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COURSE STRUCTURE

e Basic concepts of model predictive control (MPC) and linear MPC

e Linear time-varying and nonlinear MPC

Quadratic programming (QP) and explicit MPC

Hybrid MPC

Stochastic MPC

Learning-based MPC

Numerical examples:
- MPC Toolbox for MATLAB (linear/explicit/parameter-varying MPC)

- Hybrid Toolbox for MATLAB (explicit MPC, hybrid systems)
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COURSE STRUCTURE

e For additional background:

- Linear Systems:

http://cse.lab.imtlucca.it/~bemporad/intro _control course.html

- Numerical Optimization:

http://cse.lab.imtlucca.it/~bemporad/optimization_course.html

- Machine Learning:

http://cse.lab.imtlucca.it/~bemporad/ml.html

"Model Predictive (

All rights reserved 3/132


http://cse.lab.imtlucca.it/~bemporad/intro_control_course.html
http://cse.lab.imtlucca.it/~bemporad/optimization_course.html
http://cse.lab.imtlucca.it/~bemporad/ml.html

MODEL PREDICTIVE CONTROL: BASIC CONCEPTS



MODEL PREDICTIVE CONTROL (MPC)

optimization
algorithm :

prediction model

model-based optimizer

\ process
set-points outputs
—p —p
r(t) y(t)
1 measurements
simplified Likel

Usea dynamlcal model of the process to predict its future

evolution and choose the~best” control action
a SOO
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MODEL PREDICTIVE CONTROL

e MPC problem: find the best control sequence over a future horizon of N steps

N-1
. 2 2
min > [lyk — 7013 + pllux — ux(B)[I3
Ugy -+, UN—-1 k=0

st zpp1 = f(ap, uk) F?T‘adi.d:ion model

yr = g(Tk)

Umin < Ur < Umax ~ COWSskrailnks
Ymin < Yk < Ymax

xo = x(t) state feedback

numerical optimization problem

[ VY N+
@ -estimate current state z(t)
9 optimize wrt {uo, ..., un—1}
9 only apply optimal ug as input u(¢)
Repeat at all time steps ¢
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DAILY-LIFE EXAMPLES 0

e MPCis like playing chess !

e Online (event-based) re-planning used in GPS navigation

4 Viadella e
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Bike & scooter share

¥ Route options

fmm e e o N
1 Avoid tolls |

A
9,
\amn’Via della Quarquonia

Avoid highways

Avoid ferries

B i G

e You use MPC too when you drive !
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MPC IN INDUSTRY

e The MPC concept dates back to the 60’s

iscrete Dynamic Optimization |
pplied to On-Line Optimal Control

MARSHALL D. RAFAL and WILLIAM F. STEVENS

Tom XXIV _ «ABTOMATHEA H TEIEMEXAHIEA 7
— USE OF LINEAR PROGRAMMING METHODS

fFOR SYNTHESIZING SAMPLED-DATA AUTOMATIC SYSTEMS

A. 1. Propoi
VIR 6250 (Mescow)
Translated from Avtomatika i Telemekhanika, Vol. 24, No. 7,
TPHMEHEHHE METOJIOB JTHAERHONO IIPOTPAMMMPOBAIINA Pp. 912-920, July, 1963
JUU1 CHHTESA MMUYJIBCHRIX ABTOMATHTIECRIX Original article submitted September 24, 1962
CHCTEM

A, UPOLIOR

e MPC used inthe process industries since the 80’s

Today APC (advanced process control) = MPC

. Bem
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MPC IN INDUSTRY

e Industrial survey of MPC applications conducted in mid 1999

Area Aspen Honeywell Adersa® Invensys SGS® Total

Technology Hi-Spec
Refining 1200 480 280 25 1985
Petrochemicals 450 80 — 20 550
Chemicals 100 20 3 21 144
Pulp and paper 18 50 — — 68
Air & Gas 10 10
Utility — 10 — 4 14
Mining/Metallurgy 8 6 7 16 37
Food Processing — — 41 10 51
Polymer 17 — — — 17
Furnaces — 42 3 45
Aecrospace/Defense — — 13 — 13
Automotive — — 7 — 7
Unclassified 40 40 1045 26 450 1601
Total 1833 696 1438 125 450 4542
First App. DMC:1985 PCT:1984 IDCOM:1973

IDCOM-M:1987 RMPCT:1991 HIECON:1986 1984 1985

OPC:1987
Largest App. 603 x 283 225x 85 — 31 x 12 —

Estimates based on vendor survey

Bempor:

ad. All'
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MPC IN INDUSTRY

e Economic assessment of Advanced Process Control (APC)

Petrochemical

Chemicals

Petroleum refining

Oil & Gas

Power & utilities

Pulp & paper
Industrial gases —
Coal products Supplier | Model predictiv m Standard
Water & wastewater Users int control m Frequently
Other [J——— Split-range control m Rarely
0% 20%  40%  60%  80%  100% Linear (LP) & Never
Nonlinear control algorithms or models @ Don't know
participants of APC survey by industry (worldwide) Dead-time

Statistical process control
Neural networks based control
Expert system based control
Fuzzy logic control

Internal model control (IMC)
Adaptive / selftuning control

Directsynthesis (DS)

[ T T T T 1
0% 20% 40% 60% 80% 100%

Industrial use of APC methods: survey results
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MPC IN INDUSTRY

e Impact of advanced control technologies in industry

( TABLE 1 A list of the survey results in order of industry impact as perceived by )
the committee members.

. A
Rank and Technology High-Impact Ratings Low- or No-Impact Ratings
PID control 100% 0%

[Model predictive control I [ 78% I 9%
System identification 61% 9%
Process data analytics 61% 17%
Soft sensing 52% 22%
Fault detection and 50% 18%
identification
Decentralized and/or 48% 30%
coordinated control
Intelligent control 35% 30%
Discrete-event systems 23% 32%
Nonlinear control 22% 35%
Adaptive control 17% 43%
Robust control 13% 43%
Hybrid dynamical systems 13% 43%

- J
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MPC IN INDUSTRY

Table 2

The percentage of survey respondents indicating whether a control technology had
demonstrated (“Current Impact”) or was likely to demonstrate over the next five
years (“Future Impact”) high impact in practice.

Current Impact ~ Future Impact

Control Technology %High %High
PID control 91% 78%
System Identification 65% 72%
Estimation and filtering 64% 63%
[Model-predictive control 62% 85% | e
Process data analytics 51% 70%
Fault detection and identification 48% 78%
Decentralized and/or coordinated control  29% 54%
Robust control 26% 42%
Intelligent control 24% 59%
Discrete-event systems 24% 39%
Nonlinear control 21% 42%
Adaptive control 18% 44%
Repetitive control 12% 17%
Hybrid dynamical systems 11% 33%
Other advanced control technology 11% 25%
Game theory 5% 17%

"As can be observed, MPC s clearly considered more impactful, and likely to be more impactful,
vis-a-vis other control technologies, especially those that can be considered the "crown jewels" of
control theory - robust control, adaptive control, and nonlinear control."

"Model Predictive Control
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TYPICAL USE OF MPC

strategic planner

igliita OPELMLzer o Static optimizer of steady-

state (static /O models)

reference
optimization

~

.

e
=

o Reference trajectory
generator

reference-signal | 7(¢t)
tactical planner

dynamic optimizer o }
e optimize transient response

MPC e ensure reference tracking

e handle constraints

3 * I e coordinate multiple inputs

measurements | y(t) U(t)l actuator set-points

requlators

—0O—[] low-level o fast sampling
E i ] | controllers o single loops
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MPC OF AUTOMOTIVE SYSTEMS

Powertrain Ford Motor Company
engine control, magnetic actuators, robotized gearbox, Jaguar
power MGT in HEVs, cabin heat control, electrical motors 5 g

DENSO Automotive
‘ehicle dynamics

Vehicle d i Fiat
traction control, active steering, semiactive suspensions, General Motors
autonomous driving D D\ /8

Most automotive OEMs are looking into MPC solutions today

A. Bemporad. All rights reserved 13/132

"Model Predictive Contro



MPC FOR AUTONOMOUS DRIVING

e Coordinate torque request and steering to achieve safe and
comfortable autonomous driving with no collisions

e MPC combines path planning, path tracking, and obstacle
avoidance

e Stochastic prediction models are used to account for uncertainty
and driver’s behavior

"Model Predictive Control
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MPC OF GASOLINE TURBOCHARGED ENGINES

e Control throttle, wastegate, intake & exhaust cams to make engine torque
track set-points, with max efficiency and satisfying constraints

MPC
Desired : Actuators
torque commands
—_—

Engine

Achieved
Torque

Measurements

numerical optimization problem

solved in real-time on ECU oo : i ,
=N
e el ) . 5 )|
EooLer o : X L
(Bemporad, Bernardini, Long, Verdejo, 2018) i \q« —_— el ™ “’\n;
i — I
ol = | !

engine operating at low pressure (66 kPa)
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SUPERVISORY MPC OF POWERTRAIN WITH CVT

e Coordinate engine torque request and continuously variable transmission
(CVT) ratio to improve fuel economy and drivability

e Real-time MPC is able to take into account coupled dynamics and constraints,
optimizing performance also during transients

Engine ‘ , ,

torque L I A

request /h \

Desired :
axle torque /
—_— ——— Fuek 0.75%
— J IRV =i L
L

ovT US06 Double Hill driving cycle
ratio

request CVT Control
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MPC IN AUTOMOTIVE PRODUCTION

ODYS real-time embedded optimization and MPC software is currently
running on 3+ million vehicles worldwide

e Multivariable system, 4 inputs, 4 outputs.
QP solved in real time on ECU

e Supervisory MPC for powertrain control

also in production since 2018

First known mass production of MPC in the automotive industry

http://www.odys.it/odys-and-gm-bring-online-mpc-to-production D D \ /8

Advanced Controls & Optimization

17/132
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AEROSPACE APPLICATIONS OF MPC

o MPC capabilities explored in space applications

cooperating UAVs powered descent
’ I
- ® /g A Eae
®
: |
X
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MPC IN AERONAUTIC INDUSTRY

PRESS RELEASE

Pratt & Whitney's F135 Advanced Multi-Variable
Control Team Receives UTC's Prestigious George
Mead Award for Outstanding Engineering
Accomplishment

EAST HARTFORD, CONN., THURSDAX, _MAY 27, 2010

Pratt & Whitney engineers Louis Celiberti, Timothy Crowley, James Fuller and Cary Powell
won the George Mead Award — United Technologies Corp.'s highest award for outstanding
engineering achievement — for their pioneering work in developing the world's first advanced
multi-variable control (AMVC) design for the only engine that powers the F-35 Lightning I
flight test program. Pratt & Whitney is a United Technologies Corp. (NYSE:UTX) company.

