MODEL PREDICTIVE CONTROL ### **Alberto Bemporad** imt.lu/ab Course page: http://cse.lab.imtlucca.it/~bemporad/mpc_course.html ## **COURSE STRUCTURE** - Basic concepts of model predictive control (MPC) and linear MPC - Linear time-varying and nonlinear MPC - Quadratic programming (QP) and explicit MPC - Hybrid MPC - Stochastic MPC - Learning-based MPC - Numerical examples: - MPC Toolbox for MATLAB (linear/explicit/parameter-varying MPC) - Hybrid Toolbox for MATLAB (explicit MPC, hybrid systems) ## **COURSE STRUCTURE** - For additional background: - Linear Systems: ``` http://cse.lab.imtlucca.it/~bemporad/intro_control_course.html ``` - Numerical Optimization: ``` http://cse.lab.imtlucca.it/~bemporad/optimization_course.html ``` - Machine Learning: ``` http://cse.lab.imtlucca.it/~bemporad/ml.html ``` ### **MODEL PREDICTIVE CONTROL (MPC)** Use a dynamical model of the process to predict its future evolution and choose the "best" control action ### MODEL PREDICTIVE CONTROL $\bullet\,$ MPC problem: find the best control sequence over a future horizon of N steps $$\begin{aligned} & \min \limits_{\substack{u_0, \dots, u_{N-1} \\ v_k = g(x_k)}} \sum_{k=0}^{N-1} \|y_k - r(t)\|_2^2 + \rho \|u_k - u_{\mathrm{r}}(t)\|_2^2 \\ \text{s.t.} & & x_{k+1} = f(x_k, u_k) & \text{prediction model} \\ & & y_k = g(x_k) & \\ & & u_{\min} \leq u_k \leq u_{\max} & \text{constraints} \\ & & y_{\min} \leq y_k \leq y_{\max} \\ & & x_0 = x(t) & \text{state feedback} \end{aligned}$$ - 1 estimate current state x(t) - **2** optimize wrt $\{u_0,\ldots,u_{N-1}\}$ - 3 only apply optimal u_0 as input u(t) ### Repeat at all time steps t ## DAILY-LIFE EXAMPLES OF MPC • MPC is like playing chess! • Online (event-based) re-planning used in GPS navigation • You use MPC too when you drive! • The MPC concept dates back to the 60's Discrete Dynamic Optimization Applied to On-Line Optimal Control (Rafal, Stevens, AiChE Journal, 1968) (Propoi, 1963) • MPC used in the process industries since the 80's (Qin, Badgewell, 2003) (Bauer, Craig, 2008) Today APC (advanced process control) = MPC (Qin, Badgewell, 2003) ### Industrial survey of MPC applications conducted in mid 1999 | Area | Aspen
Technology | Honeywell
Hi-Spec | Adersab | Invensys | SGS ^c | Total | |-------------------|--------------------------|----------------------|-------------|----------|------------------|-------| | Refining | 1200 | 480 | 280 | 25 | | 1985 | | Petrochemicals | 450 | 80 | _ | 20 | | 550 | | Chemicals | 100 | 20 | 3 | 21 | | 144 | | Pulp and paper | 18 | 50 | _ | _ | | 68 | | Air & Gas | _ | 10 | _ | _ | | 10 | | Utility | _ | 10 | _ | 4 | | 14 | | Mining/Metallurgy | 8 | 6 | 7 | 16 | | 37 | | Food Processing | _ | _ | 41 | 10 | | 51 | | Polymer | 17 | _ | _ | _ | | 17 | | Furnaces | _ | _ | 42 | 3 | | 45 | | Aerospace/Defense | _ | _ | 13 | _ | | 13 | | Automotive | _ | _ | 7 | _ | | 7 | | Unclassified | 40 | 40 | 1045 | 26 | 450 | 1601 | | Total | 1833 | 696 | 1438 | 125 | 450 | 4542 | | First App. | DMC:1985 | PCT:1984 | IDCOM:1973 | | | | | | IDCOM-M:1987
OPC:1987 | RMPCT:1991 | HIECON:1986 | 1984 | 1985 | | | Largest App. | 603×283 | 225 × 85 | _ | 31 × 12 | _ | | Estimates based on vendor survey (Bauer, Craig, 2008) Economic assessment of Advanced Process Control (APC) participants of APC survey by industry (worldwide) Industrial use of APC methods: survey results ### • Impact of advanced control technologies in industry | TABLE 1 A list of the survey results in order of industry impact as perceived by the committee members. | | | | | | | | |---|---------------------|---------------------------|--|--|--|--|--| | Rank and Technology | High-Impact Ratings | Low- or No-Impact Ratings | | | | | | | PID control | 100% | 0% | | | | | | | Model predictive control | 78% | 9% | | | | | | | System identification | 61% | 9% | | | | | | | Process data analytics | 61% | 17% | | | | | | | Soft sensing | 52% | 22% | | | | | | | Fault detection and identification | 50% | 18% | | | | | | | Decentralized and/or coordinated control | 48% | 30% | | | | | | | Intelligent control | 35% | 30% | | | | | | | Discrete-event systems | 23% | 32% | | | | | | | Nonlinear control | 22% | 35% | | | | | | | Adaptive control | 17% | 43% | | | | | | | Robust control | 13% | 43% | | | | | | | Hybrid dynamical systems | 13% | 43% | | | | | | Table 2 The percentage of survey respondents indicating whether a control technology had demonstrated ("Current Impact") or was likely to demonstrate over the next five years ("Future Impact") high impact in practice. | | Current Impact | Future Impact | |--|----------------|---------------| | Control Technology | %High | %High | | PID control | 91% | 78% | | System Identification | 65% | 72% | | Estimation and filtering | 64% | 63% | | Model-predictive control | 62% | 85% | | Process data analytics | 51% | 70% | | Fault detection and identification | 48% | 78% | | Decentralized and/or coordinated control | 29% | 54% | | Robust control | 26% | 42% | | Intelligent control | 24% | 59% | | Discrete-event systems | 24% | 39% | | Nonlinear control | 21% | 42% | | Adaptive control | 18% | 44% | | Repetitive control | 12% | 17% | | Hybrid dynamical systems | 11% | 33% | | Other advanced control technology | 11% | 25% | | Game theory | 5% | 17% | (Samad et al., 2020) "As can be observed, MPC is clearly considered more impactful, and likely to be more impactful, vis-à-vis other control technologies, especially those that can be considered the "crown jewels" of control theory - robust control, adaptive control, and nonlinear control." ### TYPICAL USE OF MPC ### strategic planner ### MPC OF AUTOMOTIVE SYSTEMS (Bemporad, Bernardini, Borrelli, Cimini, Di Cairano, Esen, Giorgetti, Graf-Plessen, Hrovat, Kolmanovsky Levijoki, Livshiz, Long, Pattipati, Ripaccioli, Trimboli, Tseng, Verdejo, Yanakiev, ..., 2001-present) #### **Powertrain** engine control, magnetic actuators, robotized gearbox, power MGT in HEVs, cabin heat control, electrical motors #### Vehicle dynamics traction control, active steering, semiactive suspensions, autonomous driving Ford Motor Company Jaguar DENSO Automotive General Motors Fiat Most automotive OEMs are looking into MPC solutions today ### MPC FOR AUTONOMOUS DRIVING - Coordinate torque request and steering to achieve safe and comfortable autonomous driving with no collisions - MPC combines path planning, path tracking, and obstacle avoidance - Stochastic prediction models are used to account for uncertainty and driver's behavior ### MPC OF GASOLINE TURBOCHARGED ENGINES Control throttle, wastegate, intake & exhaust cams to make engine torque track set-points, with max efficiency and satisfying constraints numerical optimization problem solved in real-time on ECU (Bemporad, Bernardini, Long, Verdejo, 2018) engine operating at low pressure (66 kPa) ### SUPERVISORY MPC OF POWERTRAIN WITH CVT - Coordinate engine torque request and continuously variable transmission (CVT) ratio to improve fuel economy and drivability - Real-time MPC is able to take into account coupled dynamics and constraints, optimizing performance also during transients US06 Double Hill driving cycle (Bemporad, Bernardini, Livshiz, Pattipati, 2018) ### MPC IN AUTOMOTIVE PRODUCTION **ODYS** real-time embedded optimization and MPC software is currently running on **3+ million vehicles** worldwide Multivariable system, 4 inputs, 4 outputs. QP solved in real time on ECU (Bemporad, Bernardini, Long, Verdejo, 2018) Supervisory MPC for powertrain control also in production since 2018 (Bemporad, Bernardini, Livshiz, Pattipati, 2018) ### First known mass production of MPC in the automotive industry http://www.odys.it/odys-and-gm-bring-online-mpc-to-production ## **AEROSPACE APPLICATIONS OF MPC** MPC capabilities explored in space applications ### cooperating UAVs (Bemporad, Rocchi, 2011) #### powered descent (Pascucci, Bennani, Bemporad, 2016) ### planetary rover (Krenn et. al., 2012) ## MPC IN AERONAUTIC INDUSTRY ### **PRESS RELEASE** Pratt & Whitney's F135 Advanced Multi-Variable Control Team Receives UTC's Prestigious George Mead Award for Outstanding Engineering Accomplishment Pratt & Whitney engineers Louis Celiberti, Timothy Crowley, James Fuller and Cary Powell won the George Mead Award — United Technologies Corp.'s highest award for outstanding engineering achievement — for their pioneering work in developing the world's first advanced multi-variable control (AMVC) design for the only engine that powers the F-35 Lightning II flight test program. Pratt & Whitney is a United Technologies Corp. (NYSE:UTX) company. The AMVC, which uses a proprietary model predictive control methodology, is the most technically advanced propulsion system control ever produced by the aerospace industry, demonstrating the highest pilot rating for flight performance and providing independent control of vertical thrust and pitch from five sources. This innovative and industry-leading advanced design is protected with five broad patents for Pratt & Whitney and UTC, and is the new standard for propulsion system control for Pratt & Whitney military and commercial engines. http://www.pw.utc.com/Press/Story/20100527-0100/2010 ### MPC FOR SMART ELECTRICITY GRIDS (Patrinos, Trimboli, Bemporad, 2011) Dispatch power in smart distribution grids, trade energy on energy markets **Challenges:** account for **dynamics**, network **topology**, physical **constraints**, and **stochasticity** (of renewable energy, demand, electricity prices) FP7-ICT project "E-PRICE - Price-based Control of Electrical Power Systems" (2010-2013) ### MPC OF DRINKING WATER NETWORKS (Sampathirao, Sopasakis, Bemporad, Patrinos, 2017) Drinking water network of Barcelona: 63 tanks 114 controlled flows 17 mixing nodes - ≈5% savings on energy costs w.r.t. current practice - Demand and minimum pressure
