + \frac{U A}{\rho C_p V} (T_j - T) - \frac{\Delta H}{\rho C_p} C_A k_0 e^{-\frac{\Delta E}{RT}}
\]

- \(T\): temperature inside the reactor \([K]\) (state)
- \(C_A\): concentration of the reactant in the reactor \([kmol/m^3]\) (state)
- \(T_j\): jacket temperature \([K]\) (input)
- \(T_f\): feedstream temperature \([K]\) (measured disturbance)
- \(C_{Af}\): feedstream concentration \([kmol/m^3]\) (measured disturbance)

- **Objective:** manipulate \(T_j\) to regulate \(C_A\) on desired setpoint

>> edit ampcctstr_linearization
(MPC Toolbox)
Example: LPV-MPC of a Nonlinear CSTR System

Process model:

```matlab
>> mpc_cstr_plant

% Create operating point specification.
plant_mdl = 'mpc_cstr_plant';
op = operspec(plant_mdl);

% Feed concentration known @initial condition
op.Inputs(1).u = 10;
op.Inputs(1).Known = true;
% Feed concentration known @initial condition
op.Inputs(2).u = 298.15;
op.Inputs(2).Known = true;
% Coolant temperature known @initial condition
op.Inputs(3).u = 298.15;
op.Inputs(3).Known = true;

[op_point, op_report] = findop(plant_mdl, op);

x0 = [op_report.States(1).x; op_report.States(2).x];
y0 = [op_report.Outputs(1).y; op_report.Outputs(2).y];
u0 = [op_report.Inputs(1).u; op_report.Inputs(2).u; op_report.Inputs(3).u];

% Obtain linear plant model at the initial condition.
sys = linearize(plant_mdl, op_point);
sys = sys(:,2:3); % First plant input CAi dropped because not used by MPC
```
• MPC design

```
% Discretize the plant model
Ts = 0.5; % hours
plant = c2d(sys,Ts);

% Design MPC Controller

% Specify signal types used in MPC
plant.InputGroup.MeasuredDisturbances = 1;
plant.InputGroup.ManipulatedVariables = 2;
plant.OutputGroup.Measured = 1;
plant.OutputGroup.Unmeasured = 2;
plant.InputName = 'Ti','Tc';
plant.OutputName = 'T','CA';

% Create MPC controller with default prediction and control horizons
mpcobj = mpc(plant);

% Set nominal values in the controller
mpcobj.Model.Nominal = struct('X', x0, 'U', u0(2:3), 'Y', y0, 'DX', [0 0]);
```
MPC design (cont’d)

% Set scale factors because plant input and output signals have different
% orders of magnitude
Uscale = [30 50];
Yscale = [50 10];
mpcobj.DV(1).ScaleFactor = Uscale(1);
mpcobj.MV(1).ScaleFactor = Uscale(2);
mpcobj.OV(1).ScaleFactor = Yscale(1);
mpcobj.OV(2).ScaleFactor = Yscale(2);

% Let reactor temperature T float (i.e. with no setpoint tracking error
% penalty), because the objective is to control reactor concentration CA
% and only one manipulated variable (coolant temperature Tc) is available.
mpcobj.Weights.OV = [0 1];

% Due to the physical constraint of coolant jacket, Tc rate of change is
% bounded by degrees per minute.
mpcobj.MV.RateMin = -2;
mpcobj.MV.RateMax = 2;
EXAMPLE: LPV-MPC OF A NONLINEAR CSTR SYSTEM

- Simulink diagram

```
>> edit ampc_cstr_linearization
```

"Model Predictive Control" - © A. Bemporad. All rights reserved.
Example: LPV-MPC of a Nonlinear CSTR System

- Closed-loop results

![Graph of Reactant Concentration in Reactor, mol/L](image1)

![Graph of Temperatures, K](image2)

![Graph of Poles](image3)

![Graph of Commanded coolant temperature (K)](image4)
• Closed-loop results with LTI-MPC, same tuning
• Closed-loop results

Reactant Concentration in Reactor, mol/L

Temperatures, K

Offset=0

Poles

Commanded coolant temperature (K)

very bad tracking!
• **Goal:** Control longitudinal acceleration and steering angle of the vehicle simultaneously for autonomous driving with obstacle avoidance

