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COURSE CONTENTS

1. Linear dynamical systems in continuous and discrete-time
2. Linearization and discretization, stability analysis

3. Controllability and observability analysis

4. Synthesis of feedback controllers and state estimators

5. System identification (=learn dynamical models from data)
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DYNAMICAL SYSTEMS



DYNAMICAL SYSTEMS

e Adynamical system is an object (or a set of objects) that evolves over time,
possibly under external excitations.

e Examples: an engine, a satellite, a tank reactor, a human transporter, ...
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DYNAMIC EMS

e .. asupply chain, a portfolio, a computer server
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quality
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e The way the system evolves over time is called the dynamics of the system.
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DYNAMICAL MODELS

e Adynamical model of a system is a set of mathematical laws that explain how

the system evolves over time, usually under the effect of external excitations, in
a quantitative way.

e What is the purpose of a dynamical model ?

1. Understand the system (“How does X influence Y ?”)
2. Simulation (“What happens if | apply action Z on the system ?”)
3. Estimate (“How to estimate variable X from measuring Y ?”)

4. Control (“How to make the system behave autonomously the way | want ?”)

Be (
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LINEAR SYSTEMS



CONTINUQUS-TIME LINEAR SYSTEMS

e System of n first-order linear ordinary differential equations (ODEs) with inputs

z1(t) = anxi(t)+ ... Fainza(t) +bru(t)
To (t) = aglxl(t) + ...+ agnxn(t) +b2u(t) J
Zn(t) = anmz1(t)+ ... +annxn(t) +bnu(t)

z1(0) =z10, ... xn(0) =zno

e Setx = [x1 ... 2, € R™ The equivalent matrix form of the linear ODE
system is the so-called linear system

z(t) = Ax(t) + Bu(t)

with initial condition z(0) = x, with vector g = [z10 ... Zno]’ € R"
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EXAMPLE: MASS-SPRING-DAMPER SYSTEM
PEAOR0

 ult),
M
‘ =5

Z1(t) = z2(t) velocity = derivative of traveled space
Mi, (t) =u — PBxo (t) — le(t) Newkow's Law

Rewrite as the 2"d order linear system

{ 11(0) _ (1)

or in matrix form

0 1 0
z(t) x5 x(t) + N u(t)
M M M
——————— ——
A B
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n1-ORDER LINEAR ODE WITH INPUT

dy(™ (t) dy" 1 (1) .
din anfldtni—l + -+ a1y(t) + aoy(t)
d (n—1) t d (n—2) t
= bn—luT() + bn—QuT() 4+ bld(t) + bou(t)

By inspection, the n'"-order ODE = 1%t-order linear system of ODEs

z(t) = Az(t) + Bu(t)
#1(t) = x2(t) y(t) = Cxz(t) + Du(t)
To (t) = x3 (t)
. 0 1 0 0 0
: : 0 0 1 0 0
En(t) = —aoz1(t)+ ... —an_1xn(t) +ut) A= B = :
y(t) = box1(t)+ ... +bp—12n(t) 7?10 7?11 7?12 . *ai—l (1)

C=[bobrbz...bp_1], D=0

The linear system of 1°t-order ODEs is called the state-space realization of the
n'P-order ODE. There are infinitely many state-space realizations.
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LAGRANGE'S FORMULA

¢ Starting from the initial condition 2:(0) = x¢, the continuous-time linear system
& = Az + Bu has the unique solution z(t)

¢
z(t)= e +/ eA=7) Bu(r)dr
N 0

rafural respowse

garocé response

e The exponential matrix is defined as

MATLAB

A2 Angr - %
eMET 4 AL+ + ..+ +.. E=expm(A*t)
2 n!
Python ‘
from scipy.linalg import expm
E=expm(A*t)
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STATE VECTOR

Given x(0) and u(t), vt € [0, T, Lagrange’s formula allows us to compute z(t)
and y(t),Vt € [0, T

o Generally speaking, the state of a dynamical system is a set of variables that
completely summarizes the past history of the system. It allows us to predict its
future motion

o Therefore, by knowing the initial state 2:(0) we can neglect all past history
u(—t), z(—t),vt > 0

e The dimension n of the state z(¢) € R™ is called the order of the system
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EIGENVALUES AND EIGENVECTORS

e Let usrecall some basic concepts of linear algebra:

a1 a2 ... aip
az1 a2 ... a2n

A= square matrix of order n, A € R™*"
anl Qn2 ... ann
1 0 0
0 1 0

I = . identity matrix of order n
0 0 1

e Characteristic equation of A:
det(\ — A) =0

e Characteristic polynomial of A:

