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Course contents

1. Linear dynamical systems in continuous and discrete-time

2. Linearization and discretization, stability analysis

3. Controllability and observability analysis

4. Synthesis of feedback controllers and state estimators

5. System identification (=learn dynamical models from data)
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Dynamical systems



Dynamical systems
• A dynamical system is an object (or a set of objects) that evolves over time,

possibly under external excitations.

• Examples: an engine, a satellite, a tank reactor, a human transporter, ...
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Dynamical systems

• ... a supply chain, a portfolio, a computer server

task
allocation

quality
of	service

portfolio
wealth

asset
quantities

raw
materials

items
sold

factory warehouse distributor/retailer

• Theway the system evolves over time is called the dynamics of the system.
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Dynamical models

• A dynamical model of a system is a set of mathematical laws that explain how

the system evolves over time, usually under the effect of external excitations, in

a quantitativeway.

• What is the purpose of a dynamical model ?

1. Understand the system (“How does X influence Y ?”)

2. Simulation (“What happens if I apply action Z on the system ?”)

3. Estimate (“How to estimate variable X frommeasuring Y ?”)

4. Control (“How tomake the system behave autonomously the way I want ?”)
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Linear systems



Continuous-time linear systems

• Systemofn first-order linear ordinary differential equations (ODEs)with inputs

ẋ1(t) = a11x1(t) + . . . + a1nxn(t) +b1u(t)

ẋ2(t) = a21x1(t) + . . . + a2nxn(t) +b2u(t)

...
...

...

ẋn(t) = an1x1(t) + . . . + annxn(t) +bnu(t)

x1(0) = x10, . . . xn(0) = xn0

[
ẋ =

dx

dt

]

• Set x = [x1 . . . xn]
′ ∈ Rn. The equivalentmatrix form of the linear ODE

system is the so-called linear system

ẋ(t) = Ax(t) +Bu(t)

with initial condition x(0) = x0, with vector x0 = [x10 . . . xn0]
′ ∈ Rn
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Example: Mass-spring-damper system
x!(t), x"(t)

M!

u(t)
K

{
ẋ1(t) = x2(t) velocity = derivative of traveled space

Mẋ2(t) = u− βx2(t)−Kx1(t) Newton's law

Rewrite as the 2nd order linear system{ dx1(t)
dt = x2(t)

dx2(t)
dt = − β

M x2(t)− K
M x1(t) +

1
M u(t)

or in matrix form

ẋ(t) =

[
0 1

−K
M

− β
M

]
︸ ︷︷ ︸

A

x(t) +

[
0

1
M

]
︸ ︷︷ ︸

B

u(t)
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nth-order linear ODE with input

dy(n)(t)

dtn
+ an−1

dy(n−1)(t)

dtn−1
+ · · ·+ a1ẏ(t) + a0y(t)

= bn−1
du(n−1)(t)

dt
+ bn−2

du(n−2)(t)

dt
+ · · ·+ b1u̇(t) + b0u(t)

By inspection, the nth-order ODE = 1st-order linear system of ODEs



ẋ1(t) = x2(t)

ẋ2(t) = x3(t)

...
...

ẋn(t) = −a0x1(t) + . . . − an−1xn(t) + u(t)

y(t) = b0x1(t) + . . . + bn−1xn(t)

ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t)

A =


0 1 0 ... 0
0 0 1 ... 0

...
...

. . .
...

0 0 0 ... 1
−a0 −a1 −a2 ... −an−1

 , B =


0
0

...
0
1


C = [ b0 b1 b2 ... bn−1 ] , D = 0

The linear system of 1st-order ODEs is called the state-space realization of the

nth-order ODE. There are infinitely many state-space realizations.
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Lagrange's formula
• Starting from the initial condition x(0) = x0, the continuous-time linear system

ẋ = Ax+Bu has the unique solution x(t)

x(t) = eAtx0︸ ︷︷ ︸
natural response

+

∫ t

0

eA(t−τ)Bu(τ)dτ︸ ︷︷ ︸
forced response

• The exponential matrix is defined as

eAt ≜ I +At+
A2t2

2
+ . . . +

Antn

n!
+ . . .

(Moler, Van Loan, 2003)

MATLAB
E=expm(A*t)

Python
from scipy.linalg import expm
E=expm(A*t)
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State vector

• Given x(0) and u(t), ∀t ∈ [0, T ], Lagrange’s formula allows us to compute x(t)

and y(t), ∀t ∈ [0, T ]

• Generally speaking, the state of a dynamical system is a set of variables that

completely summarizes the past history of the system. It allows us to predict its

futuremotion

• Therefore, by knowing the initial state x(0)we can neglect all past history

u(−t), x(−t), ∀t ≥ 0

• The dimension n of the state x(t) ∈ Rn is called the order of the system
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Eigenvalues and eigenvectors
• Let us recall some basic concepts of linear algebra:

A =


a11 a12 . . . a1n
a21 a22 . . . a2n
...

... . . .
...

an1 an2 . . . ann

 square matrix of order n, A ∈ Rn×n

I =


1 0 . . . 0

0 1 . . . 0

...
... . . .

...

0 0 . . . 1

 identity matrix of order n

• Characteristic equation ofA:

det(λI −A) = 0

• Characteristic polynomial ofA:

P (λ) = det(λI −A) = λn + an−1λ
n−1 + . . .+ a1λ+ a0

©2021 A. Bemporad - ``Identification, Analysis, and Control of Dynamical Systems'' 11



Eigenvalues and eigenvectors

• The eigenvalues ofA ∈ Rn×n are the roots λ1, …, λn of its characteristic

polynomial

det(λiI −A) = 0, i = 1, 2, . . . , n

• An eigenvector ofA is any vector vi ∈ Rn such thatAvi = λivi for some

i = 1, 2, . . . , n.

• The diagonalization ofA isA = TΛT−1, where

Λ =

 λ1 0 ... 0
0 λ2 ... 0

...
...
. . .

...
0 0 ... λn

 = T−1AT, T = [v1|v2| . . . |vn]

(not all matricesA are diagonalizable, see Jordan normal form)

• Algebraic multiplicity of λi = number of coincident roots λi of det(λI −A)

• Geometric multiplicity of λi = number of linearly independent eigenvectors vi
such thatAvi = λivi.
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Eigenvalues and modes

• Let u(t) ≡ 0 and assumeA diagonalizable

• The state trajectory is the natural response

x(t) = eAtx(0) = TeΛt T−1x0︸ ︷︷ ︸
α

= [v1 . . . vn]

[
eλ1t ... 0

. . .
0 ... eλnt

]
α

=
[
v1e

λ1t . . . vne
λnt
] [ α1

...
αn

]
=

n∑
i=1

αie
λitvi

where vi=eigenvector ofA, λi=eigenvalue ofA,α = T−1x(0) ∈ Rn

• The evolution of the system depends on the eigenvalues λi ofA, calledmodes

of the system (sometimes we also refer to eλit as the i-th mode)

• Amode λi is called excited ifαi 6= 0

©2021 A. Bemporad - ``Identification, Analysis, and Control of Dynamical Systems'' 13



Some classes of dynamical systems

• Causality: a dynamical system is causal if y(t) does not depend on future inputs

u(τ) ∀τ > t (strictly causal if ∀τ ≥ t)

• A linear system is always causal, and strictly causal iffD = 0

• Linear time-varying (LTV) systems:{
ẋ(t) = A(t)x(t) +B(t)u(t)

y(t) = C(t)x(t) +D(t)u(t)

• WhenA,B,C ,D are constant, the system is said linear time-invariant (LTI)

• A generalization of LTV systems are linear parameter-varying (LPV) systems{
ẋ(t) = A(p(t))x(t) +B(p(t))u(t)

y(t) = C(p(t))x(t) +D(p(t))u(t)
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Some classes of dynamical systems
• Multivariable systems: more generally, a system can havem inputs

(u(t) ∈ Rm) and p outputs (y(t) ∈ Rp). For linear systems, we still have{
ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t)

withA ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, D ∈ Rp×m

• Nonlinear systems {
ẋ(t) = f(x(t), u(t))

y(t) = g(x(t), u(t))

where f : Rn+m → Rn, g : Rn+m → Rp are (arbitrary) nonlinear functions

• Time-varying nonlinear systems{
ẋ(t) = f(t, x(t), u(t))

y(t) = g(t, x(t), u(t))
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Stability



Equilibrium

• Consider the continuous-time nonlinear system{
ẋ(t) = f(x(t), u(t))

y(t) = g(x(t), u(t))

Definition

A state xr ∈ Rn and an input ur ∈ Rm are an equilibrium pair if for initial

conditionx(0) = xr and constant inputu(t) ≡ ur the state remains constant:

x(t) ≡ xr , ∀t ≥ 0.

• Equivalent definition: (xr, ur) is an equilibrium pair if f(xr, ur) = 0

• xr is called equilibrium state, ur equilibrium input

• The definition generalizes to time-varying nonlinear systems
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Stability

• Consider the nonlinear system{
ẋ(t) = f(x(t), ur)

y(t) = g(x(t), ur)

and let xr be an equilibrium state, f(xr, ur) = 0

Definition

The equilibrium state xr is stable if for each initial conditions x(0) “close

enough” to xr , the corresponding trajectory x(t) remains near xr for all t ≥ 0.

Math definition: ∀ϵ > 0 ∃δ > 0 : ∀x(0) such that ∥x(0)− xr∥ < δ⇒∥x(t)− xr∥ < ϵ, ∀t ≥ 0.

• The equilibrium point xris called asymptotically stable if it is stable and

x(t) → xr for t → ∞

• Otherwise, the equilibrium point xr is called unstable
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Stability of equilibria - Examples
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Stability of first-order linear systems
• Consider the first-order linear system

ẋ(t) = ax(t) + bu(t)

• xr = 0, ur = 0 is an equilibrium pair

• For u(t) ≡ 0, ∀t ≥ 0, the solution is

x(t) = eatx0

• The origin xr = 0 is

– unstable if a > 0

– stable if a ≤ 0

– asymptotically stable if a < 0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

x(
t)

t

x
r

x
0

a>0

a=0

a<0
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Stability of continuous-time linear systems

Since the natural response of ẋ = Ax+Bu is x(t) = eAtx0, the stability

properties depend only onA. We can therefore talk about system stability of a

linear system (A,B,C,D)

Theorem

Let λ1, . . ., λm,m ≤ n be the eigenvalues ofA ∈ Rn×n.

The system ẋ = Ax+Bu is
• asymptotically stable iff<λi < 0, ∀i = 1, . . . ,m

• (marginally) stable if<λi ≤ 0, ∀i = 1, . . . ,m, and the eigenvalues

with null real part have equal algebraic and geometric multiplicity

• unstable otherwise (in particular, if ∃ i such that<λi > 0).

The stability properties of a linear systemonly depend on the real part of

the eigenvalues of matrixA
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Stability of continuous-time linear systems
Proof:

• The natural response isx(t) = eAtx0 (eAt ≜ I+At+ A2t2

2 + . . . + Antn

n! + . . . )

• If matrixA is diagonalizable1 ,A = TΛT−1,

Λ =


λ1 0 ... 0
0 λ2 ... 0

...
...
. . .

...
0 0 ... λn

⇒ eAt = T


eλ1t 0 ... 0
0 eλ2t ... 0

...
...

. . .
...

0 0 ... eλnt

T−1

• Take any eigenvalue λ = a+ jb:

|eλt| = eat|ejbt| = eat

• A is always diagonalizable if algebraic multiplicity = geometric multiplicity

□
1If A is not diagonalizable, it can be transformed to Jordan form. In this case the natural response

x(t) contains modes tjeλt , j = 0, 1, . . . , alg. multiplicity - geom. multiplicity
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Linearization of nonlinear systems

• Consider the nonlinear system{
ẋ(t) = f(x(t), u(t))

y(t) = g(x(t), u(t))

• Let (xr, ur) be an equilibrium, f(xr, ur) = 0

• Objective: investigate the dynamic behaviour of the system for small

perturbations∆u(t) ≜ u(t)− ur and∆x(0) ≜ x(0)− xr .

• The evolution of∆x(t) ≜ x(t)− xr is given by

∆̇x(t) = ẋ(t)− ẋr = f(x(t), u(t))

= f(∆x(t) + xr,∆u(t) + ur)

≈ ∂f

∂x
(xr, ur)︸ ︷︷ ︸
A

∆x(t) +
∂f

∂u
(xr, ur)︸ ︷︷ ︸
B

∆u(t)
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Linearization of nonlinear systems

• Similarly

∆y(t) ≈ ∂g

∂x
(xr, ur)︸ ︷︷ ︸
C

∆x(t) +
∂g

∂u
(xr, ur)︸ ︷︷ ︸
D

∆u(t)

where∆y(t) ≜ y(t)− g(xr, ur) is the perturbation of the output from its

equilibrium

• The perturbations∆x(t),∆y(t), and∆u(t) are (approximately) ruled by the

linearized system {
∆̇x(t) = A∆x(t) +B∆u(t)

∆y(t) = C∆x(t) +D∆u(t)
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Lyapunov's stability



Lyapunov's indirect method
• Consider the nonlinear system ẋ = f(x), with f differentiable, and assume

x = 0 is equilibrium point (f(0) = 0)

• Consider the linearized system ẋ = Ax, withA = ∂f
∂x

∣∣∣
x=0

1. If x = 0 is an asymptotically stable equilibrium for ẋ = Ax⇒ it is (locally)

asymptotically stable for the nonlinear system

2. If x = 0 is an unstable equilibrium for ẋ = Ax⇒ it is unstable for the nonlinear

system

3. If x = 0 is marginally stable for ẋ = Ax⇒ nothing can be said about its stability

for the nonlinear system

Aleksandr Mikhailovich Lyapunov
(1857-1918)
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Example: Pendulum

y(t)

l

m

u(t)=mg

h

y(t) = angular displacement

ẏ(t) = angular velocity

ÿ(t) = angular acceleration

u(t) =mg gravity force

hẏ(t) = viscous friction torque

l = pendulum length

ml2 = pendulum rotational inertia

• mathematical model

ml2ÿ(t) = −lmg sin y(t)− hẏ(t)

• in state-space form (x1 = y, x2 = ẏ){
ẋ1 = x2

ẋ2 = − g
l sinx1 −Hx2, H ≜ h

ml2
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Example: Pendulum

Look for equilibrium states:[
x2r

− g
l sinx1r −Hx2r

]
=

[
0

0

]
⇒

{
x2r = 0

x1r = ±kπ, k = 0, 1, . . .

l

m

u(t)=mg

h

x2r = 0, x1r = 0,±2π, . . .

l

m

u(t)=mg

h

x2r = 0, x1r = ±π,±3π, . . .
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Example: Pendulum
• Linearize the system around x1r = 0, x2r = 0

∆ẋ(t) =

[
0 1

− g
l −H

]
︸ ︷︷ ︸

A

∆x(t)

• find the eigenvalues ofA

det(λI −A) = λ2 +Hλ+
g

l
= 0 ⇒ λ1,2 =

1

2

(
−H ±

√
H2 − 4

g

l

)

• <λ1,2 < 0⇒ ẋ = Ax asymptotically

stable

• by Lyapunov’s indirect method

xr = [ 00 ] is also an asymptotically

stable equilibrium for the pendulum
0 2 4 6 8 10

−1.5
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−0.5

0

0.5

1

1.5
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t
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Example: Pendulum
• Linearize the system around x1r = π, x2r = 0

∆ẋ(t) =

[
0 1
g
l −H

]
︸ ︷︷ ︸

A

∆x(t)

• find the eigenvalues ofA

det(λI −A) = λ2 +Hλ− g

l
= 0 ⇒ λ1,2 =

1

2

(
−H ±

√
H2 + 4

g

l

)

• λ1 < 0, λ2 > 0⇒ ẋ = Ax unstable

• by Lyapunov’s indirect method

xr = [ π0 ] is also an unstable

equilibrium for the pendulum
0 2 4 6 8 10

−4

−3

−2

−1

0

1

2

3

4

y(
t)

t
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Lyapunov's direct method

• A secondmethod exists to analyze global stability of nonlinear systems, based

on the concept of Lyapunov functions

• Key idea: if the energy of a system dissipates over time, the system

asymptotically reaches aminimum-energy configuration

• Assumptions: consider the autonomous nonlinear system ẋ = f(x), with f(·)
differentiable, and let x = 0 be an equilibrium (f(0) = 0)

• Some definitions of positive definiteness of a function V : Rn 7→ R
– V is locally positive definite if V (0) = 0 and there exists a ball

Bϵ = {x : ‖x‖2 ≤ ϵ} around the origin such that V (x) > 0 ∀x ∈ Bϵ \ 0

– V is globally positive definite ifBϵ = Rn (i.e. ϵ → ∞)

– V is negative definite if−V is positive definite

– V is positive semi-definite if V (x) ≥ 0 ∀x ∈ Bϵ

– V is negative semi-definite if−V is positive semi-definite
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Lyapunov's direct method

• Example: let x = [x1 x2]
′, V : R2 → R

– V (x) = x2
1 + x2

2 is globally positive definite

– V (x) = x2
1 + x2

2 − x3
1 is locally positive definite

– V (x) = x4
1 +sin2(x2) is locally positive definite and globally positive semi-definite
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Lyapunov's direct method
Theorem

Given the nonlinear system ẋ = f(x), f(0) = 0, let V : Rn 7→ R be positive definite

in a ballBϵ around the origin, ϵ > 0, V ∈ C1(R). If the function

V̇ (x) = ∇V (x)′ẋ = ∇V (x)′f(x)

is negative definite onBϵ, then the origin is an asymptotically stable equilibrium point.