requirements met, smooth control actions - Computation time: \approx 20 s on NVIDIA Tesla 2075 CUDA (sample time = 1 hr) FP7-ICT project "EFFINET - Efficient Integrated Real-time Monitoring and Control of Drinking Water Networks" (2012-2015) ### MPC FOR DYNAMIC HEDGING OF FINANCIAL OPTIONS (Bemporad, Bellucci, Gabbriellini, Quantitative Finance, 2014) - Goal: find a dynamic hedging policy of a portfolio replicating a synthetic option, so to minimize risk that payoff portfolio wealth at expiration date - A simple linear stochastic model describes the dynamics of portfolio wealth - Stochastic MPC results: European call ## MPC RESEARCH IS DRIVEN BY APPLICATIONS | • Process control \rightarrow linear MPC (some nonlinear too) | 1970-2000 | |---|-----------| | • Automotive control \rightarrow explicit, hybrid MPC | 2001-2010 | | Aerospace systems and UAVs \rightarrow linear time-varying MPC | >2005 | | • Information and Communication Technologies (ICT) (wireless nets, cloud) \rightarrow distributed/decentralized MPC | >2005 | | $\bullet \ \ Energy, finance, automotive, water \to \mathbf{stochastic} \ MPC$ | >2010 | | $ \bullet \ \ \text{Industrial production} \rightarrow \textbf{embedded optimization} \ \text{solvers for MPC} \\$ | >2010 | | Machine learning → data-driven MPC | today | ## **MPC DESIGN FLOW** ### **MPC TOOLBOXES** - MPC Toolbox (The Mathworks, Inc.): (Bemporad, Ricker, Morari, 1998-today) - Part of Mathworks' official toolbox distribution - All written in MATLAB code - Great for <u>education and research</u> ### Hybrid Toolbox: (Bemporad, 2003-today) 10,000+ downloads 1.5 downloads/day - Free download: ${\tt http://cse.lab.imtlucca.it/~bemporad/hybrid/toolbox}$ - Great for research and education ### ODYS Embedded MPC Toolset: (ODYS, 2013-today) odys.it/embedded-mpc - Very flexible MPC design and seamless integration in production - Real-time MPC code and QP solver written in plain C - Support for nonlinear models and deep learning - Designed and adopted for <u>industrial production</u> ### **BENEFITS OF MPC** - Long history (decades) of success of MPC in industry - MPC is a universal control methodology: - to coordinate multiple inputs/outputs, arbitrary models (linear, nonlinear, ...) - to optimize performance under constraints - intuitive to design, easy to calibrate and reconfigure = short development time - MPC is a mature technology also in fast-sampling applications (e.g. automotive) - modern ECUs can solve MPC problems in real-time - advanced MPC software tools are available for design/calibration/deployment Ready to learn how MPC works? # **BASICS OF CONSTRAINED OPTIMIZATION** See more in "Numerical Optimization" course http://cse.lab.imtlucca.it/~bemporad/optimization_course.html ## MATHEMATICAL PROGRAMMING $$\min_{x} \quad f(x) \\ \text{s.t.} \quad g(x) \le 0$$ $x \in \mathbb{R}^n, f : \mathbb{R}^n \to \mathbb{R}, g : \mathbb{R}^n \to \mathbb{R}^m$ $$x = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}, \quad f(x) = f(x_1, x_2, \dots, x_n), \quad g(x) = \begin{bmatrix} g_1(x_1, x_2, \dots, x_n) \\ \vdots \\ g_m(x_1, x_2, \dots, x_n) \end{bmatrix}$$ In general, the problem is difficult to solve use software tools ## OPTIMIZATION SOFTWARE Comparison on benchmark problems: http://plato.la.asu.edu/bench.html • Taxonomy of many solvers for different classes of optimization problems: http://www.neos-guide.org • NEOS server for remotely solving optimization problems: http://www.neos-server.org Good open-source optimization software: http://www.coin-or.org/ ## **CONVEX SETS** • A set $S \subseteq \mathbb{R}^n$ is **convex** if for all $x_1, x_2 \in S$ $$\lambda x_1 + (1 - \lambda)x_2 \in S, \, \forall \lambda \in [0, 1]$$ ## **CONVEX FUNCTIONS** • A function $f:S \to \mathbb{R}$ is a convex function if S is convex and $$f(\lambda x_1 + (1 - \lambda)x_2) \le \lambda f(x_1) + (1 - \lambda)f(x_2)$$ $$\forall x_1, x_2 \in S, \ \lambda \in [0, 1]$$ Jensen's inequality ### **CONVEX OPTIMIZATION PROBLEM** ### The optimization problem $$\begin{array}{ll} \min & f(x) \\ \text{s.t.} & x \in S \end{array}$$ $x_1 \quad \lambda x_1 + (1 - \lambda)x_2 \quad x_5$ is a **convex optimization problem** if S is a convex set and $f:S\to\mathbb{R}$ is a convex function - Often S is defined by linear equality constraints Ax = b and convex inequality constraints $g(x) \le 0, g: \mathbb{R}^n \to \mathbb{R}^m$ convex - Every local solution is also a global one (we will see this later) - Efficient solution algorithms exist - Often occurring in many problems in engineering, economics, and science Excellent textbook: "Convex Optimization" (Boyd, Vandenberghe, 2002) ### **POLYHEDRA** - Convex **polyhedron** = intersection of a finite set of half-spaces of \mathbb{R}^n - Convex polytope = bounded convex polyhedron - Hyperplane (H-)representation: $$P = \{ x \in \mathbb{R}^n : Ax \le b \}$$ Vertex (V-)representation: $$P = \{ x \in \mathbb{R}^n : x = \sum_{i=1}^q \alpha_i v_i + \sum_{j=1}^p \beta_j r_j \}$$ $$\alpha_i,\beta_j\geq 0,\ \sum_{i=1}^q\alpha_i=1,\ v_i,r_j\in\mathbb{R}^n$$ when $q=0$ the polyhedron is a **cone** **Convex hull** = transformation from V- to H-representation Vertex enumeration = transformation from H- to V-representation v_i = vertex, r_i = extreme ray ### **LINEAR PROGRAMMING** Linear programming (LP) problem: min $$c'x$$ s.t. $Ax \le b, x \in \mathbb{R}^n$ $Ex = f$ George Dantzig (1914–2005) • LP in standard form: $\begin{array}{ll} \min & c'x \\ \text{s.t.} & Ax \end{array}$ s.t. Ax = b $x \ge 0, x \in \mathbb{R}^n$ - Conversion to standard form: - 1. introduce slack variables $$\sum_{j=1}^{n} a_{ij} x_{j} \le b_{i} \Rightarrow \sum_{j=1}^{n} a_{ij} x_{j} + s_{i} = b_{i}, \, s_{i} \ge 0$$ 2. split positive and negative part of \boldsymbol{x} $$\left\{\begin{array}{l} \displaystyle \sum_{j=1}^n a_{ij}x_j + s_i = b_i \\ x_j \text{ free, } s_i \geq 0 \end{array}\right. \Rightarrow \left\{\begin{array}{l} \displaystyle \sum_{j=1}^n a_{ij}(x_j^+ - x_j^-) + s_i = b_i \\ x_j^+, x_j^-, s_i \geq 0 \end{array}\right.$$ ## **LINEAR PROGRAMMING (LP)** Converting maximization to minimization $$\max_x c'x = -(\min_x - c'x) \qquad \text{(more generally: } \max_x f(x) = -\min_x \{-f(x)\})$$ Equalities to double inequalities (not recommended) $$\sum_{j=1}^{n} a_{ij} x_j = b_i \Rightarrow \begin{cases} \sum_{j=1}^{n} a_{ij} x_j \le b_i \\ \sum_{j=1}^{n} a_{ij} x_j \ge b_i \end{cases}$$ · Change direction of an inequality $$\sum_{j=1}^{n} a_{ij} x_j \ge b_i \implies \sum_{j=1}^{n} -a_{ij} x_j \le -b_i$$ An LP can be always formulated using " \min " and " \leq " # **QUADRATIC PROGRAMMING (QP)** Quadratic programming (QP) problem: $$\min \quad \frac{1}{2}x'Qx + c'x$$ s.t. $Ax \le b, x \in \mathbb{R}^n$ $$Ex = f$$ - Convex optimization problem if $Q\succeq 0$ (Q = positive semidefinite matrix) ¹ - Without loss of generality, we can assume Q=Q': $$\begin{array}{rcl} \frac{1}{2}x'Qx & = & \frac{1}{2}x'(\frac{Q+Q'}{2} + \frac{Q-Q'}{2})x = \frac{1}{2}x'(\frac{Q+Q'}{2})x + \frac{1}{4}x'Qx - \frac{1}{4}(x'Q'x)' \\ & = & \frac{1}{2}x'(\frac{Q+Q'}{2})x \end{array}$$ • Hard problem if $Q \not\succeq 0$ (Q = indefinite matrix) ¹A matrix $P \in \mathbb{R}^{n \times n}$ is positive semidefinite ($P \succeq 0$) if $x'Px \geq 0$ for all x. It is **positive definite** $(P \succ 0)$ if in addition x'Px > 0 for all $x \neq 0$. It is **negative** (semi)definite ($P \prec 0, P \leq 0$) if -P is positive (semi)definite. It is indefinite otherwise. #### MIXED-INTEGER PROGRAMMING (MIP) $$\begin{aligned} & \text{min} \quad c'x \\ & \text{s.t.