PN\ =detOAM —A) = X" +a, A" '+ ...+a )+ ao
11
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EIGENVALUES AND EIGENVECTORS

e The eigenvalues of A € R™*™ are the roots A, ..., \,, of its characteristic
polynomial
det(MI—A)=0, i=1,2,...,n
e Aneigenvector of A is any vector v; € R™ such that Av; = \;v; for some
1=1,2,...,n.
e The diagonalization of Ais A = TAT !, where

A1 0 ... 0
0 A... O

A=|. . .| =T AT, T = [vi|va] ... |vn]
0 0 N,

(not all matrices A are diagonalizable, see Jordan normal form)
o Algebraic multiplicity of A; = number of coincident roots \; of det(AI — A)

e Geometric multiplicity of \; = number of linearly independent eigenvectors v;
such that A’Ui = )\zvz
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EIGENVALUES AND MODES

e Letu(t) = 0and assume A diagonalizable

e The state trajectory is the natural response

eMt .0
x(t) = eMx(0)=TeM T ag = [v1...v,) .. a
o 0 ...‘ ek"t
@y n
= |wveMt ... p,ernt ] | = aeMity;
(X.n =1

where v;=eigenvector of A, \;=eigenvalue of A, = T~ 1z(0) € R"

e The evolution of the system depends on the eigenvalues \; of A, called modes
of the system (sometimes we also refer to e*t as the i-th mode)

e Amode )\; is called excited if o; # 0
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SOME CLASSES OF DYNAMICAL SYSTEMS

e Causality: a dynamical system is causal if y(¢) does not depend on future inputs
u(T) V7 > t (strictly causal if V7 > t)

o Alinear system is always causal, and strictly causal iff D = 0

e Linear time-varying (LTV) systems:

i) = A@)x(t)+ Bt)u(t)
y(t) = C@)z(t) + D(t)u(?)

e When A, B, C, D are constant, the system is said linear time-invariant (LTI)

e Ageneralization of LTV systems are linear parameter-varying (LPV) systems

a(t) = Alp(t)z(t) + B(p(t))u(t)
y(t) = Cl@)z(t) + D(p(t))u(t)
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SOME CLASSES OF DYNAMICAL SYSTEMS

e Multivariable systems: more generally, a system can have m inputs
(u(t) € R™) and p outputs (y(t) € RP). For linear systems, we still have

x(t) Ax(t) + Bu(t)
y(t) = Cux(t) + Du(t)

with A € R"*"™ B e R™*™ (' € RP*" D e RP*™
e Nonlinear systems

y(t) = g(a(t), u(t))

where f : R*T™ — R"”, g : R"*™ — RP are (arbitrary) nonlinear functions

{a‘:(t) = flz(t),ut))

e Time-varying nonlinear systems

w(t) = [t x(t), u(t))
y(t) = g(t,z(t),u(t))
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STABILITY



EQUILIBRIUM

e Consider the continuous-time nonlinear system

A state z,, € R™ and an input u,, € R™ are an equilibrium pair if for initial
condition z(0) = x,- and constant input u(t) = u, the state remains constant:
x(t) =z, ¥Vt > 0.

e Equivalent definition: (z,., u,.) is an equilibrium pair if f(z,,u,) =0
e 1, is called equilibrium state, u, equilibrium input

e The definition generalizes to time-varying nonlinear systems
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STABILITY

e Consider the nonlinear system

and let z,. be an equilibrium state, f(z,,u,) =0

The equilibrium state x,. is stable if for each initial conditions z(0) “close
enough” to x,., the corresponding trajectory x(¢) remains near x,. for all ¢ > 0.

Math definition: Ve > 03§ > 0: Vz(0) such that ||z(0) — z|| < § = [|z(t) — zr|| < &Vt > 0.

e The equilibrium point x,.is called asymptotically stable if it is stable and
z(t) =z, fort — oo

e Otherwise, the equilibrium point x,. is called unstable
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STABILITY OF EQUILIBRIA - EXAMPLES

®

stable equilibrium

!