If V̇ (x) is only negative semi-definite onBϵ, then the the origin is a stable equilibrium

point.

Such a function V : Rn 7→ R is called a Lyapunov function for the system

ẋ = f(x)
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Example of Lyapunov's direct method
• Consider the following nonlinear system ẋ = f(x) (Slotine, Li, 1991 - Example 3.8){

ẋ1 = x1(x
2
1 + x2

2 − 2)− 4x1x
2
2

ẋ2 = 4x2
1x2 + x2(x

2
1 + x2

2 − 2)

• The state x = 0 is an equilibrium because ẋ = f(0) = 0

• Consider the candidate Lyapunov function

V (x1, x2) = x2
1 + x2

2

which is globally positive definite. Its time derivative V̇ is

V̇ (x1, x2) = 2(x2
1 + x2

2)(x
2
1 + x2

2 − 2)

• It is easy to check that V̇ (x1, x2) is negative definite if ‖x‖22 = x2
1 + x2

2 < 2

• Since for anyBϵ with 0 < ϵ <
√
2 the hypotheses of Lyapunov’s theorem are

satisfied, x = 0 is an asymptotically stable equilibrium

• AnyBϵ with 0 < ϵ <
√
2 is a also a domain of attraction
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Example of Lyapunov's direct method (cont'd)

• Cf. Lyapunov’s indirect method: the linearization around x = 0 is

∂f(0, 0)

∂x
=

[
3x2

1 − 3x2
2 − 2 −6x1x2

10x1x2 5x2
1 + 3x2

2 − 2

]∣∣∣∣∣
x=0

=

[
−2 0

0 −2

]

which is an asymptotically stable matrix

• Lyapunov’s indirect method tells us that the origin is locally asymptotically

stable

• Lyapunov’s direct method also tells us thatBϵ is a domain of attraction for all

0 < ϵ <
√
2

• Consider this other example: ẋ = −x3. The origin as an equilibrium. But
df(0)
dx = −3 · 02 = 0, so Lyapunov indirect method is useless.

• Lyapunov’s direct methodwith V = x2 provides V̇ = −2x4, and therefore we

can conclude that x = 0 is (globally) asymptotically stable

©2021 A. Bemporad - ``Identification, Analysis, and Control of Dynamical Systems'' 33



Case of continuous-time linear systems

• Let us apply Lyapunov’s direct method to linear systems ẋ = Ax and choose

V (x) = x′Px, withP = P ′ � 0 (P=positive definite and symmetric matrix)

• The derivative V̇ (x) = ẋ′Px+ x′Pẋ = x′(A′P + PA)x

• V̇ (x) is negative definite if and only if the Lyapunov equation

A′P + PA = −Q

is satisfied for someQ � 0 (for example,Q = I)
Theorem

The autonomous linear system ẋ = Ax is asymptotically stable⇔∀Q � 0 the

Lyapunov equationA′P + PA = −Q has one and only one solutionP � 0

MATLAB
P=lyap(A’,Q)

Python
import control as ctrl
P=lyap(A.T.copy(),Q)

(note transposition of matrix A !)
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Discrete-time systems



Discrete-time models

0 1 2 3 4 5
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y(t), y(kT
s
)

time t

sampled continuous-time signal

0 1 2 3 4 5
1

1.5
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2.5

3

3.5

4

u(kT
s
)

time t

discrete-time signal

• Discrete-timemodels describe relationships between sampled variables

x(kTs), u(kTs), y(kTs), k = 0, 1, . . .

• The value u(kTs) is kept constant during the sampling interval [kTs, (k + 1)Ts)

• A discrete-time signal can either represent the sampling of a continuous-time

signal, or be an intrinsically discrete signal

• Discrete-time signals are at the basis of digital controllers (as well as of digital

filters in signal processing)
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Difference equation
• Consider the first-order difference equation (autonomous system){

x(k + 1) = ax(k)

x(0) = x0

• The solution is x(k) = akx0
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x
(k
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k
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a=1
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Linear discrete-time system
• Consider the set of n first-order linear difference equations forced by the input

u(k) ∈ R

x1(k + 1) = a11x1(k) + . . . + a1nxn(k) +b1u(k)

x2(k + 1) = a21x1(k) + . . . + a2nxn(k) +b2u(k)
...

...
...

xn(k + 1) = an1x1(k) + . . . + annxn(k) +bnu(k)

x1(0) = x10, . . . xn(0) = xn0

• In compact matrix form:{
x(k + 1) = Ax(k) +Bu(k)

x(0) = x0

where x =

[
x1

...
xn

]
∈ Rn.
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Linear discrete-time system

• The solution is

x(k) = Akx0︸ ︷︷ ︸
natural response

+
k−1∑
i=0

AiBu(k − 1− i)︸ ︷︷ ︸
forced response

• If matrixA is diagonalizable,A = TΛT−1

Λ =

 λ1 0 ... 0
0 λ2 ... 0

...
...
. . .

...
0 0 ... λn

⇒ Ak = T


λk
1 0 ... 0

0 λk
2 ... 0

...
...
. . .

...
0 0 ... λk

n

T−1

where T = [v1 . . . vn] collects n independent eigenvectors.
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Modal response

• Assume input u(k) = 0, ∀k ≥ 0

• AssumeA is diagonalizable,A = TΛT−1

• The state trajectory (natural response) is

x(k) = Akx0 = TΛkT−1x0 =

n∑
i=1

αiλ
k
i vi

where

– λi = eigenvalues ofA

– vi = eigenvectors ofA

– αi = coefficients that depend on the initial condition x(0)

α =

[ α1

...
αn

]
= T−1x(0), T = [v1 . . . vn]

• The systemmodes depend on the eigenvalues ofA, as in continuous-time
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Example - Wealth of a bank account

• k= year counter

• ρ= interest rate

• x(k)=wealth at the beginning of year k

• u(k)=money saved at the end of year k

• x0= initial wealth in bank account

Discrete-timemodel:
{

x(k + 1) = (1 + ρ)x(k) + u(k)

x(0) = x0

x0 10 ke
u(k) 5 ke
ρ 10 %

x(k) = (1.1)k·10+1− (1.1)k

1− 1.1
5 = 60(1.1)k−50
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Example - Supply chain

y(k)u(k)

x1(k) x2(k) x3(k)

S P R

!1x1(k)

"1x1(k)

!2x2(k)

"2x2(k)

#3x3(k) $3x3(k)

• Problem statement:

– At eachmonth k,S purchases the quantity u(k) of rawmaterial
– A fraction δ1 of rawmaterial is discarded, a fractionα1 is shipped to producerP
– A fractionα2 of product is sold byP to retailerR, a fraction δ2 is discarded
– RetailerR returns a fraction β3 of defective products everymonth
and sells a fraction γ3 to customers

• Mathematical model:

x1(k + 1) = (1− α1 − δ1)x1(k) + u(k)

x2(k + 1) = α1x1(k) + (1− α2 − δ2)x2(k)

+β3x3(k)

x3(k + 1) = α2x2(k) + (1− β3 − γ3)x3(k)

y(k) = γ3x3(k)

k month counter
x1(k) raw material in S

x2(k) products in P

x3(k) products in R

u(k) raw material purchased by S
y(k) products sold to customers
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Example - Student population dynamics
• Problem statement:

– 3-years course

– percentage of promoted, repeaters, and dropouts are roughly constant

– direct enrollment in 2nd and 3rd academic year is not allowed

– students cannot enroll for more than 3 years

k Year
xi(k) Number of students enrolled in year i at year k, i = 1, 2, 3

u(k) Number of freshmen at year k
y(k) Number of graduates at year k
αi promotion rate during year i, 0 ≤ αi ≤ 1

βi failure rate during year i, 0 ≤ βi ≤ 1

γi dropout rate during year i, γi = 1− αi − βi ≥ 0

• 3rd-order linear discrete-time system:
x1(k + 1) = x1(k)− α1x1(k)− γ1x1(k) + u(k) = β1x1(k) + u(k)

x2(k + 1) = α1x1(k) + β2x2(k)

x3(k + 1) = α2x2(k) + β3x3(k)

y(k) = α3x3(k)
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Example - Student population dynamics
• Inmatrix form

x(k + 1) =

 β1 0 0

α1 β2 0

0 α2 β3

x(k) +

 1

0

0

u(k)

y(k) =
[
0 0 α3

]
x(k)

• Simulation

α1 = .60 β1 = .20
α2 = .80 β2 = .15
α3 = .90 β3 = .08

u(k) ≡ 100, k = 2020, . . .

lim
k→∞

y(k) ≈ 69.0537

2020 2022 2024 2026 2028 2030 2032 2034 2036 2038 2040
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20

40
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95
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nth-order difference equation
• Consider the nth-order difference equation forced by u

any(k − n) + an−1y(k − n+ 1) + · · ·+ a1y(k − 1) + y(k)

= bnu(k − n) + · · ·+ b1u(k − 1) + b0u(k)

• Equivalent linear discrete-time system in canonical statematrix form
x(k + 1) =



0 1 0 . . . 0

0 0 1 . . . 0

...
...

...

0 0 0 . . . 1

−an −an−1 −an−2 . . . −a1

x(k) +



0

0

...

0

1

u(k)

y(k) =
[
(bn − b0an) . . . (b1 − b0a1)

]
x(k) + b0u(k)

• There are infinitely many state-space realizations
MATLAB
tf2ss

Python
ctrl.tf2ss

• nth-order difference equations are very useful for digital filters, digital

controllers, and to reconstruct models from data (system identification)
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Some state-space realization methods

• The following state-space realization is called controllable canonical form)

A =


0 1 0 ... 0
0 0 1 ... 0

...
...

. . .
...

0 0 0 ... 1
−an −an−1 −an−2 ... −a1

 , B =


0
0

...
0
1


C = [ bn bn−1 ... b1 ] , D = 0 (b0 = 0)

MATLAB
sysc=canon(ss(A,B,C,D),’companion’)

Python
sysc,T=ctrl.canonical_form(
ctrl.ss(A,B,C,D), form=’reachable’)

• The following state-space realization is called observable canonical form

A =


−a1 1 0 0 ... 0
−a2 0 1 ... 0 0

...
...
. . .

...
...
...

−an−1 0 0 ... 0 1
−an 0 0 ... 0 0

 , B =


b1
b2

...
bn−1

bn


C = [ 1 0 0 ... 0 0 ] , D = 0 (b0 = 0)

MATLAB
sys=canon(ss(A’,C’,B’,D),’companion’)
syso=ss(sys.A’,sys.C’,sys.B’,D)

Python
syso,T=ctrl.canonical_form(
ctrl.ss(A,B,C,D), form=’observable’)

• Wewill see later that (A,B) in controllable canonical form is a reachable pair,

(A,C) in observable canonical form is an observable pair
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Mapping past I/O pairs to state vector
• The observable canonical form of the nth-order difference equation

y(k) = −
n∑

i=1

aiy(k − i) +
n∑

i=1

biu(k − i) (b0 = 0)

corresponds to the following definition of the state vector x(k):

x1(k) = y(k)

x2(k) = −
∑n

i=2 aiy(k + 1− i) +
∑n

i=2 biu(k + 1− i)
...

...

xj(k) = −
∑n

i=j aiy(k + j − 1− i) +
∑n

i=j biu(k + j − 1− i)
...

...

xn−1(k) = −an−1y(k − 1)− any(k − 2) + bn−1u(k − 1) + bnu(k − 2)

xn(k) = −any(k − 1) + bnu(k − 1)

• This is easy to verify by inspection, just compute x(k + 1) and check
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Discrete-time linear system
x(k + 1) = Ax(k) +Bu(k)

y(k) = Cx(k) +Du(k)

x(0) = x0

• From a given initial condition x(0) and input sequence {u(k)}∞k=0one can

predict the entire sequence of states x(k) and outputs y(k), ∀k ∈ N
• The state x(0) summarizes all the past history of the system

• The dimension n of the state x(k) ∈ Rn is called the order of the system

• The system is called proper (or strictly causal) ifD = 0

• General multivariable case:

x(k) ∈ Rn

u(k) ∈ Rm

y(k) ∈ Rp

A ∈ Rn×n

B ∈ Rn×m

C ∈ Rp×n

D ∈ Rp×m
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Equilibrium

• Consider the discrete-time nonlinear system{
x(k + 1) = f(x(k), u(k))

y(k) = g(x(k), u(k))

Definition

A state xr ∈ Rn and an input ur ∈ Rm are an equilibrium pair if for initial

condition x(0) = xr and constant input u(k) ≡ ur , ∀k ∈ N, the state remains
constant: x(k) ≡ xr , ∀k ∈ N.

• Equivalent definition: (xr, ur) is an equilibrium pair if f(xr, ur) = xr

• xr is called equilibrium state, ur equilibrium input

• The definition generalizes to time-varying discrete-time nonlinear systems
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Stability
• Consider the nonlinear system{

x(k + 1) = f(x(k), ur)

y(k) = g(x(k), ur)

and let xr an equilibrium state, f(xr, ur) = xr

Definition

The equilibrium state xr is stable if for each initial conditions x(0) “close

enough” to xr , the corresponding trajectory x(k) remains close to xr for all

k ∈ N
Analytic definition: ∀ϵ > 0 ∃δ > 0 : ∥x(0)− xr∥ < δ⇒∥x(k)− xr∥ < ϵ, ∀k ∈ N.

• The equilibrium point xr is called asymptotically stable if it is stable and

x(k) → xr for k → ∞

• Otherwise, the equilibrium point xr is called unstable
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Stability of first-order linear systems
• Consider the first-order linear system

x(k + 1) = ax(k) + bu(k)

• xr = 0, ur = 0 is an equilibrium pair

• For u(k) ≡ 0, ∀k = 0, 1, . . ., the solution is

x(k) = akx0

• The origin xr = 0 is

– unstable if |a| > 1

– stable if |a| ≤ 1

– asymptotically stable if |a| < 1
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Stability of discrete-time linear systems
The natural response of x(k+1) = Ax(k) +Bu(k) is x(k) = Akx0, so stability

only depend onA. We therefore talk about system stability

Theorem

Let λ1, . . ., λm,m ≤ n be the eigenvalues ofA ∈ Rn×n.