} \quad Ax \leq b, \ x = \left[\begin{smallmatrix} x_c \\ x_b \end{smallmatrix} \right] \\ & \quad x_c \in \mathbb{R}^{n_c}, \ x_b \in \{0,1\}^{n_b} \end{aligned}$$ mixed-integer linear program (MILP) $$\min \quad \frac{1}{2}x'Qx + c'x$$ s.t. $$Ax \le b, x = \begin{bmatrix} x_c \\ x_b \end{bmatrix}$$ $$x_c \in \mathbb{R}^{n_c}, x_b \in \{0, 1\}^{n_b}$$ mixed-integer quadratic program (MIQP) - Some variables are real, some are binary (0/1) - MILP and MIQP are \mathcal{NP} -hard problems, in general - Many good solvers are available (CPLEX, Gurobi, GLPK, FICO Xpress, CBC, ...) For comparisons see http://plato.la.asu.edu/bench.html # MODELING LANGUAGES FOR OPTIMIZATION PROBLEMS - AMPL (A Modeling Language for Mathematical Programming) most used modeling language, supports several solvers - GAMS (General Algebraic Modeling System) is one of the first modeling languages - GNU MathProg a subset of AMPL associated with the free package GLPK (GNU Linear Programming Kit) - YALMIP MATLAB-based modeling language - CVX (CVXPY) Modeling language for convex problems in MATLAB (python) # MODELING LANGUAGES FOR OPTIMIZATION PROBLEMS - CASADI + IPOPT Nonlinear modeling + automatic differentiation, nonlinear programming solver (MATLAB, python, C++) - Optimization Toolbox' modeling language (part of MATLAB since R2017b) - PYOMO 🐡 python-based modeling language - GEKKO 🟺 python-based mixed-integer nonlinear modeling language - PYTHON-MIP python-based modeling language for mixed-integer linear programming - PuLP A linear programming modeler for 🔮 python - Jump A modeling language for linear, quadratic, and nonlinear constrained optimization problems embedded in julia # **LINEAR MPC - UNCONSTRAINED CASE** • Linear prediction model $$\begin{cases} x_{k+1} = Ax_k + Bu_k \\ y_k = Cx_k \end{cases} \quad \begin{cases} x \in \mathbb{R}^n \\ u \in \mathbb{R}^m \\ y \in \mathbb{R}^p \end{cases}$$ #### Notation: $$x_0 = x(t)$$ $$x_k = x(t + k|t)$$ $$u_k = u(t + k|t)$$ - Relation between input and states: $x_k = A^k x_0 + \sum_{j=0}^{\kappa-1} A^j B u_{k-1-j}$ - Performance index $$J(z, x_0) = x_N' P x_N + \sum_{k=0}^{N-1} x_k' Q x_k + u_k' R u_k \begin{vmatrix} R & = & R' \succ 0 \\ Q & = & Q' \succeq 0 \\ P & = & P' \succeq 0 \end{vmatrix} z = \begin{bmatrix} u_0 \\ u_1
\\ \vdots \\ u_{N-1} \end{bmatrix}$$ • Goal: find the sequence z^* that minimizes $J(z,x_0)$, i.e., that steers the state x to the origin optimally # COMPUTATION OF COST FUNCTION $$J(z,x_{0}) = x'_{0}Qx_{0} + \begin{bmatrix} x_{1} \\ x_{2} \\ \vdots \\ x_{N-1} \\ x_{N} \end{bmatrix}' \begin{bmatrix} Q & 0 & 0 & \dots & 0 \\ 0 & Q & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & \dots & 0 & Q & 0 \\ 0 & 0 & \dots & 0 & P \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \\ \vdots \\ x_{N-1} \\ x_{N} \end{bmatrix}$$ $$+ \begin{bmatrix} u_{0} \\ u_{1} \\ \vdots \\ u_{N-1} \end{bmatrix}' \begin{bmatrix} R & 0 & \dots & 0 \\ 0 & R & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & \dots & 0 & R \end{bmatrix} \begin{bmatrix} u_{0} \\ u_{1} \\ \vdots \\ u_{N-1} \end{bmatrix}$$ $$= \begin{bmatrix} x_{1} \\ x_{2} \\ \vdots \\ x_{N} \end{bmatrix} = \begin{bmatrix} B & 0 & \dots & 0 \\ AB & B & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ A^{N-1}B & A^{N-2}B & \dots & B \end{bmatrix} \begin{bmatrix} u_{0} \\ u_{1} \\ \vdots \\ u_{N-1} \end{bmatrix} + \begin{bmatrix} A \\ A^{2} \\ \vdots \\ A^{N} \end{bmatrix} x_{0}$$ $$J(z,x_{0}) = (\bar{S}z + \bar{T}x_{0})'\bar{Q}(\bar{S}z + \bar{T}x_{0}) + z'\bar{R}z + x'_{0}Qx_{0}$$ $$= \frac{1}{2}z'\underbrace{2(\bar{R} + \bar{S}'\bar{Q}\bar{S})}_{H} z + x'_{0}\underbrace{2\bar{T}'\bar{Q}\bar{S}}_{F'} z + \frac{1}{2}x'_{0}\underbrace{2(Q + \bar{T}'\bar{Q}\bar{T})}_{Y} x_{0}$$ # LINEAR MPC - UNCONSTRAINED CASE $$J(z,x_0) = \frac{1}{2}z'Hz + x_0'F'z + \frac{1}{2}x_0'Yx_0 \qquad \qquad z = \begin{bmatrix} u_0 \\ u_1 \\ \vdots \\ u_{N-1} \end{bmatrix} \quad \begin{array}{c} \text{condensed} \\ \text{form of MPC} \end{array}$$ The optimum is obtained by zeroing the gradient $$\nabla_z J(z, x_0) = Hz + Fx_0 = 0$$ $$\begin{bmatrix} u_0^* \\ u_1^* \end{bmatrix}$$ and hence $$z^*=\begin{bmatrix}u_0\\u_1^*\\\vdots\\u_{N-1}^*\end{bmatrix}=-H^{-1}Fx_0$$ ("batch" solution) - Alternative #1: find z^* via dynamic programming (Riccati iterations) - Alternative #2: keep also x_1, \ldots, x_N as optimization variables and the equality constraints $x_{k+1} = Ax_k + Bu_k$ (non-condensed form, which is very sparse) # **UNCONSTRAINED LINEAR MPC ALGORITHM** @ each sampling step t: • Minimize quadratic function (no constraints) $$\min_{z} f(z) = \frac{1}{2}z'Hz + \frac{x'(t)}{z'}z \qquad z = \begin{bmatrix} u_0 \\ u_1 \\ \vdots \\ u_{N-1} \end{bmatrix}$$ • solution: $\nabla f(z) = Hz + Fx(t) = 0 \Rightarrow z^* = -H^{-1}Fx(t)$ $$u(t) = -\begin{bmatrix} I & 0 & \dots & 0 \end{bmatrix} H^{-1} F x(t) = K x(t)$$ #### unconstrained linear MPC = linear state-feedback! # **CONSTRAINED LINEAR MPC** • Linear prediction model: $$\begin{cases} x_{k+1} &= Ax_k + Bu_k \\ y_k &= Cx_k \end{cases}$$ $$\begin{aligned} x &\in \mathbb{R}^n \\ u &\in \mathbb{R}^m \\ y &\in \mathbb{R}^p \end{aligned}$$ • Constraints to enforce: $$\begin{cases} u_{\min} \le u(t) \le u_{\max} \\ y_{\min} \le y(t) \le y_{\max} \end{cases}$$ $$u_{\min}, u_{\max} \in \mathbb{R}^m$$ $y_{\min}, y_{\max} \in \mathbb{R}^p$ Constrained optimal control problem (quadratic performance index): $$\min_{z} \quad x'_{N}Px_{N} + \sum_{k=0}^{N-1} x'_{k}Qx_{k} + u'_{k}Ru_{k}$$ s.t. $$u_{\min} \leq u_{k} \leq u_{\max}, k = 0, \dots, N-1$$ $$y_{\min} \leq y_{k} \leq y_{\max}, k = 1, \dots, N$$ $$\begin{bmatrix} R & = & R' \succ 0 \\ Q & = & Q' \succeq 0 \\ P & = & P' \succeq 0 \end{bmatrix} z = \begin{bmatrix} u_0 \\ u_1 \\ \vdots \\ u_{N-1} \end{bmatrix}$$ # **CONSTRAINED LINEAR MPC** - Linear prediction model: $x_k = A^k x_0 + \sum_{i=0}^{k-1} A^i B u_{k-1-i}$ - Optimization problem (condensed form): $$V(x_0)= rac{1}{2}x_0'Yx_0+ \min_z rac{1}{2}z'Hz+x_0'F'z$$ (quadratic objective) $${ m s.t.} \quad Gz\leq W+Sx_0 \quad \hbox{(linear constraints)}$$ #### convex Quadratic Program (QP) • $$z=\left|\begin{array}{c} u_1 \\ u_1 \\ \vdots \\ u_{N-1} \end{array}\right|\in\mathbb{R}^{Nm}$$ is the optimization vector • $H=H'\succ 0$, and H,F,Y,G,W,S depend on weights Q,R,P upper and lower bounds $u_{\min},u_{\max},y_{\min},y_{\max}$ and model matrices A,B,C. # COMPUTATION OF CONSTRAINT MATRICES • Input constraints $u_{\min} \le u_k \le u_{\max}, \ k = 0, \dots, N-1$ • Output constraints $y_k = CA^k x_0 + \sum_{i=0}^{\kappa-1} CA^i Bu_{k-1-i} \le y_{\max}, \ k=1,\ldots,N$ $$\begin{bmatrix} CB & 0 & \dots & 0 \\ CAB & CB & \dots & 0 \\ \vdots & & & \vdots \\ CA^{N-1}B & \dots & CAB & CB \end{bmatrix} z \leq \begin{bmatrix} y_{\text{max}} \\ y_{\text{max}} \\ \vdots \\ y_{\text{max}} \end{bmatrix} - \begin{bmatrix} CA \\ CA^2 \\ \vdots \\ CA^N \end{bmatrix} x_0$$ # LINEAR MPC ALGORITHM #### @ each sampling step t: Measure (or estimate) the current state x(t) $$\bullet \ \ \text{Get the solution} \ z^* = \begin{bmatrix} u_0^* \\ u_1^* \\ \vdots \\ u_{N-1}^* \end{bmatrix} \text{ of the QP}$$ $$\bullet \ \ \text{Get the solution} \ z^* = \begin{bmatrix} u_0^* \\ u_1^* \\ \vdots \\ u_{N-1}^* \end{bmatrix} \ \text{of the QP} \qquad \begin{cases} \min_z \quad \frac{1}{2}z'Hz + \overbrace{x'(t)F'z} \\ \text{s.t.} \quad Gz \leq W + S \underbrace{x(t)}_{\text{feedback}} \end{cases}$$ - Apply only $u(t)=u_0^*$, discarding the remaining optimal inputs u_1^*,\dots,u_{N-1}^* • System: $$x_2(t) = x_2(0) + \sum_{j=0}^{t-1} u(j), y(t) = x_1(0) + \sum_{j=0}^{t-1} x_2(j)$$ - Sample time: $T_s = 1$ s - State-space realization: $\begin{cases} x(t+1) &= \begin{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} x(t) + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u(t) \\ y(t) &= \begin{bmatrix} \begin{bmatrix} 1 & 0 \end{bmatrix} x(t) \end{cases}$ - Constraints: $-1 \le u(t) \le 1$ • Performance index: $$\min\left(\sum_{k=0}^{1}y_{k}^{2}+\frac{1}{10}u_{k}^{2}\right)+x_{2}'\left[\begin{smallmatrix} 1 & 0 \\ 0 & 1 \end{smallmatrix}\right]x_{2}$$ ($N=2$) • QP matrices: cost: $$\frac{1}{2}z'Hz + x'(t)F'z + \frac{1}{2}x'(t)Yx(t)$$ $$H = \begin{bmatrix} 4.2 & 2 \\ 2 & 2.2 \end{bmatrix}, F = \begin{bmatrix} 2 & 6 \\ 0 & 2 \end{bmatrix}$$ $$Y = \begin{bmatrix} 4 & 6 \\ 6 & 12 \end{bmatrix}, G = \begin{bmatrix} 1 & 0 \\ -1 & 0 \\ 0 & -1 \end{bmatrix}$$ constraints: $$Gz \leq W + Sx(t)$$ $$W = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, S = \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}$$ "Model Predictive Control" - © 2023 A. Bemporad. All rights reserved. go to demo linear/doubleint.m (Hybrid Toolbox) (see also mpcdoubleint.m in MPC Toolbox) • Add constraint on second state at prediction time t + 1: $$x_{2,k} \ge -1, k = 1$$ • New QP matrices: $$H = \left[\begin{smallmatrix} 4.2 & 2 \\ 2 & 2.2 \end{smallmatrix} \right], \ F = \left[\begin{smallmatrix} 2 & 6 \\ 0 & 2 \end{smallmatrix} \right], \ Y = \left[\begin{smallmatrix} 4 & 6 \\ 6 & 12 \end{smallmatrix} \right]$$ $$G = \begin{bmatrix} -1 & 0 \\ 1 & 0 \\ -1 & 0 \\ 0 & 1 \\ 0 & -1 \end{bmatrix}, W = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}, S = \begin{bmatrix} 0 & 1 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}$$ • State constraint $x_2(t) \ge -1$ is satisfied #### **LINEAR MPC - TRACKING** - $\bullet \;$ Objective: make the output y(t) track a reference signal r(t) - Let us parameterize the problem using the input increments $$\Delta u(t) = u(t) - u(t-1)$$ • As $u(t)=u(t-1)+\Delta u(t)$ we need to extend the system with a new state $x_u(t)=u(t-1)$ $$\begin{cases} x(t+1) &= Ax(t) + Bu(t-1) + B\Delta u(t) \\ x_u(t+1) &= x_u(t) + \Delta u(t) \end{cases}$$ $$\begin{cases} \begin{bmatrix} x(t+1) \\ x_u(t+1) \end{bmatrix} &= \begin{bmatrix} A & B \\ 0 & I \end{bmatrix} \begin{bmatrix} x(t) \\ x_u(t) \end{bmatrix} + \begin{bmatrix} B \\ I \end{bmatrix} \Delta u(t) \\ y(t) &= \begin{bmatrix} C & 0 \end{bmatrix} \begin{bmatrix} x(t) \\ x_u(t) \end{bmatrix} \end{cases}$$ • Again a linear system with states $x(t), x_u(t)$ and input $\Delta u(t)$ #### LINEAR MPC - TRACKING Optimal control problem (quadratic performance index): $$\min_{z} \sum_{k=0}^{N-1} \|W^{y}(y_{k+1} - r(t))\|_{2}^{2} + \|W^{\Delta u}\Delta u_{k}\|_{2}^{2} [\Delta u_{k} \triangleq u_{k} - u_{k-1}], u_{-1} = u(t-1)$$ s.t. $u_{\min} \leq u_{k} \leq u_{\max}, k = 0, \dots, N-1$ $y_{\min} \leq y_{k} \leq y_{\max}, k = 1, \dots, N$ $\Delta u_{\min} \leq \Delta u_{k} \leq \Delta u_{\max}, k = 0, \dots, N-1$ $$z = \begin{bmatrix} \Delta u_0 \\ \Delta u_1 \\ \vdots \\ \Delta u_{N-1} \end{bmatrix} \text{ or } z = \begin{bmatrix} u_0 \\ u_1 \\ \vdots \\ u_{N-1} \end{bmatrix}$$ weight $W^{(\cdot)}$ = diagonal matrix, or Cholesky factor of $Q^{(\cdot)} = (W^{(\cdot)})'W^{(\cdot)}$ $$\min_{z} \quad J(z, x(t)) = \frac{1}{2}z'Hz + [x'(t) r'(t) u'(t-1)]F'z$$ s.t. $$Gz \le W + S \begin{bmatrix} x(t) \\ r(t) \\ u(t-1) \end{bmatrix}$$ convex Quadratic **Program** - Add the extra penalty $||W^u(u_k u_{ref}(t))||_2^2$ to track input references - Constraints may depend on r(t), such as $e_{\min} \leq y_k r(t) \leq e_{\max}$ # **LINEAR MPC TRACKING EXAMPLE** • System: $$y(t)=\frac{1}{s^2+0.4s+1}u(t)$$ (or equivalently $\frac{d^2y}{dt^2}+0.4\frac{dy}{dt}+y=u$) • Sampling with period $T_s=0.5\,\mathrm{s}$: $$\begin{cases} x(t+1) &= \begin{bmatrix} 1.597 & -0.8187 \\ 1 & 0 \end{bmatrix} x(t) + \begin{bmatrix} 0.5 \\ 0 \end{bmatrix} u(t) \\ y(t) &= \begin{bmatrix} 0.2294 & 0.2145 \end{bmatrix} x(t) \end{cases}$$ go to demo linear/example3.m (Hybrid Toolbox) # **LINEAR MPC TRACKING EXAMPLE** • Performance index: $$\min \sum_{k=0}^{9} (y_{k+1} - r(t))^2 + 0.04 \Delta u_k^2$$ • Closed-loop MPC results: # **LINEAR MPC TRACKING EXAMPLE** • Impose constraint $0.8 \le u(t) \le 1.2$ (amplitude) • Impose instead constraint $-0.2 \leq \Delta u(t) \leq 0.2$ (slew-rate) y(t) [&]quot;Model Predictive Control" - © 2023 A. Bemporad. All rights reserved. ### **MEASURED DISTURBANCES** ullet Measured disturbance v(t) = input that is measured but not manipulated $$\begin{cases} x_{k+1} &= Ax_k + Bu_k + B_v v(t) \\ y_k &= Cx_k + D_v v(t) \end{cases} \qquad u(t) \xrightarrow{\text{manipulated variables}} \text{process}$$ $$x_k = A^k x_0 + \sum_{j=0}^{k-1} A^j B u_{k-1-j} + A^j B_v v(t)
\qquad \text{outputs}$$ $$x_k = A^k x_0 + \sum_{j=0}^{k-1} A^j B u_{k-1-j} + A^j B_v v(t) \qquad \text{state}$$ $$x_t = A^k x_0 + \sum_{j=0}^{k-1} A^j B u_{k-1-j} + A^j B_v v(t) \qquad \text{state}$$ Same performance index, same constraints. We still have a QP: $$\min_{z} \quad \frac{1}{2}z'Hz + \left[x'(t)\,r'(t)\,u'(t-1)\,v'(t)\right]F'z$$ s.t. $$Gz \le W + S \begin{bmatrix} x(t) \\ r(t) \\ u(t-1) \\ v(t) \end{bmatrix}$$ - Note that MPC naturally provides feedforward action on $\boldsymbol{v}(t)$ and $\boldsymbol{r}(t)$ #### **ANTICIPATIVE ACTION (A.K.A. "PREVIEW")** $$\min_{z} \sum_{k=0}^{N-1} \|W^{y}(y_{k+1} - r(t+k))\|_{2}^{2} + \|W^{\Delta u}\Delta u(k)\|_{2}^{2}$$ Reference not known in advance (causal): $$r_k \equiv r(t), \forall k = 0, \dots, N-1$$ output/reference use $r(t)$ input Future refs (partially) known in advance (anticipative action): $$r_k = r(t+k), \forall k = 0, \dots, N-1$$ output/reference use $r(t+k)$ input go to demo mpcpreview.m (MPC Toolbox) • Same idea also applies for preview of measured disturbances v(t+k) ### **EXAMPLE: CASCADED MPC** - We can use preview also to coordinate multiple MPC controllers - Example: cascaded MPC MPC #1 sends current and future references to MPC #2 ## **EXAMPLE: DECENTRALIZED MPC** • Example: decentralized MPC Commands generated by MPC #1 are measured dist. in MPC#2, and vice versa #### SOFT CONSTRAINTS Relax output constraints to prevent QP infeasibility $$\min_{z} \sum_{k=0}^{N-1} \|W^{y}(y_{k+1} - r(t))\|_{2}^{2} + \|W^{\Delta u}\Delta u_{k}\|_{2}^{2} + \|W^{u}(u_{k} - u_{\text{ref}}(t))\|_{2}^{2} + \rho_{\epsilon}\epsilon^{2}$$ s.t. $$x_{k+1} = Ax_{k} + Bu_{k}, k = 0, \dots, N-1$$ $$u_{\min} \leq u_{k} \leq u_{\max}, k = 0, \dots, N-1$$ $$\Delta u_{\min} \leq \Delta u_{k} \leq \Delta u_{\max}, k = 0, \dots, N-1$$ $$y_{\min} - \epsilon V_{\min} \leq y_{k} \leq y_{\max} + \epsilon V_{\max}, k = 1, \dots, N$$ $$z = \begin{bmatrix} \Delta u(0) \\ \vdots \\ \Delta u(N-1) \end{bmatrix}$$ - ullet ϵ = "panic" variable, with weight $ho_\epsilon\gg W^y,W^{\Delta u}$ - V_{\min}, V_{\max} = vectors with entries > 0. The larger the i-th entry of vector V, the relatively softer the corresponding i-th constraint - Infeasibility can be due to: - modeling errors, disturbances - wrong MPC setup (e.g., prediction horizon is too short) # DELAYS - METHOD #1 Linear model with delays $$x(t+1) = Ax(t) + Bu(t - \tau)$$ $$y(t) = Cx(t)$$ • Map delays to poles in z = 0: $$x_{k}(t) \triangleq u(t-k) \Rightarrow x_{k}(t+1) = x_{k-1}(t), k = 1, \dots, \tau$$ $$\begin{bmatrix} x \\ x_{\tau} \\ x_{\tau-1} \\ \vdots \\ x_{1} \end{bmatrix} (t+1) = \begin{bmatrix} A & B & 0 & 0 & \dots & 0 \\ 0 & 0 & I_{m} & 0 & \dots & 0 \\ 0 & 0 & 0 & I_{m} & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \dots & 0 \end{bmatrix} \begin{bmatrix} x \\ x_{\tau} \\ x_{\tau-1} \\ \vdots \\ x_{1} \end{bmatrix} (t) + \begin{bmatrix} 0 \\ 0 \\ 0 \\ \vdots \\ I_{m} \end{bmatrix} u(t)$$ - Apply MPC to the extended system - Note: the prediction horizon N must be $\geq \tau$, otherwise no input u_0, \ldots, u_{N-1} has an effect on the output! ### DELAYS - METHOD #2 - Linear model with delays: $\left\{ \begin{array}{rcl} x(t+1) & = & Ax(t) + Bu(t-\tau) \\ y(t) & = & Cx(t) \end{array} \right.$ - $\bullet \ \, \text{Delay-free} \ \, \text{model:} \ \, \bar{x}(t) \triangleq x(t+\tau) \quad \Longrightarrow \quad \left\{ \begin{array}{rcl} \bar{x}(t+1) & = & A\bar{x}(t) + Bu(t) \\ \bar{y}(t) & = & C\bar{x}(t) \end{array} \right.$ - Design MPC for delay-free model, $u(t) = f_{\mathrm{MPC}}(\bar{x}(t))$ - Compute the predicted state $$\bar{x}(t) = \hat{x}(t+\tau) = A^{\tau}x(t) + \sum_{j=0}^{\tau-1} A^{j}B\underbrace{u(t-1-j)}_{\text{past inputs!}}$$ - Compute the MPC control move $u(t) = f_{\mathrm{MPC}}(\hat{x}(t+\tau))$ - For better closed-loop performance and improved robustness, $\hat{x}(t+\tau)$ can be computed by a more complex model than (A,B,C) # **GOOD MODELS FOR (MPC) CONTROL** - Computation complexity depends on chosen prediction model - Good models for MPC must be - Descriptive enough to capture the most significant dynamics of the system Simple enough for solving the optimization problem "Things should be made as simple as possible, but not any simpler." Albert Einstein (1879–1955) #### **MPC THEORY** - After the industrial success of MPC, a lot of research done: - linear MPC ⇒ linear prediction model - nonlinear MPC ⇒ nonlinear prediction model - robust MPC ⇒ uncertain (linear) prediction model - **stochastic** MPC ⇒ stochastic prediction model - distributed/decentralized MPC⇒ multiple MPCs cooperating together - economic MPC ⇒ MPC based on arbitrary (economic) performance indices - hybrid MPC ⇒ prediction model integrating logic and dynamics - explicit MPC \Rightarrow offline (exact/approximate) computation of MPC - solvers for MPC ⇒ online numerical algorithms for solving MPC problems - data-driven MPC ⇒ machine learning methods tailored to MPC design - Main theoretical issues: feasibility, stability, solution algorithms (Mayne, 2014) ## **FEASIBILIT** $$\min_{z} \sum_{k=0}^{N-1} \|W^{y}(y_{k+1} - r(t))\|^{2} + \|W^{\Delta u}\Delta u_{k}\|^{2}$$ subj. to $$u_{\min} \leq u_{k} \leq u_{\max}, \ k = 0, \dots, N-1$$ $$y_{\min} \leq y_{k} \leq y_{\max}, \ k = 1, \dots, N$$ $$\Delta u_{\min} \leq \Delta u_{k} \leq \Delta u_{\max}, \ k = 0, \dots, N-1$$ QP problem - Feasibility: Will the QP problem be feasible at all sampling instants t? - Input constraints only: always feasible if $u/\Delta u$ constraints are consistent - Hard output constraints: - When $N<\infty$ there is no guarantee that the QP problem will remain feasible at all t, even in the nominal case - $N=\infty$ ok in the nominal case, but we have an infinite number of constraints! - Maximum output admissible set theory: $N < \infty$ is enough (Gutman, Ckwikel, 1987) (Gilbert, Tan, 1991) (Chmielewski, Manousiouthakis, 1996) (Kerrigan, Maciejowski, 2000) ### PREDICTED AND ACTUAL TRAJECTORIES Consider predicted and actual trajectories • Even assuming perfect model and no disturbances, **predicted** open-loop trajectories and **actual** closed-loop trajectories can be different # PREDICTED AND ACTUAL TRAJECTORIES • Special case: when the horizon is infinite, open-loop trajectories and closed-loop trajectories coincide. "Given the optimal sequence $u^*(0),\ldots,u^*(N-1)$ and the corresponding optimal trajectory $x^*(0),\ldots,x^*(N)$, the subsequence $u^*(k),\ldots,u^*(N-1)$ is optimal for the subproblem on the horizon [k,N], starting from the