X0

SRR
QSijEoﬁicaLLj
stable equilibrium

—x;
X,

dj _ |: —2x (t) — 41‘2(t) i|
dt | 2z1(t) + 2z2(t)
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dl _ |: —Il(t) — QIQ(t) :|
dt 221 (t) — z2(t)

dentification, Analysis, and Control of Dynamical Systems'

0

unstable
equiubrium

5_\
- L,
[ S R VR

cc%c _ [2w1(ta);17(3w2(t):|

18



STABILITY OF FIRST-ORDER LINEAR SYSTEMS

e Consider the first-order linear system
&(t) = ax(t) + bu(t)

e 1, = 0,u, = 0isanequilibrium pair
e Foru(t) =0,Vt > 0,thesolution s

z(t) = e

e Theoriginz, = 0is

- unstableifa > 0
- stableifa <0

- asymptotically stableifa < 0 0

()
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STABILITY OF CONTINUQUS-TIME LINEAR SYSTEMS

Since the natural response of i = Az + Buis x(t) = e4tx, the stability
properties depend only on A. We can therefore talk about system stability of a
linear system (A, B, C, D)
Let A1,..., A\, m < nbetheeigenvalues of A € R™*™,
The systemt = Ax + Buis
e asymptotically stableiff R\; < 0,Vi=1,...,m
e (marginally) stableif ®\; < 0,Vi = 1,...,m, and the eigenvalues
with null real part have equal algebraic and geometric multiplicity
o unstable otherwise (in particular, if 3¢ such that ®\; > 0).

The stability properties of a linear system only depend on the real part of
the eigenvalues of matrix A
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STABILITY OF CONTINUQUS-TIME LINEAR SYSTEMS

Proof:

e Thenatural responseis z(t) = eAtxq (et & I+ At + # + ..+ A:L!tn +..)
o If matrix A is diagonalizable! , A = TAT 1,

A1 0 ... 0 eMt 0 . 0

0 Ag ... 0 0 et ... 0
A=|. . . |=eMt=T| . . T

6 0 A.'n (.) [) e)‘.”t

o Take any eigenvalue A = a + jb:
‘BM| _ eat‘ejbt| — eat

e Aisalways diagonalizable if algebraic multiplicity = geometric multiplicity

(|
LIf Ais not diagonalizable, it can be transformed to Jordan form. In this case the natural response
z(t) contains modes tieM, 5 =0,1,...,alg multiplicity - geom. multiplicity
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LINEARIZATION OF NONLINEAR SYSTEMS

e Consider the nonlinear system

o Let (z,,u,)beanequilibrium, f(x,,u,) =0
e Obijective: investigate the dynamic behaviour of the system for small
perturbations Au(t) = u(t) — u, and Az(0) = 2(0) — z,.
e The evolution of Az (t) £ z(t) — z, is given by
Ax(t) = &(t) — &, = f(2(t),u(t))
= f(Az(t) + xp, Au(t) + u;)
~ g—f(xr,ur) Axt) + g—f(xr,ur) Au(t)
L,_/ L,_/

A B
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LINEARIZATION OF NONLINEAR SYSTEMS

e Similarly
7) 0
Ay(t) = 52 (@ ur) Aat) + 5o (@, ur) Au(t)
C D

where Ay(t) £ y(t) — g(z,,u,) is the perturbation of the output from its
equilibrium

o The perturbations Ax(t), Ay(t), and Au(t) are (approximately) ruled by the
linearized system

Az(t) = AAxz(t) + BAu(t)
Ay(t) = CAz(t)+ DAu(t)
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LYAPUNOV'S STABILITY



LYAPUNOV'S INDIRECT METHOD

e Consider the nonlinear system & = f(z), with f differentiable, and assume
a = 01is equilibrium point (f(0) = 0)
e Consider the linearized system & = Ax, with A = g—f

xr

=0

1. If z = Ois an asymptotically stable equilibrium for £ = Ax = itis (locally)
asymptotically stable for the nonlinear system