• **Approach:** MPC based on a bicycle-like kinematic model of the vehicle in Cartesian coordinates

\[
\begin{align*}
\dot{x} &= v \cos(\theta + \delta) \\
\dot{y} &= v \sin(\theta + \delta) \\
\dot{\theta} &= \frac{v}{L} \sin(\delta)
\end{align*}
\]

- \((x, y)\) | Cartesian position of front wheel
- \(\theta\) | Vehicle orientation
- \(L\) | Vehicle length = 4.5 m
- \(v\) | Velocity at front wheel
- \(\delta\) | Steering input
• Let $x_n, y_n, \theta_n, v_n, \delta_n$ nominal states/inputs satisfying
\[
\begin{bmatrix}
\dot{x}_n \\
\dot{y}_n \\
\dot{\theta}_n
\end{bmatrix} =
\begin{bmatrix}
v_n \cos(\theta_n + \delta_n) \\
v_n \sin(\theta_n + \delta_n) \\
\frac{v_n}{L} \sin(\delta_n)
\end{bmatrix}
\text{ feasible nominal trajectory}
\]

• Linearize the model around the nominal trajectory:
\[
\begin{bmatrix}
\dot{x} \\
\dot{y} \\
\dot{\theta}
\end{bmatrix} \approx
\begin{bmatrix}
\dot{x}_n \\
\dot{y}_n \\
\dot{\theta}_n
\end{bmatrix} + A_c \begin{bmatrix} x - x_n \\
y - y_n \\
\theta - \theta_n \end{bmatrix} + B_c \begin{bmatrix} v - v_n \\
\delta - \delta_n \end{bmatrix}
\text{ linearized model}
\]

where A_c, B_c are the Jacobian matrices
\[
A_c =
\begin{bmatrix}
0 & 0 & -v_n \sin(\theta_n + \delta_n) \\
0 & 0 & v_n \cos(\theta_n + \delta_n) \\
0 & 0 & 0
\end{bmatrix}
\quad
B_c =
\begin{bmatrix}
\cos(\theta_n + \delta_n) & -v_n \sin(\theta_n + \delta_n) \\
\sin(\theta_n + \delta_n) & v_n \cos(\theta_n + \delta_n) \\
\frac{1}{L} \sin(\delta_n) & \frac{v_n}{L} \cos(\delta_n)
\end{bmatrix}
\]

• Use first-order Euler method to discretize model:
\[
A = I + T_s A_c, \quad B = T_s B_c, \quad T_s = 50 \text{ ms}
\]
• Constraints on inputs and input variations $\Delta v_k = v_k - v_{k-1}, \Delta \delta_k = \delta_k - \delta_{k-1}$:

- $-20 \leq v \leq 70 \text{ km/h}$ velocity constraint
- $-45 \leq \delta \leq 45 \text{ deg}$ steering angle
- $-5 \leq \Delta \delta \leq 5 \text{ deg}$ steering angle rate

• Stage cost to minimize:

\[
(x - x_{\text{ref}})^2 + (y - y_{\text{ref}})^2 + \Delta v^2 + \Delta \delta^2
\]

• Prediction horizon: $N = 30$ (prediction distance = $N T_s v$, for example 25 m at 60 km/h)

• Control horizon: $N_u = 4$

• Preview on reference signals available

"Model Predictive Control" - © A. Bemporad. All rights reserved.
• Closed-loop simulation results

![Graphs showing Linear Parameter-Varying (LPV) MPC and Linear Time-Varying (LTV) MPC models. The graphs illustrate the model linearization at time t and usage at $t + k, \forall k$. The velocity is set to 66.0 km/h and the delta is set to 0.0 deg.]
- Add position constraint $y \geq 0$ m

![Graph of LPV-MPC and LTV-MPC models](graphic)

LPV-MPC
Model linearized at t

LTV-MPC
Model linearized at $t + k$, $k = 0, \ldots, N - 1$
LTV Kalman Filter

- **Process model** = \textbf{LTV model with noise}

\[
\begin{align*}
 x(k + 1) &= A(k)x(k) + B(k)u(k) + G(k)\xi(k) \\
 y(k) &= C(k)x(k) + \zeta(k)
\end{align*}
\]