The AMVC, which uses a proErietary model Erediclive control methodology, is the most

technically advanced propulsion system control ever produced by the aerospace industry,
demonstrating the highest pilot rating for flight performance and providing independent
control of vertical thrust and pitch from five sources. This innovative and industry-leading
advanced design is protected with five broad patents for Pratt & Whitney and UTC, and is the
new standard for propulsion system control for Pratt & Whitney military and commercial

‘engines. Pratt & Whitney

AUnited Technologies Company

ly,

http://www.pw.utc.com/Press/Story/20100527-0100/2010

19/132
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MPC FOR SMART ELECTRICITY GRIDS

transmission grid

Dispatch power in smart distribution grids, trade energy on energy markets

Challenges: account for dynamics, network topology, physical constraints, and
stochasticity (of renewable energy, demand, electricity prices)

FP7-ICT project “E-PRICE - Price-based Control of Electrical Power Systems” 7\
(2010-2013) ceprice L)
"Model Predictive Control" - orad. All rights reserved 20/132




MPC OF DRINKING WATER NETWORKS

Drinking water
network of
Barcelona:

63 tanks
114 controlled flows
17 mixing nodes

e ~5% savings on energy costs w.r.t. current practice
e Demand and minimum pressure requirements met, smooth control actions
e Computation time: ~20 s on NVIDIA Tesla 2075 CUDA (sample time = 1 hr)

FP7-ICT project “EFFINET - Efficient Integrated Real-time Monitoring and Control of Drinking Water Networks”

(2012-2015)

"Model Predictive Control" - © 2023 A. Bemporad. All rights reserved. 21/132



MPC FOR DYNAMIC HEDGING OF FINANCIAL OPTIONS

e Goal: find a dynamic hedging policy of a portfolio replicating a synthetic
option, so to minimize risk that payoff#portfolio wealth at expiration date

e Asimple linear stochastic model describes the dynamics of portfolio wealth

e Stochastic MPC results:

Portfolio wealth vs. payoff at expiration Portfolio wealth vs. payoff at expiration
0.
«
01
.
60 g
g o1
10 H
3
2 0.05]
20] E
i
o 0|
0 50 100 150 200 2005 0 5 0.15 0.2
Stock price at expiration Payoff
. x(t;) —x(t;_q)
p(T) = max{w(T) — K, 0} p(T) = max<¢0,C + min _
ie{1,..., N} x(ty_q)
European call Napoleon cliquet
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MPC RESEARCH IS DRIVEN BY APPLICATIONS

e Process control — linear MPC (some nonlinear too) 1970-2000
e Automotive control — explicit, hybrid MPC 2001-2010
o Aerospace systems and UAVs — linear time-varying MPC >2005

Information and Communication Technologies (ICT)

(wireless nets, cloud) — distributed/decentralized MPC >2005
e Energy, finance, automotive, water — stochastic MPC >2010
e Industrial production — embedded optimization solvers for MPC >2010
e Machine learning — data-driven MPC today

"Model Predictive Control" - © 2023 A. Bemporad. Al rights reserved 23/132



MPC DESIGN FLOW

High-fidelity simulation model (simplified) control-oriented
[r— = prediction model

performance index
& constraints

l closed-loop simulation MP_C
design
physical modeling +
parameter estimation
real-time
_ system code
identification
" */
ST
i e for (3=1;j<n;j++) {
z[i)+=A[i+m*I]*x[]];
}
— experiments |
physical process
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MPC TOOLBOXES

o MPC Toolbox (The Mathworks, Inc.):

- Part of Mathworks’ official toolbox distribution
- Allwrittenin MATLAB code
- Great for education and research

e Hybrid Toolbox: 10,000+ downloads

- Free download: http://cse.lab.imtlucca.it/~bemporad/hybrid/toolbox 1.5 downloads/day
- Great for research and education

odys.it/embedded-mpc

e ODYS Embedded MPC Toolset:

Very flexible MPC design and seamless integration in production
Real-time MPC code and QP solver written in plain C

Support for nonlinear models and deep learning D D\ /S
Designed and adopted for industrial production Advanced Gontrole & Optimization
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BENEFITS OF MPC

e Long history (decades) of success of MPC in industry

o MPCiis a universal control methodology:

- tocoordinate multiple inputs/outputs, arbitrary models (linear, nonlinear, ...
- to optimize performance under constraints
- intuitive to design, easy to calibrate and reconfigure = short development time

¢ MPC is amature technology also in fast-sampling applications (e.g. automotive)

- modern ECUs can solve MPC problems in real-time
- advanced MPC software tools are available for design/calibration/deployment

Ready to learn how MPC works ?

"Model Predictive Control" - © 2023 A. Bemporad. All rights reserved. 26/132



BASICS OF CONSTRAINED OPTIMIZATION

See more in “Numerical Optimization” course

http://cse.lab.imtlucca.it/~bemporad/optimization_course.html


http://cse.lab.imtlucca.it/~bemporad/optimization_course.html

MATHEMATICAL PROGRAMMING

min, f(x)

st. g(x) <0 f(m)A

zeR" f:R" >R, g:R" - R™

T g1<$1,$2,...,1’n)
€r = 9 f(x):f(xlsza"'vxn)v g(fﬁ):
T gm(‘rlvaa"'axn)
In general, the problem is difficult to solve use software tools

"Model Predictive Control" - © 2023 A. Bemporad. All rights reserved 27/132



OPTIMIZATION SOFTWARE

e Comparison on benchmark problems:
http://plato.la.asu.edu/bench.html

e Taxonomy of many solvers for different classes of optimization problems:
http://www.neos-guide.org

NEOS server for remotely solving optimization problems:
s

5 http://www.neos-server.org

Good open-source optimization software:

0R
J http://www.coin-or.org/

» 4 ...~
GitHub , MATLAB Central 4 , Googlec e

3 A. Bemporad. All rights reserved 28/132
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CONVEX SETS

e AsetS C R"isconvexifforallzy,zo € S

Az + (1 — )\)$2 e S, Ve [O, 1]

convex set
nonconvex set

N
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CONVEX FUNCTIONS

e Afunction f : S — Ris a convex function if S is convex and

fQar + (1= Naz) < Af(z1) + (1= A)f(22)
Vri,20 €S, A € [0, 1]

Jensen’s inequality

;c.l Az1 + (1 —Nzxo 2.72

"Model Predictive Control" - © 2023 A. Bemporad. Al rights reserved 30/132



CONVEX OPTIMIZATION PROBLEM

The optimization problem

min  f(x)

st. wes

is a convex optimization problem if S is a convex set
and f : S — Risaconvex function

e Often S is defined by linear equality constraints Az = band convex inequality
constraints g(x) < 0,g : R™ — R™ convex

e Every local solution is also a global one (we will see this later)

o Efficient solution algorithms exist
e Often occurring in many problems in engineering, economics, and science

Excellent textbook: “Convex Optimization”

"Model Predictive Control
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POLYHEDRA

e Convex polyhedron = intersection of a finite set of half-spaces of R™

e Convex polytope = bounded convex polyhedron

U3

¢ Hyperplane (H-)representation: SRR,
po 2 A

P={zeR": Az <b}

SR
Age=bs Ay =
e Vertex (V-)representation:
q P Convex hull = transformation
P={zeR":z= Z v+ Zﬂﬂ‘j} from V- to H-representation

i=1 j=1
— - —mm  Vertexenumeration =

@i, B; >0, Y ai=1,v,r; €R" transformation from H- to
V-representation
v; = vertex, r; = extreme ray

i=1
when g = 0 the polyhedron is a cone

32/132

3 A. Bemporad. All rights reserved
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LINEAR PROGRAMMING

e Linear programming (LP) problem:

min 'z
st. Ax <b, xeR"”
Fx = f George Dantzig
(1914-2005)
e LPinstandard form: min 'z o= constant
s.t. Az =0»b
>0,z €R"

e Conversion to standard form:
1. introduce slack variables

Zaijwj <b; = Zaija:j-i-si:bi,sizo
j=1 j=1
2. split positive and negative part of x

n n
> aijz + s = b Say(af —wy)+si=bs
i=1 =\ =1

xjfree, s; > 0 x;,z;,sizo

"Model Predi
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LINEAR PROGRAMMING (LP)

e Converting maximization to minimization

maxc’z = —(min—c’z)  (more generally: max f(z) = — min{—f(z)})

e Equalities to double inequalities (not recommended)

n n
Cax; < b;
S b A
j=1

n
> i Qi > by

e Change direction of an inequality

n n
Zaijxj > bi = Z—aijxj < —bi
j=1 j=1

An LP can be always formulated using “min” and “<”

"Model Predictive Control" - © 2023 A. Bemporad. All rights reserved 34/132



QUADRATIC PROGRAMMING (QP)

e Quadratic programming (QP) problem:
1
min ix'Qx +cz
st. Ar <b,zeR"” .\
Ex=f e

$2'Qx + 'z = constant

e Convex optimization problem if Q = 0 (Q = positive semidefinite matrix) 1
e Without loss of generality, we can assume Q = @Q’:

(B + Sy = Ja (B8 )e + 12/ Qe — 1 (¢’ Q')
x’(%)x

N
&\
O
8
N[ D=

e Hard problem if Q % 0(Q = indefinite matrix)
1A matrix P € R™*" s positive semidefinite (P > 0) if 2’ Pz > 0 for all z.
Itis positive definite (P >~ 0) if in addition ' Pz > Oforall z # 0.
It is negative (semi)definite (P < 0, P < 0) if — P is positive (semi)definite.
It is indefinite otherwise.

ad. All rights reserved 35/132
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MIXED-INTEGER PROGRAMMING (MIP)

. 1
min cx min  -2'Qx + 'z
e 2
st. Az <b, x =[] st. Az <b, z=[%]
ze € R,y € {0, 1} xe € Rz, € {0,1}™

mixed-integer linear program (MILP) mixed-integer quadratic program (MIQP)