2. If x = Ois an unstable equilibrium for & = Az = itis unstable for the nonlinear

system

3. If z = 0is marginally stable for & = Ax = nothing can be said about its stability
for the nonlinear system

Aleksandr Mikhailovich Lyapunov
(1857-1918)

c : 24
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EXAMPLE: PENDULUM

y(t) = angular displacement
y(t) = angular velocity
ij(t) = angular acceleration

u(t) = mg gravity force
h hy(t) = viscous friction torque
[ = pendulum length

u(t)=mg

ml? = pendulum rotational inertia
e mathematical model
mi%jj(t) = —Imgsiny(t) — hy(t)

e instate-space form (z; = y, x2 = 7))

T T2
. . A
ty = —Ysinz; — Hao, H:#
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EXAMPLE: PENDULUM

Look for equilibrium states:

Tor 0 - Ty = 0
—%sinxy, — Hro, 0 T1, = tkm, k=0,1,...
u(w‘,):mgi
h
1
1
h
u(t)=mg
xgr:O,x”:O,:I:QW,... ZTor = 0,21, = 7,37, ..
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EXAMPLE: PENDULUM

e Linearize the systemaround z1,, = 0,29, =0

0 1
Az(t) = Az
(t [_? )
|

¢ find the eigenvalues of A

det(AI—A):)\2+H)\+%:0 = ALQ;(Hi,/mm‘l’)

R 2 < 0= 2 = Ax asymptotically

1
[ )
stable °‘5\
A ANPN
= V v
e by Lyapunov’s indirect method -05
z, = [J]is also an asymptotically 4
stable equilibrium for the pendulum P . . . . )
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EXAMPLE: PENDULUM

e Linearize the system around z1,, = 7, 2, =0

0 1
Az(t) = [? g Ax(t)
| ——
A
e find the eigenvalues of A
_ 12 g _ _ 1 2 g
det(AT —A) =X +H)\—7 =0= Ag= 3 -H+/H +47

e )\ <0,\2 > 0= = Az unstable

()

e by Lyapunov’s indirect method
x, = [§]is also an unstable
equilibrium for the pendulum
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LYAPUNOV'S DIRECT METHOD

¢ Asecond method exists to analyze global stability of nonlinear systems, based
on the concept of Lyapunov functions

o Keyidea: if the energy of a system dissipates over time, the system
asymptotically reaches a minimum-energy configuration

e Assumptions: consider the autonomous nonlinear system & = f(x), with f(-)
differentiable, and let z = 0 be an equilibrium (f(0) = 0)

e Some definitions of positive definiteness of a function V' : R"” — R

- Vislocally positive definite if VV(0) = 0 and there exists a ball
B. = {z : ||z||2 < €} around the origin such that V(z) > 0Vz € B, \ 0

- Visglobally positive definite if B = R™ (i.e. ¢ — o0)
- Vis negative definite if —V is positive definite
- Vis positive semi-definite if V(z) > 0Vz € B.

- Vis negative semi-definite if —V is positive semi-definite
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LYAPUNOV'S DIRECT METHOD

e Example: letx = [r1 25),V : R2 = R
- V(z) = 1 + 23 is globally positive definite

- V(z) = 21 + 23 — 3 is locally positive definite

- V(z) = 21 +sin®(x2) is locally positive definite and globally positive semi-definite
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LYAPUNOV'S DIRECT METHOD

Theorem
Given the nonlinear system & = f(xz), f(0) = 0,let V : R™ — R be positive definite
in a ball B. around the origin,e > 0,V € C*(R). If the function

V(z) = VV(z)'s = VV(z) f(x)

is negative definite on B,, then the origin is an asymptotically stable equilibrium point.
If V(a:) is only negative semi-definite on B, then the the origin is a stable equilibrium
point.

v
%7
x(t)

Such afunction V' : R™ — Ris called a Lyapunov function for the system
i = f(z)
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EXAMPLE OF LYAPUNOV'S DIRECT METHOD

o Consider the following nonlinear system & = f(x)

i = (2 + 23 — 2) — 4wy 23
iy = 4alxe + xo(2? + 23 - 2)

e Thestate x = Ois an equilibrium because z = f(0) =0
e Consider the candidate Lyapunov function