\(\xi(k) \in \mathbb{R}^q\) = zero-mean white \textbf{process noise} with covariance \(Q(k) \succeq 0\)

\(\zeta(k) \in \mathbb{R}^p\) = zero-mean white \textbf{measurement noise} with covariance \(R(k) \succ 0\)

- **measurement update**:

\[
\begin{align*}
 M(k) &= P(k|k-1)C(k)'[C(k)P(k|k-1)C(k)' + R(k)]^{-1} \\
 \hat{x}(k|k) &= \hat{x}(k|k-1) + M(k)(y(k) - C(k)\hat{x}(k|k-1)) \\
 P(k|k) &= (I - M(k)C(k))P(k|k-1)
\end{align*}
\]

- **time update**:

\[
\begin{align*}
 \hat{x}(k+1|k) &= A(k)\hat{x}(k|k) + B(k)u(k) \\
 P(k+1|k) &= A(k)P(k|k)A(k)' + G(k)Q(k)G(k)'
\end{align*}
\]

- Note that here the observer gain \(L(k) = A(k)M(k)\)
For state estimation, an Extended Kalman Filter (EKF) can be used based on the same nonlinear model (with additional noise)

\[
\begin{align*}
x(k + 1) &= f(x(k), u(k), \xi(k)) \\
y(k) &= g(x(k)) + \zeta(k)
\end{align*}
\]

measurement update:

\[
\begin{align*}
C(k) &= \frac{\partial g}{\partial x}(\hat{x}_{k|k-1}) \\
M(k) &= P(k|k-1)C(k)[C(k)P(k|k-1)C(k)'+R(k)]^{-1} \\
\hat{x}(k|k) &= \hat{x}(k|k-1) + M(k)(y(k) - g(\hat{x}(k|k-1))) \\
P(k|k) &= (I - M(k)C(k))P(k|k-1)
\end{align*}
\]

consumed by MPC

time update:

\[
\begin{align*}
\hat{x}(k + 1|k) &= f(\hat{x}(k|k), u(k)) \\
A(k) &= \frac{\partial f}{\partial x}(\hat{x}_{k|k}, u(k), E[\xi(k)]) \\
G(k) &= \frac{\partial f}{\partial \xi}(\hat{x}_{k|k}, u(k), E[\xi(k)]) \\
P(k + 1|k) &= A(k)P(k|k)A(k)'+G(k)Q(k)G(k)'
\end{align*}
\]
NONLINEAR MODEL PREDICTIVE CONTROL
Nonlinear MPC

• Nonlinear prediction model

\[
\begin{align*}
 x_{k+1} &= f(x_k, u_k) \\
 y_k &= g(x_k, u_k)
\end{align*}
\]

• Nonlinear constraints

\[h(x_k, u_k) \leq 0 \]

• Nonlinear performance index

\[
\min \sum_{k=0}^{N-1} \ell(x_k, u_k) + \ell(x_N)
\]

• Optimization problem: nonlinear programming problem (NLP)

\[
\begin{align*}
 \min_z & \quad F(z, x(t)) \\
 \text{s.t.} & \quad G(z, x(t)) \leq 0 \\
 & \quad H(z, x(t)) = 0
\end{align*}
\]

\[
z = \begin{bmatrix} u_0 \\ \vdots \\ u_{N-1} \\ x_1 \\ \vdots \\ x_N \end{bmatrix}
\]
• (Nonconvex) NLP is harder to solve than QP

• Convergence to a global optimum may not be guaranteed

• Several NLP solvers exist (such as Sequential Quadratic Programming (SQP))
 (Nocedal, Wright, 2006)

• NLP can be useful to deal with strong dynamical nonlinearities and/or nonlinear constraints/costs

• NL-MPC is less used in practice than linear MPC
Fast Nonlinear MPC

(Lopez-Negrete, D'Amato, Biegler, Kumar, 2013)

- **Fast MPC**: exploit **sensitivity analysis** to compensate for the computational delay caused by solving the NLP

- **Key idea**: pre-solve the NLP between time $t - 1$ and t based on the predicted state $x^*(t) = f(x(t-1), u(t-1))$ in background

- Get $u^*(t)$ and sensitivity $\frac{\partial u^*}{\partial x} \bigg|_{x^*(t)}$ within sample interval $[(t - 1)T_s, tT_s)$

- At time t, get $x(t)$ and compute

 $$u(t) = u^*(t) + \frac{\partial u^*}{\partial x} (x(t) - x^*(t))$$

- A.k.a. **advanced-step MPC** (Zavala, Biegler, 2009)

- Note that still one NLP must be solved within the sample interval
FROM LTV-MPC TO NONLINEAR MPC

- How to use the LTV-MPC machinery to handle nonlinear MPC?