The system x(k + 1) = Ax(k) +Bu(k) is

• asymptotically stable iff |λi| < 1, ∀i = 1, . . . ,m

• (marginally) stable if |λi| ≤ 1, ∀i = 1, . . . ,m, and the eigenvalues with

unit modulus have equal algebraic and geometric multiplicity a

• unstable otherwise(in particular, if ∃ i such that |λi| > 1)

aAlgebraic multiplicity ofλi = number of coincident rootsλi of det(λI −A). Geometric

multiplicity ofλi = number of linearly independent eigenvectors vi ,Avi = λivi

The stability properties of a discrete-time linear system only depend on

themodulus of the eigenvalues of matrixA
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Stability of discrete-time linear systems

Proof:

• The natural response is x(k) = Akx0

• If matrixA is diagonalizable2 ,A = TΛT−1,

Λ =


λ1 0 ... 0
0 λ2 ... 0

...
...
. . .

...
0 0 ... λn

⇒ Ak = T


λk
1 0 ... 0

0 λk
2 ... 0

...
...
. . .

...
0 0 ... λk

n

T−1

• Take any eigenvalue λ = ρejθ :

|λk| = ρk|ejkθ| = ρk

• A is always diagonalizable if algebraic multiplicity - geometric multiplicity □

• Lyapunov theorems also exist for nonlinear discrete-time systems (LaSalle, 1997)

2If A is not diagonalizable, it can be transformed to Jordan form. In this case the natural response

x(t) contains modes kjλk , j = 0, 1, . . . , alg. multiplicity− geom. multiplicity
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Zero eigenvalues
• Modes corresponding to λi=0 go to zero in finite-time

• This has no continuous-time counterpart, where instead all convergingmodes

tend to zero in infinite time (eλit)

• Example: dynamics of a buffer

y(k)
u(k)

x2(k) x1(k)x3(k)


x1(k + 1) = x2(k)

x2(k + 1) = x3(k)

x3(k + 1) = u(k)

y(k) = x1(k)


x(k + 1) =

 0 1 0

0 0 1

0 0 0

x(k) +

 0

0

1

u(k)

y(k) =
[
1 0 0

]
x(k)

• Natural response: A3x(0) = 0 for all x(0) ∈ R3

• For u(k) ≡ 0, the buffer deploys after at most 3 steps !
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Exact sampling
• Consider the continuous-time system

ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t)

x(0) = x0

• Wewant to characterize the value of x(t), y(t) at the time instants

t = 0, Ts, 2Ts, . . . , kTs, . . ., under the assumption that the input u(t) is

constant during each sampling interval (zero-order hold, ZOH)

u(t) = ū(k), kTs ≤ t < (k + 1)Ts

• x̄(k) ≜ x(kTs) and ȳ(k) ≜ y(kTs) are the state

and the output samples at the kth sampling

instant, respectively
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Exact sampling
• Use Lagrange formula to get the response of the continuous-time system
between t0 = kTs and t = (k + 1)Ts from x(t0) = x(kTs):

x(t) = eA(t−t0)x(t0) +

∫ t

t0

eA(t−σ)Bu(σ)dσ

= eA((k+1)Ts−kTs)x(kTs) +

∫ (k+1)Ts

kTs

eA((k+1)Ts−σ)Bu(σ)dσ

• Since the input u(t) is piecewise constant, u(σ) ≡ ū(k), kTs ≤ σ < (k + 1)Ts.

By setting τ = σ − kTs we get

x((k + 1)Ts) = eATsx(kTs) +

(∫ Ts

0

eA(Ts−τ)dτ

)
Bu(kTs)

and hence

x̄(k + 1) = eATs x̄(k) +

(∫ Ts

0

eA(Ts−τ)dτ

)
Bū(k)

which is a linear difference relation between x̄(k) and ū(k) !
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Exact sampling
• The discrete-time system{

x̄(k + 1) = Āx̄(k) + B̄ū(k)

ȳ(k) = C̄x̄(k) + D̄ū(k)

depends on the original continuous-time system through the relations

Ā ≜ eATs , B̄ ≜
(∫ Ts

0

eA(Ts−τ)dτ

)
B, C̄ ≜ C, D̄ ≜ D

(ifA is invertible then B̄ = (Ā− I)A−1B)

• If u(t) is piecewise constant, (Ā, B̄, C̄, D̄) provides the exact evolution of state

and output samples at discrete times kTs

MATLAB
sys=ss(A,B,C,D);
sysd=c2d(sys,Ts);
[Ab,Bb,Cb,Db]=ssdata(sysd);

Python
sys=ctrl.ss(A,B,C,D)
sysd=ctrl.c2d(sys,Ts)
Ab,Bb,Cb,Db=ctrl.ssdata(sysd)
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Choice of sampling time

Rule of thumb: Ts ≈ 1
10 of rise time = time to move from 10% to

90% of the steady-state value, for input u(t) ≡ 1, x(0) = 0
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Euler's forward method

ẋ(kTs) ≈
x((k + 1)Ts)− x(kTs)

Ts

_x(t)

x((k+1)T )¡x(kT )
T

x((k+1)T )

x(kT )

t
kT (k+1)T

x(t)

T

x((k + 1)Ts)

x(kTs)

(k + 1)TskTs

ẋ(kTs)

x((k + 1)Ts)− x(kTs)

Ts

Ts

Leonhard Paul Euler
(1707-1783)

• For nonlinear systems ẋ(t) = f(x(t), u(t)):

x̄(k + 1) = x̄(k) + Tsf(x̄(k), ū(k))

• For linear systems ẋ(t) = Ax(t) +Bu(t):

x((k + 1)Ts) = (I + TsA)x(kTs) + TsBu(kTs)

Ā ≜ I + TsA, B̄ ≜ TsB, C̄ ≜ C, D̄ ≜ D

• eTsA = I + TsA+ . . .+
Tn
s An

n!
+ . . . Euler’s method≈ exact sampling for Ts → 0
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Eigenvalues mapping

• Let λi = eigenvalues of matrixA (continuous-time system), i = 1, . . . , n.

AssumeA diagonalizable,A = TΛT−1

• The eigenvalues of eTsA = TeTsΛT−1 are eTsλi

<λi < 0→|eTsλi | < 1

• The eigenvalues of I + TsA = T (I + TsΛ)T
−1 are 1 + Tsλi

<λi < 0 6→ |1 + Tsλi| < 1 !

Euler’s forward method can make an asymptotically stable

continuous-time system unstable if Ts is not small enough!
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Example - Hydraulic system
Continuous-timemodel{

d
dth(t) = −a

√
2g

A

√
h(t) + 1

Au(t)

q(t) = a
√
2g
√
h(t)

Discrete-timemodel{
h̄(k + 1) = h̄(k)− Tsa

√
2g

A

√
h̄(k) + Ts

A ū(k)

q̄(k) = a
√
2g
√
h̄(k) (Torricelli's law)

h

u

q
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Euler approximation
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N -steps Euler method
• We can obtain thematricesA,B of the discrete-time linearizedmodel while

integrating the nonlinear continuous-time dynamic equations ẋ = f(x, u)

• N -steps explicit forward Eulermethod: given x̄(k), ū(k), execute the following
steps

1. x = x̄(k), Ā = I , B̄ = 0
2. forn=1,2,…,N do

• Ā← (I + Ts
N

∂f
∂x

(x, ū(k))Ā

• B̄ ← (I + Ts
N

∂f
∂x

(x, ū(k))B̄ + Ts
N

∂f
∂u

(x, ū(k))

• x← x+ Ts
N

f(x, ū(k))

3. end

4. return x̄(k + 1) ≈ x andmatrices Ā, B̄ such that x̄(k + 1) ≈ Ax̄(k) +Bū(k).

• Property: the difference between the state x̄(k + 1) and its approximation x

computed by the above iterations satisfies ‖x̄(k + 1)− x)‖ = O
(
Ts

N

)
• Explicit forward Runge-Kutta 4method also available
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Tustin's discretization method

• Assume u(t) constant within the sampling interval. Given the linear system
ẋ(t) = Ax(t) +Bu(t), apply the trapezoidal rule to approximate the integral

x̄(k + 1)− x̄(k) =

∫ (k+1)Ts

kTs

ẋ(t)dt =

∫ (k+1)Ts

kTs

(Ax(t) +Bu(t))dt

≈ Ts

2
(Ax̄(k) +Bū(k) +Ax̄(k + 1) +Bū(k)) (trapezoidal rule)

and therefore

(I − Ts

2
A)x̄(k + 1) = (I +

Ts

2
)x̄(k) + TsBū(k)

x̄(k + 1) =

(
I − Ts

2
A

)−1 (
I +

Ts

2
A

)
x̄(k) +

(
I − Ts

2
A

)−1

TsBū(k)

• Advantage: simpler to compute than exponential matrix, without toomuch loss

of approximation quality
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Z-transform

Consider a function f(k), f : Z → R, f(k) = 0 for all k < 0

Definition

The unilateral Z-transform of f(k) is the function of

the complex variable z ∈ C defined by

F (z) =

∞∑
k=0

f(k)z−k

−2 0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

f(
k)

k

Witold Hurewicz
(1904-1956)

OnceF (z) is computed using the series, it’s

extended to all z ∈ C for whichF (z)makes sense

Z-transforms convert difference equations into

algebraic equations.
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Examples of Z-transforms

• Discrete impulse

f(k) = δ(k) ≜
{

0 if k 6= 0

1 if k = 0
⇒ Z[δ] = F (z) = 1

• Discrete step

f(k) = 1I(k) ≜
{

0 if k < 0

1 if k ≥ 0
⇒ Z[1I] = F (z) =

z

z − 1

• Geometric sequence

f(k) = ak 1I(k) ⇒ Z[f ] = F (z) =
z

z − a

©2021 A. Bemporad - ``Identification, Analysis, and Control of Dynamical Systems'' 64



Properties of Z-transforms

• Linearity

Z[α1f1(k) + α2f2(k)] = α1Z[f1(k)] + α2Z[f2(k)]

Example: f(k) = 3δ(k)− 5
2k

1I(t)⇒Z[f ] = 3− 5z
z− 1

2

• Forward shift3

Z[f(k + 1) 1I(k)] = zZ[f ]− zf(0)

Example: f(k) = ak+1 1I(k)⇒Z[f ] = z z
z−a − z = az

z−a

3z is also called forward shift operator
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Properties of Z-transforms

• Backward shift or unit delay 4

Z[f(k − 1) 1I(k)] = z−1Z[f ]

Example: f(k) = 1I(k − 1)⇒Z[f ] = z
z(z−1)

• Multiplication by k

Z[kf(k)] = −z
d

dz
Z[f ]

Example: f(k) = k 1I(k)⇒Z[f ] = z
(z−1)2

4z−1 is also called backward shift operator
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Discrete-time transfer function
Apply forward-shift & linearity rules to x(k + 1) = Ax(k) +Bu(k), and

linearity to y(k) = Cx(k) +Du(k):

X(z) = z(zI −A)−1x0 + (zI −A)−1BU(z)

Y (z) = zC(zI −A)−1x0︸ ︷︷ ︸
Z-transform of natural response

+(C(zI −A)−1B +D)U(z)︸ ︷︷ ︸
Z-transform of forced response

Definition

The transfer function of the discrete-time linear system (A,B,C,D) is

G(z) = C(zI −A)−1B +D

that is the ratio between the Z-transform Y (z) of the output and the Z-

transformU(z) of the input signals for the initial state x0 = 0

MATLAB
sys=ss(A,B,C,D,Ts);
G=tf(sys)

Python
sys=ctrl.ss(A,B,C,D,Ts)
G=ctrl.tf(sys)
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Discrete-time transfer function
A;B;C;D G(z)

u(k) y(k) U(z) Y (z)

x0 = 0

Example: The linear system

 x(k + 1) =
[
0.5 1
0 −0.5

]
x(k) + [ 01 ]u(k)

y(k) = [ 1 −1 ]x(k)

with sampling time Ts = 0.1 s has the transfer function

G(z) =
−z + 1.5

z2 − 0.25

The transfer function does not depend

on the input u(k), it is only a property

of the linear system.

MATLAB
Ts=0.1;

A=[0.5 1;0 -0.5];
B=[0;1];
C=[1 -1];
sys=ss(A,B,C,0,Ts);
G=tf(sys)

Transfer function:
-z + 1.5
—————
z^2 - 0.25

Python
import numpy as np
Ts=0.1
A=np.array([[0.5, 1],[0, -0.5]])
B=np.array([[0],[1]])
C=np.array([[1, -1]])
sys=ctrl.ss(A,B,C,0,Ts)
G=ctrl.tf(sys)

Transfer function:
-z + 1.5
—————
z^2 - 0.25
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Difference equations

• Consider the nth-order difference equation forced by u

any(k − n) + an−1y(k − n+ 1) + · · ·+ a1y(k − 1) + y(k)

= bnu(k − n) + · · ·+ b1u(k − 1)

• For zero initial conditions we get the transfer function

G(z) =
bnz
−n + bn−1z

−n+1 + · · ·+ b1z
−1

anz−n + an−1z−n+1 + · · ·+ a1z−1 + 1

=
b1z

n−1 + · · ·+ bn−1z + bn
zn + a1zn−1 + · · ·+ an−1z + an
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Impulse response

• Consider the impulsive input u(k) = δ(k),U(z) = 1. The corresponding output

y(k) is called impulse response

• The Z-transform of y(k) is Y (z) = G(z) · 1 = G(z)

• Therefore the impulse response coincides with the inverse Z-transform g(k) of

the transfer functionG(z)

Example (integrator:)

u(k) = δ(k)

y(k) = Z−1
[

1
z−1

]
= 1I(k − 1)

−2 0 2 4 6 8 10
−2

−1

0

1

2

u
(k

)

k
−2 0 2 4 6 8 10

−2

−1

0

1

2

y
(k

)

k
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Poles, eigenvalues, modes

• Linear discrete-time system{
x(k + 1) = Ax(k) +Bu(k)

y(k) = Cx(k) +Du(k)

x(0) = 0

G(z) = C(zI−A)−1B+D ≜ NG(z)

DG(z)

• Use the adjugatematrix to represent the inverse of zI −A

C(zI −A)−1B +D =
C Adj(zI −A)B

det(zI −A)
+D

• The denominatorDG(z) = det(zI −A) !

The poles ofG(z) coincide with the eigenvalues ofA

• Well, not always ... Theremight be a zero/pole cancellation (wewill see later)
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Steady-state solution and DC gain
• LetA asymptotically stable (|λi| < 1). The natural response vanishes

asymptotically

• Assume constant u(k) ≡ ur , ∀k ∈ N. What is the asymptotic value

xr = limk→∞ x(k) ?