Some variables are real, some are binary (0/1)

MILP and MIQP are N"P-hard problems, in general

Many good solvers are available (CPLEX, Gurobi, GLPK, FICO Xpress, CBC, ...)
For comparisons see http://plato.la.asu.edu/bench.html
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MODELING LANGUAGES FOR OPTIMIZATION PROBLEMS

(A Modeling Language for Mathematical Programming) most used
modeling language, supports several solvers

(General Algebraic Modeling System) is one of the first modeling
languages

. a subset of AMPL associated with the free package GLPK
(GNU Linear Programming Kit)

. MATLAB-based modeling language

. Modeling language for convex problems in MATLAB (@ python)

"Model Predictive Control" - © 2023 A. Bemporad. All rights reserved 37/132



MODELING LANGUAGES FOR OPTIMIZATION PROBLEMS

e CASADI +IPOPT Nonlinear modeling + automatic differentiation, nonlinear
programming solver (MATLAB, @ python, C++)

e Optimization Toolbox’ modeling language (part of MATLAB since R2017b)
e PYOMO @ python-based modeling language
e GEKKO @ python-hased mixed-integer nonlinear modeling language

e PYTHON-MIP @ python-based modeling language for mixed-integer linear
programming

e PulLP Alinear programming modeler for @ python

e JuMP A modeling language for linear, quadratic, and nonlinear constrained

optimization problems embedded in juliél

"Model Predictive Control" - © 2023 A. Bemporad. Al rights reserved 38/132
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LINEAR MPC - UNCONSTRAINED CASE

e Linear prediction model

r € R" Notation:

{ Tpr1 = Az + Buy weR™ 2o = z(t)
ye = Cay J € RP ok = a(t + k|t)
ur = u(t + klt)
k—1
e Relation between input and states: ), = A*xy + Z AjBuk,l,j
§=0
e Performance index
N-1 R = R'»0 2l
J(z,m0) = x?vpr"‘Z T QuitupRur, @ = Q=0 z= .
k=0 P = P'>0 UN_1

Goal: find the sequence z* that minimizes J(z, z¢), i.e., that steers the state «
to the origin optimally

"Model Predictive Control" - © 2023 A. Bemporad. All rights reserved 39/132



COMPUTATION OF COST FUNCTION

T Q 0 0 ... 0 x1
T2 0 Q 0 ... 0 To
J(z,0) = x(Qmo + : :
ITN-—-1 0 0 Q 0 TN -1

R
T B 0 0 [ wuo A
T2 AB B ... 0 uy A?
. = . + . zo

TN AN_IB AN_QB B L UN—1 AN

v _’—l v/

s P T

J(z,20) = (Sz+Tx0)'Q(Sz+ Txo) + 2’ Rz + 2(,Qxo

1 o, -, == 1 ==
= —Z2R+5QS)z+2,2T'QS z+ ~x(2(Q +T'QT) zo
2 —— N—— 2 ——
) ) . H F’ Y
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LINEAR MPC - UNCONSTRAINED CASE

Uo

1 1 w condensed
J(z,20) = =2 Hzta (F'24+-zyYa z=
(200) = 3 0% FTgron o form of MPC
UN—1
e The optimum is obtained by zeroing the gradient
V.J(z,20) = Hz+ Faxg =0
o
uy
and hence z* = . = —H ' Fz, (“batch” solution)
uy_1

o Alternative #1: find z* via dynamic programming (Riccati iterations)

o Alternative #2: keep also x1, . . ., xy as optimization variables and the equality
constraints ;41 = Az + Buy (non-condensed form, which is very sparse)

"Model Predictive Control" - © 2023 A. Bemporad. Al rights reserved 41/132



UNCONSTRAINED LINEAR MPC ALGORITHM

@ each sampling step ¢:

e Minimize quadratic function (no constraints)

Uo
1 "
min f(z) = §Z’Hz—|—.7:’(t)F’z z= [ . }

e solution: Vf(z) = Hz+ Fz(t) =0 = 2* = —H 'Fux(t)
wty=—[1 0 ... o] H'Fa(t) = Ka(t)

unconstrained linear MPC = linear state-feedback!
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CONSTRAINED LINEAR MPC

Tz e R"™
. L. Tht1 = Axy, + Buy,
e Linear prediction model: c u € R™
= T
Yk k y € RP
e Constraints to enforce:
Umin S u(t) S Umax Umins Umax € R™
Ymin S y(t) S Ymax Ymin; Ymax € RP

e Constrained optimal control problem (quadratic performance index):

N-1
min 2y Pry + E 2, Qi + uj Ruy, N
z =0 R = R'+0 us
Q = Q=0 z =
J— ’
St Umin < Uk < Umax, k=0,...,N—1 | F Pz0 UN-1
Ymin Syk Symaxa k= 13"'7N
T— —

"Model Predictive Control" - ©
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CONSTRAINED LINEAR MPC

k—1

e Linear prediction model: z, = AFzq + Z A*Bup_1_;
i=0

e Optimization problem (condensed form):

V(zo) = 2a(Yzo+ min 12’Hz+z(F'z | (quadratic objective)
z

s.t. Gz < W + Sz | (linear constraints)

convex Quadratic Program (QP)

Uuo
U1

* 7z — . € RV™ s the optimization vector

. 1
52'Qz + (1) F'z = constant
UN_1 5 2z + z(t)' F'z = constan

e H=H' > 0,and H, F,Y,G, W, S depend on weights Q, R, P upper and lower
bounds Umin, Umaxs Ymins Ymax and model matrices A, B, C.

"Model Predictive Control" - @
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COMPUTATION OF CONSTRAINT MATRICES

e Input constraints uyin < up < Umax, K=0,...,N —1

1 0 0 | [ Umax ]
0 1 0 Umax
. uo
U < Umax 0 A 1 Umax B u1l
z < z = i
—Ug S —Umin -1 0 cee —Umin
0 -1 ... 0 —Umin UN_1
0 0 -1 L —Umin |
k—1
e Output constraints y;, = CAFxy + Z CA'Bug—1—; < Ymax, k=1,...,N
=0
CB 0 . 0 Ymax CA
CAB cB ... 0 Ymax CA?
. .| &2< . - . Zo
CAN-1B CAB CB Ymax CAN
"Model Predictive Control" - © 2023 A. Bemporad. Al rights reserved 45/132



LINEAR MPC ALGORITHM

past | future ()

predicted outputs
@ each sampling step t: ':j
|t t+k t+N
e Measure (or estimate) the current state x(t)
. Seedhack
ug 1 /H / F/
u min szZ’Hz+x' (1) F'z
e Get the solution z* = ,1 of the QP z 2 +a'(t)

st. Gz<W+S z(t)
~—

Seedvack

o Apply only u(t) = u, discarding the remaining optimal inputs uj, ..., u}_,

"Model Predictive Control" - @
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DOUBLE INTEGRATOR EXAMPLE

o System: wy(t) = 22(0) + 325 ¢ u(i), y(t) = 21(0) + X5 w2(4)

Sampletime: T, = 1s

State-space realization:

z(t+1) = [gila()+[F]u®)
y(t) = [ro

e Constraints: —1 < u(t) <1
e Performance index: min (Z/lg:o yr+ %ui) + b [§ 9] xo (N =2)
e QP matrices:
H=[% %], F=1[35]
cost: 1ZHz 42/ () F 2+ 12/ ()Y z(t) G L0
Y=[§{]G= 01
constraints: Gz < W + Sx(t) W= [%} G- {8 8]
=l1[>2= |00
1 00
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DOUBLE INTEGRATOR EXAMPLE

gotodemo linear/doubleint .m(Hybrid Toolbox)
(see alsompcdoubleint .min MPC Toolbox)
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DOUBLE INTEGRATOR EXAMPLE

e Add constraint on second state at prediction time ¢ + 1:

x?,k2_17 k=1

e New QP matrices:

"Model Predictive Control" - © 2023 A. Bemporad. Al rights reserved 49/132



DOUBLE INTEGRATOR EXAMPLE

e State constraint x5 (t) > —1is satisfied

"Model Predictive Control" - © 2023 A. Bemporad. All rights reserved 50/132



LINEAR MPC - TRACKING

o Objective: make the output y(t) track a reference signal r(t)

e Let us parameterize the problem using the input increments
Au(t) = u(t) —u(t — 1)

o Asu(t) = u(t — 1) + Au(t) we need to extend the system with a new state

z(t+1) = Azx(t)+ Bu(t—1) + BAu(t)
Tu(t+1) = z,(t) + Ault)
[2en] = [ 8]29)] + 1518w
y(t) = [eol [ 1)

e Again alinear system with states x(t), x,,(¢) and input Au(t)
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LINEAR MPC - TRACKING

e Optimal control problem (quadratic performance index):

N-1
i Yy _ 2 Au 2
min kz_jo WY (gig1 — ()13 + [[WA* Aug |3 A e
[Aup £ up — up—1], u—1 = u(t —1) Aug U
z = . orz =
s.t. umingukgumax,kzo,...,Nfl .
Ymin < Yk < Ymax, K=1,..., N Aun-_1 UN—1

AUumin < Aug < Aumax, k=0,...,N -1
weight W () = diagonal matrix, or Cholesky factor of Q) = (W))W (")

mzin J(z,z(t)) = %Z/HZ + @) (@)W (t—1)]F'z

convex
x(t) Quadratic
st. Gz<W4S r(t) p
w(t— 1) rogram

—
e Add the extra penalty || W (uy, — uet(t))||3 to track input references

e Constraints may depend on r(t), such as epin < yx — 7(t) < emax

A. Bemporad. All rights reserved 52/132
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LINEAR MPC TRACKING EXAMPLE

1.6
1.4
1 1.2
e System: y(t) = g u(?) =
. d? d, %0'8
(or equivalently 5% +0.45% +y = u) 206
0.4
0.2
e Sampling with period T, = 0.5s: % 0 . 2 %
time |s
p(t4+1) = [L37 ~O08I8T) y(py 4 [05]u(t)
y(t) = Jo.2204 0.2145] z(t)

gotodemo linear/example3.m (Hybrid Toolbox)