V(xy,x2) = 23 + 23
which is globally positive definite. Its time derivative V is
V(1,2) = 2(af + a3)(a? + 23 - 2)

o Itiseasy tocheck that V (z1, x) is negative definite if || z||2 = 22 + 23 < 2

e Since for any B, with 0 < € < +/2 the hypotheses of Lyapunov’s theorem are
satisfied, x = 0 is an asymptotically stable equilibrium

e Any B, with(0 < ¢ < v/2is a also a domain of attraction
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EXAMPLE OF LYAPUNOV'S DIRECT METHOD (CONT'D)

e Cf. Lyapunov’s indirect method: the linearization around x = 0 is
-2 0
o0 -2

x=0

e Lyapunov’s indirect method tells us that the origin is locally asymptotically
stable

0f(0,0) 323 — 323 -2 —6x122
Oox 10z 22 573 + 323 — 2

which is an asymptotically stable matrix

e Lyapunov’s direct method also tells us that B, is a domain of attraction for all
0<e<V2

o Consider this other example: & = —23. The origin as an equilibrium. But
dfd—(f) = —3- 02 = 0, so Lyapunov indirect method is useless.
e LyapunoV's direct method with V = 22 provides V = —2z4, and therefore we

can conclude that z = 0 s (globally) asymptotically stable
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CASE OF CONTINUOUS-TIME LINEAR SYSTEMS

e Letus apply Lyapunov’s direct method to linear systems & = Ax and choose
V(z) = o' Px,with P = P’ > 0 (P=positive definite and symmetric matrix)

e Thederivative V(z) = i’ Px + o' Pi = 2/ (AP + PA)x

. V(;z:) is negative definite if and only if the Lyapunov equation

AP+ PA=—Q

is satisfied for some Q >~ 0 (for example, Q = I)
Theorem

The autonomous linear system & = Ax is asymptotically stable < VQ = 0the
Lyapunov equation A’P + PA = —( has one and only one solution P = 0

| i?:;i??contro\ as ctrl |
w P=lyap(AT.copy(),Q)

(note transposition of makrix A 1)
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DISCRETE-TIME SYSTEMS



DISCRETE-TIME MODELS

¥, y(kT) u(kT )
3.5 4
4 : 35 g _'_
3
3
25 2.5
2
2
15
1.5 1
0 1 2 3 4 5 0 1 2 3 4 5
time t time t
sampled continuous-time signal discrete-time signal

e Discrete-time models describe relationships between sampled variables
x(kTs): u(kTs)f y(kTs): k= Oa 13 s

e The value u(kT5) is kept constant during the sampling interval [T, (k + 1)T)

o Adiscrete-time signal can either represent the sampling of a continuous-time
signal, or be an intrinsically discrete signal

e Discrete-time signals are at the basis of digital controllers (as well as of digital
filters in signal processing)
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DIFFERENGE EQUATION

e Consider the first-order difference equation (autonomous system)

{m(k:+1) = ax(k)

z(0) = a9
e Thesolutionis z(k) = a*x
25F
a>1-
.
g“ * !
x *
L a=1
o
o
051 2 3
O<a<l ° ¢ . |
©
0 1 é ."9 ; 6 7 g 9 10
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LINEAR DISCRETE-TIME SYSTEM

o Consider the set of n first-order linear difference equations forced by the input
u(k) e R

l’l(k + 1) = allxl(k‘) + ... + alnxn(k) +b1U(/€)

5(22(]6 + 1) = aglzl(k) + ...+ agnxn(k) —|—b2u(k)

ok +1) = apmzi(k)+ ... +apnxa(k) +byu(k)
1‘1(0) =10, =--- l'n(O) = Tno

e In compact matrix form:

z(k+1) = Ax(k)+ Bu(k)
z(0) = a9

where z = [ :

T

e R™
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LINEAR DISCRETE-TIME SYSTEM

e The solutionis

k-1
k) = AF +Y A'Bu(k—1—1i
x(k) T ; u( i)

nakural response

forced response

o If matrix A is diagonalizable, A = TAT !