Impose xr(k + 1) = xr(k) = Axr +Bur and get xr = (I −A)−1Bur

The corresponding steady-state output yr = Cxr +Dur is

yr = (C(I −A)−1B +D)︸ ︷︷ ︸
DC gain

ur

• Cf. final value theorem in complex analysis:

yr = lim
k→+∞

y(k) = lim
z→1

(z − 1)Y (z) = lim
z→1

(z − 1)G(z)U(z)

= lim
z→1

(z − 1)G(z)
urz

z − 1
= G(1)ur = (C(I −A)−1B +D)ur

• G(1) is called theDC gain of the system
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Example - Student population dynamics
• Recall student population dynamics

x(k + 1) =

 .2 0 0

.6 .15 0

0 .8 .08

x(k) +

 1

0

0

u(k)

y(k) =
[
0 0 .9

]
x(k)

• DC gain:

[ 0 0 .9 ]
([

1 0 0
0 1 0
0 0 1

]
−
[
.2 0 0
.6 .15 0
0 .8 .08

])−1 [ 1
0
0

]
≈ 0.69

• Transfer function: G(z) = 0.432
z3−0.43z2+0.058z−0.0024 ,G(1) ≈ 0.69

2006 2008 2010 2012 2014 2016
0

5

10

15

20

25

30

35
y(k)

step k

MATLAB
A=[b1 0 0; a1 b2 0; 0 a2 b3];
B=[1;0;0];
C=[0 0 a3];
D=[0];
sys=ss(A,B,C,D,1);
dcgain(sys)

0.6905

Python
A=[[b1, 0, 0],[a1, b2, 0],[0, a2, b3]]
B=[[1],[0],[0]]
C=[0, 0, a3]
D=[0]
sys=ctrl.ss(A,B,C,D,1)
ctrl.dcgain(sys)

0.6905

• For u(k) ≡ 50 students enrolled steadily, y(k) → 0.6905 · 50 ≈ 34.5 graduates
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Closed-loop control



Proportional integral derivative (PID) controllers
• PID (proportional integrative derivative) controllers are themost used

controllers in industrial automation since the ’30s

u(t) = Kp

[
e(t) +

1

Ti

∫ t

0

e(τ)dτ + Td
de(t)

dt

]
where e(t) = r(t)− y(t) is the tracking error

• Initially constructed by analog electronic components, today they are
implemented digitally

– ad hoc digital devices

– just few lines of C code included in the control unit
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PID parameters

Process
+
-
e

Kp
+
+
+ u yr

1

Ti

Z t

0
e(⌧)d⌧

Td
de(t)

dt Controller

• Kp is the controller gain, determining the “aggressiveness” of the controller

• Ti is the reset time, determining the weight of the integral action. The integral

action guarantees that in steady-state y(t) = r(t)

• Td is the derivative time. The term e(t) + Td
de(t)
dt provides a “prediction” of the

tracking error at time t+ Td

• We call the controller P, PD, PI, or PID depending on the feedback terms

included in the control law
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Structure of PID controller

• In practice one implements the following version of the PID controller

u(t) = Kp

[
br(t)− y(t)︸ ︷︷ ︸
proportional

action

+
1

Ti

∫ t

0

(r(τ)− y(τ))dτ︸ ︷︷ ︸
integral
action

+ d(t)︸︷︷︸
derivative
action

]

d(t) +
Td

N
ḋ(t) = −Tdẏ(t)

• the reference signal r(t) is not included in the derivative term (r(t)may have

abrupt changes)

• the proportional actionKp(br(t)− y(t) only uses a fraction b ≤ 1 of the

reference signal r(t)

• the derivative term d(t) is a filtered version of ẏ(t)
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Digital implementation of PID controller

• In digital (=discrete-time) formwith sampling time Ts, the PID controller takes

the following form

u(k) = P (k) + I(k) +D(k)

P (k) = Kp(br(k)− y(k))

I(k + 1) = I(k) +
KpTs

Ti
(r(k)− y(k)) forward differences

D(k) =
Td

Td +NTs
D(k − 1)− KpTdN

Td +NTs
(y(k)− y(k − 1))

backward differences
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PID controller: pros and cons

• Very simple to implement, only 3 parameters to calibrate

• It only requires themeasurement of the output signal y(t)

• The control law does not exploit the knowledge of themodel of the process

• Achievable closed-loop performance is limited
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State-feedback control



Reachability analysis
• Consider the linear discrete-time system

x(k + 1) = Ax(k) +Bu(k)

with x ∈ Rn, u ∈ Rm and initial condition x(0) = x0 ∈ Rn

• The solution is x(k) = Akx0 +

k−1∑
j=0

AjBu(k − 1− j)

Definition

The systemx(k+1) = Ax(k)+Bu(k) is (completely) reachable if ∀x1, x2 ∈
Rn there exist k ∈ N and u(0), u(1), . . ., u(k − 1) ∈ Rm such that

x2 = Akx1 +

k−1∑
j=0

AjBu(k − 1− j)

• In simple words: a system is completely reachable if from any state x1 we can

reach any state x2 at some time k, by applying a suitable input sequence
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Reachability

• Determine a sequence of n inputs transferring the state vector from x1 to x2

after n steps

x2 −Anx1︸ ︷︷ ︸
X

=
[
B AB . . . An−1B

]︸ ︷︷ ︸
R


u(n− 1)

u(n− 2)
...

u(0)


︸ ︷︷ ︸

U

• This is equivalent to solve with respect toU the linear system of equations

RU = X

• MatrixR ∈ Rn×nm is called the reachability matrix of the system

• A solutionU exists if and only ifX ∈ Im(R)

(Rouché-Capelli theorem: a solution exists⇔ rank([RX]) = rank(R))
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Reachability
Theorem

The system (A,B) is completely reachable⇔ rank(R) = n

Proof:

(⇒) Assume (A,B) reachable, choose x1 = 0 and x2 = x. Then ∃k ≥ 0 such

that

x =

k−1∑
j=0

AjBu(k − 1− j)

If k ≤ n, then clearly x ∈ Im(R). If k > n, by Cayley-Hamilton theoremwe

have again x ∈ Im(R). Since x is arbitrary, Im(R) = Rn, so rank(R) = n.

(⇐) If rank(R) = n, then Im(R) = Rn. LetX = x2 −Anx1 and

U = [ u(n− 1)′ . . . u(1)′ u(0)′]
′. The systemX = RU can be solvedwith

respect toU , ∀X , so any state x1 can be transferred to x2 in k = n steps.

Therefore, the system (A,B) is completely reachable.
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Minimum-energy control
• Let (A,B) reachable and consider steering the state from x(0) = x1 into

x(k) = x2, k > n

x2 −Akx1︸ ︷︷ ︸
X

=
[
B AB . . . Ak−1B

]
︸ ︷︷ ︸

Rk


u(k − 1)

u(k − 2)
...

u(0)


︸ ︷︷ ︸

U

(Rk ∈ Rn×km is the reachability matrix for k steps)

• Since rank(Rk) = rank(R) = n, ∀k > n (Cayley-Hamilton), we get

rankRk = rank[Rk X] = n

• Hence the systemX = RkU admits solutionsU

Problem

Determine the input sequence{u(j)}k−1j=0 thatbrings the state fromx(0) = x1

to x(k) = x2 withminimum energy
1

2

k−1∑
j=0

‖u(j)‖2 =
1

2
U ′U
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Minimum-energy control
• The problem is equivalent to finding the solutionU of the system of equations

X = RkU

withminimum norm ‖U‖
• Wemust solve the optimization problem

U∗ = arg min
1

2
‖U‖2 subject to X = RkU

• Let’s apply themethod of Lagrangemultipliers:

L(U, λ) = 1

2
‖U‖2 + λ′(X −RkU) Lagrangian function

∂L
∂U = U −R′kλ = 0

∂L
∂λ = X −RkU = 0

⇒ U∗ = R′k(RkR
′
k)
−1︸ ︷︷ ︸

R#
k = pseudoinverse

·X
MATLAB
U=pinv(Rk)*X

Python
from numpy.linalg import pinv
U=pinv(Rk)@X

• Note thatRkR
′
k is invertible because rank(Rk) = rank(R) = n, ∀k ≥ n
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Controllability

• If the system is completely reachable, we have seen that we can bring the state

vector from any value x(0) = x1 to any other value x(n) = x2

• Let’s focus on the subproblem of determining a finite sequence of inputs that

brings the state to the final value x(n) = 0

Definition

A system x(k + 1) = Ax(k) + Bu(k) is controllable to the origin in k steps

if ∀x0 ∈ Rn there exists a sequence u(0), u(1), . . ., u(k − 1) ∈ Rm such that

0 = Akx0 +
∑k−1

j=0 A
jBu(k − 1− j)

• Controllability is a weaker condition than reachability
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Controllability, Stabilizability
• The linear system of equations

−Anx0 =
[
B AB . . . An−1B

]︸ ︷︷ ︸
R


u(k − 1)

u(k − 2)
...

u(0)


admits a solution if and only ifAnx0 ∈ Im(R), ∀x0 ∈ Rn

Theorem

The system is controllable to the origin (in n steps) if and only if

Im(An) ⊆ Im(R)

Definition

A linear system x(k + 1) = Ax(k) + Bu(k) is called stabilizable if can be

driven asymptotically to the origin

• Stabilizability is a weaker condition than controllability
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Canonical reachability decomposition

• Goal: Make a change of coordinates to separate reachable from unreachable

states

• Let rank(R) = nc < n and consider the change of coordinates

T =
[
wnc+1 . . . wn v1 . . . vnc

]
where {v1, . . . , vnc} is a basis of Im(R), and {wnc+1, . . . , wn} is a completion
to obtain a basis ofRn (i.e., a basis of ker(R′),R′wi = 0)

• As Im(R) isA-invariant (Ax ∈ Im(R), ∀x ∈ Im(R), follows from

Cayley-Hamilton theorem),Avi has no components along the basis vectors

wnc+1, …,wn

• Since T−1Avi are the new coordinates ofAvi, the first n− nc components of

T−1Avi are zero
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Canonical reachability decomposition

• The columns ofB also have zero components alongwnc+1, …,wn, because

Im(B) ⊆ Im(R)

• In the new coordinates, the system hasmatrices Ã = T−1AT , B̃ = T−1B and

C̃ = CT in the canonical reachability form

(a.k.a. controllability staircase form)

Ã =

[
Auc 0

A21 Ac

]
B̃ =

[
0

Bc

]
C̃ =

[
Cuc Cc

] MATLAB
[At,Bt,Ct,Tinv]=
ctrbf(A,B,C)

• Let x = [ xuc
xc

] be the coordinates of the state vector in the new coordinate

system, xuc ∈ Rn−nc , xc ∈ Rnc

• We have that xuc(k) = Ak
ucxuc(0), so xuc(k) does not depend on u(k)
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Reachability and transfer function
Proposition
The eigenvalues ofAuc are not poles of the transfer function

C(zI −A)−1B +D

Proof: Let T transform (A,B) to canonical reachability decomposition (Ã, B̃).
The transfer function is

G(z) = C(zI −A)−1B +D = C̃(zI − Ã)−1B̃ +D

=
[
Cuc Cc

](
zI −

[
Auc 0

A21 Ac

])−1 [
0

Bc

]
+D

=
[
Cuc Cc

] [ (zI −Auc)−1 0

⋆ (zI −Ac)−1

][
0

Bc

]
+D

= Cc(zI −Ac)
−1Bc +D

ClearlyG(z) does not depend on the eigenvalues ofAuc

Lack of reachability→ zero/pole cancellations!
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Reachability and transfer function
• Why are the eigenvalues ofAuc not appearing in the transfer functionG(z) ?

• Remember: G(z) explains the forced response, i.e., the response for x(0) = 0

• Expressed in canonical decomposition, the system evolution is
xuc(k + 1) = Aucxuc(k)

xc(k + 1) = Acxc(k) +Bcu(k) +A21xuc(k)

y(k) = Cucxuc(k) + Ccxc(k) +Du(k)

• For xuc(0) = 0, xc(0) = 0, we get xuc(k) ≡ 0 and
xc(k + 1) = Acxc(k) +Bcu(k)

y(k) = Ccxc(k) +Du(k)

xc(0) = 0

so the forced response does not depend at all onAuc !

• The input u(k) only affects the output y(k) through the reachable subsystem

(Ac, Bc, Cc, D), not through the unreachable partAuc
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Reachability analysis of continuous-time systems

• Similar definitions of reachability, controllability, and stabilizability can be given

for continuous-time systems

ẋ(t) = Ax(t) +Bu(t)

• No distinction between controllability and reachability in continuous-time

(because no finite-time convergence of modal response exists)

• Reachability matrix and canonical reachability decomposition are identical to

discrete-time

• rankR = n is also a necessary and sufficient condition for reachability

• Auc asymptotically stable (all eigenvalues with negative real part) is also a

necessary and sufficient condition for stabilizability
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Stabilization by state feedback
• Main idea: design a device that makes the process (A,B,C) asymptotically

stable bymanipulating the input u to the process

v(k) x(k) y(k)
A,B

u(k)
C

K

!"#$%&'$()*+,'-..

state feedback

+

+

• If measurements of the state vector are available, we can set

u(k) = k1x1(k) + k2x2(k) + . . .+ knxn(k) + v(k)

• v(k) is an exogenous signal exciting the closed-loop system

Problem

Find a feedback gainK = [k1 k2 . . . kn] that makes the closed-loop system

asymptotically stable.
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Stabilization by state feedback

v(k) x(k) y(k)
A,B

u(k)
C

K
!"#$%&'"##()$*$+%,

+

+

• Let u(k) = Kx(k) + v(k). The overall system is

x(k + 1) = (A+BK)x(k) +Bv(k)

y(k) = (C +DK)x(k) +Dv(k)

Theorem

(A,B) ”reachable” (rank
[
B AB . . . An−1B

]
= n) ⇒ the eigenvalues of

(A+BK) can be decided arbitrarily.
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Eigenvalue assignment problem
Fact

(A,B) reachable⇔ (A,B) is algebraically equivalent to a pair (Ã, B̃) in
controllable canonical form

Ã =


0

...

0

In−1

−a0 −a1 . . . −an−1

, B̃ =


0

...

0

1


The transformationmatrix T such that Ã = T−1AT , B̃ = T−1B is

T = [BAB . . . An−1B]



a1 a2 . . . an−1 1

a2 a3 . . . 1 0

...
...

...
...

...

an−1 1 0 . . . 0

1 0 0 . . . 0


where a1, a2, . . ., an−1 are the coefficients of the characteristic polynomial

pA(λ) = λn + an−1λ
n−1 + . . .+ a1λ+ a0 = det(λI −A)
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• Let (A,B) reachable and assumem = 1 (single input)

• Characteristic polynomials:

pA(λ) = λn + an−1λ
n−1 + . . .+ a1λ+ a0 (open-loop eigenvalues)

pd(λ) = λn + dn−1λ
n−1 + . . .+ d1λ+ d0 (desired closed-loop eigenvalues)

• Let (A,B) be in controllable canonical form

A =


0

...

0

In−1

−a0 −a1 . . . −an−1

 , B =


0

...

0

1


• AsK = [k1 . . . kn], we have

A+BK =


0

...

0

In−1

−(a0 − k1) −(a1 − k2) . . . −(an−1 − kn)
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• The characteristic polynomial ofA+BK is therefore

λn + (an−1 − kn)λ
n−1 + . . .+ (a1 − k2)λ+ (a0 − k1)

• Tomatch pd(λ)we impose

a0 − k1 = d0 , a1 − k2 = d1 , . . . , an−1 − kn = dn−1

Procedure

If (A,B) is in controllable canonical form, the feedback gain

K =
[
a0 − d0 a1 − d1 . . . an−1 − dn−1

]
makes pd(λ) the characteristic polynomial of (A+BK)
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• If (A,B) is not in controllable canonical formwemust set

K̃ =
[
a0−d0 a1−d1 . . . an−1−dn−1

]
K = K̃T−1 ← don't invert T , solve instead T ′K ′ = K̃ ′ w.r.t. K ′ !

where

T = R


a1 a2 . . . an−1 1

a2 a3 . . . 1 0

...
...

...
...

