MODEL PREDICTIVE CONTROL

LINEAR TIME-VARYING AND NONLINEAR MPC

Alberto Bemporad

http://cse.lab.imtlucca.it/~bemporad/mpc_course.html

COURSE STRUCTURE

Basic concepts of model predictive control (MPC) and linear MPC

- Linear time-varying and nonlinear MPC
- Quadratic programming (QP) and explicit MPC
- Hybrid MPC
- Stochastic MPC
- Learning-based MPC

LINEAR TIME-VARYING MODEL PREDICTIVE CONTROL

LPV MODELS

• Linear Parameter-Varying (LPV) model

$$\begin{cases} x_{k+1} = A(p(t))x_k + B(p(t))u_k + B_v(p(t))v_k \\ y_k = C(p(t))x_k + D_v(p(t))v_k \end{cases}$$

that depends on a vector p(t) of parameters (e.g., ambient conditions)

- The weights in the quadratic performance index can also be LPV
- The resulting optimization problem is still a QP

$$\min_{z} \qquad \frac{1}{2} z' H(p(t)) z + \begin{bmatrix} x(t) \\ r(t) \\ u(t-1) \end{bmatrix}' F(p(t))' z$$
s.t.
$$G(p(t)) z \leq W(p(t)) + S(p(t)) \begin{bmatrix} x(t) \\ r(t) \\ u(t-1) \end{bmatrix}$$

Contrarily to LTI-MPC, the QP matrices, in general, must be constructed online

LTV MODELS

• Linear Time-Varying (LTV) model

$$\begin{cases} x_{k+1} = A_k(t)x_k + B_k(t)u_k \\ y_k = C_k(t)x_k \end{cases}$$

- At each time t the model can also change over the prediction horizon \boldsymbol{k}
- Possible measured disturbances are embedded in the model
- Online optimization is still a QP

$$\min_{z} \qquad \frac{1}{2}z'H(t)z + \begin{bmatrix} x(t) \\ r(t) \\ u(t-1) \end{bmatrix}' F(t)'z \\ \text{s.t.} \qquad G(t)z \le W(t) + S(t) \begin{bmatrix} x(t) \\ r(t) \\ u(t-1) \end{bmatrix}$$

• As for LPV-MPC, the QP matrices must be constructed online, in general

• Time-varying process model:

$$\frac{d^3y}{dt^3} + 3\frac{d^2y}{dt^2} + 2\frac{dy}{dt} + (6 + \sin(5t))y = 5\frac{du}{dt} + \left(5 + 2\cos\left(\frac{5}{2}t\right)\right)u$$

• LTI-MPC cannot track the setpoint, LPV-MPC tries to catch up with the time-varying model, LTV-MPC has a preview of future models

>> openExample('mpc/TimeVaryingMPCControlOfATimeVaryingLinearSystemExample')

• Define a sequence of linear models (one per simulation step)

```
Ts = 0.1; % sampling time
Models = tf; ct = 1;
for t = 0:Ts:10
    Models(:,:,ct) = tf([5 5+2*cos(2.5*t)],[1 3 2 6+sin(5*t)]);
    ct = ct + 1;
end
Models = ss(c2d(Models,Ts));
```

• Design a baseline LTI-MPC controller

```
sys = ss(c2d(tf([5 5],[1 3 2 6]),Ts)); % nominal model
p = 3; % prediction horizon
m = 3; % control horizon
mpcobj = mpc(sys,Ts,p,m);
mpcobj.MV = struct('Min',-2,'Max',2); % input constraints
mpcobj.Weights = struct('MV',0,'MVRate',0.01,'Output',1);
```

• Simulate LTV system with LTI-MPC controller

```
for ct = 1:(Tstop/Ts+1)
    real_plant = Models(:,:,ct); % Get the current plant
    y = real_plant.C*x;
    u = mpcmove(mpcobj,xmpc,y,1); % Apply LTI MPC
    x = real_plant.A*x + real_plant.B*u;
end
```