- **Key idea**: Solve a sequence of LTV-MPC problems at each time t

For $h = 0$ to $h_{\text{max}} - 1$ do:

1. **Simulate** from $x(t)$ with inputs U_h and get state trajectory X_h
2. **Linearize** around (X_h, U_h) and **discretize** in time
3. Get $U_{h+1}^* = \text{QP solution}$ of corresponding LTV-MPC problem
4. **Line search**: find optimal step size $\alpha_h \in (0, 1]$;
5. Set $U_{h+1} = (1 - \alpha_h)U_h + \alpha_h U_{h+1}^*$;

Return solution $U_{h_{\text{max}}}$

- Special case: just solve one iteration with $\alpha = 1$ (a.k.a. **Real-Time Iteration**)

(Diehl, Bock, Schloder, Findeisen, Nagy, Allgower, 2002) = LTV-MPC
• Example

![Graphs comparing Linear MPC and RTI solutions](image)

For the sake of simplicity we consider here an explicit ODE having time-invariant dynamics, though the following developments can be easily extended to the time-varying case and to implicit ODE or Differential Algebraic Equation (DAE) systems.

Let us consider a piecewise constant discretization of the system. The graphs show the comparison between Linear MPC and RTI solutions, with and without state noise.

In this section, we will present a family of numerical methods for simulation and sensitivity generation. It is important to stress that the well-known matrix exponential can also be considered as such a method for numerical simulation. However, depending on the system considered, other methods might be more accurate and less computationally intensive. We also want to stress the fact that several integration steps can be taken inside each control interval in order to increase the accuracy of the simulation. We will also sketch how the sensitivities can be propagated in case multiple integration steps are taken.
ADVANTAGES OF NONLINEAR MPC

• Better exploits **nonlinear prediction models** than LTV-MPC

 - **Physics-based** models (= white-box models)

 - **Machine-learned** models (= black-box models, e.g., neural networks)

• Can handle **nonlinear inequality constraints** (and nonlinear cost functions)

\[
g(x) \leq 0
\]

\[
g(x_k) + \nabla g(x_k)(x - x_k) \leq 0
\]
ODYS EMBEDDED MPC TOOLSET

- **ODYS Embedded MPC** is a software toolchain for design and deployment of MPC solutions in industrial production

- Support for **linear & nonlinear MPC** and **extended Kalman filtering**

- Extremely flexible, all MPC parameters can be changed at runtime (models, cost function, horizons, constraints, ...)

- Integrated with **ODYS QP Solver** for max speed, low memory footprint, and robustness (also in single precision)

- Library-free C code, **MISRA-C 2012 compliant**

- Currently used worldwide by several automotive OEMs in R&D and production

- Support for **neural networks** as prediction models (**ODYS Deep Learning**)

"Model Predictive Control" - © A. Bemporad. All rights reserved.
Handling delays in NLMPC

- Nonlinear prediction model with input delay:
 \[
 \begin{align*}
 x(t + 1) &= f(x(t), u(t - \tau)) \\
 y(t) &= g(x(t))
 \end{align*}
 \]

- Design MPC for delay-free model: \(u(t) = f_{\text{MPC}}(\tilde{x}(t)) \)
 \[
 \begin{align*}
 \tilde{x}(t + 1) &= f(\tilde{x}(t), u(t)) \\
 \tilde{y}(t) &= g(\tilde{x}(t))
 \end{align*}
 \]
 subject to constraints on \(u, y \)

- Simulate the prediction model to estimate the future state:
 \[
 \tilde{x}(t) = \hat{x}(t + \tau) = f(x(t + \tau - 1), u(t - 1)) = \ldots = f(f(\ldots f(x(t), u(t - \tau))))
 \]
 only depends on past inputs!

- Compute the MPC control move \(u(t) = f_{\text{MPC}}(\hat{x}(t + \tau)) \)