optimal state $x^*(k)$." "An optimal policy has the property that, regardless of the decisions taken to enter a particular state, the remaining decisions made for leaving that stage must constitute an optimal policy." Richard Bellman (1920–1984) (Bellman, 1957) ### **CONVERGENCE AND STABILITY** $$\min_{z} x_{N}' P x_{N} + \sum_{k=0}^{N-1} x_{k}' Q x_{k} + u_{k}' R u_{k}$$ s.t. $u_{\min} \le u_k \le u_{\max}, k = 0, \dots, N-1$ $y_{\min} \le Cx_k \le y_{\max}, k = 1, \dots, N$ $$Q=Q'\succeq 0, R=R'\succ 0, P=P'\succeq 0$$ #### **QP** problem - Stability is a complex function of the model (A,B,C) and the MPC parameters $N,Q,R,P,u_{\min},u_{\max},y_{\min},y_{\max}$ - Stability constraints and weights on the terminal state x_N can be imposed over the prediction horizon to ensure stability of MPC (Keerthi, Gilbert, 1988) (Bemporad, Chisci, Mosca, 1994) • Theorem: Let the MPC law be based on $$V^*(x(t)) = \min \qquad \sum_{k=0}^{N-1} x_k' Q x_k + u_k' R u_k$$ s.t. $$x_{k+1} = A x_k + B u_k$$ $$u_{\min} \le u_k \le u_{\max}$$ $$y_{\min} \le C x_k \le y_{\max}$$ $$x_N = 0 \qquad \leftarrow \text{"terminal constraint"}$$ with $R,Q \succ 0, u_{\min} < 0 < u_{\max}, y_{\min} < 0 < y_{\max}$. If the optimization problem is feasible at time t=0 then $$\lim_{t \to \infty} x(t) = 0, \quad \lim_{t \to \infty} u(t) = 0$$ and the constraints are satisfied at all time $t \geq 0$, for all $R, Q \succ 0$. • Many more convergence and stability results exist (Mayne, 2014) # **CONVERGENCE PROOF** #### <u>Proof:</u> Main idea = use the value function $V^*(x(t))$ as a Lyapunov-like function - ullet Let $z_t = [u_0^t \ \dots \ u_{N-1}^t]'$ be the optimal control sequence at time t - By construction $\bar{z}_{t+1} = [u_1^t \ \dots \ u_{N-1}^t \ 0]'$ is a feasible sequence at time t+1 - The cost of \bar{z}_{t+1} is $V^*(x(t)) x'(t)Qx(t) u'(t)Ru(t) \ge V^*(x(t+1))$ - $V^*(x(t))$ is monotonically decreasing and ≥ 0 , so $\exists \lim_{t \to \infty} V^*(x(t)) \triangleq V_{\infty}$ - Hence $$0 \le x'(t)Qx(t) + u'(t)Ru(t) \le V^*(x(t)) - V^*(x(t+1)) \to 0 \text{ for } t \to \infty$$ • Since $R, Q \succ 0$, $\lim_{t \to \infty} x(t) = 0$, $\lim_{t \to \infty} u(t) = 0$ Reaching the global optimum exactly is not needed to prove convergence ### **MORE GENERAL CONVERGENCE RESULT - OUTPUT WEIGHTS** (Keerthi, Gilbert, 1988) (Bemporad, Chisci, Mosca, 1994) • Theorem: Consider the MPC control law based on optimizing $$V^*(x(t)) = \min \qquad \sum_{k=0}^{\infty} y_k' Q_y y_k + u_k' R u_k$$ s.t. $$x_{k+1} = A x_k + B u_k$$ $$y_k = C x_k$$ $$u_{\min} \le u_k \le u_{\max}$$ $$y_{\min} \le y_k \le y_{\max}$$ either $N = \infty$ or $x_N = 0$ If the optimization problem is feasible at time t=0 then for all $R=R'\succ 0$, $$Q_y = Q_y' \succ 0$$ $$\lim_{t \to \infty} y(t) = 0, \quad \lim_{t \to \infty} u(t) = 0$$ and the constraints are satisfied at all time $t\geq 0$. Moreover, if (C,A) is a detectable pair then $\lim_{t\to\infty}x(t)=0$. # **CONVERGENCE PROOF** #### Proof: • The shifted optimal sequence $\bar{z}_{t+1}=[u_1^t\ \dots\ u_{N-1}^t\ 0]'$ (or $\bar{z}_{t+1}=[u_1^t\ u_2^t\ \dots]'$ in case $N=\infty$) is feasible sequence at time t+1 and has cost $$V^*(x(t)) - y'(t)Q_y y(t) - u'(t)Ru(t) \ge V^*(x(t+1))$$ $\bullet \;$ Therefore, by convergence of $V^*(x(t)),$ we have that $$0 \le y'(t)Q_y y(t) + u'(t)Ru(t) \le V^*(x(t)) - V^*(x(t+1)) \to 0$$ for $t \to \infty$ - Since $R, Q_y
\succ 0$, also $\lim_{t\to\infty} y(t) = 0$, $\lim_{t\to\infty} u(t) = 0$ - For all $k = 0, \dots, n-1$ we have that $$0 = \lim_{t \to \infty} y'(t+k)Q_y y(t+k) = \lim_{t \to \infty} ||LC(A^k x(t) + \sum_{j=0}^{k-1} A^j Bu(t+k-1-j))||_2^2$$ where $Q_y = L'L$ (Cholesky factorization) and L is nonsingular # **CONVERGENCE PROOF (CONT'D)** - As $u(t) \to 0$, also $LCA^kx(t) \to 0$, and since L is nonsingular $CA^kx(t) \to 0$ too, for all $k=0,\dots,n-1$ - Hence $\Theta x(t) \to 0$, where Θ is the observability matrix of (C,A) - If (C,A) is observable then Θ is nonsingular and hence $\lim_{t \to \infty} x(t) = 0$ - If (C,A) is only detectable, we can make a canonical observability decomposition and show that the observable states converge to zero - As also $u(t) \to 0$ and the unobservable subsystem is asymptotically stable, the unobservable states must converge to zero asymptotically too # **EXTENSION TO REFERENCE TRACKING** • We want to track a constant reference r. Assume x_r and u_r exist such that $$\begin{array}{rcl} x_r & = & Ax_r + Bu_r \\ r & = & Cx_r \end{array}$$ (equilibrium state/input) • Formulate the MPC problem (assume $u_{\min} < u_r < u_{\max}$, $y_{\min} < r < y_{\max}$) min $$\sum_{k=0}^{N-1} (y_k - r)' Q_y(y_k - r) + (u_k - u_r)' R(u_k - u_r)$$ s.t. $$x_{k+1} = Ax_k + Bu_k$$ $$u_{\min} \le u_k \le u_{\max}, \quad y_{\min} \le Cx_k \le y_{\max}$$ $$x_N = x_r$$ • We can repeat the convergence proofs in the shifted-coordinates $$x_{k+1} - x_r = A(x_k - x_r) + B(u_k - u_r), y_k - r = C(x_k - x_r)$$ • **Drawback**: the approach only works well in nominal conditions, as the input reference u_r depends on A,B,C (inverse static model) # STABILITY CONSTRAINTS #### 1. No stability constraint, infinite prediction horizon $N \to \infty$ (Keerthi, Gilbert, 1988) (Rawlings, Muske, 1993) (Bemporad, Chisci, Mosca, 1994) #### End-point constraint $x_N = 0$ (Kwon, Pearson, 1977) (Keerthi, Gilbert, 1988) (Bemporad, Chisci, Mosca, 1994) #### 3. Relaxed terminal constraint $x_N \in \Omega$ (Scokaert, Rawlings, 1996) #### 4. Contraction constraint $$||x_{k+1}|| \le \alpha ||x(t)||, \ \alpha < 1$$ (Polak, Yang, 1993) (Bemporad, 1998) All the proofs in (1,2,3) use the value function $V^*(x(t)) = \min_z J(z,x(t))$ as a Lyapunov function. # **CONTROL AND CONSTRAINT HORIZONS** $$\min_{z} \sum_{k=0}^{N-1} \|W^{y}(y_{k} - r(t))\|_{2}^{2} + \|W^{\Delta u}\Delta u_{k}\|_{2}^{2} + \rho_{\epsilon}\epsilon^{2}$$ subj. to $$u_{\min} \leq u_{k} \leq u_{\max}, k = 0, \dots, N-1$$ $$\Delta u_{\min} \leq \Delta u_{k} \leq \Delta u_{\max}, k = 0, \dots, N-1$$ $$\Delta u_{k} = 0, k = \frac{N_{u}}{N_{u}}, \dots, N-1$$ $$y_{\min} - \epsilon V_{\min} \leq y_{k} \leq y_{\max} + \epsilon V_{\max}, k = 1, \dots, N_{c}$$ - The input horizon N_u limits the number of free variables - Reduced performance - Reduced computation time typically $N_u = 1 \div 5$ - The constraint horizon N_c limits the number of constraints - Higher chance of violating output constraints but reduced computation time - Other variable-reduction methods exist (Bemporad, Cimini, 2020) # MPC AND LINEAR QUADRATIC REGULATION (LQR) • Special case: $J(z,x_0)=x_N'Px_N+\sum_{k=0}^{N-1}x_k'Qx_k+u_k'Ru_k, N_u=N$, with matrix P solving the Algebraic Riccati Equation $$P = A'PA - A'PB(B'PB + R)^{-1}B'PA + Q$$ Jacopo Francesco Riccati (1676–1754) (unconstrained) MPC = LQR for any choice of the prediction horizon ${\cal N}$ <u>Proof:</u> Easily follows from Bellman's principle of optimality (dynamic programming): $x'_N Px_N$ = optimal "cost-to-go" from time N to ∞ . ### MPC AND CONSTRAINED LQR Consider again the constrained MPC law based on minimizing $$\min_{z} \quad x'_{N} P x_{N} + \sum_{k=0}^{N-1} x'_{k} Q x_{k} + u'_{k} R u_{k}$$ s.t. $$u_{\min} \leq u_{k} \leq u_{\max}, \ k = 0, \dots, N-1$$ $$y_{\min} \leq y_{k} \leq y_{\max}, \ k = 1, \dots, N$$ $$u_{k} = K x_{k}, \ k = N_{u}, \dots, N-1$$ ullet Choose matrix P and terminal gain K by solving the LQR problem $$K = -(R + B'PB)^{-1}B'PA$$ $$P = (A + BK)'P(A + BK) + K'RK + Q$$ • In a polyhedral region around the origin, constrained MPC = constrained LQR for any choice of the prediction and control horizons N,N_u (Sznaier, Damborg, 1987) (Chmielewski, Manousiouthakis, 1996) (Scokaert, Rawlings, 1998) (Bemporad, Morari, Dua Pistikopoulos, 2002) • The larger the horizon N, the larger the region where MPC \equiv constrained LQR #### MPC AND CONSTRAINED LOR • Some MPC formulations also include the **terminal constraint** $x_N \in \mathcal{X}_{\infty}$ $$\mathcal{X}_{\infty} = \left\{ x : \begin{bmatrix} u_{\min} \\ y_{\min} \end{bmatrix} \le \begin{bmatrix} K \\ C \end{bmatrix} (A + BK)^k x \le \begin{bmatrix} u_{\max} \\ y_{\max} \end{bmatrix}, \, \forall k \ge 0 \right\}$$ that is the maximum output admissible set for the closed-loop system (A+BK,B,C) and constraints $u_{\min} \leq Kx \leq u_{\max}, y_{\min} \leq Cx \leq y_{\max}$ - This makes MPC \equiv constrained LQR where the MPC problem is feasible - Recursive feasibility in ensured by the terminal constraint for all x(0) such that the MPC problem is feasible @t=0 - The domain of feasibility may be reduced because of the additional constraint #### Linearized model: $$\left\{ \begin{array}{lll} \dot{x} & = & \begin{bmatrix} -0.0151 & -60.5651 & 0 & -32.174 \\ -0.0001 & -1.3411 & 0.9929 & 0 \\ 0.00018 & 43.2541 & -0.86939 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} x + \begin{bmatrix} -2.516 & -13.136 \\ -0.1689 & -0.2514 \\ -17.251 & -1.5766 \\ 0 & 0 \end{bmatrix} u \\ y & = & \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} x \end{array} \right.