"Model Predictive Control" - © 2023 A. Bemporad. All rights reserved
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LINEAR MPC TRACKING EXAMPLE

e Performance index:

mlnz Ykt — 7(t)? + 0.04Au3

o Closed-loop MPC results:

u(t) y(t)
T 1.5 T
2
15 1 LN
:
0.5
0.5
ol
0
0 2 4 6 8 10 0 2 4 6 8 10

"Model Predictive Control" - © 2023 A. Bemporad. All rights reserved 54/132



LINEAR MPC TRACKING EXAMPLE

e Impose constraint 0.8 < u(t) < 1.2 (amplitude)

1.5

1.5
ol
15 1
t) 'l t
u(t) (t)
yt) .
0.5 1
0
0 2 4 6 8 10 0 2 4 6 8 10
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MEASURED DISTURBANCES

e Measured disturbance v(t) = input that is measured but not manipulated

{ Tkt = Awg+ Bug+ Byu(t) |y Denpdted |
yr = Cuxi+ Dyo(t) process outg(::)ts
y
k — ; i 7"(’) z:::::;ae:ces
zr = A%xo + Z A’Bug_1—;+ A’ Byo(t) prr
= oo

e Same performance index, same constraints. We still have a QP:
min  12'Hz+ [2'() r'(t)u/(t — 1) v/ ()] F'z
z(t)

r(t)
u(t — 1)

v(t)

st. Gz<W+S

o Note that MPC naturally provides feedforward action on v(t) and r(¢)

"Model Predictive Control" - @
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ANTICIPATIVE ACTION (A.K.A. "PREVIEW™)

N-1
min D AW (g — r(t+ E)IE + W2 Auk)|f3
k=0
e Reference not known in advance e Future refs (partially) known in
(causal): advance (anticipative action):
re =r(t),vk=0,...,N—1 re=r(t+k),vk=0,...,N—1
output / reference output / reference
1 h
use r(t) " use r(t+k)
0.5 0.5
., ; b,
0 5 10 15 0 5 10 15
, input ) input
1 1 jﬂ\_rljle__
00 5 10 15 0 5 10 15

go todemompcpreview.m (MPC Toolbox)

e Same idea also applies for preview of measured disturbances v(t + k)

"Model Predictive Control" - ©
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EXAMPLE: CASCADED MPC

e We can use preview also to coordinate multiple MPC controllers

e Example: cascaded MPC

speed process #1 torque process #2 throttle

y(t) . actual u, (t) uy(t)
]

r(t) MPC #1 > MPC#2
e w(2), ' (t41), .., wy (1)
desired u,(t)
= future ref seq. for MPC#2

reference
speed

e MPC #1 sends current and future references to MPC #2

"Model Predictive Contro
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EXAMPLE: DECENTRALIZED MPC

e Example: decentralized MPC

process #1 process #2
Yy, (%) T Yo(t)
u4(t)
r(t) — ro(t) R
MPC #1 MPC #2
wy (t), uy(t+1), ..., u(+N-1) N

>

&
<€

Uy (1), uy(t+1), ..., uy(t+N-1)

e Commands generated by MPC #1 are measured dist. in MPC#2, and vice versa

"Model Predictive Control" -
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SOFT CONSTRAINTS

e Relax output constraints to prevent QP infeasibility

N-1
min 3 (W (gkrr — eI + 1WA Dl + W (ke — e (£)[3 + pec®
k=0

stt.  wpy1 = Axk + Bug, k=0,..., ] N — 1

Umin S Uk S Umax + k= () ..... N —1 Au(o)
Atmin < Aug < AUmax, £ =0,..., N — 1 y = :
Ymin — €Vinin < Yk < Ymax T Vimax, k = 1, ..... N Au(N-1)

e ¢ ="“panic” variable, with weight p. > WY, WA

® Viin, Vinax = Vectors with entries > 0. The larger the i-th entry of vector V, the
relatively softer the corresponding i-th constraint

e Infeasibility can be due to:
- modeling errors, disturbances
- wrong MPC setup (e.g., prediction horizon is too short)

23 A. Bemporad. All rights reserved 60/132
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DELAYS - METHOD #1

¢ Linear model with delays z(t+1) = Az(t)+ Bu(t—71)
y(t) Cu(t)
ult—1) ... wu(t—71)
U S TeTeTo o b 48 B[ ¢ Y

e Map delays to polesinz = 0:

o) Zult—k) = wp(t+1) =ap1(t), k=1,...,7
x AB O 0 ..0 @ 0
SESEHIERA DR
t+1)=1. " @O+ u®)
2 660 o Lol Lo I

e Apply MPC to the extended system

o Note: the prediction horizon N must be > 7, otherwise no input ug, ..., un_1
has an effect on the output!
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DELAYS - METHOD #2

e Linear model with delays: z(t+1)
y(t) = Cu(t)

e Delay-free model: z(t) = x(t + 7)

i

—~

N
Q
8l
~

e Design MPC for delay-free model, u(t) = fmpc(Z(t))
o Compute the predicted state

I(t) = 2(t+7) = ATx(t) + ]Z:(:)AJBu(t —1-34)

'\MA’Y '\w‘?wfs(

e Compute the MPC control move u(t) = fupc(2(t + 7))

o For better closed-loop performance and improved robustness, &(t + 7) can be
computed by a more complex model than (A, B, C)
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GOOD MODELS FOR (MPC) CONTROL

o Computation complexity depends on chosen prediction model

e Good models for MPC must be

- Descriptive enough to capture the most significant dynamics of the system

 OFF
TRADEO

- Simple enough for solving the optimization problem

“Things should be made as simple as possible, but not any simpler.”

Albert Einstein
(1879-1955)
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MPC THEORY

e After the industrial success of MPC, a lot of research done:

- linear MPC = linear prediction model

- nonlinear MPC => nonlinear prediction model

- robust MPC = uncertain (linear) prediction model

- stochastic MPC = stochastic prediction model

- distributed/decentralized MPC=- multiple MPCs cooperating together

- economic MPC = MPC based on arbitrary (economic) performance indices
- hybrid MPC = prediction model integrating logic and dynamics

- explicit MPC = offline (exact/approximate) computation of MPC

- solvers for MPC = online numerical algorithms for solving MPC problems

- data-driven MPC = machine learning methods tailored to MPC design

e Main theoretical issues: feasibility, stability, solution algorithms

porad. All rights reserved 64/132



FEASIBILITY

N—1
min Y [ Wy — r(0)]® + [ Aug?
N k=0
subj. to  Umin < Uk < Upax, k=0,...,N —1 QP problem
Ymin Syk Symaxa k= ]-a"'aN
Aumin S Auk S Aumax, k‘ZO,...,N—l

Feasibility: Will the QP problem be feasible at all sampling instants ¢?

Input constraints only: always feasible if u/Awu constraints are consistent

Hard output constraints:
- When N < oo there is no guarantee that the QP problem will remain feasible at all
t, even in the nominal case
- N = oo okinthe nominal case, but we have an infinite number of constraints!
- Maximum output admissible set theory: N < oo is enough

"Model Predictive Control
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PREDICTED AND ACTUAL TRAJECTORIES

e Consider predicted and actual trajectories

x(t) 7,/ /» (t) —4 / /»

/t‘(t F2lt) 2 (42]t)
w‘<f+1|f);x(t+j1) Jr‘(t+1[t);z(t+j1)
0 t t+N 0 t t+N

: (,+'Zn|il+nl)=£x(t+2)

"0 s //" W0 4 A
/L-'(t+2|t) / v ool |

o (1) Za(t4+1) | @ (1) (1) 3
0 t t+N 0 t t+N

e Even assuming perfect model and no disturbances, predicted open-loop
trajectories and actual closed-loop trajectories can be different

["- © 2023 A. Bemporad. All rights reserved 66/132
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PREDICTED AND ACTUAL TRAJECTORIES

optimal state " (k)

e Special case: when the horizon is infinite, open-loop
trajectories and closed-loop trajectories coincide.
"""" 7 P Nivme
,z:‘(/,“+2|I,):1*(/,+2|1,+1)=9£(t+2)  Optimal input w7 (k)
,T,‘(I+ll/,)‘=x(t+j;1)
0 t +00 i time
e This follows by Bellman’s principle of optimality: ok N

“Given the optimal sequence u*(0),...,u"(N — 1) and the cor-
responding optimal trajectory z*(0), ..., z*(IN), the subsequence
u*(k),...,u" (N — 1) is optimal for the subproblem on the horizon
[k, N, starting from the optimal state z* (k).

Richard Bellman

"An optimal policy has the property that, regardless of the decisions taken to enter a particular state, (1920-1984)

the remaining decisions made for leaving that stage must constitute an optimal policy."

) (Bellman, 1957)
1d. Al rights reserved 67/132
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CONVERGENCE AND STABILITY

N-1
min =y Pzy + Z z},Qxy + up Ruy,
z
k=0
QP problem

St Umin < Uk < Umax, E=0,...,N—1
ymingcxkgymaxak:L---vN

Q=Q =0,R=R ~0,P=P =0
o Stability is a complex function of the model (A, B, C') and the MPC parameters
Na Qa Ra P» Umin, Umax; Ymin; Ymax

o Stability constraints and weights on the terminal state x ; can be imposed over
the prediction horizon to ensure stability of MPC

3 A. Bemporad. All rights reserved 68/132
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BASIC CONVERGENCE PROPERTIES

e Theorem: Let the MPC law be based on
N-1

V*(z(t)) = min Z 2, Qxr + uj Ruy
k=0
s.t. Tr+1 = Azxy + Bug

Umin S Uk S Umax
Ymin S ka S Ymax
xy =0 <« “terminal constraint’

q

Wlth R7 Q >~ 07 Umin < 0< Umaxs Ymin <0< Ymax-
If the optimization problem is feasible at time ¢ = 0 then

lim 2(¢t) =0, lim u(t)=0

t—o0 t—o0

and the constraints are satisfied at all time ¢ > 0,for all R, () > 0.