...

an−1 1 0 . . . 0

1 0 0 . . . 0


• Explanation: a matrixM and T−1MT have the same eigenvalues

det(λI − T−1MT ) = det(T−1Tλ− T−1MT ) = det(T−1) det(λI −M)

· det(T ) = det(λI −M)

• Since (Ã+ B̃K̃) = T−1AT + T−1BKT = T−1(A+BK)T , it follows that

(Ã+ B̃K̃) and (A+BK) have the same eigenvalues
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Ackermann's formula
• Let (A,B) reachable and assumem = 1 (single input)

• Characteristic polynomials:

pA(λ) = λn + an−1λ
n−1 + . . .+ a1λ+ a0 (open-loop eigenvalues)

pd(λ) = λn + dn−1λ
n−1 + . . .+ d1λ+ d0 (desired closed-loop eigenvalues)

• Let pd(A) = An + dn−1A
n−1 + . . .+ d1A+ d0I ← (This is n× n matrix !)

Ackermann’s formula

K = −[0 . . . 0 1][BAB . . . An−1B]−1pd(A)

whereP = [λ1λ2 . . . λn] are the desired

closed-loop poles

MATLAB
K=-acker(A,B,P);
K=-place(A,B,P);

Python
K=-ctrl.acker(A,B,P)
K=-ctrl.place(A,B,P)

• Numerically robust methods to solve the pole assignment problem exist

(Tits, Yang, 1996)
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Zeros of closed-loop system
Fact

In case of no feedthrough (D = 0) the zeros of the system are the same under

state feedback

NK(z) = N(z)

• Example for x ∈ R3: change the coordinates to canonical reachability form

A =

 0 1 0

0 0 1

−a3 −a2 −a1

 , B =

 0

0

1

 , K =
[
k3 k2 k1

]

Adj(zI −A)B =

 z2 + a1z + a2 z + a1 1

−a3 z(z + a1) z

−a3z −a2z − a3 z2


 0

0

1

 =

 1

z

z2


• Adj(zI −A)B does not depend on the coefficients a1, a2, a3
• Hence alsoAdj(zI −A−BK)B does not depend on a1 − k1, a2 − k2, a3 − k3

N(z) = C Adj(zI−A)B = C Adj(zI−A−BK)B = NK(z), ∀K ′ ∈ Rn
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Example - Student population dynamics

• The open-loop poles are (0.8, 0.15, 0.2)

• Saywewant to place the closed-loop poles in (0.1± 0.2j, 0.1) by setting

u(k) = Kx(k) +Hr(k)

where r(k) is the desired reference signal

• First, designK by pole placement:
MATLAB
K=-place(A,B,[.1+.2*j,.1-.2*j,.1])

Python
K=-place(A,B,[.1+.2j,.1-.2j,.1])

• Then chooseH such that the DC-gain from r to y is 1:
MATLAB
sys_cl=ss(A+B*K,B,C+D*K,D,1);
dc_cl=dcgain(sys_cl);
H=1/dc_cl;

Python
sys_cl=ctrl.ss(A+B@K,B,C+D@K,D,1)
dc_cl=ctrl.dcgain(sys_cl)
H=1/dc_cl

• We getK = [−0.1300 − 0.0698 0.0017],H = 1.7708
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Example - Student population dynamics

• Compare open-loop vs. closed-loop response
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State estimation



Observability

x(k) y(k)
A,B

u(k)
C

?

!"#$%&'$()*+,'-..

x(k)ˆ ./$/-)-./&%$/-

• Implementing a state feedback controller u(k) = Kx(k) requires the entire

state vector x(k)

• Problem: often sensors only provide themeasurements of output y(k)

• Idea: is it possible to estimate the state x bymeasuring only the output y and

knowing the applied input u ?

• Observability analysis addresses this problem, telling us when and how the

state estimation problem can be solved
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Observability

• Consider
{

x(k + 1) = Ax(k) +Bu(k)

y(k) = Cx(k) +Du(k)

with5 x ∈ Rn, u ∈ R, y ∈ R and initial condition x(0) = x0 ∈ Rn

• The solution for the output is

y(k, x0, u(·)) = CAkx0 +
∑k−1

j=0 CAjBu(k − 1− j) +Du(k)

Definition

The pair of states x1 6= x2 ∈ Rn is called indistinguishable from the output

y(·) if for any input sequence u(·)

y(k, x1, u(·)) = y(k, x2, u(·)), ∀k ≥ 0

A linear system is called (completely) observable if no pair of states are indis-

tinguishable from the output

5Everything here can be easily generalized tomultivariable systemsu ∈ Rm , y ∈ Rp
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Observability
• Consider the problem of reconstructing the initial condition x0 from n output

measurements, applying a known input sequence

y(0) = Cx0 +Du(0)

y(1) = CAx0 + CBu(0) +Du(1)
...

y(n− 1) = CAn−1x0 +
∑n−2

j=1 CAjBu(n− 2− j) +Du(n− 1)

• Define

Θ =


C

CA
...

CAn−1


︸ ︷︷ ︸
n× n matrix

Y =


y(0)−Du(0)

y(1)− CBu(0)−Du(1)
...

y(n− 1)−
n−2∑
j=1

CAjBu(n− 2− j)−Du(n− 1)


︸ ︷︷ ︸

n-th dimensional vector
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Observability

• The initial state x0 is determined by solving the linear system

Y = Θx0

ThematrixΘ ∈ Rn×n is called the observability matrix of the system

• If we assume perfect knowledge of the output (i.e., no noise on output
measurements), we can always solve the system Y = Θx0. In particular:

– There is only one solution if rank(Θ) = n

– There are infinite solutions if rank(Θ) < n.

In this case, all solutions are given by x0 + ker(Θ), where x0 is any particular

solution of the system (e.g., the true initial state)

• Knowing x0, we know x(k) = Akx0 +
∑k−1

i=0 AiBu(k − 1− i) for all k ≥ 0
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Observability

• The system of equationsΘx0 = Y has a solution if and only if

rank(Θ) = rank([Θ Y ]) (Rouché-Capelli Theorem)

• Because we haveΘ ∈ Rn×n, if rank(Θ) = n⇒ rank([Θ Y ]) = n for each Y

• The solution is unique if and only if rank(Θ) = n

• The input u(k) only influences Y , notΘ

• Then, for linear systems the observability property only depends onA andC
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Observability
Theorem

A linear system is observable if and only if rank(Θ) = n

• As the observability property of a system depends only onmatricesA andC ,
we call a pair (A,C) observable if

rank




C

CA
...

CAn−1


 = n

• It can be proved that ker(Θ) is the set of states x ∈ Rn that are

indistinguishable from the origin x = 0

y(k, x, u(·)) = y(k, 0, u(·)), ∀k ≥ 0

for any input sequence u(·)
• Hence, since ker(Θ) = {0} if and only if rank(Θ) = n, a system is observable if

and only if there are no states that are indistinguishable from x = 0
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Reconstructability

• Under observability assumptions, we just saw that it is possible to determine

the initial condition x0 from n input/output measurements

x(0) = Θ−1Y

• To close the control loop at time k it is enough to know the current x(k)

• If the initial condition x(0) is known, it is possible to calculate x(k) as

x(k) = AkΘ−1Y +

k−1∑
i=0

AiBu(k − 1− i)

• Question: Canwe determine the current state x(k) even if the system is not

completely observable?
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Reconstructability

Definition

A linear systemx(k+1) = Ax(k)+Bu(k) is called reconstructable ink steps

if, for each initial conditionx0,x(k) is uniquely determined by {u(j), y(j)}k−1j=0

The solutions of the system

Yk ≜



y(0)−Du(0)

y(1)− CBu(0)−Du(1)
...

y(k − 1)−
k−2∑
j=1

CAjBu(k − 2− j) +Du(k − 1)


=


C

CA
...

CAk−1


︸ ︷︷ ︸

Θk

x

are given by x = x0 + ker(Θk), where x0 is the “true” (unknown) initial state
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Reconstructability

• Let x0 be the initial (unknown) “true” state, and x = x0 + x̄ be a generic initial

state, where x̄ ∈ ker(Θk). An estimation x̂(k) of the current state x(k) is

x̂(k) = Akx0 +Akx̄+

k−1∑
j=1

AjBu(k − 1− j)

• x̂(k) coincides with x(k) if and only if x̄ ∈ ker(Ak). Because this must hold for

any x̄ ∈ ker(Θk), we have the following

Lemma

A system is reconstructable in k steps if and only if ker(Θk) ⊆ ker(Ak)

Definition

A system is detectable if it is reconstructable asymptotically for k → +∞
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Canonical observability decomposition
Goal: Change coordinates to separate observable and unobservable states

• Let dim(ker(Θ)) = n− no ≥ 1 and consider the change of coordinates

T =
[
vno+1 . . . vn w1 . . . wno

]
where {vno+1, . . . , vn} is a basis of ker(Θ), and {w1, . . . , wno

} is a completion
to obtain a basis ofRn

• By Cayley-Hamilton theorem, ker(Θ) isA-invariant (Ax ∈ ker(Θ), ∀x ∈ Θ),

and henceAvi has no components along the basis vectorw1, . . . , wno
,

∀i = no + 1, . . . , n

• Note also thatCvi = 0, becauseΘvi = 0, ∀i = no + 1, . . . , n

• In the new coordinates the system hasmatrices Ã = T−1AT , B̃ = T−1B and

C̃ = CT in the canonical observability form

Ã =

[
Auo A12

0 Ao

]
B̃ =

[
Buo

Bo

]
C̃ =

[
0 Co

] MATLAB
[At,Bt,Ct,Tinv]=
obsvf(A,B,C)
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Observability and transfer function
Proposition
The eigenvalues ofAuo are not poles of the transfer function

C(zI −A)−1B +D

Proof: Consider amatrix T changing the state coordinates to canonical
observability decomposition of (A,C). The transfer function is

G(z) = C(zI −A)−1B +D = C̃(zI − Ã)−1B̃ +D =[
0 Co

](
zI −

[
Auo A12

0 Ao

])−1 [
Buo

Bo

]
+D

=
[
0 Co

] [ (zI −Auo)−1 ⋆

0 (zI −Ao)−1

][
Bno

Bo

]
+D

= Co(zI −Ao)
−1Bo +D

ClearlyG(z) does not depend on the eigenvalues ofAuo

Lack of observability→ zero/pole cancellations!
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Observability and transfer function

• Why are the eigenvalues ofAuo not appearing in the transfer functionG(z) ?

• Expressed in canonical decomposition, the system evolution is
xuo(k + 1) = Auoxuo(k) +A12xo(k) +Buou(k)

xo(k + 1) = Aoxo(k) +Bou(k)

y(k) = Coxo(k) +Du(k)

• The evolution of xo(k) is not affected by the unobservable states xuo(k)

xo(k) = Ak
oxo(0) +

k−1∑
i=0

Ai
oBou(k − 1− i)

so the output y(k) = Coxo(k) +Du(k) does not depend at all onAuo !
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Canonical observability decomposition
Proposition

Ao ∈ Rno×no andCo ∈ Rp×no are a completely observable pair

Proof:
• We have that

no = rankΘ = rankΘT = rank


CT

CTT−1AT

...

CTT−1An−1T

 = rank


C̃

C̃Ã

...

C̃Ãn−1



= rank



0 Co

0

...
...

0 CoA
no−1
o

0 CoA
no
o

...
...

0 CoA
n−1
o


= rank


Co

CoAo

...

CoA
no−1
o



• The last equality follows by Cayley-Hamilton theorem (the last n− no rows

[0C0A
i
o] are a linear combination of the first no rows). Hence, (Ao, Co) is

completely observable
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Duality
• Given a linear system (A,B,C,D), with x ∈ Rn, u ∈ Rm and y ∈ Rp, we call

dual system the system{
x̃(k + 1) = A′x̃(k) + C ′ũ(k)

ỹ(k) = B′x̃(k) +D′ũ(k)

where x̃ ∈ Rn, ũ ∈ Rp and ỹ ∈ Rm

• The reachability [observability] matrix of the dual system is equal to the

transpose of the observability [reachability] matrix of the original system

R̃ =
[
C ′ A′C ′ . . . (A′)n−1C ′

]
= Θ′

Θ̃ =


B′

B′A′

...

B′(A′)n−1

 = R′

• The system (A,B,C,D) is reachable [observable] if and only if its dual system

(A′, C ′, B′, D′) is observable [reachable]
©2021 A. Bemporad - ``Identification, Analysis, and Control of Dynamical Systems'' 114



State estimation
State estimation problem

At each time k construct an estimate x̂(k) of the statex(k), by onlymeasuring

the output y(k) and input u(k).

• Open-loop observer: Build an artificial copy of the system, fed in parallel by

with the same input signal u(k)

x(k) y(k)
A,B

u(k)
C

A,B

!"#$%&'$()*+,'-..

x(k)ˆ
./$/-)-./&%$/-

/+0-)./$/-

• The “copy” is a numerical simulator x̂(k + 1) = Ax̂(k) +Bu(k) reproducing

the behavior of the real system
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Open-loop observer

x(k) y(k)
A,B

u(k)
C

A,B

!"#$%&'$()*+,'-..

x(k)ˆ
./$/-)-./&%$/-

/+0-)./$/-

• The dynamics of the real system and of the numerical copy are

x(k + 1) = Ax(k) +Bu(k) True process
x̂(k + 1) = Ax̂(k) +Bu(k) Numerical copy

• The dynamics of the estimation error x̃(k) = x(k)− x̂(k) are

x̃(k + 1) = Ax(k) +Bu(k)−Ax̂(k)−Bu(k) = Ax̃(k)

and then x̃(k) = Ak(x(0)− x̂(0))
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Open-loop observer

x(k) y(k)
A,B

u(k)
C

A,B

!"#$%&'$()*+,'-..

x(k)ˆ
./$/-)-./&%$/-

/+0-)./$/-

The estimation error is x̃(k) = Ak(x(0)− x̂(0)). This is not ideal, because

• The dynamics of the estimation error are fixed by the eigenvalues ofA and

cannot bemodified

• The estimation error vanishes asymptotically if and only ifA is asymptotically

stable

• Note that we are not exploiting y(k) to compute the state estimate x̂(k) !
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Luenberger observer

x(k) y(k)
A,B

u(k)
C

A,[B L]

!"#$%&'$()*+,'-..

x(k)ˆ

./$/-)

-./&%$/-

/+0-)./$/-

+
-

C
y(k)ˆ

./$/-),1.-+2-+

• Luenberger observer: Correct the estimation equation with a

feedback from the estimation error y(k)− ŷ(k)

x̂(k + 1) = Ax̂(k) +Bu(k) + L(y(k)− Cx̂(k))︸ ︷︷ ︸
feedback on estimation error

whereL ∈ Rn×p is the observer gain

David G. Luenberger
(1937–)
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Luenberger observer

x(k) y(k)
A,B

u(k)
C

A,[B L]

!"#$%&'$()*+,'-..

x(k)ˆ

./$/-)

-./&%$/-

/+0-)./$/-

+
-

C
y(k)ˆ

./$/-),1.-+2-+

• The dynamics of the state estimation error x̃(k) = x(k)− x̂(k) is

x̃(k + 1) = Ax(k) +Bu(k)−Ax̂(k)−Bu(k)− L[y(k)− Cx̂(k)]

= (A− LC)x̃(k)

and then x̃(k) = (A− LC)k(x(0)− x̂(0))

• Same idea for continuous-time systems ẋ(t) = Ax(t) +Bu(t)

dx̂(t)

dt
= Ax̂(t) +Bu(t) + L[y(t)− Cx̂(t)−Du(t)]

The dynamics of the state estimation error are dx̃(t)
dt = (A− LC)x̃(t)
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Eigenvalue assignment of state observer
Theorem

If the pair (A,C) is “observable” (= (A′, C ′) “reachable”), then the eigenvalues

of (A− LC) can be placed arbitrarily.