$$ (Kapasouris, Athans, Stein, 1988) - Inputs: elevator and flaperon (=flap+aileron) angles - Outputs: attack and pitch angles - Sampling time: $T_s = 0.05 \operatorname{sec} (+ \operatorname{ZOH})$ - Constraints: $\pm 25^{\circ}$ on both angles - Open-loop unstable, poles are $-7.6636, -0.0075 \pm 0.0556 i, 5.4530$ go to demo linear/afti16.m (Hybrid Toolbox) see also afti16.m (MPC Toolbox) - Prediction horizon N=10, control horizon $N_u=2$ - Input weights $W^{\Delta u} = \begin{bmatrix} 0.1 & 0 \\ 0 & 0.1 \end{bmatrix}$, $W^u = 0$ - Input constraints $u_{\min} = -u_{\max} = \left[\begin{smallmatrix} 25^\circ \\ 25^\circ \end{smallmatrix} \right]$ $W^y = \left[\begin{smallmatrix} 1 & 0 \\ 0 & 1 \end{smallmatrix} \right]$ $W^y = \left[\begin{smallmatrix} 100 & 0 \\ 0 & 1 \end{smallmatrix} \right]$ • Add output constraints $y_{1, \min} = -y_{1, \max} = 0.5^\circ$ $$W^y = \left[\begin{smallmatrix} 1 & 0 \\ 0 & 1 \end{smallmatrix} \right]$$ • Soft output constraint = convex penalty with dead zone $$\begin{aligned} & \min & & \rho_{\epsilon} \epsilon^2 \\ & \text{s.t.} & & y_{1,\min} - \epsilon V_{1,\min} \leq y_1 \leq y_{1,\max} - \epsilon V_{1,\max} \end{aligned}$$ • Linear control (=unconstrained MPC) + input clipping $$W^y = \left[\begin{smallmatrix} 1 & 0 \\ 0 & 1 \end{smallmatrix} \right]$$ unstable! Saturation needs to be considered in the control design! ### **SATURATION** Saturation is dangerous because it can break the control loop MPC takes saturation into account and handles it automatically (and optimally) #### **TUNING GUIDELINES** $$\min_{\Delta U} \sum_{k=0}^{N-1} \| W^{y}(y_{k+1} - r(t)) \|_{2}^{2} + \| W^{\Delta u} \Delta u_{k} \|_{2}^{2} + \rho_{\epsilon} \epsilon^{2}$$ subj. to $$\Delta u_{\min} \leq \Delta u_{k} \leq \Delta u_{\max}, \ k = 0, \dots, N_{u} - 1$$ $$\Delta u_{k} = 0, \ k = N_{u}, \dots, N - 1$$ $$u_{\min} \leq u_{k} \leq u_{\max}, \ k = 0, \dots, N_{u} - 1$$ $$y_{\min} - \epsilon V_{\min} \leq y_{k} \leq y_{\max} + \epsilon V_{\max}, \ k = 1, \dots, N_{c}$$ - weights: the larger the ratio $W^y/W^{\Delta u}$ the more aggressive the controller - input horizon: the larger N_u , the more "optimal" but more complex the controller - prediction horizon: the smaller N, the more aggressive the controller - constraints horizon: the smaller N_c , the simpler the controller - limits: controller less aggressive if $\Delta u_{\min}, \Delta u_{\max}$ are small - penalty ρ_ϵ : pick up smallest ρ_ϵ that keeps soft constraints reasonably satisfied #### Always try to set N_u as small as possible! # TUNING GUIDELINES - EFFECT OF SAMPLING TIME - Let T_s = sampling time used in MPC predictions - For predicting T_p time units in the future we must set $$N = \left\lceil \frac{T_p}{T_s} \right\rceil$$ • Slew-rate constraints $\dot{u}_{\min} \leq rac{du}{dt} \leq \dot{u}_{\max}$ on actuators are related to T_s by $$\dot{u} \triangleq \frac{du}{dt} \approx \frac{u_k - u_{k-1}}{T_s}$$ $$\sum_{i=1}^{n} \frac{\Delta u_{\min}}{T_s \dot{u}_{\min}} \leq \Delta u_k \leq \frac{\Delta u_{\max}}{T_s \dot{u}_{\max}}$$ ### TUNING GUIDELINES - EFFECT OF SAMPLING TIME • The MPC cost to minimize can be thought in continuous-time as $$\begin{split} J &= \int_0^{T_p} \left(\|W^y(y(\tau) - r)\|_2^2 + \|W^u(u(\tau) - u_r)\|_2^2 + \|W^{\dot{u}}\dot{u}(\tau)\|_2^2 \right) d\tau + \rho_\epsilon \epsilon^2 \\ &\approx T_s \left(\sum_{k=0}^{N-1} \|W^y(y_{k+1} - r)\|_2^2 + \|W^u(u_k - u_r)\|_2^2 + \|\underbrace{W^{\dot{u}}T_s^{-1}}_{W^{\dot{\omega}}u} \Delta u_k\|_2^2 + \rho_\epsilon T_s^{-1} \epsilon^2 \right) \end{split}$$ • Hence, when changing the sampling time from T_1 to T_2 , can can keep the same MPC cost function by leaving W^y , W^u unchanged and simply rescaling $$W_2^{\Delta u} = \frac{W^{\dot{u}}}{T_2} = \frac{T_1}{T_2} \frac{W^{\dot{u}}}{T_1} = \frac{T_1}{T_2} W_1^{\Delta u} \qquad \rho_{\epsilon 2} = \frac{\rho_{\epsilon}}{T_2} = \frac{T_1}{T_2} \frac{\rho_{\epsilon}}{T_1} = \frac{T_1}{T_2} \rho_{\epsilon 1}$$ - Note: T_s used for controller execution can be \neq than T_s used in prediction - Small controller $T_s \Rightarrow$ fast reaction to set-point changes / disturbances ### **SCALING** - Humans think infinite precision ... computers do not! - Numerical difficulties may arise if variables assume very small/large values - Example: -
Ideally all variables should be in [-1,1]. For example, one can replace y with $y/y_{\rm max}$ - Scaling also possible after formulating the QP problem (=preconditioning) ### PRE-STABILIZATION OF OPEN-LOOP UNSTABLE MODELS - Numerical issues may arise with open-loop unstable models - When condensing the QP we substitute $x_k=A^kx_0+\sum_{j=0}A^jBu_{k-1-j}$ that may lead to a badly conditioned Hessian matrix H $$H = \begin{bmatrix} B & 0 & \dots & 0 \\ AB & B & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ A^{N-1}B & A^{N-2}B & \dots & B \end{bmatrix}' \begin{bmatrix} Q & 0 & 0 & \dots & 0 \\ 0 & Q & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & \dots & 0 & Q & 0 \\ 0 & 0 & \dots & 0 & P \end{bmatrix} \begin{bmatrix} B & 0 & \dots & 0 \\ AB & B & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ A^{N-1}B & A^{N-2}B & \dots & B \end{bmatrix} + \begin{bmatrix} R & 0 & \dots & 0 \\ 0 & R & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & \dots & 0 & R \end{bmatrix}$$ • Pre-stabilizing the system with $u_k = Kx_k + v_k$ leads to $x_{k+1} = A_Kx_k + Bv_k$, $$A_K \triangleq A + BK$$, and therefore $x_k = A_K^k x_0 + \sum_{j=0}^{n-1} A_K^j B v_{k-1-j}$ - Input constraints become mixed constraints $u_{\min} \leq Kx_k + v_k \leq u_{\max}$ - ullet K can be chosen for example by pole-placement or LQR # STATE OBSERVER FOR MPC - $\bullet \;\; \mbox{Full state} \; x(t) \; \mbox{of process may not be available, only outputs} \; y(t)$ - Even if x(t) is available, noise should be filtered out - Prediction and process models may be quite different - ullet The state x(t) may not have any physical meaning (e.g., in case of model reduction or subspace identification) We need to use a state observer • Example: Luenberger observer $\hat{x}(t+1) = A\hat{x}(t) + Bu(t) + L(y(t) - C\hat{x}(t))$ # EXTENDED MODEL FOR OBSERVER DESIGN #### unmeasured disturbance model $$\begin{cases} x_d(t+1) &= \bar{A}x_d(t) + \bar{B}n_d(t) \\ d(t) &= \bar{C}x_d(t) + \bar{D}n_d(t) \end{cases}$$ #### measurement noise model $$\begin{cases} x_d(t+1) & = & \bar{A}x_d(t) + \bar{B}n_d(t) \\ d(t) & = & \bar{C}x_d(t) + \bar{D}n_d(t) \end{cases} \qquad \begin{cases} x_m(t+1) & = & \tilde{A}x_m(t) + \tilde{B}n_m(t) \\ m(t) & = & \tilde{C}x_m(t) + \tilde{D}n_m(t) \end{cases}$$ Note: the measurement noise model is not used for optimization, as we want z_m to go to its reference, not y_m ### **KALMAN FILTER DESIGN** Plant model $$\begin{cases} x(t+1) = Ax(t) + B_u u(t) + B_v v(t) + B_d d(t) \\ y(t) = Cx(t) + D_v v(t) + D_d d(t) \end{cases}$$ Rudolf Emil Kalman (1930–2016) Full model for designing Kalman filter $$\begin{bmatrix} x(t+1) \\ x_d(t+1) \\ x_m(t+1) \end{bmatrix} = \begin{bmatrix} AB_d \bar{C} & 0 \\ 0 & \bar{A} & 0 \\ 0 & 0 & \bar{A} \end{bmatrix} \begin{bmatrix} x(t) \\ x_d(t) \\ x_m(t) \end{bmatrix} + \begin{bmatrix} B_u \\ 0 \end{bmatrix} u(t) + \begin{bmatrix} B_v \\ 0 \end{bmatrix} v(t) + \begin{bmatrix} B_u \\ 0 \end{bmatrix} \bar{D} \\ B_d \bar{D} \\ \bar{B} \\ \bar{D} \end{bmatrix} n_d(t) + \begin{bmatrix} 0 \\ \bar{B} \\ \bar{B} \end{bmatrix} n_m(t) + \begin{bmatrix} B_u \\ 0 \\ \bar{D} \end{bmatrix} n_u(t)$$ $$y_m(t) = \begin{bmatrix} C_m & D_{dm} \bar{C} & \bar{C} \end{bmatrix} \begin{bmatrix} x(t) \\ x_d(t) \\ x_m(t) \end{bmatrix} + D_{vm} v(k) + \bar{D}_m n_d(t) + \tilde{D}_m n_m(t)$$ - $n_d(k)$ = source of modeling errors - $n_m(k)$ = source of measurement noise - $n_u(k)$ = white noise on input u (added to compute the Kalman gain) # OBSERVER IMPLEMENTATION Measurement update $$\hat{y}_m(t|t-1) = C_m \hat{x}(t|t-1)$$ $$\hat{x}(t|t) = \hat{x}(t|t-1) + M(y_m(t) - \hat{y}_m(t|t-1))$$ • Time update $$\hat{x}(t+1|t) = A\hat{x}(t|t-1) + Bu(t) + L(y_m(t) - \hat{y}_m(t|t-1))$$ - Note that if L = AM then $\hat{x}(t+1|t) = A\hat{x}(t|t) + Bu(t)$ - The separation principle holds (under certain assumptions) (Muske, Meadows, Rawlings, 1994) # I/O FEEDTHROUGH • We always assumed no feedthrough from u to measured y $$y_k = Cx_k + Du_k + D_v v_k + D_d d_k, \quad D_m = 0$$ - This avoids static loops between state observer, as $\hat{x}(t|t)$ depends on u(t) via $\hat{y}_m(t|t-1)$, and MPC (u(t) depends on $\hat{x}(t|t)$) - Often D=0 is not a limiting assumption as - often actuator dynamics must be considered (u is the set-point to a low-level controller of the actuators) - most physical models described by ordinary differential equations are strictly causal, and so is the discrete-time version of the model - In case $D \neq 0$, we can assume a **delay** in executing the commanded u $$y_k = C_m x_k + D u_{k-1}$$ and treat u(t-1) as an extra state Not an issue for unmeasured outputs # **OUTPUT INTEGRATORS** - Introduce output integrators as additional disturbance models - Under certain conditions, observer + controller provide zero offset in