¢ Many more convergence and stability results exist

69/132
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CONVERGENCE PROOF

Proof: Main idea = use the value function V*(x(¢)) as a Lyapunov-like function

Let z; = [uf ... uly_,]" be the optimal control sequence at time ¢

By construction z;1 = [u} ... ul,_; 0]’ is afeasible sequence at time ¢ + 1

The costof z; 1 is V*(z(t)) — 2’ (t)Qx(t) — v/ (t) Ru(t) > V*(z(t + 1))

e V*(z(t)) is monotonically decreasing and > 0,50 3lim; o, V*(z(t)) £ Vi

e Hence
0 <2'(t)Qx(t) + v/ (t)Ru(t) < V*(x(t)) — V*(x(t+ 1)) = Ofort — oo

Since R, @ > 0,lim;_, o 2(t) = 0, lim;_ 0o u(t) =0 |

Reaching the global optimum exactly is not needed to prove convergence
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MORE GENERAL CONVERGENCE RESULT - OUTPUT WEIGHTS

e Theorem: Consider the MPC control law based on optimizing

Vi(a() =min > k@ + ulRu
k=0
s.t. Tr+1 = Axg + Bug

Yk = ka

Umin < Uk < Umax

Ymin < Yk < Ymax

either N =00 or axny =0

If the optimization problem is feasible at timet = Othenforall R = R’ > 0,
Qy = Q; =0

tlggoy(t) =0, tlggo u(t) =0
and the constraints are satisfied at all time ¢ > 0. Moreover, if (C, A) is a

detectable pair then lim;_, o () = 0.

71/132
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CONVERGENCE PROOF

Proof:

e The shifted optimal sequence z;1 = [u} ... uly_; 0]’ (or z;41 = [uf ub ...} in
case N = oo) is feasible sequence at time ¢ + 1 and has cost

Vi(@(t) = ' (HQuy(t) — v/ () Ru(t) = V" (z(t + 1))
e Therefore, by convergence of V*(z(t)), we have that
0 <y (H)Qyy(t) +u'(t)Ru(t) < V*(x(t)) = V*(x(t +1)) = 0
fort — oo

e Since R, Q, > 0,alsolim;_, y(t) = 0, lim;_,oc u(t) =0

e Forallk =0,...,n —1wehave that
k-1
0= Jim o/ (t+R)Quu(t-+k) = Jim |ILO(Aa(t)+ 3 4 Bult+h—1-7)I
j:

where Q, = L' L (Cholesky factorization) and L is nonsingular
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CONVERGENCE PROOF (CONT'D)

Asu(t) — 0,also LOA*z(t) — 0, and since L is nonsingular C A¥z(t) — 0 too,
forallk=0,....,n—1

e Hence ©x(t) — 0, where © is the observability matrix of (C, A)

e If (C, A) is observable then © is nonsingular and hence lim;_, o () = 0

e If (C, A) is only detectable, we can make a canonical observability
decomposition and show that the observable states converge to zero

e Asalsou(t) — 0and the unobservable subsystem is asymptotically stable, the
unobservable states must converge to zero asymptotically too |
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EXTENSION TO REFERENCE TRACKING

¢ We want to track a constant reference r. Assume z,. and u,. exist such that

z, = Ax,+ Bu,

(equilibrium state/input)
r = Cuzx,

o Formulate the MPC problem (assume iy < Uy < Umax, Ymin < 7 < Ymax)

N-—-1

min > (yk — ) Qylyk — 1) + (ur — up) R(ux — ur)
k=0

s.t. Tr+1 = Axy + Bug

Umin < Uk < Umax, Ymin < Czy, < Ymax

IN = Xrp

e We canrepeat the convergence proofs in the shifted-coordinates
Tpt1 — @ = Az, — ) + Blug — uy), yp —r = C(zr — )

e Drawback: the approach only works well in nominal conditions, as the input
reference u,. depends on A, B, C (inverse static model)

3 A. Bemporad. All rights reserved 73/132
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STABILITY CONSTRAINTS

1. No stability constraint, infinite prediction horizon N —
2. End-point constraint zny =0
3. Relaxed terminal constraint ry € Q
4. Contraction constraint leps1] < aflz(t)], « <1

All the proofs in (1,2,3) use the value function V*(z(t)) = min, J(z,z(t)) asa
Lyapunov function.

"Model Predictive Control" - @
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CONTROL AND CONSTRAINT HORIZONS

N—-1
min Do IW Yy = )3 + WA Augl3 + pee®
k=0

subj. to  Umin < U < Umax, Kk =0,...,N —1
Atumin < Aup < Aumax, k=0,...,N —1
Aup =0, k= Ny,...,N—1
Ymin — €Vmin < Yk < Ymax + €Vinax, E=1,..., Ne

e The input horizon N, limits the number : Ymax
of free variables | : I ka
- Reduced performance : :

- Reduced computation time A Pooug

typically N, =1 +5 : .
ypicatly fHu ¢ tiN, N, N

e The constraint horizon N, limits the number of constraints
- Higher chance of violating output constraints but reduced computation time

e Other variable-reduction methods exist

porad. All rights reserved 75/132
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MPC AND LINEAR QUADRATIC REGULATION (LQR)

e Special case: J(z,x9) = 2y Pxy + Z,ivz_ol z},Qxy + uj, Rug, N, = N, with
matrix P solving the Algebraic Riccati Equation

P=APA—-A'PB(B'PB+R)"'B'PA+Q

Jacopo Francesco Riccati
(1676-1754)

(unconstrained) MPC = LQR for any choice of the prediction horizon N

Proof: Easily follows from Bellman'’s principle of optimality (dynamic
programming): zy Px n = optimal “cost-to-go” from time NV to co.
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MPC AND CONSTRAINED LQR

e Consider again the constrained MPC law based on minimizing
N-1
min zNPry + Z Qx4+ uj Ruy,
® k=0
s.t. Umin < Uk < Umax, k=0,...,N —1
Ymin S Yk S Ymax, k - 17 .. '7N
UL :Kflfk:, k:Nu,,Nfl

Choose matrix P and terminal gain K by solving the LQR problem

K =—(R+B'PB)"'B'PA
P =(A+BK)P(A+ BK)+ K'RK +Q

In a polyhedral region around the origin, constrained MPC = constrained LQR
for any choice of the prediction and control horizons NV, N,,

e The larger the horizon NV, the larger the region where MPC = constrained LQR
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MPC AND CONSTRAINED LQR

Some MPC formulations also include the terminal constraint x5 € X

— {&: [Umn] < [E](A+ BK)*z <[], VEk >0}

ynnn Ymax

that is the maximum output admissible set for the closed-loop system
(A+ BK, B, C) and constraints tmin < K2 < tUmax, Ymin < C% < Ymax

This makes MPC = constrained LQR where the MPC problem is feasible

Recursive feasibility in ensured by the terminal constraint for all 2(0) such that
the MPC problem is feasible @t = 0

The domain of feasibility may be reduced because of the additional constraint
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EXAMPLE: AFTI-F16 AIRCRAFT

Linearized model:

—0.0151 —60.5651 0 —32.174 —2.516 —13.136
& _ |:0.0001 —1.3411 0.9929 0 T+ —0.1689 0.2514:|
0.00018 43.2541 —0.86939 0 —17.251 —1.5766
0 0 0
— 0100
y = [0 00 1] z
Pitch
e Inputs: elevator and flaperon (=flap+aileron) angles D
Rudder P
e Outputs: attack and pitch angles - v g
Elevators 4
e Sampling time: Ts = 0.05 sec (+ ZOH) ‘\X\/‘f ol
o Constraints: +25° on both angles Aferon /o‘”‘ ) Qgiludmalaxis
e Open-loop unstable, poles are - -
—7.6636, —0.0075 % 0.05567, 5.4530 Lateralaxis

gotodemo linear/aftil6 .m(Hybrid Toolbox)
seealsoaftilé6 .m(MPC Toolbox)
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EXAMPLE: AFTI-F16 AIRCRAFT

e Prediction horizon N = 10, control horizon N,, = 2

e Input weights Wa% =[O O ], W* =0

e Input constraints umin = —tmax = [ 22 |
2 30
— 20
. ol L
n() B N
n u(t)
yg(t) s -10
. \¥ rzoJ
0 05 1 15 2 25 3 35 4 7300 05 1 15 2 25 3 35 4
30
20 / 20 X
15
yl(t) / 10
10 u(t) oM S—
y2(t) s 0
0 -20

"Model Predictive Control" - © 2023 A. Bemporad. Al rights reserved
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EXAMPLE: AFTI-F16 AIRCRAFT

¢ Add output constraints y1 min = —¥1,max = 0.5°

n ., u) NI

0
y2(t) s
-10
0
-20
0 05 1 15 2 25 3 35 4 0 05 1 15 2 25 3 35 4

e Soft output constraint = convex penalty with dead zone

min  p.e?
s.t. yl,min - 6Vrl,min S Y1 S yl,max - 6Vrl,maux

Y1,min Y1, max
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EXAMPLE: AFTI-F16 AIRCRAFT

e Linear control (=unconstrained MPC) + input clipping

me ” zz . .
" o T
yl(t) 2 / w7 W =[59]
Y2 1 e
J .

unstable!

Saturation needs to be considered in the control design!
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SATURATION

e Saturation is dangerous because it can break the control loop
u(t) = Ka(t) + Hr(t) # uq(t)

r(t) \ saturation ¥, @ |
— linear U, x(t
|—> controller f T process —T1

e MPC takes saturation into account and handles it automatically (and optimally)

u(t) = fMPC(z(t)v T(t)) = “a(t)

r ( t) \ saturation (t) )
—, Uu, x(t
e T % Dbrocess ——

r controller

3 A. Bemporad. All rights reserved 83/132
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TUNING GUIDELINES

N—
min Z WY (gres1 = r(O)13 + WA Aug]|3 + pee®

subj. to  Aupmin < Aug < AUumax, k=0,..., Ny — 1
Aup =0, k= Ny,...,N—1
Umin < Uk < Umax, K=0,..., Ny — 1
Ymin — €Vmin Syk < ymax+€VmaX7 k= 17~~'7NC

e weights: the larger the ratio WV /W 2* the more aggressive the controller

e input horizon: the larger IV,,, the more “optimal” but more complex the controller
o prediction horizon: the smaller NV, the more aggressive the controller

e constraints horizon: the smaller V., the simpler the controller

o limits: controller less aggressive if Atmin, Atmax are small

e penalty p.: pick up smallest p. that keeps soft constraints reasonably satisfied

Always try to set V,, as small as possible!

d

All rights reserved 84/132
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TUNING GUIDELINES - EFFECT OF SAMPLING TIME

o LetT, = sampling time used in MPC predictions

¢ For predicting T}, time units in the future we must set

4
vo [
= 7 3
S
2 =] -
4 Ty =500ms, T, =6s - N =12
oL ‘ : : ‘ :
0 1 2 3 4 5 6
time (s)

e Slew-rate constraints t,,;, < ‘;—7; < Umax ON actuators are related to 7T by

d Aumin A“max
. U U — Uk—1 i e
A

u= ~ Tsumin < Auk < Tsumax

dt T
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TUNING GUIDELINES - EFFECT OF SAMPLING TIME

e The MPC cost to minimize can be thought in continuous-time as

Tp .
= 7 (W) = DI+ W ) = w3 + WP a(m)I3) dr + pec?
0

N-1
R To | D WY (yksr = n)II3 + W (u —ur) |13+ | WIS Aull3 + peTs e
——

k=0 WA

e Hence, when changing the sampling time from 77 to 15, can can keep the same
MPC cost function by leaving W¥, W* unchanged and simply rescaling

A _WE_nwt_m
2T T LT T

€ Tl Pe Tl
WAu €:p7:77_76
! P2 = T
o Note: T used for controller execution can be # than T used in prediction

e Small controller T, = fast reaction to set-point changes / disturbances

"Model Predictive Control" - @
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SCALING

Humans think infinite precision ...computers do not !