MATLAB
L=acker(A’,C’,P)’;
L=place(A’,C’,P)’;

Python
L=ctrl.acker(A.T,C.T,p).T
L=ctrl.place(A.T,C.T,p).T

whereP = [λ1λ2 . . . λn] =

desired observer eigenvalues
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−20

0

20

40

60

80

time (s)

 

 

true state
estimator L1
estimator L2
estimator L3 response from initial conditions

x(0) =
[−1

1

]
, x̂(0) = [ 00 ] for

u(k) ≡ 0.1 for different choices of

the observer poles
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Dynamic compensators



Potential issues in state feedback control

• Measuring the entire state vector may be too expensive (many sensors)

• It may be even impossible (high temperature, high pressure, inaccessible

environment)

Canwe use the estimate x̂(k) instead of x(k) to close the loop ?

©2021 A. Bemporad - ``Identification, Analysis, and Control of Dynamical Systems'' 121



Dynamic compensator

x(k) y(k)
A,B

u(k)
C

.0$0-

-.0&%$0,+

!"#$%&'$()*+,'-..

v(k)

!"#$%&'),/0*/0)1--!2$'3)',#0+,((-+

K
x(k)ˆ++

• Assume the open-loop system is completely observable and reachable

• Construct the linear state observer

x̂(k + 1) = Ax̂(k) +Bu(k) + L(y(k)− Cx̂(k))

• Set u(k) = Kx̂(k) + v(k)

• The dynamics of the error estimate x̃(k) = x(k)− x̂(k) is

x̃(k+1) = Ax(k)+Bu(k)−Ax̂(k)−Bu(k)+L(Cx(k)−Cx̂(k)) = (A−LC)x̃(k)

The error estimate does not depend on the feedback gainK !
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Closed-loop dynamics
• Let’s combine the dynamics of the system, observer, and feedback gain

x(k + 1) = Ax(k) +Bu(k)

x̂(k + 1) = Ax̂(k) +Bu(k) + L(y(k)− Cx̂(k))

u(k) = Kx̂(k) + v(k)

y(k) = Cx(k)

• Take x(k), x̃(k) as state components of the closed-loop system[
x(k)

x̃(k)

]
=

[
I 0

I −I

][
x(k)

x̂(k)

]
(it is indeed a change of coordinates)

• The closed-loop dynamics is

[
x(k + 1)

x̃(k + 1)

]
=

[
A+BK −BK

0 A− LC

][
x(k)

x̃(k)

]
+

[
B

0

]
v(k)

y(k) =
[
C 0

] [ x(k)
x̃(k)

]
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Closed-loop dynamics
• The transfer function from v(k) to y(k) is

G(z) =
[
C 0

] [ zI −A−BK BK

0 zI −A+ LC

]−1 [
B

0

]

=
[
C 0

] [ (zI −A−BK)−1 ⋆

0 (zI −A+ LC)−1

][
B

0

]

= C(zI −A−BK)−1B =
N(z)

DK(z)

• Even if we substituted x(k)with x̂(k), the input-output behavior of the

closed-loop system didn’t change !

The closed-loop poles can be assigned arbitrarily using dynamic output feed-

back, as in the state feedback case

The closed-loop transfer function does not depend on the observer gainL
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Separation principle

Separation principle

The design of the control gainK and of the observer gainL can be done inde-

pendently

• Watch out ! G(z) = C(zI −A−BK)−1B only represents the I/O

(=input/output) behavior of the closed-loop system

• The complete set of poles of the closed-loop system are given by

det(zI−
[
A+BK −BK

0 A−LC

]
) = det(zI−A−BK) det(zI−A+LC) = DK(z)DL(z)

• A zero/pole cancellation of the observer poles has occurred:

G(z) =
[
C 0

]
(zI −

[
A+BK −BK

0 A−LC

]
)−1

[
B

0

]
=

N(z)DL(z)

DK(z)DL(z)
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Transient effects of the estimator gain

• L has an effect on the natural response of the system !

• To see this, consider the effect of a nonzero initial condition
[
x(0)
x̃(0)

]
for v(k) ≡ 0

y(0) = Cx(0)

y(1) =
[
C 0

] [
A+BK −BK

0 A−LC

] [ x(0)
x̃(0)

]
=

[
C 0

] [
(A+BK)x(0)−BKx̃(0)

(A−LC)x̃(0)

]
= C(A+BK)x(0)− CBKx̃(0)

y(2) =
[
C 0

] [
A+BK −BK

0 A−LC

] [ x(1)
x̃(1)

]
= C(A+BK)x(1)− CBKx̃(1)

= C(A+BK)2x(0)− C(A+BK)BKx̃(0)− CBK(A− LC)x̃(0)

• If x̃(0) 6= 0,L has an effect during the transient !
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Choosing the estimator gain

• Intuitively, if x̂(k) is a poor estimate of x(k) then the control action will also be

poor

Ruleof thumb: place theobserverpoles≈ 10 times faster than

the controller poles

• Optimal methods exist to choose the observer poles (Kalman filter)

• Fact: The choice ofL is very important for determining the sensitivity of the

closed-loop systemwith respect to input and output noise
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Example: Control of a DC Motor
d3y

dt
+ β

d2y

dt
+ α

dy

dt
= Ku

u y

MATLAB
K=1; beta=.3; alpha=1;
G=tf(K,[1 beta alpha 0]);

ts=0.5; % sampling time
Gd=c2d(G,ts);
sysd=ss(Gd);
[A,B,C,D]=ssdata(sysd);

% Controller
polesK=[-1,-0.5+0.6*j,-0.5-0.6*j];
polesKd=exp(ts*polesK);
K=-place(A,B,polesKd);

% Observer
polesL=[-10, -9, -8];
polesLd=exp(ts*polesL);
L=place(A’,C’,polesLd)’;

MATLAB
% Closed-loop system, state=[x;xhat]

bigA=[A,B*K;L*C,A+B*K-L*C];
bigB=[B;B];
bigC=[C,zeros(1,3)];
bigD=0;
clsys=ss(bigA,bigB,bigC,bigD,ts);

x0=[1 1 1]’; % Initial state
xhat0=[0 0 0]’; % Initial estimate
T=20;
initial(clsys, [x0;xhat0],T);
pause

t=(0:ts:T)’;
v=ones(size(t));
lsim(clsys,v);
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Example: Control of a DC Motor

d3y

dt
+ β

d2y

dt
+ α

dy

dt
= Ku

u y

Python
import numpy as np
K,beta,alpha = 1,.3,1
G=ctrl.tf(K,[1,beta,alpha,0])

ts=0.5 # sampling time
Gd=ctrl.c2d(G,ts)
sysd=ctrl.ss(Gd)
A,B,C,D=ctrl.ssdata(sysd)

# Controller
polesK=np.array([-1,-0.5+0.6j,-0.5-0.6j])
polesKd=np.exp(ts*polesK)
K=-ctrl.place(A,B,polesKd)

# Observer
polesL=np.array([-10, -9, -8])
polesLd=np.exp(ts*polesL)
L=ctrl.place(A.T,C.T,polesLd).T

Python
# Closed-loop system, state=[x;xhat]

bigA=np.vstack((np.hstack((A,B@K)),
np.hstack((L@C,A+B@K-L@C))))

bigB=np.vstack((B,B))
bigC=np.hstack((C,np.zeros((1,3))))
bigD=0
clsys=ctrl.ss(bigA,bigB,bigC,bigD,ts)

x0=np.array([[1],[1],[1]]) # Initial state
xhat0=np.zeros((3,1)) # Initial estimate
t=np.arange(0,20+ts,ts)
_,y=ctrl.initial_response(clsys,t,np.vstack((x0,xhat0)))

v=np.ones(t.size)
_,yf,xf=ctrl.forced_response(clsys,t,v)
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Example: Control of a DC Motor

y(k)

0 5 10 15 20
−0.5

0

0.5

1

1.5

2

time (s)

x(0) =
[
1
1
1

]
, x̂(0) =

[
0
0
0

]
, v(k) ≡ 0

y(k)

0 5 10 15 20
0

0.5

1

1.5

2

2.5

3

time (s)

x(0) = x̂(0) =
[
0
0
0

]
, v(k) ≡ 1
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Linear quadratic regulation



Linear quadratic regulation (LQR)

• State-feedback control via pole placement requires one to assign the

closed-loop poles

• Anyway to place closed-loop poles automatically and optimally ?

• Themain control objectives are

1. Make the state x(k) “small” (to converge to the origin)

2. Use “small” input signals u(k) (to minimize actuators’ effort)

These are conflicting goals !

• LQR is a technique to place automatically and optimally the closed-loop poles
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Finite-time optimal control

• Linear system x(k + 1) = Ax(k) +Bu(k)with initial condition x(0)

• We look for the optimal sequence of inputs

U = {u(0), u(1), . . . , u(N − 1)}

driving x(k) towards the origin while minimizing the performance index

J(x(0), U) = x′(N)QNx(N) +

N−1∑
k=0

x′(k)Qx(k) + u′(k)Ru(k) quadratic cost

whereQ = Q′ � 0,R = R′ � 0,QN = Q′N � 06

6For amatrixQ ∈ Rn×n ,Q ≻ 0means thatQ is a positive definitematrix, i.e., x′Qx > 0 for all

x ̸= 0, x ∈ Rn .Q ⪰ 0means positive semidefinite, x′Qx ≥ 0, ∀x ∈ Rn .
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Finite-time optimal control
• Example: Q diagonalQ = diag(q1, . . . , qn), single input,QN = 0

J(x(0), U) =

N−1∑
k=0

(
n∑

i=1

qix
2
i (k)

)
+Ru2(k)

• Consider again the general linear quadratic (LQ) problem

J(x(0), U) = x′(N)QNx(N) +

N−1∑
k=0

x′(k)Qx(k) + u′(k)Ru(k)

– N is called the time horizon over which we optimize performance

– The first term x′Qx penalizes the deviation of x from the desired target x = 0

– The second term u′Ru penalizes actuator authority

– The third term x′(N)QNx(N) penalizes howmuch the final state x(N) deviates

from the target x = 0

• Q,R,QN are the tuning parameters of optimal control design (cf. the

parameters of the PID controllerKp, Ti, Td)
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Minimum-energy controllability
• Consider again the problem of controllability of the state to zero withminimum

energy input

minU

∥∥∥∥∥∥∥∥∥∥


u(0)

u(1)
...

u(N − 1)


∥∥∥∥∥∥∥∥∥∥

2

2

s.t. x(N) = 0

• Theminimum-energy control problem can be seen as a particular case of the LQ

optimal control problem by setting

R = I, Q = 0, QN = ∞ · I
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Solution to LQ optimal control problem
• By substituting x(k) = Akx(0) +

∑k−1
i=0 AiBu(k − 1− i) in

J(x(0), U) =

N−1∑
k=0

x′(k)Qx(k) + u′(k)Ru(k) + x′(N)QNx(N)

we obtain

J(x(0), U) =
1

2
U ′HU + x(0)′FU +

1

2
x(0)′Y x(0)

whereH = H ′ � 0 is a positive definite matrix

• The optimizerU∗ is obtained by zeroing the gradient

0 = ∇UJ(x(0), U) = HU + F ′x(0)

−→ U∗ =


u∗(0)

u∗(1)
...

u∗(N − 1)

 = −H−1F ′x(0)
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[LQ problem matrix computation]

J(x(0), U) = x
′
(0)Qx(0) +



x(1)

x(2)

.

.

.
x(N − 1)

x(N)



′ 

Q 0 0 . . . 0

0 Q 0 . . . 0

.

.

.

.

.

.
.
.
.

.

.

.

.

.

.
0 . . . 0 Q 0

0 0 . . . 0 QN


︸ ︷︷ ︸

Q̄



x(1)

x(2)

.

.

.
x(N − 1)

x(N)

 +

[
u′(0) u′(1) . . . u′(N − 1)

]


R 0 . . . 0

0 R . . . 0

.

.

.

.

.

.
.
.
.

.

.

.
0 . . . 0 R


︸ ︷︷ ︸

R̄


u(0)

u(1)

.

.

.
u(N − 1)




x(1)

x(2)

.

.

.
x(N)

 =

S̄︷ ︸︸ ︷
B 0 . . . 0

AB B . . . 0

.

.

.

.

.

.
.
.
.

.

.

.

AN−1B AN−2B . . . B


 u(0)

u(1)

. . .

u(N − 1)

 +


A

A2

.

.

.

AN


︸ ︷︷ ︸

N̄

x(0)

J(x(0), U) = x
′
(0)Qx(0) + (S̄U + N̄x(0))

′
Q̄(S̄U + N̄x(0)) + U

′
R̄U

=
1

2
U

′
2(R̄ + S̄

′
Q̄S̄)︸ ︷︷ ︸

H

U + x
′
(0) 2N̄

′
Q̄S̄︸ ︷︷ ︸

F

U +
1

2
x
′
(0) 2(Q + N̄

′
Q̄N̄)︸ ︷︷ ︸

Y

x(0)
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Solution to LQ optimal control problem

• The solution

U∗ =


u∗(0)

u∗(1)
...

u∗(N − 1)

 = −H−1F ′x(0)

is an open-loop one: u∗(k) = fk(x(0)), k = 0, 1, . . . , N − 1

• Moreover the dimensions of theH andF matrices is proportional to the time

horizonN

• We use optimality principles next to find a better solution (computationally

more efficient, andmore elegant)

©2021 A. Bemporad - ``Identification, Analysis, and Control of Dynamical Systems'' 137



Dynamic programming
• Consider the following basic fact in optimization

V0 ≜ min
z,y

f(z, y) = min
z

{ min
y

f(z, y)︸ ︷︷ ︸
this is a function of z

}

• In case f is separable in the sum of two functions

f(z, y) ≜ f0(z) + f1(z, y)

we getminy f(z, y) = f0(z) + miny f1(z, y)

• Therefore we can compute V0 in two steps:

V1(z) = min
y

f1(z, y)

V0 = min
z

{f0(z) + V1(z)}

• We apply the above reasoning to f = J(x(0), U), z = [u′(0) . . . u(k1 − 1)′]′,

y = [u′(k1) . . . u(N − 1)′]′
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Dynamic programming

• At a generic instant k1 and state x(k1) = x̄(z) consider the optimal cost-to-go

Vk1(x̄(z)) = min
u(k1),...,u(N−1)


N−1∑
k=k1

x′(k)Qx(k) + u′(k)Ru(k) + x′(N)QNx(N)


Principle of dynamic programming

V0(x(0)) = min
U≜{u(0),...,u(N−1)}

J(x(0), U)

= min
u(0),...,u(k1−1)

{
k1−1∑
k=0

x′(k)Qx(k) + u′(k)Ru(k) + Vk1
(x(k1))

}

• Solving over [0, k1]with terminal weight equal to the optimal cost-to-go from k1
toN at x(k1) is the same as solving over [0, T ]
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Bellman's principle of optimality
Bellman’s principle

Given the optimal sequence U∗ = [u∗(0), . . . , u∗(N − 1)]

(and the corresponding optimal trajectory x∗(k)), the subsequence

[u∗(k1), . . . , u
∗(N − 1)] is optimal for the problem on the horizon

[k1, N ], starting from the optimal state x∗(k1) Richard Bellman

(1920-1984)

time

Nk10

optimal state x∗(k)

time

Nk10

optimal input u∗(k)

Tuesday, May 11, 2010

• Given the state x∗(k1), the optimal input trajectory u∗

on the remaining interval [k1, N ] only depends on

x∗(k1)

• Then each optimal move u∗(k) of the optimal trajectory

on [0, N ] only depends on x∗(k)

• The optimal control policy can be always expressed in

state feedback form u∗(k) = u∗k(x
∗(k)) !
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Bellman's principle of optimality

• The principle also applies to nonlinear systems

and/or non-quadratic cost functions: the optimal

control law can be always written in state-feedback

form

u∗(k) = fk(x
∗(k)), ∀k = 0, . . . , N − 1

optimal state trajectories x∗

• Compared to the open-loop solution {u∗(0), . . . , u∗(N − 1)} = f(x(0)) the

feedback form u∗(k) = fk(x
∗(k)) has the big advantage of beingmore robust

with respect to perturbations: at each time kwe apply the best move on the

remaining period [k,N ]
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Riccati iterations
By applying the dynamic programming principle, we can compute the optimal

inputs u∗(k) recursively as a function of x∗(k) (Riccati iterations):

1. Initialization: P (N) = QN

2. For k = N, . . . , 1, compute recursively the following

matrix

P (k−1) = Q−A′P (k)B(R+B′P (k)B)−1B′P (k)A+A′P (k)A

3. Define

K(k) = −(R+B′P (k + 1)B)−1B′P (k + 1)A

The optimal input is

u∗(k) = K(k)x∗(k)
Jacopo Francesco Riccati

(1676–1754)

The optimal input policy u∗(k) is a (linear time-varying) state feedback !