• Simulate LTV system with LPV-MPC controller

```
for ct = 1:(Tstop/Ts+1)
    real_plant = Models(:,:,ct); % Get the current plant
    y = real_plant.C*x;
    u = mpcmoveAdaptive(mpcobj,xmpc,real_plant,nominal,y,1);
    x = real_plant.A*x + real_plant.B*u;
end
```

Simulate LTV system with LTV-MPC controller

• Simulate in Simulink

Simulink block

need to provide 3D array of future models

mpc_timevarying.mdl

-	
Parameters	
Adaptive MPC Controller mpcob)	
Initial Controller State xmpc	
General Online Features C Prediction Model	others
Linear Time-Varying (LTV) plan	nts (model expects 3-D signals)
Constraints	
Lower MV limits (umin)	Upper MV limits (umax)
Lower OV limits (ymin)	Upper OV limits (ymax)
Custom constraints (E, F, G, S)
Weights	
OV weights (y.wt)	MV weights (u.wt)
MVRate weights (du.wt)	Slack variable weight (ecr.wt)
Prediction and Control Horizons	
Adjust prediction horizon (p) a	nd control horizon (m) at run time
Mandaman and disting bandana 10	

LPV/LTV MPC BASED ON LINEARIZED MODELS

LINEARIZING A NONLINEAR MODEL: LPV CASE

• An LPV model can be obtained by linearizing the nonlinear model

$$\begin{cases} \frac{dx_c(t)}{dt} &= f(x_c(t), u_c(t)) \\ y_c(t) &= g(x_c(t)) \end{cases}$$

• At time t, let $\bar{x}_c(t)$, $\bar{u}_c(t)$ be nominal values, that we assume constant in prediction, and linearize

$$\frac{\frac{d}{d\tau}(x_c(t+\tau)-\bar{x}_c(t)) = \frac{d}{d\tau}(x_c(t+\tau)) \simeq \underbrace{\frac{\partial f}{\partial x}}_{I_{\bar{x}_c(t),\bar{u}_c(t)}} (x_c(t+\tau)-\bar{x}_c(t)) + \underbrace{\frac{\partial f}{\partial u}}_{I_{\bar{x}_c(t),\bar{u}_c(t)}} (u_c(t+\tau)-\bar{u}_c(t)) + \underbrace{f(\bar{x}_c(t),\bar{u}_c(t))}_{B_{vc}(t)} \cdot 1$$

- Convert $(A_c, [B_c B_{vc}])$ to discrete-time and get prediction model $(A, [B B_v])$
- Same thing for the output equation to get matrices C and D_v

LINEARIZING A NONLINEAR MODEL: LTV CASE

• LPV/LTV models can be obtained by linearizing a nonlinear model

$$\begin{cases} \frac{dx_c(t)}{dt} &= f(x_c(t), u_c(t)) \\ y_c(t) &= g(x_c(t)) \end{cases}$$

• At time t, consider the **nominal input trajectory**

$$U = \{ \bar{u}_c(t), \bar{u}_c(t+T_s), \dots, \bar{u}_c(t+(N-1)T_s) \}$$

(example: U = shifted previous optimal sequence or input ref. trajectory)

• Integrate the model from $\bar{x}_c(t)$ and get nominal state/output trajectories

$$X = \{ \bar{x}_c(t), \bar{x}_c(t+T_s), \dots, \bar{x}_c(t+(N-1)T_s) \}$$

$$Y = \{ \bar{y}_c(t), \bar{y}_c(t+T_s), \dots, \bar{y}_c(t+(N-1)T_s) \}$$

• Examples: $\bar{x}_c(t) = \text{current state / equilibrium state / reference state}$

l

LINEARIZATION AND TIME-DISCRETIZATION

• Linearize the nonlinear model around the nominal states and inputs at each prediction time $t + kT_s$, k = 0, ..., N - 1:

• Define $x \triangleq x_c - \bar{x}_c, u \triangleq u_c - \bar{u}_c, y \triangleq y_c - \bar{y}_c$ and get the linear system

$$\frac{dx}{dt} = A_c(t + kT_s)x + B_c(t + kT_s)u \qquad \qquad y = C(t + kT_s)x$$