Numerical difficulties may arise if variables assume very small/large values

o Example:
y1 € [—le—4,1e — 4] [V] y1 € [-0.1,0.1] [mV]
ya € [—1ed, led] [Pa] ya2 € [—10,10]  [kPa]

Ideally all variables should be in [—1, 1]. For example, one can replace y with
y/ymax

Scaling also possible after formulating the QP problem (=preconditioning)
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PRE-STABILIZATION OF OPEN-LOOP UNSTABLE MODELS

"Model Predictive Control" - @

Numerical issues may arise with open-loop unstable models

k—1
When condensing the QP we substitute 2, = A*zo + Z AjBuk_l_j that
j=0
may lead to a badly conditioned Hessian matrix H
B o ..o7’[®@00 B 0 0 .
AB B .. 0 0Q0..0 AB B ..0 13'103 ,8
H = : ST S : ST e s o
N1 N_2 . 0 0. Q 0 NIt N2 . o
A B A B ...B 00 0P A B A B ...B 0 0 R

Pre-stabilizing the system with uy, = Kz + vy leadsto x11 = Axxr + Bug,
k—1

Ax & A+ BK,and therefore z;, = A%z + Z Al Bog_1_
§=0
Input constraints become mixed constraints u,in < Kxp + v < Umax

K can be chosen for example by pole-placement or LQR
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OBSERVER DESIGN FOR MPC



STATE OBSERVER FOR MPC

(t) u(t)
—————>  Optimizer Process measured
reference outputs

’ Z(t)
Observer

state estimate

Full state x(t) of process may not be available, only outputs y(¢)

Even if z(¢) is available, noise should be filtered out

Prediction and process models may be quite different

The state z(¢t) may not have any physical meaning
(e.g., in case of model reduction or subspace identification)

We need to use a state observer

e Example: Luenberger observer (¢t + 1) = AZ(t) + Bu(t) + L(y(t) — C&(t))

"Model Predictive Control" - © 2023 A. Bemporad. All rights reserved 89/132



EXTENDED MODEL FOR OBSERVER DESIGN

u(t) manipulated variables

- Yu(t)
’U(t) measured disturbances plant controlled variables gz;gilassured
nd(t) R uqmeasured d(t) R mOdel
white noise model zgﬁiszﬁ;eeds
Zm(t)
n,,(t m(t N
m( ) me?suremem ( ) +O ym(t)
white noise noise model measured
outputs
unmeasured disturbance model measurement noise model
zq(t+1) = Axzg(t) + Bng(t) zm(t+1) = %mm(t) + B;nm ()
d(t) = Czq(t)+ Dng(t) m(t) = Cxm(t) + Dnpy(t)

o Note: the measurement noise model is not used for optimization, as we want
zm to go toits reference, not y,,,

"Model Predictive Control
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KALMAN FILTER DESIGN

e Plant model

z(t+1) Az(t) + Byu(t) + Byv(t) + Bqd(t)
y(t) = Cx(t) + Dyv(t) + Dad(t)

Rudolf Emil Kalman

o Full model for designing Kalman filter (1930-2016)

z(t+1) AB4C 0 x(t) By By
zq(t+1) = 0 A 0 zq(t) | + |: 0 :| U(t) + |: 0 :| U(t)+
T (£+1) 0 _0A] [zm®) 0 0
By,D 0 By
B }nd(t)Jr [0] N (t) + [ 0 }nu(t)
0 B 0

z(t) _ -
[Cm deé C_'] [ zq(t) :| + Dvmv(k) + Dmnd(t) + Dm’l’Lm(t)

T (t

ym (1)

o n4(k) = source of modeling errors
® n,,(k) = source of measurement noise
¢ n,(k) = white noise on input u (added to compute the Kalman gain)

"Model Predictive Control" - @
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OBSERVER IMPLEMENTATION

¢ Measurement update

gm(tlt - 1) = Cm'i‘(”t - 1)

Btlt) = &(tft—1) + M(ym(t) = gm ([t — 1))

e Time update

BE+1t) = Ai(t)t—1) + Bu(t) + Llym(t) — fm(t]t — 1))

e Notethatif L = AM then&(t + 1|t) = AZ(t|t) + Bu(t)

e The separation principle holds (under certain assumptions)
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|70 FEEDTHROUGH

o We always assumed no feedthrough from u to measured y
yr = Cxp+Duy, + Dyvg + Dgdy, D, =0
¢ This avoids static loops between state observer, as Z(t|¢) depends on u(t) via

Im (|t — 1), and MPC (u(t) depends on Z(¢|t))

e Often D = 0is not a limiting assumption as
- often actuator dynamics must be considered (u is the set-point to a low-level
controller of the actuators)

- most physical models described by ordinary differential equations are strictly
causal, and so is the discrete-time version of the model

e Incase D # 0, we can assume a delay in executing the commanded u

Y = Cpxr + Dug—1 o
and treat u(t — 1) as an extra state = o b
‘ : t
¢ Not anissue for unmeasured outputs (k-1)T, KTo (kDT

"Model Predictive Control" - ©
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INTEGRAL ACTION IN MPC



OUTPUT INTEGRATORS

u(t) manipulated variables

S

Yu(t)
) unmeasured
’U(t) measured disturbances plant controlled variables outputs
nd(t) ur}measured d(t) mOdel _;O——) Zm(t)
white noise model unmeasured K
disturbances
n; (t) output
white noise integrators
Ny, (t) measurement m (t) +f'\+
. > L(t)
white noise [olssincees N measured
outputs

e Introduce output integrators as additional disturbance models
e Under certain conditions, observer + controller provide zero offset in
steady-state
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OUTPUT INTEGRATORS AND OFFSET-FREE TRACKING

e Add constant unknown disturbances on measured outputs:

Tk+1 = Az + Buyg
dp+1 = di
ye = Cxp+dy

e Use the extended model to design a state observer (e.g., Kalman filter) that
estimates both the state #(¢) and disturbance d(t) from y (t)

¢ Why we get offset-free tracking in steady-state (intuitively):

- the observer makes C'(t) + d(t) — y(t) (estimation error)
- the MPC controller makes C'z(t) + d(t) — 7(t) (predicted tracking error)
- the combination of the two makes y(t) — r(t) (actual tracking error)

¢ Insteady state, the term c?(t) compensates for model mismatch

e See more on survey paper

"Model Predictive Control" - @
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OUTPUT INTEGRATORS AND OFFSET-FREE TRACKING

e More general result: consider the disturbance model

Tp+1 = Awzp+ Buy + Bady . )
diprr = dp special case: output integrators
yr = Cxp+ Dadyg By =0,Dqg=1
THEOREM

Let the number n4 of disturbances be equal to the number n,, of measured outputs.
Then all pairs ( By, D) satisfying

I—-A —By
C Dy

rank =Ny + Ny

guarantee zero offset in steady-state (y = r), provided that constraints are not
active in steady-state and the closed-loop system is asymptotically stable.

"Model Predictive Control" - © 2023 A. Bemporad. All rights reserved
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DISTURBANCE MODEL EXAMPLE

1-1-2 1 1
e Open-loop system: A = [822 3 21],B: [({],Cm: [1100]
0 2 1

» We cannot add an output integrator since the pair ([4 ], [c 1]) is not
observable

e Addaninputintegrator: By = B, D4 = 0, rank [C“:n gj] =5="ny+ny

z(t+1) = Az(t)+ Bu(t) +d(t))
dit+1) = d(t)
y(t) = Cz(t)+0-d(t)
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ERROR FEEDBACK

Idea: add the integral of the tracking error as an additional state (original idea
developed for integral action in state-feedback control)

e Extended prediction model:
:L'(t + 1) = A.T(t) + Buu(t) +0- T(t) L e is seen as a weas. disturbance
q(t + 1) = q(t) —+ Cx(t) — ’I“(t) <— '\Me%rw\ acon
—_—— ——
’fr:u,‘(.'w\(a error
y(t) = Cz(t)

|[Wiq||3 is penalized in the cost function, otherwise it is useless. W is a new
tuning knob

Intuitively, if the MPC closed-loop is asymptotically stable then ¢(¢) converges
to a constant, and hence y(t) — r(t) converges to zero.

3 A. Bemporad. All rights reserved 98/132
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REFERENCE / COMMAND GOVERNOR

actual

control
reference input
constrained
r(t hw(t ’ & -

- d( ) S (t) > local u(t) variables c(t)
vt feedback y(t) ~r(t)
eference reference process .

governor controlled outputs

primal system

|-r(f)

estimated plant + controller states

o MPC manipulates set-points to a linear feedback loop to enforce constraints
e Separation of problems:

- Local feedback guarantees offset-free tracking y(t) — w(t) — 0insteady-state
in the absence of constraints

- Actual reference w(t) generated by MPC to take care of constraints

e Advantages: small-signal properties preserved, fewer variables to optimize
w(t) = argmin,, |lw—r(t)|3
st. cqk €C
"Model Predictive (
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INTEGRAL ACTION AND A.-FORMULATION

In control systems, integral action occurs if the controller has a
transfer-function from the output to the input of the form

__B@)
ut) = v B #0

One may think that the Au-formulation of MPC provides integral action ...