steady-state # OUTPUT INTEGRATORS AND OFFSET-FREE TRACKING Add constant unknown disturbances on measured outputs: $$\begin{cases} x_{k+1} &= Ax_k + Bu_k \\ d_{k+1} &= d_k \\ y_k &= Cx_k + d_k \end{cases}$$ - Use the extended model to design a state observer (e.g., Kalman filter) that estimates both the state $\hat{x}(t)$ and disturbance $\hat{d}(t)$ from y(t) - Why we get offset-free tracking in steady-state (intuitively): - the observer makes $C\hat{x}(t) + \hat{d}(t) \rightarrow y(t)$ (estimation error) - the MPC controller makes $C\hat{x}(t) + \hat{d}(t) \rightarrow r(t)$ (predicted tracking error) - the combination of the two makes $y(t) \rightarrow r(t)$ (actual tracking error) - In steady state, the term $\hat{d}(t)$ compensates for model mismatch - See more on survey paper (Pannocchia, Gabiccini, Artoni, 2015) ### **OUTPUT INTEGRATORS AND OFFSET-FREE TRACKING** (Pannocchia, Rawlings, 2003) • More general result: consider the disturbance model $$\begin{cases} x_{k+1} = Ax_k + Bu_k + B_d d_k \\ d_{k+1} = d_k \\ y_k = Cx_k + D_d d_k \end{cases}$$ special case: output integrators $B_d=0, D_d=I \label{eq:base_def}$ #### **THEOREM** Let the number n_d of disturbances be equal to the number n_y of measured outputs. Then all pairs (B_d,D_d) satisfying $$\operatorname{rank} \begin{bmatrix} I - A & -B_d \\ C & D_d \end{bmatrix} = n_x + n_y$$ guarantee zero offset in steady-state (y=r), provided that constraints are not active in steady-state and the closed-loop system is asymptotically stable. # **DISTURBANCE MODEL EXAMPLE** • Open-loop system: $$A = \begin{bmatrix} 1 & -1 & -2 & 1 \\ 0 & -2 & 3 & 2 \\ 0 & 2 & -1 & -1 \\ 0 & 2 & 0 & -2 \end{bmatrix}, B = \begin{bmatrix} 1 \\ 0 \\ 1 \\ 1 \end{bmatrix}, C_m = \begin{bmatrix} 1 & 1 & 0 & 0 \end{bmatrix}$$ - We cannot add an **output integrator** since the pair $(\begin{bmatrix} A & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} C & 1 \end{bmatrix})$ is not observable - Add an input integrator: $B_d = B, D_d = 0, \operatorname{rank}\left[\begin{smallmatrix}A & B_d \\ C_m & D_d\end{smallmatrix}\right] = 5 = n_x + n_y$ $$\begin{cases} x(t+1) &= Ax(t) + B(u(t) + d(t)) \\ d(t+1) &= d(t) \\ y(t) &= Cx(t) + 0 \cdot d(t) \end{cases}$$ - **Idea**: add the integral of the tracking error as an additional state (original idea developed for integral action in state-feedback control) - Extended prediction model: $$\begin{cases} x(t+1) &= Ax(t) + B_u u(t) + 0 \cdot r(t) &\leftarrow r(t) \text{ is seen as a meas. disturbance} \\ q(t+1) &= q(t) + \underbrace{Cx(t) - r(t)}_{\text{tracking error}} &\leftarrow \text{integral action} \\ y(t) &= Cx(t) \end{cases}$$ - $\|W^i q\|_2^2$ is penalized in the cost function, otherwise it is useless. W^i is a new tuning knob - Intuitively, if the MPC closed-loop is asymptotically stable then q(t) converges to a constant, and hence y(t)-r(t) converges to zero. ### REFERENCE / COMMAND GOVERNOR (Bemporad, Mosca, 1994) (Gilbert, Kolmanovsky, Tan, 1994) (Garone, Di Cairano, Kolmanovsky, 2016) - MPC manipulates set-points to a linear feedback loop to enforce constraints - Separation of problems: - Local feedback guarantees offset-free tracking $y(t)-w(t)\to 0$ in steady-state in the absence of constraints - Actual reference w(t) generated by MPC to take care of constraints - Advantages: small-signal properties preserved, fewer variables to optimize $$w(t) = \arg\min_{w} \quad \|w - r(t)\|_{2}^{2}$$ s.t. $c_{t+k} \in \mathcal{C}$ # INTEGRAL ACTION AND Δu -formulation In control systems, integral action occurs if the controller has a transfer-function from the output to the input of the form $$u(t) = \frac{B(z)}{(z-1)A(z)}y(t), \qquad B(1) \neq 0$$ • One may think that the Δu -formulation of MPC provides integral action is it true? \bullet $\,$ Example: we want to regulate the output y(t) to zero of the scalar system $$x(t+1) = \alpha x(t) + \beta u(t)$$ $y(t) = x(t)$ # INTEGRAL ACTION AND Δu -formulation $\bullet \;\;$ Design an unconstrained MPC controller with horizon N=1 $$\Delta u(t) = \arg \min_{\Delta u_0} \Delta u_0^2 + \rho y_1^2$$ s.t. $u_0 = u(t-1) + \Delta u_0$ $y_1 = x_1 = \alpha x(t) + \beta(\Delta u_0 + u(t-1))$ • By substitution, we get $$\Delta u(t) = \arg \min_{\Delta u_0} \Delta u_0^2 + \rho(\alpha x(t) + \beta u(t-1) + \beta \Delta u_0)^2 = \arg \min_{\Delta u_0} (1 + \rho \beta^2) \Delta u_0^2 + 2\beta \rho(\alpha x(t) + \beta u(t-1)) \Delta u_0 = -\frac{\beta \rho \alpha}{1 + \rho \beta^2} x(t) - \frac{\rho \beta^2}{1 + \rho \beta^2} u(t-1)$$ • Since x(t) = y(t) and $u(t) = u(t-1) + \Delta u(t)$ we get the linear controller $$u(t)=- rac{ rac{ hoetalpha}{1+ hoeta^2}z}{z- rac{1}{1+ hoeta^2}}y(t)$$ No pole in $z=1$ • Reason: MPC gives a feedback gain on both x(t) and u(t-1), not just on x(t) # INTEGRAL ACTION AND $\triangle u$ -formulation Numerical test (with MPC Toolbox) ``` alpha=.5; beta=3; sys=ss(alpha,beta,1,0);sys.ts=1; rho=1;p=1;m=1; weights=struct('OV',rho,'MVRate',1); mpcl=mpc(sys,1,p,m,weights); setoutdist(mpcl,'remove',1); % no output disturbance model mpcltf=tf(mpcl); sum(mpcltf.den{1}) ans = 0.9000 ``` Now add an output integrator as disturbance model ```
setoutdist(mpc1,'integrators'); % add output disturbance model mpcltf=tf(mpc1); sum(mpcltf.den{1}) ans = -6.4185e-16 ``` ### MPC AND INTERNAL MODEL PRINCIPLE ullet Assume we have an **internal model** of the reference signal r(t) $$x^{r}(t+1) = A_{r}x^{r}(t)$$ $$r(t) = C_{r}x^{r}(t)$$ • Consider the augmented prediction model $$\begin{bmatrix} x_{k+1} \\ x_{k+1}^r \end{bmatrix} = \begin{bmatrix} A & 0 \\ 0 & A_r \end{bmatrix} \begin{bmatrix} x_k \\ x_k^r \end{bmatrix} + \begin{bmatrix} B \\ 0 \end{bmatrix} u_k$$ - Design a state observer (e.g., via pole-placement) to estimate $x(t), x^r(t)$ from $\begin{bmatrix} y(t) \\ r(t) \end{bmatrix} = \begin{bmatrix} C & 0 \\ 0 & C_r \end{bmatrix} \begin{bmatrix} x(t) \\ x^r(t) \end{bmatrix}$ - Design an MPC controller with output $e_k = y_k r_k = \left[\begin{smallmatrix} C & -C_r \end{smallmatrix} \right] \left[\begin{smallmatrix} x_k \\ x_k^r \end{smallmatrix} \right]$ # MPC AND INTERNAL MODEL PRINCIPLE - Penalize $\sum_{k=1}^N e_k^2$ (+small penalty on u^2 or Δu^2) - Set control horizon $N_u = N$ - Example: $r(t) = r_0 \sin(\omega t + \phi_0)$, $\omega = 1$ rad/s $$A = \begin{bmatrix} 1.6416 & -0.7668 & 0.2416 \\ 1 & 0 & 0 \\ 0 & 0.125 & 0 \end{bmatrix}$$ $$B = \begin{bmatrix} 0.5 \\ 0 \\ 0 \end{bmatrix}$$ $$C = \begin{bmatrix} 0.1349 & 0.0159 & -0.1933 \end{bmatrix}$$ $$A_r = \begin{bmatrix} 1.7552 & -1 \\ 1 & 0 \end{bmatrix}$$ $$C_r = \begin{bmatrix} .2448 & .2448 \end{bmatrix}$$ observer poles placed in $\{0.3, 0.4, 0.5, 0.6, 0.7\}$ sample time $T_s=0.5\,\mathrm{s}$ input saturation $-2 \le u(t) \le 2$ # MODEL PREDICTIVE CONTROL TOOLBOX (Bemporad, Ricker, Morari, 1998-present) - Several MPC design features available: - explicit MPC - time-varying/adaptive models, nonlinear models, weights, constraints - stability/frequency analysis of closed-loop (inactive constraints) - .. - Prediction models can be generated by the Identification Toolbox or automatically linearized from Simulink - Fast command-line MPC functions (compiled EML-code) - Graphical User Interface - Simulink library (compiled EML-code) ## **MPC SIMULINK LIBRARY** #### MPC SIMULINK BLOCK #### MPC SIMULINK BLOCK ### MPC SIMULINK BLOCK ### MPC GRAPHICAL USER INTERFACE See video on Mathworks' web site (<u>link</u>) # **EXAMPLE: MPC OF A DC SERVOMOTOR** | Symbol | Value (MKS) | Meaning | |--------------|-------------|------------------------------------| | L_S | 1.0 | shaft length | | d_S | 0.02 | shaft diameter | | J_S | negligible | shaft inertia | | J_M | 0.5 | motor inertia | | β_M | 0.1 | motor viscous friction coefficient | | R | 20 | resistance of armature | | k_T | 10 | motor constant | | ρ | 20 | gear ratio | | k_{θ} | 1280.2 | torsional rigidity | | J_L | $50J_{M}$ | nominal load inertia | | β_L | 25 | load viscous friction coefficient | | T_s | 0.1 | sampling time | >> mpcmotor see also linear/dcmotor.m (Hybrid Toolbox) ### DC SERVOMOTOR MODEL $$\dot{x} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ -\frac{k_{\theta}}{J_{L}} & -\frac{\beta_{L}}{J_{L}} & \frac{k_{\theta}}{\rho J_{L}} & 0 \\ 0 & 0 & 0 & 1 \\ \frac{k_{\theta}}{\rho J_{M}} & 0 & -\frac{k_{\theta}}{\rho^{2} J_{M}} & -\frac{\beta_{M} + k_{T}^{2} / R}{J_{M}} \end{bmatrix} x + \begin{bmatrix} 0 \\ 0 \\ 0 \\ \frac{k_{T}}{RJ_{M}} \end{bmatrix} V \qquad x = \begin{bmatrix} \frac{\theta_{L}}{\dot{\theta}_{L}} \\ \frac{\dot{\theta}_{L}}{\theta_{M}} \\ \dot{\theta}_{M} \end{bmatrix}$$ $$\theta_{L} = \begin{bmatrix} 1 & 0 & 0 & 0 \end{bmatrix} x \qquad y = \begin{bmatrix} \theta_{L} \\ T \end{bmatrix}$$ $$T = \begin{bmatrix} k_{\theta} & 0 & -\frac{k_{\theta}}{\rho} & 0 \end{bmatrix} x$$ ``` >> [plant, tau] = mpcmotormodel; >> plant = setmpcsignals(plant,'MV',1,'MO',1,'UO',2); ``` # DC SERVOMOTOR CONSTRAINTS ullet The input DC voltage V is bounded withing the range $$|V| \le 220 V$$ • Finite shear strength $au_{adm}=50N/mm^2$ requires that the torsional torque T satisfies