• Convert linear model to discrete-time and get matrices $(A_k(t), B_k(t), C_k(t))$

LINEARIZATION AND TIME-DISCRETIZATION

• Finally, we have approximated the NL model as the LTV model

$$\begin{pmatrix} \underbrace{x_{k+1}}_{x_c(k+1) - \bar{x}_c(k+1)} = A_k(t) \underbrace{x_c(k) - \bar{x}_c(k)}_{y_c(k) - \bar{y}_c(k)} = C_k(t) \underbrace{x_c(k) - \bar{x}_c(k)}_{x_k} + B_k(t) \underbrace{u_c(k) - \bar{u}_c(k)}_{x_k} \end{pmatrix}$$

(the notation "(k)" is a shortcut for " $(t + kT_s)$ ")

Alternative: while integrating, also compute the sensitivities

$$A_k(t) = \frac{\partial \bar{x}_c(t + (k+1)T_s)}{\partial \bar{x}_c(t + kT_s)}$$
$$B_k(t) = \frac{\partial \bar{x}_c(t + (k+1)T_s)}{\partial \bar{u}_c(t + kT_s)}$$
$$C_k(t) = \frac{\partial \bar{y}_c(t + kT_s)}{\partial \bar{x}_c(t + kT_s)}$$

INTEGRATION, LINEARIZATION, AND TIME DISCRETIZATION

Forward Euler method

$$\begin{aligned} \bar{x}_c(k+1) &= \bar{x}_c(k) + T_s f(\bar{x}_c(k), \bar{u}_c(k)) \\ A(k) &= I + T_s A_c(k) \\ B(k) &= T_s B_c(k) \end{aligned}$$

Leonhard Paul Euler (1707-1783)

• For improved accuracy we can use smaller integration steps $\frac{T_s}{N}$, $N \ge 1$:

L.
$$x = \bar{x}_c(k), A = I, B = 0$$

2. for n = 1 to N do

•
$$A \leftarrow \left(I + \frac{T_s}{N} \frac{\partial f}{\partial x_c}(x, \bar{u}_c(k))\right) A$$

• $B \leftarrow \left(I + \frac{T_s}{N} \frac{\partial f}{\partial x_c}(x, \bar{u}_c(k))\right) B + \frac{T_s}{N} \frac{\partial f}{\partial u}(x, \bar{u}_c(k))$
• $x \leftarrow x + \frac{T_s}{N} f(x, \bar{u}_c(k))$

3. return $\bar{x}_c(k+1) \approx x$ and matrices A(k) = A, B(k) = B

- Note that integration, linearization, and time-discretization are combined
- See also references in (Gros, Zanon, Quirynen, Bemporad, Diehl, 2020)

EXAMPLE: LPV-MPC OF A NONLINEAR CSTR SYSTEM

- MPC control of a diabatic continuous stirred tank reactor (CSTR)
- Process model is nonlinear (Seborg, Edgar, Mellichamp, 2004)

$$\begin{aligned} \frac{dC_A}{dt} &= \frac{F}{V}(C_{Af} - C_A) - C_A k_0 e^{-\frac{\Delta E}{RT}} \\ \frac{dT}{dt} &= \frac{F}{V}(T_f - T) + \frac{UA}{\rho C_p V}(T_j - T) - \frac{\Delta H}{\rho C_p} C_A k_0 e^{-\frac{\Delta E}{RT}} \end{aligned}$$

- T: temperature inside the reactor [K] (state)
- C_A : concentration of the reactant in the reactor $[kgmol/m^3]$ (state)
- T_j : jacket temperature [K] (input)
- T_f : feedstream temperature [K] (measured disturbance)
- C_{Af} : feedstream concentration $[kgmol/m^3]$ (measured disturbance)
- Objective: manipulate T_j to regulate C_A on desired setpoint

```
>> openExample("ampccstr_lpv")
```