.. isittrue?

Example: we want to regulate the output y(t) to zero of the scalar system

z(t+1) = ax(t)+ Pul(t)
y(t) = x(t)
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INTEGRAL ACTION AND A.-FORMULATION

e Design an unconstrained MPC controller with horizon N =1

Au(t) = argmina,, Aud + py?
st. ug=wu(t—1) 4+ Aug
y1 =21 = ax(t) + B(Aug + u(t — 1))
e By substitution, we get
Au(t) = argminay, Aud + p(ax(t) + Bu(t — 1) + BAug)?
= argminay, (1 + pB2)Aud + 28p(ax(t) + Bu(t — 1)) Aug

B B> :
= — l+//))(\‘i3 x(t) — ﬁu(?‘ —-1)

e Sincez(t) = y(t) and u(t) = u(t — 1) + Au(t) we get the linear controller

pBa p
u(t) = —%y(t) No PoLe nz=1
SRR Ev:E

e Reason: MPC gives a feedback gain on both x(¢) and u(¢ — 1), not just on z(¢)

"Model Predictive Control" - © 2023 A. Bemporad. Al rights reserved 101/132



INTEGRAL ACTION AND A.-FORMULATION

e Numerical test (with MPC Toolbox)
alpha=.5;
beta=3;
sys=ss(alpha,beta,1,0);sys.ts=1;
rho=1;p=1;m=1;
weights=struct('OV',rho, 'MVRate',1);
mpcl=mpc(sys,1l,p,m,weights);
setoutdist(mpcl, 'remove',1); % no output disturbance model
mpcltf=tf (mpcl);
sum(mpcltf.den{1l})

ans = 0.9000

o Now add an output integrator as disturbance model
setoutdist(mpcl, 'integrators'); % add output disturbance model
mpcltf=tf(mpcl);

sum(mpcltf.den{1l})

ans = -6.4185e-16

"Model Predictive Control
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MPC AND INTERNAL MODEL PRINCIPLE

¢ Assume we have an internal model of the reference signal r(t)

2"(t+1) = A.a"(t)
r(t) = Craz"(t)

e Consider the augmented prediction model
Th+t1 A 0 T B
= uk?
Th 0 A ||z} 0
¢ Design a state observer (e.g., via pole-placement) to estimate z(t), 2" (t) from
[y(t)} —[$8] {w(t)}
rt)y | — L0 Gl | am@)
e Design an MPC controller with output e, =y, — 1, = [C —C ] [iv’z]
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MPC AND INTERNAL MODEL PRINCIPLE

N

e Penalize Z e? (+small penalty on u? or Au?)
k=1

e Set control horizon N, = N

output

input

5 10 15 35 40 45 50
2
e Example: r(t) = rq sin(wt + ¢g),w = 1 rad/s /\_/J\/\A/\
o
1
2
730 5 10 15 20 25 30 35 40 45 50

|:1.6416 —0.7668 0.2416

A 1 0 0

0 0125 0
=]
C = [0.1349 0.0150 —0.1933] observer poles placed in
{0.3,0.4,0.5,0.6,0.7}
A — [1.71552 —01] sampletimeT, = 0.5s
Cr = [ 2448 2148] input saturation —2 < u(t) < 2
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MODEL PREDICTIVE CONTROL TOOLBOX

Several MPC design features available:
explicit MPC

- time-varying/adaptive models, nonlinear models, weights, constraints

stability/frequency analysis of closed-loop (inactive constraints)

Prediction models can be generated by the Identification Toolbox or
automatically linearized from Simulink

Fast command-line MPC functions
(compiled EML-code)

Graphical User Interface

Simulink library (compiled EML-code)
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MPC SIMULINK LIBRARY

mo mo model X
mvp
! mo
ref MPC  mv ref  Explcit Adaptive iy ref  Nomlinear
Nref
status [
md md - last_mv
MPG Controller Explicit MPC Gontroller ‘Adaplive MPG Controller Nonlinear MPC Gontroller
switch switch
mo
' Multiple
M,‘j‘gg‘e mv Explicit mvly
ref ref
Automated Driving
Amd md
Multiple MPC Contrallers Multiple Explicit MPC Controllers

>> mpclib
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"Model Predic

MPC SIMULINK BLOCK

Block Parameters: MPC Controller

MPC (mask) (link)

The MPC Controller block lets you design and simulate a model predictive controller
defined in the Model Predictive Control Toolbox.

Parameters
MPC Controller ‘mpcobj\ Design
Initial Controller State [] Review

Block Options

General  Online Features  Default Conditions ~ Others
Additional Inports

[ Measured disturbance (md)

[J External manipulated variable (ext.mv)

[ Targets for manipulated variables (mv.target)
Additional Outports
[J optimal cost (cost) [ optimal control sequence (mv.seq)
[J optimization status (qp.status) [J optimal state sequence (x.seq)

[] Estimated controller states (est.state) [] Optimal output sequence (y.seq)
State Estimation

[ Use custom state estimation instead of using the built-in Kalman filter (x[k|k])

Cancel Help Apply

Bemporad. All rights reserved

—Imv MPC

ref |4

MPC Controller
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MPC SIMULINK BLOCK

Block Parameters: MPC Controller

MPC (mask) (link)

mo [4—
The MPC Controller block lets you design and simulate a model predictive controller
defined in the Model Predictive Control Toolbox.

—{mv MPC

Parameters ref le
MPC Controller ‘mpcobj Design

Initial Controller State [[] Review MPC Controller

Block Options

General ~ Online Features  Default Conditions ~ Others
Constraints

[ Lower MV limits (umin) ] Upper MV limits (umax)
[ Lower OV limits (ymin) [J Upper OV limits (ymax)
[ custom constraints (E, F, G, S)

Weights

[J oV weights (y.wt) [J MV weights (u.wt)

[J MVRate weights (du.wt) [ Slack variable weight (ecr.wt)
Prediction and Control Horizons

[ Adjust prediction horizon (p) and control horizon (m) at run time

Maximum prediction horizon 10 o

Cancel Help Apply

"Model Predic

Bemporad. All rights reserved
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MPC SIMULINK BLOCK

Block Parameters: MPC Controller

MPC (mask) (link)

mo [4—
The MPC Controller block lets you design and simulate a model predictive controller
defined in the Model Predictive Control Toolbox. —mv MPC

Parameters

ref [«
MPC Controller ‘mpcobj Design

Initial Controller State [[]

Review MPC Controller
Block Options

General  Online Features  Default Conditions ~ Others
Signal Attributes

Block Data Type ‘double
Sample Time

[ Inherit sample time (must be the same as controller sample time)
Optimization Settings

[ Use external signal to enable or disable optimization (switch)

Cancel Help Apply

"Model Predic

Bemporad. All rights reserved

109/132



MPC GRAPHICAL USER INTERFACE

.} MPC Designer - scenariol: Output

MPC DESIGNER v
9 B L L ~
o d =2 &8 & & d G = (e
Open Save  MPC 1O Import Import Plot Edit Compare  Export
Session Session  Structure Attributes  Plant Controller  Scenario ¥ Scenario > Controllers ¥ Controller v
FLE STRUCTURE IMPORT SCENARIO RESULT z
Data Browser [©] scenariol: Input | scenariot: Output
~Plants
plant Input Response (against ingn @ @, ]) Output Response (against internal plant)
04 ' ' 1
-
03
08
02 /
06+ /
~ Controllers 5o S /
mpet (current) = =
041
_ ol ) J /
~ Scenarios — /
/
scenariol /—‘ /
02
0.1 [ /
/
02 e
0 4 6 10 0 4 6 10
Time (seconds) Time (seconds)

>> mpcDesigner (old version: >> mpctool)

See video on Mathworks’ web site (link)

110/132
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https://it.mathworks.com/videos/introduction-to-model-predictive-control-toolbox-81596.html

Symbol | Value (MKS) | Meaning
Ls 1.0 shaft length
ds 0.02 shaft diameter
Js negligible shaft inertia
Jmr 0.5 motor inertia
B 0.1 motor viscous friction coefficient
R 20 resistance of armature
kr 10 motor constant
p 20 gear ratio
ko 1280.2 torsional rigidity
Jr 50J s nominal load inertia
BL 25 load viscous friction coefficient
Ts 0.1 sampling time
"Model Predictive Control" - ghts reserved

>> mpcmotor

see also
linear/dcmotor.m
(Hybrid Toolbox)
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DC SERVOMOTOR MODEL

0 1 0 0 0
_ke _BL ko 0
. JL JL 2 0 v or,
T = T+ 6
0 0 0 0 T = [0]@:|
kr 6
k _k _ Bu+k:/R RIv M
PJ?\/I 0 P2jNI JMT M
0, = 1 0 O O] x y= [GL]
T
T = [kg 0 ko 0} x

>> [plant, tau] = mpcmotormodel;
>> plant = setmpcsignals(plant, 'MV',1,'MO',1,'UO',2);

"Model Predictive Contro
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DC SERVOMOTOR CONSTRAINTS

e Theinput DC voltage V is bounded withing the range
V| <220V

e Finite shear strength 7,4, = 50N/mm? requires that the torsional torque T’
satisfies the constraint
|T| < 78.5398 Nm

e Sampling time of model/controller: T, = 0.1s

>> MV = struct('Min',-220, 'Max',220);
>> OV = struct('Min',{-Inf,-78.5398}, 'Max',{Inf,78.5398});
>> Ts = 0.1;
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DC SERVOMOTOR - MPC SETUP

min 3 [W (g — (1)

1?4 WA Aug || + pee®
AU =0

subj. to  Aumin < Aug < Aumax, k=0,...,m—1
Aup, =0, k=m,...,p—1
Umin < Uk < Umax, Kk =0,...,m—1
Ymin — €Vmin < Yk < Ymax + €Vimax, K =1,...,p

>> Weights = struct('MV',0, 'MVRate',0.1,'OV',[0.1 0]);
>>p = 10;

>>m = 2;

>> mpcobj = mpc(plant,Ts,p,m,Weights,MV,0V);

A. Bemporad. All rights reserved 114/132
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DC SERVOMOTOR - CLOSED-LOOP SIMULATION

' ' ‘ ' ' ' Closed-loop simulation using
200 4
mou the sim command
of

>> Tstop = 8; % seconds

>> Tf = round(Tstop/Ts); % simulation iterations
>> r = [pi*ones(Tf,1l) zeros(Tf,1)];
>> [yl,tl,ul] = sim(mpcobj,Tf,r);
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DC SERVOMOTOR - CLOSED-LOOP SIMULATION

y(t)

Servo-mec anism Model il_.@
Angle (radians)
mo
mv MPC closed-loop
ref AngleTererence
¥
orque refere

simulationin

MPC Controller

Simulink
5}
Voltagev) Vmin

220

Vmax

Copyright 1990-2014 The MathWorks, Inc.