©2021 A. Bemporad - ``Identification, Analysis, and Control of Dynamical Systems'' 142



Linear quadratic regulation
• Consider the infinite-horizon optimal control problem

V∞(x(0)) = min
u(0),u(1),...

∞∑
k=0

x′(k)Qx(k) + u′(k)Ru(k)

Result

Let (A,B) be a stabilizable pair,R � 0,Q � 0. There exists a unique solution

P∞ of the algebraic Riccati equation (ARE)

P∞ = A′P∞A+Q−A′P∞B(B′P∞B +R)−1B′P∞A

such that the optimal cost is V∞(x(0)) = x′(0)P∞x(0) and the optimal con-

trol law is the constant linear state feedback u(k) = KLQRx(k)with

KLQR = −(R+B′P∞B)−1B′P∞A.

MATLAB
P∞ = dare(A,B,Q,R)
[-K∞ ,P∞] = dlqr(A,B,Q,R)
[-K∞ ,P∞ ,E] = lqr(sysd,Q,R)

Python
P∞ ,E,Km=ctrl.dare(A,B,Q,R)
K∞=-Km

E= closed-loop poles

= eigenvalues of (A+BKLQR)
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Linear quadratic regulation

• Go back to Riccati iterations: starting fromP (∞) = P∞ and going backwards

we getP (j) = P∞, ∀j ≥ 0

• Accordingly, we get

K(j) = −(R+B′P∞B)−1B′P∞A ≜ KLQR, ∀j = 0, 1, . . .

• The LQR control law is linear and time-invariant

• (A,B) stabilizable implies closed-loop asymptotic stability, ∀R,Q � 07

• LQR is an automatic and optimal way of placing poles !

• A similar result holds for continuous-time linear systems

7R ≻ 0,Q ⪰ 0withQ = F ′F ,F ∈ Rn×nq ,nq = rankQ, and (A,F ) detectable also ensures

closed-loop asymptotic stability. MatrixF can be obtained for example by theLDLT

decompositionQ = [L1 L2]
[
D1 0
0 0

]
[L1 L2]′ ,F = D

1
2
1 L′

1 , withD1 ∈ Rnq×nq .
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LQR with output weighting
• We often want to regulate only y(k) = Cx(k) to zero, so define

V∞(x(0)) = min
u(0),u(1),...

∞∑
k=0

y′(k)Qyy(k) + u′(k)Ru(k)

• The problem is again an LQR problemwith equivalent stateweightQ = C ′QyC

MATLAB
[-K∞,P∞,E] = dlqry(sysd,Qy,R)

Python
P∞,E,-K∞ = ctrl.dare(A,B,C.T@Qy@C),R)

Corollary

Let (A,B) stabilizable, (A,C) detectable, R > 0, Qy > 0. The LQR control

law u(k) = KLQRx(k) the asymptotically stabilizes the closed-loop system

lim
t→∞

x(t) = 0, lim
t→∞

u(t) = 0

Intuitively: theminimum cost x′(0)P∞x(0) is finite⇒ y(k)→ 0 andu(k)→ 0.

y(k)→ 0 implies that the observable part of the state→ 0. Asu(k)→ 0, the unobservable states

remain undriven and go to zero spontaneously (=detectability condition)
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LQR example

• Two-dimensional single input single output (SISO) dynamical system (double

integrator)

x(k + 1) =

[
1 1

0 1

]
x(k) +

[
0

1

]
u(k)

y(k) =
[
1 0

]
x(k)

• LQR (infinite horizon) controller defined on the performance index

V∞(x(0)) = min
u(0),u(1),...

∞∑
k=0

1

ρ
y2(k) + u2(k), ρ > 0

• Weights: Q = [ 10 ] · 1
ρ · [ 1 0 ] =

[
1
ρ 0

0 0

]
,R = 1

• Note that only the ratioQ11/R = 1
ρ matters, as scaling the cost function does

not change the optimal control law
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LQR Example

0 2 4 6 8 10 12 14 16 18 20
−0.5

0

0.5

1
output y(k)

0 2 4 6 8 10 12 14 16 18 20
−1

−0.5

0

0.5

1
input u(k)

ρ = 0.1 (red line)

K = [−0.8166 − 1.7499]

ρ = 10 (blue line)

K = [−0.2114 − 0.7645]

ρ = 1000 (green line)

K = [−0.0279 − 0.2505]

Initial state: x(0) = [ 10 ]

V∞(x(0)) = min
u(0),u(1),...

∞∑
k=0

1

ρ
y2(k) + u2(k)
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Kalman filtering



Kalman filtering - Introduction

• Problem: assign observer poles in an optimal way, that is tominimize the state

estimation error x̃ = x− x̂

• Information comes in twoways: from sensors measurements (a posteriori) and

from themodel of the system (a priori)

• We need tomix the two information sources optimally, given a probabilistic

description of their reliability (sensor precision, model accuracy)

Rudolf E. Kalman∗

(1930–2016)

TheKalman filter solves this problem, and is now

themost used state observer in most engineering

fields (and beyond)

∗R.E. Kalman receiving theMedal of Science from the President of the USA onOctober 7, 2009
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Process model

• The process is modeled as the linear time-varying systemwith noise

x(k + 1) = A(k)x(k) +B(k)u(k) +G(k)ξ(k)

y(k) = C(k)x(k) +D(k)u(k) + ζ(k) x(0) = x0

• ξ(k) ∈ Rq = process noise,E[ξ(k)] = 0 (zeromean),E[ξ(k)ξ′(j)] = 0, ∀k 6= j,

(white noise),E[ξ(k)ξ′(k)] = Q(k) � 0 (covariancematrix)

• ζ(k) ∈ Rp =measurement noise,E[ζ(k)] = 0,E[ζ(k)ζ ′(j)] = 0 ∀k 6= j,

E[ζ(k)ζ ′(k)] = R(k) � 0

• x0 ∈ Rn is a random vector,E[x0] = x̄0,P0 = E[(x0 − x̄0)(x0 − x̄0)
′],P0 � 0

• Vectors ξ(k), ζ(k), x0 are uncorrelated: E[ξ(k)ζi(j)] = 0,E[ξ(k)x′0] = 0,

E[ζi(k)x
′
0] = 0, ∀k, j ∈ Z, ∀i = 1, . . . , p

• Probability distributions: we often assume normal (=Gaussian) distributions

ξ(k) ∼ N (0, Q(k)), ζ(k) ∼ N (0, R(k)), x0 ∼ N (x̄0, P0)
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Kalman filter

In formulating the Kalman filter we use the following notation:

x̂(k|k − 1) state estimate at time k based on
data up to time k − 1

x̂(0| − 1) = x̄0 initial state estimate

x̃(k|k − 1) = x(k)− x̂(k|k − 1) state estimation error

P (k|k − 1) = E [x̃(k|k − 1)x̃(k|k − 1)′] covariance of state estimation error

x̂(k|k) state estimate at time k

based on data up to time k

x̃(k|k) = x(k)− x̂(k|k) state estimation error

P (k|k) = E [x̃(k|k)x̃(k|k)′] covariance of state estimation error

x̂(k + 1|k) state prediction at time k + 1

based on data up to time k
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Kalman filter
• The Kalman filter provides the optimal estimate x̂(k|k) of x(k) given the
measurements up to time k

• Optimality means that the trace of the varianceP (k + 1|k) is minimized

• The filter is based on two steps:

1. measurement update based on themost recent y(k)

M(k) = P (k|k − 1)C(k)′[C(k)P (k|k − 1)C(k)′ +R(k)]−1

x̂(k|k) = x̂(k|k − 1) +M(k) (y(k)− C(k)x̂(k|k − 1)−D(k)u(k))

P (k|k) = (I −M(k)C(k))P (k|k − 1)

with initial conditions x̂(0| − 1) = x̄0,P (0| − 1) = P0

2. time update based on themodel of the system

x̂(k + 1|k) = A(k)x̂(k|k) +B(k)u(k)

P (k + 1|k) = A(k)P (k|k)A(k)′ +G(k)Q(k)G(k)′
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Stationary Kalman filter

• AssumeA,C ,G,Q,R are constant (time-invariant case)

• Under suitable assumptions8,P (k|k − 1),M(k) converge to constant matrices

P∞ = AP∞A′ +GQG′ −AP∞C ′ [CP∞C ′ +R]
−1

CP∞A′

M∞ = P∞C ′(CP∞C ′ +R)−1

• By settingL∞ = AM∞ the dynamics of the prediction x̂(k|k − 1) becomes the

Luenberger observer

x̂(k+1|k) = Ax̂(k|k− 1)+B(k)u(k)+L∞(y(k)−Cx̂(k|k− 1)−D(k)u(k))

with all the eigenvalues of (A− L∞C) inside the unit circle

MATLAB
[~,L,P∞,M]=kalman(sys,Q,R)

Python
P∞,_,Lt=ctrl.dare(A.T,C.T,G.T@Q@G,R)
L=Lt.T; M=np.linalg.lstsq(A,L)[0]

8(A,C) observable, and (A,GBq) stabilizable, whereBq is such thatQ = BqB′
q , cf. conditions

for asymptotic stability of LQR
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Tuning Kalman filters

• It is usually hard to quantify exactly the correct values ofQ andR for a given

process

• The diagonal terms ofR are related to how noisy are output sensors

• Q is harder to relate to physical noise, it mainly relates to how rough is the

(A,B)model

• After all,Q andR are the tuning knobs of the observer (similar to LQR)

• The “larger” isRwith respect toQ the “slower” is the observer to converge (L,

M will be small)

• On the contrary, the “smaller” isR thanQ, themore precise are considered the

measurments, and the “faster” observer will be to converge
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Extended Kalman filter
• The Kalman filter can be extended to nonlinear systems

x(k + 1) = f(x(k), u(k), ξ(k))

y(k) = g(x(k), u(k)) + ζ(k)
1. Measurement update:

C(k) =
∂g

∂x
(x̂(k|k − 1), u(k))

M(k) = P (k|k − 1)C(k)′[C(k)P (k|k − 1)C(k)′ +R(k)]−1

x̂(k|k) = x̂(k|k − 1) +M(k) (y(k)− g(x̂(k|k − 1), u(k)))

P (k|k) = (I −M(k)C(k))P (k|k − 1)

2. Time update:

x̂(k + 1|k) = f(x̂(k|k), u(k), E[ξ(k)]), x̂(0| − 1) = x̂0

A(k) =
∂f

∂x
(x̂(k|k), u(k), E[ξ(k)]), G(k) =

∂f

∂ξ
(x̂(k|k), u(k), E[ξ(k)])

P (k + 1|k) = A(k)P (k|k)A(k)′ +G(k)Q(k)G(k)′, P (0| − 1) = P0

• The EKF is in general not optimal andmay even diverge, due to linearization.

But is the de-facto standard in nonlinear state estimation
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LQG control

• Linear Quadratic Gaussian (LQG) control combines an LQR control law and a

stationary Kalman predictor/filter

• Consider the stochastic dynamical system

x(k + 1) = Ax(k) +Bu(k) + ξ(k), ξ(k) ∼ N (0, QKF )

y(k) = Cx(k) + ζ(k), ζ(k) ∼ N (0, RKF )

with initial condition x(0) = x0, x0 ∼ N (x̄0, P0),P0, QKF � 0,RKF � 0, and

ζ and ξ are independent andwhite noise terms.

• The objective is tominimize the cost function

J(x(0), U) = lim
T→∞

1

T
E

[
T∑

k=0

x′(k)QLQx(k) + u′(k)RLQu(k)

]

when the state x is not measurable
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LQG control

If we assume that all the assumptions for LQR control and Kalman

predictor/filter hold, i.e.

• the pair (A,B) is reachable and the pair (A,Cq)withCq such that

QLQ = CqC
′
q is observable (hereQ is the weight matrix of the LQ controller)

• the pair (A,Bq), withBq s.t. QKF = BqB
′
q , is stabilizable, and the pair (A,C) is

observable (hereQ is the covariancematrix of the Kalman predictor/filter)

Then, apply the following procedure:

1. Determine the optimal stationary Kalman predictor/filter, neglecting the fact

that the control variable u is generated through a closed-loop control scheme,

and find the optimal gainLKF

2. Determine the optimal LQR strategy assuming the state accessible, and find the

optimal gainKLQR
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LQG control

x(k) y(k)
A,B

u(k)
C

3$(%$#

4(2-+

!"#$%&'$()*+,'-..

v(k)

/01)',#2+,((-+

KLQR
x(k)ˆ++

Sunday, May 16, 2010

Analogously to the case of output feedback control using a Luenberger

observer, it is possible to show that the extended state [x′ x̃′]′ has eigenvalues

equal to the eigenvalues of (A+BKLQR) plus those of (A− LKFC) (2n in

total)
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System identification



Model identification

• Designing a control system requires a dynamical model of the process

• Often a dynamical model can be difficult to obtain due to the complexity of the

process, whose dynamics may be even (partially or completely) unknown

• Even if we have amathematical model, sometimes this is too complex to base a

controller design on it (large state dimensions, nonlinearities, etc.)

System identification is a procedure to build amathematicalmodel of

the dynamics of a system frommeasured data

Lecture based on

[1] L. Ljung, “System Identification,” Control SystemsHandbook (W. Levine ed.), CRC Press, pp. 1033–1054, 1995

[2] L. Ljung, “System Identification: Theory for the User,” Prentice Hall, 1987
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Model identification

y(t)u(t)

dynamical process

input
(measured)

output
(measured)?

identification
algorithm

estimated 
model

G(z)^

Different types of identification:

• White box: model structure based on first principles (e.g., Newton’s law), model

parameters estimated frommeasured data

• Grey box: model structure partially known from first principles, the rest is

reconstructed from data

• Black box: model structure and its parameters completely unknown, they are

only estimated from I/O data
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Step-response identification

y(t)u(t)

dynamical process

?
identification

algorithm

G(z)^

• Excite the process with a step u(t) = 1I(t), record output response y(t)

• Observe the shape of y(t) and reconstructG(z)

(1st-order response ? 2nd-order undamped response ? Any delay ? ...)