(MPC Toolbox)

EXAMPLE: LPV-MPC OF A NONLINEAR CSTR SYSTEM

• Simulink diagram

EXAMPLE: LPV-MPC OF A NONLINEAR CSTR SYSTEM

• Closed-loop results

EXAMPLE: LTI-MPC OF A NONLINEAR CSTR SYSTEM

• Closed-loop results with LTI-MPC, same tuning

EXAMPLE: LTI-MPC OF A NONLINEAR CSTR SYSTEM

• Closed-loop results

- Goal: Control longitudinal acceleration and steering angle of the vehicle simultaneously for autonomous driving with obstacle avoidance
- Approach: MPC based on a bicycle-like kinematic model of the vehicle in Cartesian coordinates

$$\begin{cases} \dot{x} = v \cos(\theta + \delta) \\ \dot{y} = v \sin(\theta + \delta) \\ \dot{\theta} = \frac{v}{L} \sin(\delta) \end{cases}$$

- $\begin{array}{c|c} (x,y) & \text{Cartesian position of front wheel} \\ \theta & \text{vehicle orientation} \end{array}$
 - L vehicle length = 4.5 m

- $v \mid$ velocity at front wheel
 - steering input

• Let $x_n, y_n, \theta_n, v_n, \delta_n$ be nominal state/input trajectories satisfying

$$\begin{bmatrix} \dot{x}_n \\ \dot{y}_n \\ \dot{\theta}_n \end{bmatrix} = \begin{bmatrix} v_n \cos(\theta_n + \delta_n) \\ v_n \sin(\theta_n + \delta_n) \\ \frac{v_n}{L} \sin(\delta_n) \end{bmatrix}$$

feasible nominal trajectory

• Linearize the model around the nominal trajectory:

$$\begin{bmatrix} \dot{x} \\ \dot{y} \\ \dot{\theta} \end{bmatrix} \approx \begin{bmatrix} \dot{x}_n \\ \dot{y}_n \\ \dot{\theta}_n \end{bmatrix} + A_c \begin{bmatrix} x - x_n \\ y - y_n \\ \theta - \theta_n \end{bmatrix} + B_c \begin{bmatrix} v - v_n \\ \delta - \delta_n \end{bmatrix}$$
 linearized model

where A_c , B_c are the Jacobian matrices

$$A_c = \begin{bmatrix} 0 & 0 & -v_n \sin(\theta_n + \delta_n) \\ 0 & 0 & v_n \cos(\theta_n + \delta_n) \\ 0 & 0 & 0 \end{bmatrix} \quad B_c = \begin{bmatrix} \cos(\theta_n + \delta_n) & -v_n \sin(\theta_n + \delta_n) \\ \sin(\theta_n + \delta_n) & v_n \cos(\theta_n + \delta_n) \\ \frac{1}{L} \sin(\delta_n) & \frac{v_n}{L} \cos(\delta_n) \end{bmatrix}$$

• Use first-order Euler method to discretize model:

$$A = I + T_s A_c, \quad B = T_s B_c, \quad T_s = 50 \,\mathrm{ms}$$

- Constraints on inputs and input variations $\Delta v_k = v_k v_{k-1}$, $\Delta \delta_k = \delta_k \delta_{k-1}$:
 - $\begin{array}{ll} -20 \leq v \leq 70 \quad {\rm km/h} & {\rm velocity\ constraint} \\ -45 \leq \delta \leq 45 & {\rm deg} & {\rm steering\ angle} \\ -5 \leq \Delta \delta \leq 5 & {\rm deg} & {\rm steering\ angle\ rate} \end{array}$
- Stage cost to minimize:

$$(x - x_{\rm ref})^2 + (y - y_{\rm ref})^2 + \Delta v^2 + \Delta \delta^2$$

- Prediction horizon: N = 30 (prediction distance = $NT_s v$, for example 25 m at 60 km/h)
- Control horizon: $N_u = 4$
- Preview on reference signals available