>> mdl = 'mpc_motor';
>> open_system(mdl)
>> sim(mdl)

"Model Predictive Control" - © 2023 A. Bemporad. All rights reserved
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DC SERVOMOTOR - CLOSED-LOOP SIMULATION

V(t)

W o

e same MPC tuning parameters

e setpoint r(t) = msin(0.4¢) deg

"Model Predictive Control" - © 2023 A,
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EXAMPLE: MPC OF ACTIVE SUSPENSIONS

¢ Take simulation model sldemo_suspnin MATLAB z‘[

Front = 2K (L0 — (2 + h)) +2C (L — 2) + uy

Ffront, Frear = upward force on body from front/rear suspension
Ky, K = frontand rear suspension spring constant
Cy,Cy = frontand rear suspension damping rate
Ly, Ly = horizontal distance from c.g. to front/rear suspension
0, 6 = pitch (rotational) angle and its rate of change

z,2 = bounce (vertical) distance and its rate of change
¢ For control purposes we add external forces u ¢, u, as manipulated variables
e The system has 4 states: 6,6, z,

e Measured disturbances: road height h, pitch moment from vehicle acceleration

"Model Predictive Control" -
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EXAMPLE: MPC OF ACTIVE SUSPENSIONS

e Step #1: get alinear discrete-time model (4 inputs, 3 outputs, 4 states)

>> plant mdl = 'suspension model';

>> op = operspec(plant_mdl);

>> [op_point, op_report] = findop(plant_mdl,op);
>> sys = linearize(plant mdl, op point);

>> Ts = 0.025; % sample time (s)

>> plant = c2d(sys,Ts);

>> plant = setmpcsignals(plant, 'MV',[1 2],'MD',...
[3 4],'MO',[1 2],'UO",3);

ad. All rights reserved 119/132
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EXAMPLE: MPC OF ACTIVE SUSPENSIONS

e Step #2: design the MPC controller

>> dfmax = .1/.1; % [kN/s]

>> MV = struct('RateMin',-Ts*dfmax, Ts*dfmax,...
'RateMax',Ts*dfmax,Ts*dfmax);

>> 0V = [1;

>> Weights = struct('MV',[0 0], 'MVRate',[.01 .01],...
'ov',[.01 0 10]);

>>p = 50; % Prediction horizon

>> m 5; % Control horizon

>> mpcobj = mpc(plant,Ts,p,m,Weights,MV,0V);

All rights reserved 120/132
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EXAMPLE: MPC OF ACTIVE SUSPENSIONS

Vehicle Suspension Model

T xd " 1 1
My i Thetadot Thata
Pitch moment 1/(Body Inertia) -
induced by
vehicle acceleration
-Front Pitch Moment Rear Pitch Moment I
1
FrontForce RearForce x 1
Front Suspension Rear Suspension n Road Height
|t Lo I
Zdot Z N\ )
1/(Body Mass) Zdot. e
acceleration Zdot
due to gravity
cm
100
] mo
L) Gain2
Gaind T
Teference,
Gain3 md
@2
MPC Controller Gain1 Copyright 1990-2015 The MathWorks, Inc.
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EXAMPLE: MPC OF ACTIVE SUSPENSIONS

¢ Closed-loop MPC results : e

4 0
2 2
o VI\ /\VA 4
2 s
0 2 4 ° s 10 o 2 4 B s 10
MPC Front Force g (N) MPC Rear Force u, (N)
150 2
0
100
20
50
0
0
0
50 &0
0 2 4 s s 10 3 2 4 s B 10
M, (Nm) b, Zth (em)
100 s
oad neintn
a0 et dsplacement Zin
0
60
s
o
10
2 N
0 5
o 2 4 6 s 10 0 2 4 s 8 10
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FREQUENCY ANALYSIS OF MPC (FOR SMALL SIGNALS)

e Unconstrained MPC gain + linear observer = linear dynamical system

e Closed-loop MPC analysis can be performed using standard frequency-domain
tools (e.g., Bode plots for sensitivity analysis)

process Ym(1)
——> _—
(t)
u(t)
MPC ‘J

3(t) .
>> sys=ss (mpcobj) returns the LTI object of the MPC controller
>> sys=tf (mpcobj) (when constraints are inactive)

"Model Predictive Control" - © 2023 A. Bemporad. All rights reserved 123/132



CONTROLLER MATCHING

o Given adesired linear controller u = Kz, find a set of weights @, R, P
defining an MPC problem such that

- [Io 0} H'F = K,
i.e.,, the MPC law coincides with /', when the constraints are inactive

e Recall that the QP matricesare H = 2(R + S'QS), F = 25'QT, where

Qo0 .0
RO .0 B 0 .0 A

- 0QO0 ..0 B 0R .. 0 B AB B .0 _ A?
Q=1|::" |, R=]... .],5= : oL T= .
0 0@ 0..0R ANT1p AN“2p  p AN

e The above inverse optimality problem can be cast to a convex problem

e Result extended to match any linear controller/observer by LQR/Kalman filter

3 A. Bemporad. All rights reserved 124/132

"Model Predictive Control" - @



CONTROLLER MATCHING - EXAMPLE

Open-loop process: y(t) = 1.8y(t — 1) + 1.2y(t — 2) + u(t — 1)

Constraints: —24 < u(t) < 24,y(t) > -5

Desired controller = PID with gains K; = 0.248, Kp = 0.752, Kp = 2.237

u(t) = —(KiZ() + Kpy(t) + 52(y(t) = y(t - 1)) x(t)l%_ﬂ
() = I(t—1)+ Tyt o

e Matching result (using inverse LQR):
6.401 0.064 —0.001 0.020 422.7 241.7 50.39 201.4
Q* = | 0:064 6.605 0.006 0.08 R* — 1. P* — | 241,7151:0 32:13 120.4
= | —0.001 0.006 6.647 —0.020 | > =1 = | 50.39 32.13 10.85 26.75
0.019 0.080 —0.020 6.378 201.4 120.4 26.75 106.6
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CONTROLLER MATCHING - EXAMPLE

okched MPC.

:25 T ﬁ\. : :
/

what PID would apply

e Note: Thisis not trivially a 100,
saturation of a PID controller.
In this case saturating the PID e
output leads to closed-loop I 4 |
instability! : I T B e )
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LINEAR MPC BASED ON LINEAR PROGRAMMING



LINEAR MPC BASED ON LP

— Az 4B r € R™
e Linear prediction model: { Tt : ka Uk ueR™
yr = Cuxy ) e R

e Constraints to enforce:

Umin S u(t) S Umax
Ymin S y(t) S Ymax

e Constrained optimal control problem (co-norms): ||v]|sc = max |vs]
1=1,...,n
N-1
min ||Peyllo + D 1Qzkllso + | Ruklloo o
k=0 RQP | ™
fullrank =~ :
S.t. Umin < U < Umax, k= 0,..., N -1 Nt
Ymin S Yk S Ymax» k= 1a'~-7N
I— —
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LINEAR MPC BASED ON LP

e Basic trick: introduce slack variables (Q° = i-th row of Q)

& > Qlay i=1,...,n
€ > —Qixk k=0,....,N—1
€& = ”kalloo Z i . ’ ’
“ € = Ruy i=1,...,m
& = [[Ruklls " ;
: > | Pay| e > —Ru k=0,...,N—1
€ .
N - klloo 6%\/' 2 PZ.TN 1 =1, ,
ey = —Play
o Example:
min, |¢| - min, . e
st. e>x
€> —x
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LINEAR MPC BASED ON LP

k-1
e Linear prediction model: 2, = AFzq + Z A'Buj_1_;
i=0

Optimization problem:

V(zg)= min [1...10...0]z | (linearobjective)

s.t. Gz < W + Sxg (linear constraints)

Linear Program (LP)

optimizationvector: z £ [e¥ ... €%, € ... €k up, ..., uy ;) € RN(u+2)

G, W, S are obtained from weights @, R, P, and model matrices A, B, C

Q, R, P can be selected to guarantee closed-loop stability
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EXTENSION TO ARBITRARY CONVEX PWA FUNCTIONS

RESULT

Every convex piecewise affine function
£ : R™ — R can be represented as the
max of affine functions, and vice versa

Example: {(z) = |z| = max{z, —z}
l(x) = max {ajx + b1,...,ayx + by}
e Constrained optimal control problem

N-1 O, UNy gk, g are arbitrary
min  {x(7N) + Z O (2, ug) convex piecewise affine (PWA)
v k=0 functions

s.t. gk(xk,uk) < O7 k :O,...,Nf 1
gn(zn) <0
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CONVEX PWA OPTIMIZATION PROBLEMS AND LP

¢ Minimization of a convex PWA function ¢(x):

min., €
€>adjz+b
\ o, | €T
€ > a5z + bs
€>ajx+by

By construction € > max{a}x + b1, abx + by, ahx + b, alx + bs}

By contradiction it is easy to show that at the optimum we have that

€ = max{a}z + by, abx + by, ajx + bs, ayx + by}

Convex PWA constraints £(x) < 0 can be handled similarly by imposing
ax+b, <0,Vi=1,2,3,4

"Model Predictive Control" - @
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LP-BASED VS OP-BASED MPC

e QP- and LP-based share the same set of feasible inputs (Gz < W + Sxz)

e When constraints dominate over performance there is little difference
between them (e.g., during transients)

o Small-signal response, however, is usually less smooth with LP than with QP,
because in LP an optimal point is always on a vertex

L? oFE‘Lm'u_er o QP oPEimizer
always on a C same feasible set may lie
vertex ahvwkere
Gz < W+ Sz
z: - T - - _ z: Gz<W + Sz
{ Gz+FEe<W + Sx } { - }

¢ = additional slack variables introduced
to represent convex PWA costs
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