• Mostly used in process control: excitation experiment is easily done,

superposition of effects can be used in themultivariable case to identify each

entryGij(z) of the transfermatrixG(z), one at the time
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Black-box identification via linear regression
• Consider the black-boxARX (AutoRegressive eXogenous)model

y(k)+a1y(k−1)+...+anay(k−na) = b1u(k−nk)+...+bnb
u(k−nk−nb+1)+e(k)

where e(k) is zero-meanwhite noise and y(k), u(k), e(k) ∈ R

• We can predict the next output value given previous observations

y(k) = −a1y(k−1)−...−anay(k−na)+b1u(k−nk)+...+bnb
u(k−nk−nb+1)+e(k)

• Inmore compact form

y(k) = φ′(k)θ + e(k)

θ =
[
a1 . . . ana b1 . . . bnb

]′
unknown parameter vector

φ(k) =
[
−y(k − 1) . . .− y(k − na) u(k − nk) . . . u(k − nk − nb + 1)

]′
regressor
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Black-box identification via linear regression
• Let ŷ(k|θ) = φ′(k)θ = output prediction, which is an estimate of y(k) based on

the parameter vector θ and past data (e(k) = 0 is the best we can assume)

• We don’t know θ, but we have collected a setZN of measured data

ZN = {u(−n), y(−n), ..., u(N − 1), y(N − 1)} , n = max{na, nb + nk − 1}

• We solve a least-squares problem to estimate the vector θ∗ that best makes

ŷ(k|θ) fit y(k)

θ∗ = argmin
θ

{
V (θ, ZN )

}
with

V (θ, ZN ) =
1

N

N−1∑
k=0

(y(k)− ŷ(k|θ))2

=
1

N

N−1∑
k=0

(
y(k)− φ′(k)θ

)2
ϕ(k)

y
(k

)
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Black-box identification via linear regression

• V (θ, ZN ) is a quadratic function of θ. We find theminimum by zeroing the

derivative of V

0 =
d

dθ
VN (θ, ZN ) = − 2

N

N−1∑
k=0

φ(k) (y(k)− φ′(k)θ)

or
N−1∑
k=0

φ(k)y(k) =

N∑
k=1

φ(k)φ′(k)θ

• The best parameter vector we can choose is therefore

θ∗ =

[
N−1∑
k=0

φ(k)φ′(k)

]−1 N−1∑
k=0

φ(k)y(k)

MATLAB
θ∗=arx(ZN ,[na nb nk])
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Recursive linear regression

• Drawback of (batch) linear regression: if a new data pair u(N), y(N) is acquired

the newmatrix
[∑N

k=0 φ(k)φ
′(k)

]−1
is required to compute the new optimal

parameter vector θ∗

• Computations becomemore andmore expensive asN keeps growing

• Given the best estimate θ∗(k − 1) obtained using k − 1 data points

θ∗(k − 1) = P (k − 1)

k−1∑
j=0

φ(j)y(j), P (k − 1) =

k−1∑
j=0

φ(j)φ′(j)

−1

wewould like to get θ∗(k)without solving the regression problem from scratch
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Recursive linear regression
• Since

P−1(k) = P−1(k− 1) + φ(k)φ′(k), P−1(k− 1)θ∗(k− 1) =

k−1∑
j=0

φ(j)y(j)

we get

θ∗(k) = P (k)

k∑
j=0

φ(j)y(j) = P (k)

k−1∑
j=0

φ(j)y(j) + φ(k)y(k)


= P (k)

(
P−1(k − 1)θ∗(k − 1) + φ(k)y(k)

)
= P (k)

(
(P−1(k)− φ(k)φ′(k))θ∗(k − 1) + φ(k)y(k)

)
and therefore

θ∗(k) = θ∗(k − 1) + P (k)φ(k)(y(k)− θ∗(k − 1)′φ(k)︸ ︷︷ ︸
estimation error

)
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Recursive linear regression
• Since

P (k) =

 k∑
j=0

φ(j)φ′(j)

−1 =
[
P−1(k − 1) + φ(k)φ′(k)

]−1
we can apply theMatrix Inversion Lemma to updateP (k) recursively and get

P (k) = P (k − 1)− P (k − 1)φ(k)φ′(k)P (k − 1)

1 + φ′(k)P (k − 1)φ(k)

• Letm = dim θ = na + nb. Matrix
k−1∑
j=0

φ(j)φ′(j) is not invertible for k < m

• We can start the recursions afterm steps with P (m− 1) =

[
m−1∑
j=0

φ(j)φ′(j)

]−1

(if the inverse exists) and θ∗(m− 1) = P (m− 1)−1
m−1∑
j=0

φ(j)y(j)
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Recursive linear regression
• Alternatively, we can initializeP (−1) = ρ2I , ρ > 0, and θ∗(−1) = θ̄

• Interpretation: we are adding a regularization term on θ

min
1

ρ2
‖θ − θ̄‖22 +

k∑
j=0

(
y(j)− φ′(j)θ

)2
=

1

ρ2

m∑
i=1

(θi − θ̄i)
2 +

k∑
j=0

(
y(j)− φ′(j)θ

)2
=

m∑
i=1

(
1

ρ
θ̄i −

1

ρ
e′iθ

)2

+
k∑

j=0

(
y(j)− φ′(j)θ

)2
=

k∑
j=−m

(
y(j)− φ′(j)θ

)2
wherewe replaced y(−j) = 1

ρ θ̄i,φ(−j) = 1
ρej , ei = i-th column I , j = 1, . . . ,m

• ThereforeP (−1) =

 −1∑
j=−m

φ(j)φ′(j)

−1 =

 −1∑
j=−m

1

ρ2
e−je

′
−j

−1 = ρ2I

and θ∗(−1) = P (−1)

−1∑
j=−m

φ(j)y(j) = ρ2I

m∑
i=1

1

ρ2
θ̄iei = θ̄
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Black-box identification: the general procedure

• Design of experiment: What kind of input excitation u(k) to apply ?

• Model structure: Which class of models do I choose to fit my data ?

• Fit criterion between data andmodel: How do I best choose themodel within

that class (=the parameter vector) ?

• Validation criterion: Is themodel that I have identified good enough to

reproduce the dynamics of the process ?
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Design of experiment

• Collecting data is a very crucial (andmost expensive) step

• Some theory is available, as well as some practical rules

• The data setZN should be as informative as possible to fully identify themodel9

• Pseudo-random binary signals (PRBS) randomly

switching between±1 are a good choice

MATLAB
» u=idinput(N,’PRBS’);

0 5 10 15 20 25 30
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

9Sinusoidal signalsu(t) = sin(ωt) are not good, as onlyG(jω)would be captured. The input

signal must at least contain as many different frequencies as the order of the chosen structure of

linear models. Step responses are not ideal but ok: |F [1I(t)]| = 1
ω
(the Fourier transform of the

continuous-time signal 1I(t)) has in infinite number of frequencies, although decreasing in

amplitude.
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Model structure

• A linear systemwith additive disturbance v(k) can be described as

y(k) = G(z)u(k) + v(k)

whereG(z) is a transfer function (z−mx(k) = x(k −m))

G(z) =
B(z)

A(z)
=

b0 + b1z
−1 + . . .+ bnb

z−nb

1 + a1z−1 + a2z−2 + . . .+ ana
z−na

• Alternatively, it can be described by perturbing the difference equation:

y(k) =− a1y(k − 1)− a2y(k − 2)− . . .− anay(k − na)

+ b0u(k) + b1u(k − 1) + . . .+ bnb
u(k − nb) + w(k)

• The twomodels are equivalent if we set

w(k) = v(k) + a1v(k − 1) + a2v(k − 2) + . . .+ ana
v(k − na)
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Model structure

• The disturbance v(k) is not necessarily white noise, but can be colored noise

v(k) = H(z)e(k)

where e(k) is white noise andH(z) is another transfer function

H(z) =
C(z)

D(z)
=

1 + c1z
−1 + . . .+ cnc

z−nc

1 + d1z−1 + d2z−2 + . . .+ dnd
z−nd

andH(z) = 0 for z−1 = 0

• The overall model is calledBox-Jenkins (BJ)model

y(k) =
B(z)

A(z)
u(k) +

C(z)

D(z)
e(k) y(k)u(k)

e(k)

+
+B(z)

A(z)

C(z)
D(z)

Tuesday, June 1, 2010
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Model structure - Special cases

• Output Error (OE)model: v(k) is white noise (C(z) = D(z) = 1)

y(k) =
B(z)

A(z)
u(k) + e(k)

• Auto-RegressiveMoving-Averagewith eXogenous variable (ARMAX)model:

G(z) andH(z) have the same denominator (A(z) = D(z))

A(z)y(k) = B(z)u(k) + C(z)e(k)

• ARXmodels are a particular case of ARMAXmodels (C(z) = 1)

A(z)y(k) = B(z)u(k) + e(k)

• ARX and ARMAXmodels are themost used in practice
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Model structure

• Differently fromBJmodels, in ARMAXmodels v(k) and u(k) are filtered by the

same dynamics 1
D(z)

• This is justified if the source of disturbance enters early in the process, together

with the input

Example: in airplanes, the disturbances fromwind blasts create the same kind

of forces on the airplane as the deflections of the control surfaces

• ARXmodels are the simplest to compute numerically

y(k)u(k)

e(k)

+
+B(z)

A(z)

Tuesday, June 1, 2010

OEmodel

y(k)u(k)

e(k)

+
+

B(z)

C(z)

1
A(z)

Tuesday, June 1, 2010

ARMAXmodel

y(k)u(k)
e(k)

+
+

B(z)
1

A(z)

Tuesday, June 1, 2010

ARXmodel
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Fit criterion

• Let us consider BJmodels, which is themost general structure

• Let θ collect all the parameters in the transfer functionsG(z) andH(z) to be

estimated from data

y(k) = G(z, θ)u(k) +H(z, θ)e(k)

H−1(z, θ)y(k) = H−1(z, θ)G(z, θ)u(k) + e(k)

y(k) +H−1(z, θ)y(k) = y(k) +H−1(z, θ)G(z, θ)u(k) + e(k)

• Finally, we get

y(k) =
(
1−H−1(z, θ)

)
y(k) +H−1(z, θ)G(z, θ)u(k) + e(k)

• Note that 1−H−1(z, θ) = h1z
−1 + h2z

−2 + . . . for some coefficients {hi}∞i=1
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Fit criterion
• For e(k) = 0 (=the best estimate of e(k)we canmake), the one-step ahead

prediction of y(k) based on previousmeasurements is

ŷ(k|θ) =
(
1−H−1(z, θ)

)
y(k) +H−1(z, θ)G(z, θ)u(k)

• Assuming we have enough data (N ≥ max(na, nb, nc, nd)), we compute the

residual

ϵ(k|θ) = y(k)− ŷ(k|θ)

• Themost used fit criterion is

V (θ, ZN ) =
1

N

N−1∑
k=0

ϵ2(k|θ)

• The optimal vector θ∗ is determined by solving the optimization problem

θ∗ = argmin
θ

V (θ, ZN )
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Complexity

• Ideally ϵ should depend linearly on θ, so we can get the explicit solution of a

least-squares problem. This only happens for ARXmodels

• Besides choosing themodel structure (ARX, ARMAX, etc.) we also need to

decide the order of themodel, i.e., the number of free parameters to optimize

• A small number of parameters couldmake themodel too simple, and not able to

explain the data

• A large number of parameters couldmake themodel more complex thanwe

need and overfit the data inZN , resulting in poor predictions on new data

• How to choose the right model complexity?
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Model validation
• Usually to avoid being fooled by overfitting the data set we splitZN in two
subsets: estimation dataZest and validation dataZval:

– Zest is used to compute the optimal parameter vector θ
∗

– Zval is used to see how the estimatedmodel behaves on fresh data

• A validation criterion is to look at one-step prediction errors

V (θ∗, Zval) =
1

N

N−1∑
k=0

(y(k)− ŷ(k|θ∗))2 nothing to optimize here,
just substitute θ∗, Zval and evaluate

• Another validation criterion is to simulate themodel completely in “open-loop”

ysim(k, θ
∗) = G(z, θ∗)u(k)

and to look at
1

N

N−1∑
k=0

(y(k)− ysim(k, θ
∗))2

(or just observe howmuch the plots of y(k) and ysim(k, θ∗) differ)
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Model validation - Residual analysis

• Ideally the prediction error (or prediction residual) ϵ(k|θ) should bewhite
noise and uncorrelated with u(k)

• To test whiteness of ϵ(k|θ)we compute the auto-correlation function

Rϵ(τ) =
1

N

N−τ−1∑
k=0

ϵ(k + τ |θ)ϵ(k|θ)

• To test correlation between ϵ(k|θ) and u(k)we compute the sample covariance

Rϵu(τ) =
1

N

N−1∑
k=τ−1

ϵ(k|θ)u(k − τ)

• BothRϵ(τ) andRϵu(τ) should be small
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Model selection

• Whichmodel structure to choose (ARX, ARMAX, OE, etc. )? Whichmodel

orders na, nb, nk , etc. ?

• Cross-validation is the procedure that compares the quality of fit of different

models, by validating them on a data set where neither of themwas estimated

• Let θ∗1 , …, θ
∗
s a set of optimal parameters

for different model structures

• The best model θ∗i is the one for which

V (θ∗i , Zval) is smallest

• Often Vi(θ
∗, Zest) decreases as themodel

complexity increases, while Vi(θ
∗, Zval)

starts increasing when themodel

complexity becomes excessive (=overfit of

estimation data)
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Model selection
• If fresh validation data are not available (=no cross-validation), we can use the

same performance figures, but in addition penalize overfit (wewant a good

balance between simplicity and accuracy)

• Let di = number of elements of θ∗i (=model complexity)

• We look for themodel that minimizes one of the following figures:

– Akaike’s Information theoretic Criterion (AIC):(
1 +

2di
N

)
1

N

N−1∑
k=0

ϵ2(k|θ∗i )

– Akaike’s Final Prediction Error (FPE):(
1 + di

N

1− di
N

)
1

N

N−1∑
k=0

ϵ2(k|θ∗i )

– Rissanen’sMinimumDescription Length (MDL):

1

N

N−1∑
k=0

ϵ2(k|θ∗i ) +
di · lnN

N
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Identification example

• Assume that the real (unknown) process is

G(z) =
0.03726z−1 − 0.09676z−2 + 0.08355z−3 − 0.024z−4

1− 3.464z−1 + 4.493z−2 − 2.586z−3 + 0.5577z−4

with sample time T = 0.04 s

• Input excitation: PRBS sequence

• We have 200 samples. The first 100 samples

are used for estimation of θ∗, the rest for

validation
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Identification example (cont'd)
We try five different ARXmodel structures ARX(na,nb,nk):

A(z)y(t) = B(z)u(t) + e(t)

• i = 1: ARX(1,1,1)

• i = 2: ARX(2,2,1)

• i = 3: ARX(3,3,1)

• i = 4: ARX(4,4,1)

• i = 5: ARX(5,5,1)

• i = 6: ARX(6,6,1)

1

Nval

Nval−1∑
k=0

ϵ2(k|θ∗i ),
1

Nest

Nest−1∑
k=0

ϵ2(k|θ∗i )

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
1.1

1.15

1.2

1.25

1.3

1.35

1.4
x 10

−3

 

 
V(θ,Z

est
)

V(θ,Z
val

)

model structure index i

The best model structures are i = 2, 3, 4
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Identification example (cont'd)
Residual analysis:
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ARX(2,2,1)

A(z) = 1 − 0.2153z−1 − 0.5624z−2

B(z) = 0.04041z−1 + 0.02456z−2
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ARX(3,3,1)

A(z) = 1 + 0.1228z−1 − 0.3396z−2

− 0.4444z−3

B(z) = 0.04014z−1 + 0.037z−2

+ 0.02247z−3
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ARX(4,4,1)

A(z) = 1 + 0.1451z−1 − 0.319z−2

− 0.4258z−3 − 0.03208z−4

B(z) = 0.03912z−1 + 0.03826z−2

+ 0.02476z−3 + 0.004177z−4

not much different from
ARX(3,3,1)
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Concluding remarks on system identification

• System identification and control design are complementary: no controller

without amodel, but identifiedmodel only useful for control and/or estimation

• If model parameters change on-line, one can use adaptive control, by

identifying themodel and changing the controller accordingly in real-time

(caveat: closed-loop stability may be an issue )

• If linearmodel structures are not able to capture themodel well, one should use

nonlinearmodels, like artificial neural networks, piecewise affine functions,

and other general function approximationmethods available inmachine

learning (Schoukens, Ljung, 2019)

• In general, themore a-priori knowledge of the process we can exploit (e.g., from

physical principles), the better. Sometimes black-box identification fails

because its very difficult to guess the right model structure
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