AL O .0 AP0 .0

0 Az ... 0 A 0 X ... 0 1
A=|. .. . |=A=T| _ _|T

0 0 .. X, S0

0 0 .. Ak

where T = [v; ... v,] collects n independent eigenvectors.
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MODAL RESPONSE

e Assumeinputu(k) =0,Vk >0
o Assume A is diagonalizable, A = TAT !

e The state trajectory (natural response) is
n
z(k) = Afzg = TAPT 12y = Zai)\fvi
=1

where
- \; =eigenvalues of A
- wv; = eigenvectors of A

- «; = coefficients that depend on the initial condition z(0)

a1
a = |: .
xn

e The system modes depend on the eigenvalues of A, as in continuous-time

=T"2(0), T =[v1 ... 00
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EXAMPLE - WEALTH OF A BANK ACCOUNT

e k=year counter

e p=interestrate

o (k)= wealth at the beginning of year k
o (k)= money saved at the end of year k
e 1= initial wealth in bank account

Discrete-time model: w(k+1) = (1+p)x(k) +u(k)
z(0) = o
To 10 k€ Stored amount of money (keur)
u(k) 5 k€ :
P 10 % a4 f
k 1—(L.1)k . I
w(k) = (1.1)"10+——=—--5 = 60(1.1)* 50

homy
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EXAMPLE - SUPPLY CHAIN

T&m(k)

O¢2.’E2(k)

e Problem statement:

- Ateach month k, S purchases the quantity u(k) of raw material
- Afraction §; of raw material is discarded, a fraction «; is shipped to producer P
- Afraction a2 of product is sold by P to retailer R, a fraction ds is discarded
- Retailer R returns a fraction 33 of defective products every month
and sells a fraction ~y3 to customers

e Mathematical model:

k month counter
sk +1) = (1—a1—o)z(k) +ulk) z1(k) | rawmaterialin S
zo(k+1) = oaizi(k)+ (1 — a2 —d2)z2(k) z2(k) | productsin P
+B3x3(k) x3(k) | productsin R
z3(k+1) = agza(k)+ (1— B3 —~3)zs(k) u(k) raw material purchased by S
yk) = zxs(k) y(k) products sold to customers
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EXAMPLE - STUDENT POPULATION DYNAMICS

e Problem statement:
- 3-yearscourse
- percentage of promoted, repeaters, and dropouts are roughly constant
- direct enrollment in 2nd and 3rd academic year is not allowed
- students cannot enroll for more than 3 years

k Year
x;(k) | Number of students enrolled in year ¢ atyear k, ¢ = 1, 2,3
u(k) Number of freshmen at year k
y(k) Number of graduates at year k

a; promotion rate during year i, 0 < a; <1
Bi failure rate duringyears,0 < 8; <1
Yi dropout rate duringyearé,v; =1 —a; — 8, > 0

o 3'd-order linear discrete-time system:

z1(k+1) = =zi(k) — arzi(k) — iz (k) + w(k) = frzi(k) + u(k)
5132(]6 + 1) = 1T (k) + Bax2 (k)
z3(k+1) = asza(k)+ Bazs(k)
y(k) = oasws(k)
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EXAMPLE - STUDENT POPULATION DYNAMICS

e |nmatrix form
B 0 0 1
ar B2 0 |z(k)+ | 0| ulk)
O (6] 53 0

8
—~
-
+
=
N
Il

@
=
Z

Il
—
o
o
Q

w
P
8
=
o
=

e Simulation

a; =.60 | B =.20 0
as=.80 | By=.15 ;
a3 = 90 ﬁ?, = 08 020 7027 2004 2026 2078

u(k) = 100, k = 2020, ...

lim y(k) ~ 69.0537

k—o0
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n1-ORDER DIFFERENCE EQUATION

th

e Consider the n*"*-order difference equation forced by u

apy(k —n)+apn_1ylk—n+1)+ -+ ary(k — 1)+ y(k)
=byu(k—n)+ -+ bu(k — 1) + bou(k)

e Equivalent linear discrete-time system in canonical state matrix form

0 1 0 .0 0
0 0 1 .0 0
0 0 0 U | 0
—ap —Qp-1 —Qp-2 ... —ai 1
y(k) = [(bn “boan) ... (b1 —boai) ] (k) + bou(k)
| MATLAB | [ Python |

e There are infinitely many state-space realizations

| tf2ss | [ ctrltf2ss |

o n'h-order difference equations are very useful for digital filters, digital
controllers, and to reconstruct models from data (system identification)
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SOME STATE-SPACE REALIZATION METHODS

e The following state-space realization is called controllable canonical form)