• Closed-loop simulation results

• Add position constraint $y \ge 0 \,\mathrm{m}$

LTV KALMAN FILTER

• Process model = LTV model with noise

$$\begin{array}{lll} x(k+1) &=& A(k)x(k) + B(k)u(k) + G(k)\xi(k) \\ y(k) &=& C(k)x(k) + \zeta(k) \end{array}$$

 $\xi(k) \in \mathbb{R}^q$ = zero-mean white process noise with covariance $Q(k) \succeq 0$ $\zeta(k) \in \mathbb{R}^p$ = zero-mean white measurement noise with covariance $R(k) \succ 0$

measurement update:

$$M(k) = P(k|k-1)C(k)'[C(k)P(k|k-1)C(k)'+R(k)]^{-1}$$

$$\hat{x}(k|k) = \hat{x}(k|k-1) + M(k)(y(k) - C(k)\hat{x}(k|k-1))$$

$$P(k|k) = (I - M(k)C(k))P(k|k-1)$$

• time update:

$$\hat{x}(k+1|k) = A(k)\hat{x}(k|k) + B(k)u(k) P(k+1|k) = A(k)P(k|k)A(k)' + G(k)Q(k)G(k)'$$

• Note that here the observer gain L(k) = A(k)M(k)

EXTENDED KALMAN FILTER

• For state estimation, an Extended Kalman Filter (EKF) can be used based on the same nonlinear model (with additional noise)

$$\begin{aligned} x(k+1) &= f(x(k), u(k), \xi(k)) \\ y(k) &= g(x(k)) + \zeta(k) \end{aligned}$$

measurement update:

• time update:

 $\begin{aligned} \hat{x}(k+1|k) &= f(\hat{x}(k|k), u(k)) \\ A(k) &= \frac{\partial f}{\partial x}(\hat{x}(k|k), u(k), E[\xi(k)]), \ G(k) &= \frac{\partial f}{\partial \xi}(\hat{x}(k|k), u(k), E[\xi(k)]) \\ P(k+1|k) &= A(k)P(k|k)A(k)' + G(k)Q(k)G(k)' \end{aligned}$

NONLINEAR MODEL PREDICTIVE CONTROL

• Nonlinear prediction model

$$\begin{cases} x_{k+1} &= f(x_k, u_k) \\ y_k &= g(x_k, u_k) \end{cases}$$

• Nonlinear constraints $h(x_k, u_k) \leq 0$

• Nonlinear performance index min
$$\ell_N(x_N) + \sum_{k=0}^{N-1} \ell(x_k, u_k)$$

• Optimization problem: nonlinear programming problem (NLP)

$$\begin{array}{ccc} \min_{z} & F(z, x(t)) \\ \text{s.t.} & G(z, x(t)) \leq 0 \\ & H(z, x(t)) = 0 \end{array} \qquad \qquad z = \begin{bmatrix} u_{0} \\ \vdots \\ u_{N-1} \\ \vdots \\ x_{N} \end{bmatrix}$$

NONLINEAR OPTIMIZATION

- (Nonconvex) NLP is harder to solve than QP
- Convergence to a global optimum may not be guaranteed

- Several NLP solvers exist (such as Sequential Quadratic Programming (SQP)) (Nocedal, Wright, 2006)
- NLP can be useful to deal with strong dynamical nonlinearities and/or nonlinear constraints/costs

• NL-MPC is less used in practice than linear MPC

FAST NONLINEAR MPC

- Fast MPC: exploit sensitivity analysis to compensate for the computational delay caused by solving the NLP
- Key idea: pre-solve the NLP between step t-1 and t based on the predicted state $x^{\ast}(t)=f(x(t-1),u(t-1))$ in background

• Get
$$u^*(t)$$
 and sensitivity $\frac{\partial u^*}{\partial x}\Big|_{x^*(t)}$ within sample interval $[(t-1)T_s, tT_s)$

• At time t, get x(t) and compute

$$u(t) = u^*(t) + \frac{\partial u^*}{\partial x}(x(t) - x^*(t))$$

- A.k.a. advanced-step MPC (Zavala, Biegler, 2009)
- Note that still one NLP must be solved within the sample interval