the constraint $$|T| \le 78.5398 \, Nm$$ • Sampling time of model/controller: $T_s=0.1s$ ``` >> MV = struct('Min',-220,'Max',220); >> OV = struct('Min',{-Inf,-78.5398},'Max',{Inf,78.5398}); >> Ts = 0.1; ``` #### DC SERVOMOTOR - MPC SETUP $$\min_{\Delta U} \sum_{k=0}^{p-1} \|W^{y}(y_{k+1} - r(t))\|^{2} + \|W^{\Delta u}\Delta u_{k}\|^{2} + \rho_{\epsilon}\epsilon^{2}$$ subj. to $$\Delta u_{\min} \leq \Delta u_{k} \leq \Delta u_{\max}, k = 0, \dots, m-1$$ $$\Delta u_{k} = 0, k = m, \dots, p-1$$ $$u_{\min} \leq u_{k} \leq u_{\max}, k = 0, \dots, m-1$$ $$y_{\min} - \epsilon V_{\min} \leq y_{k} \leq y_{\max} + \epsilon V_{\max}, k = 1, \dots, p$$ ``` >> Weights = struct('MV',0,'MVRate',0.1,'OV',[0.1 0]); >> p = 10; >> m = 2; >> mpcobj = mpc(plant,Ts,p,m,Weights,MV,OV); ``` # DC SERVOMOTOR - CLOSED-LOOP SIMULATION ### DC SERVOMOTOR - CLOSED-LOOP SIMULATION closed-loop simulation in Simulink Copyright 1990-2014 The MathWorks, Inc. ``` >> mdl = 'mpc_motor'; >> open_system(mdl) >> sim(mdl) ``` # DC SERVOMOTOR - CLOSED-LOOP SIMULATION - same MPC tuning parameters - setpoint $r(t) = \pi \sin(0.4t) \deg$ $\bullet \ \, \mathsf{Take}\,\mathsf{simulation}\,\mathsf{model}\,\mathsf{sldemo}\,\mathsf{_suspn}\,\mathsf{in}\,\mathsf{MATLAB}$ $$F_{front} = 2K_f(L_f\theta - (z+h)) + 2C_f(L_f\dot{\theta} - \dot{z}) + \textcolor{red}{u_f}$$ $$F_{front}, F_{rear} = \text{ upward force on body from front/rear suspension}$$ $$K_f, K_r = \text{ front and rear suspension spring constant}$$ $$C_f, C_r = \text{ front and rear suspension damping rate}$$ $$L_f, L_r = \text{ horizontal distance from c.g. to front/rear suspension}$$ $$\theta, \dot{\theta} = \text{pitch (rotational) angle and its rate of change}$$ $$z, \dot{z} = \text{bounce (vertical) distance and its rate of change}$$ - $\bullet \;\;$ For control purposes we add external forces u_f , u_r as manipulated variables - The system has 4 states: θ , $\dot{\theta}$, z, \dot{z} - ullet Measured disturbances: road height h, pitch moment from vehicle acceleration • Step #1: get a linear discrete-time model (4 inputs, 3 outputs, 4 states) ``` >> plant_mdl = 'suspension_model'; >> op = operspec(plant_mdl); >> [op_point, op_report] = findop(plant_mdl,op); >> sys = linearize(plant_mdl, op_point); >> Ts = 0.025; % sample time (s) >> plant = c2d(sys,Ts); >> plant = setmpcsignals(plant,'MV',[1 2],'MD',... [3 4],'MO',[1 2],'UO',3); ``` • Step #2: design the MPC controller ``` >> dfmax = .1/.1; % [kN/s] >> MV = struct('RateMin',-Ts*dfmax, Ts*dfmax,... 'RateMax',Ts*dfmax,Ts*dfmax); >> OV = []; >> Weights = struct('MV',[0 0], 'MVRate',[.01 .01],... 'OV',[.01 0 10]); >> p = 50; % Prediction horizon >> m = 5; % Control horizon >> mpcobj = mpc(plant,Ts,p,m,Weights,MV,OV); ``` • Closed-loop MPC results #### FREQUENCY ANALYSIS OF MPC (FOR SMALL SIGNALS) - Unconstrained MPC gain + linear observer = linear dynamical system - Closed-loop MPC analysis can be performed using standard frequency-domain tools (e.g., Bode plots for sensitivity analysis) >> sys=ss(mpcobj) >> sys=tf(mpcobj) returns the LTI object of the MPC controller (when constraints are inactive) #### **CONTROLLER MATCHING** • Given a desired linear controller $u=K_dx$, find a set of weights Q,R,P defining an MPC problem such that $$-\left[I\,0\,\ldots\,0\,\right]H^{-1}F=K_d$$ i.e., the MPC law coincides with K_d when the constraints are inactive • Recall that the QP matrices are $H=2(\bar{R}+\bar{S}'\bar{Q}\bar{S}), F=2\bar{S}'\bar{Q}\bar{T},$ where $$\bar{Q} = \begin{bmatrix} \begin{smallmatrix} Q & 0 & 0 & \dots & 0 \\ 0 & Q & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ \vdots & \dots & 0 & \bar{Q} & 0 \\ 0 & 0 & \dots & 0 & P \end{bmatrix}, \, \bar{R} = \begin{bmatrix} \begin{smallmatrix} R & 0 & \dots & 0 \\ 0 & R & \dots & 0 \\ \vdots & R & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & \dots & 0 & R \end{bmatrix}, \, \bar{S} = \begin{bmatrix} \begin{smallmatrix} B & 0 & \dots & 0 \\ AB & B & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ A^{N-1}B & A^{N-2}B & \dots & B \end{bmatrix}, \, \bar{T} = \begin{bmatrix} \begin{smallmatrix} A \\ A^2 \\ \vdots \\ A^N \end{bmatrix}$$ - The above inverse optimality problem can be cast to a convex problem (Di Cairano, Bemporad, 2010) - $\bullet \ \ Result \ extended \ to \ match \ any \ linear \ controller/observer \ by \ LQR/Kalman \ filter$ (Zanon, Bemporad, 2022) # **CONTROLLER MATCHING - EXAMPLE** (Di Cairano, Bemporad, 2010) - Open-loop process: y(t) = 1.8y(t-1) + 1.2y(t-2) + u(t-1) - Constraints: $-24 \le u(t) \le 24$, $y(t) \ge -5$ - Desired controller = PID with gains $K_I=0.248, K_P=0.752, K_D=2.237$ $$u(t) = -\left(K_I \mathcal{I}(t) + K_P y(t) + \frac{K_D}{T_s} (y(t) - y(t-1))\right)$$ $$\mathcal{I}(t) = \mathcal{I}(t-1) + T_s y(t)$$ $$x(t) = \begin{bmatrix} y(t-1) \\ y(t-2) \\ \mathcal{I}(t-1) \\ u(t-1) \end{bmatrix}$$ Matching result (using inverse LQR): $$Q^* = \left[\begin{smallmatrix} 6.401 & 0.064 & -0.001 & 0.020 \\ 0.064 & 6.605 & 0.006 & 0.080 \\ -0.001 & 0.006 & 6.647 & -0.020 \\ 0.019 & 0.080 & -0.020 & 6.378 \end{smallmatrix} \right], \ R^* = 1, \ P^* = \left[\begin{smallmatrix} 422.7 & 241.7 & 50.39 & 201.4 \\ 241.7 & 151.0 & 32.13 & 120.4 \\ 50.39 & 32.13 & 19.85 & 26.75 \\ 201.4 & 120.4 & 26.75 & 106.6 \end{smallmatrix} \right]$$ # **CONTROLLER MATCHING - EXAMPLE** #### LINEAR MPC BASED ON LP (Propoi, 1963) (Bemporad, Borrelli, Morari, 2003) • Linear prediction model: $$\begin{cases} x_{k+1} &= Ax_k + Bu_k \\ y_k &= Cx_k \end{cases} \qquad \begin{array}{c} x \in \mathbb{R}^n \\ u \in \mathbb{R}^m \\ y \in \mathbb{R}^p \end{cases}$$ Constraints to enforce: $$\begin{cases} u_{\min} \le u(t) \le u_{\max} \\ y_{\min} \le y(t) \le y_{\max} \end{cases}$$ • Constrained optimal control problem (∞ -norms): $||v||_{\infty} \triangleq \max_{i=1} |v_i|$ constrained optimal control problem ($$\infty$$ -norms): $\|v\|_{\infty} = \max_{i=1,\dots,n} |v_i|$ $$\min_{z} \quad \|Px_N\|_{\infty} + \sum_{k=0}^{N-1} \|Qx_k\|_{\infty} + \|Ru_k\|_{\infty}$$
$$\mathrm{s.t.} \quad u_{\min} \leq u_k \leq u_{\max}, \ k=0,\dots,N-1$$ $$R,Q,P$$ $$\mathrm{full\ rank} \quad z = \begin{bmatrix} u_0 \\ u_1 \\ \vdots \\ u_{N-1} \end{bmatrix}$$ s.t. $$u_{\min} \le u_k \le u_{\max}, \ k = 0, \dots, N-1$$ $y_{\min} \le y_k \le y_{\max}, \ k = 1, \dots, N$ $$R,Q,P \\ \text{full rank} \quad z = \begin{bmatrix} u_0 \\ u_1 \\ \vdots \\ u_{N-1} \end{bmatrix}$$ #### LINEAR MPC BASED ON LP • Basic trick: introduce slack variables (Q^i = i-th row of Q) Example: $$\begin{aligned} \min_{x} |x| &\to \min_{x,\epsilon} & \epsilon \\ \text{s.t.} & \epsilon \geq x \\ & \epsilon \geq -x \end{aligned}$$ # LINEAR MPC BASED ON LP - Linear prediction model: $x_k = A^k x_0 + \sum_{i=0}^{\kappa-1} A^i B u_{k-1-i}$ - Optimization problem: $$V(x_0) = \min_z \quad [1 \dots 10 \dots 0] z$$ (linear objective) s.t. $Gz \leq W + Sx_0$ (linear constraints) Linear Program (LP) - $\bullet \ \ \text{optimization vector:} \ z \triangleq [\epsilon_0^u \ \dots \ \epsilon_{N-1}^u \ \epsilon_1^x \ \dots \ \epsilon_N^x \ u_0', \dots, u_{N-1}']' \in \mathbb{R}^{N(n_u+2)}$ - G, W, S are obtained from weights Q, R, P, and model matrices A, B, C - Q, R, P can be selected to guarantee closed-loop stability (Bemporad, Borrelli, Morari, 2003) # **EXTENSION TO ARBITRARY CONVEX PWA FUNCTIONS** #### RESULT Every convex piecewise affine function $\ell:\mathbb{R}^n \to \mathbb{R}$ can be represented as the max of affine functions, and vice versa (Schechter, 1987) Example: $$\ell(x) = |x| = \max\{x, -x\}$$ $\begin{pmatrix} a_1'x + b_1 \\ a_2'x + b_2 \end{pmatrix}$ $$\ell(x) = \max \{a_1'x + b_1, \dots, a_4'x + b_4\}$$ Constrained optimal control problem $$\min_{U} \ \ell_N(x_N) + \sum_{k=0}^{N-1} \ell_k(x_k, u_k)$$ s.t. $$g_k(x_k, u_k) \le 0, k = 0, ..., N - 1$$ $g_N(x_N) \le 0$ ℓ_k,ℓ_N,g_k,g_N are arbitrary convex piecewise affine (PWA) functions # CONVEX PWA OPTIMIZATION PROBLEMS AND LP • Minimization of a convex PWA function $\ell(x)$: $$\min_{\epsilon,x} \quad \epsilon$$ s.t. $$\begin{cases} \epsilon \ge a_1'x + b_1 \\ \epsilon \ge a_2'x + b_2 \\ \epsilon \ge a_3'x + b_3 \\ \epsilon \ge a_4'x + b_4 \end{cases}$$ - By construction $\epsilon \ge \max\{a_1'x + b_1, a_2'x + b_2, a_3'x + b_3, a_4'x + b_4\}$ - By contradiction it is easy to show that at the optimum we have that $$\epsilon = \max\{a_1'x + b_1, a_2'x + b_2, a_3'x + b_3, a_4'x + b_4\}$$ • Convex PWA constraints $\ell(x) \le 0$ can be handled similarly by imposing $a_i'x+b_i \le 0, \forall i=1,2,3,4$ # LP-BASED VS QP-BASED MPC - QP- and LP-based share the same set of feasible inputs ($Gz \leq W + Sx$) - When constraints dominate over performance there is little difference between them (e.g., during transients) - Small-signal response, however, is usually less smooth with LP than with QP, because in LP an optimal point is always on a vertex $$\left\{ z: \begin{array}{ll} Gz \leq W + Sx \\ \bar{G}z + \bar{E}\epsilon \leq \bar{W} + \bar{S}x \end{array} \right\}$$ $$\{z: Gz \le W + Sx\}$$ ϵ = additional slack variables introduced to represent convex PWA costs