FROM LTV-MPC TO NONLINEAR MPC

- How to use the LTV-MPC machinery to handle nonlinear MPC?
- Key idea: Solve a sequence of LTV-MPC problems at each time t

(Li, Biegler, 1989) (Lee, Ricker, 1994)

For h = 0 to $h_{max} - 1$ do:

- 1. Simulate from x(t) with inputs U_h and get state trajectory X_h
- 2. Linearize around (X_h, U_h) and discretize in time
- 3. Get $U_{h+1}^* = \mathbf{QP}$ solution of corresponding LTV-MPC problem
- 4. Line search: find optimal step size $\alpha_h \in (0, 1]$;
- 5. Set $U_{h+1} = (1 \alpha_h)U_h + \alpha_h U_{h+1}^*$;

Return solution $U_{h_{\max}}$

• Special case: just solve one iteration with $\alpha = 1$ (a.k.a. Real-Time Iteration)

(Diehl, Bock, Schloder, Findeisen, Nagy, Allgower, 2002) = LTV-MPC

(Gros, Zanon, Quirynen, Bemporad, Diehl, 2020)

• Example

ADVANTAGES OF NONLINEAR MPC

- Better exploits nonlinear prediction models than LTV-MPC
 - Physics-based models (= white-box models)
 - Machine-learned models (= black-box models, e.g., neural networks)
- Can handle nonlinear inequality constraints (and nonlinear cost functions)

 $g(x) \leq 0$

 $g(x_k) + \nabla g(x_k)(x - x_k) \le 0$

ODYS EMBEDDED MPC TOOLSET

• **ODYS Embedded MPC** is a software toolchain for design and deployment of MPC solutions in industrial production

- Support for linear & nonlinear MPC and extended Kalman filtering
- Extremely flexible, all MPC parameters can be changed at runtime (models, cost function, horizons, constraints, ...)
- Integrated with ODYS QP Solver for max speed, low memory footprint, and robustness (also in single precision)
 odys.it/qp
- Library-free C code, MISRA-C 2012 compliant
- Currently used worldwide by several automotive OEMs in R&D and production
- Support for neural networks as prediction models (ODYS Deep Learning)

odys.it/embedded-mpc

ODYS EMBEDDED MPC TOOLSET

- Models/control specs can be specified either in C-code or MATLAB code
- Built-in automatic integration, discretization, and differentiation of prediction models (optional)
- Efficient handling of sparsity in the prediction models
- User-friendly performance assessment tool for in-depth visualization and detailed analysis of MPC results
- Support for neural networks as prediction models (ODYS Deep Learning)
- Currently used worldwide by several automotive OEMs in R&D and production

See more on: 🔼 (<u>video tutorial</u>) 🔀 (<u>slides</u>)

HANDLING DELAYS IN NLMPC

• Nonlinear prediction model with input delay:

$$\begin{cases} x(t+1) &= f(x(t), u(t-\tau)) \\ y(t) &= g(x(t)) \end{cases}$$

$$\underbrace{u(t)}_{u(t-1)} \underbrace{u(t-\tau)}_{t} f() \underbrace{f()}_{y(t)} g() \underbrace{g()}_{y(t)}$$

- Design MPC for delay-free model: $u(t) = f_{\rm MPC}(\bar{x}(t))$

$$\begin{cases} \bar{x}(t+1) &= f(\bar{x}(t), u(t)) \\ \bar{y}(t) &= g(\bar{x}(t)) \end{cases}$$

subject to constraints on u, y

• Simulate the prediction model to estimate the future state:

$$\bar{x}(t) = \hat{x}(t+\tau) = f(x(t+\tau-1), u(t-1)) = \dots = \underbrace{f(f(\dots, f(x(t), u(t-\tau))))}_{t+\tau}$$

only depends on past inputs!

• Compute the MPC control move $u(t) = f_{MPC}(\hat{x}(t+\tau))$