0 1 o ... 0 0 MATLAB
0 0 r .. 0 0 sysc=canon(ss(A,B,C,D),companion’) \
A= : S ,B=|"
S T S b Python |
—Gnp —@p_1 —Ap_2 ... —a] 1 sysc,T=ctrl.canonical_form(
C=[bpbp_1..b1], D=0 (bo = 0) ctrl.ss(A,BC,D), form=reachable’)

o The following state-space realization is called observable canonical form

—a3 10 0 ..0 by MATLAB ‘
—ay 01 ... 00 bo sys=canon(ss(A,C',B',D),’companion’)
A= : s |, B= : Syso=ss(sys.A,sys.C,sys.B'D)
—ap_100 01 b1
—an, 00 .. 00 b, PythTontl il form(
_ . o syso,T=ctrl.canonical_form
C=[100..00],D=0 (bo = 0) ctrl.ss(A,B,C,D), form=observable’) ‘

o We will see later that (A, B) in controllable canonical form is a reachable pair,
(A, C) inobservable canonical form is an observable pair
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MAPPING PAST 1/0 PAIRS T0 STATE VECTOR

e The observable canonical form of the n'!-order difference equation
y(k) = — Z aiy(k —i) + Z biu(k — 1) (bo = 0)
i=1 i=1

corresponds to the following definition of the state vector xz(k):

(k) = y(k)

za(k) = -l ay(k+1—9)+> " biu(k+1—1)

:cg(k) = —Zf:] aiy(k -‘rj—l—i)—i-zz;j biu(k+j7—1—1)
xnfl(k). = .—anfly(k —1) —any(k —2) + bp_1u(k — 1) + bru(k — 2)

zn(k) = —any(k—1)+bpu(k —1)

o Thisis easy to verify by inspection, just compute z(k + 1) and check
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DISCRETE-TIME LINEAR SYSTEM

x(k+1) = Az(k)+ Bu(k)
y(k) = Cux(k)+ Du(k)
z(0) = o

¢ From a given initial condition 2(0) and input sequence {u(k)}7° jone can
predict the entire sequence of states x(k) and outputs y(k), Vk € N

e The state 2(0) summarizes all the past history of the system
e The dimension n of the state z(k) € R is called the order of the system
e The system is called proper (or strictly causal) if D = 0

e General multivariable case:

A Rnxn
z(k) € R" < <

B € R*™
u(k) € R™ C e ReM
y(k) € RP xm

D € RP
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EQUILIBRIUM

e Consider the discrete-time nonlinear system

{ pk+1) = fa(k),ulk)

y(k) = gz(k), u(k))

A state z,, € R™ and an input u,, € R™ are an equilibrium pair if for initial
condition z(0) = z,- and constant input u(k) = w,., Vk € N, the state remains
constant: x(k) = .., Vk € N.

e Equivalent definition: (z,., u,.) is an equilibrium pair if f(z,, u,) = x,
e 1, is called equilibrium state, u, equilibrium input

e The definition generalizes to time-varying discrete-time nonlinear systems
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STABILITY

e Consider the nonlinear system

r(k+1) = f(z(k),u)
y(k) = g(z(k),u)

and let z, an equilibrium state, f (2, u,) = x,

Definition

The equilibrium state x,. is stable if for each initial conditions z(0) “close
enough” to x,., the corresponding trajectory (k) remains close to z,. for all
keN

Analytic definition: Ve > 03§ > 0: [|z(0) — zr|| < § = ||z(k) — zr|| < &, Vk € N.

e The equilibrium point z,. is called asymptotically stable if it is stable and
(k) = x,.fork — oo

e Otherwise, the equilibrium point z,. is called unstable
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STABILITY OF FIRST-ORDER LINEAR SYSTEMS

e Consider the first-order linear system
z(k+1) = ax(k) + bu(k)
e 1, = 0,u, = 0isanequilibrium pair
e Foru(k)=0,Vk =0,1,...,thesolutionis
z(k) = a*xz

e Theoriginz, = 0is

- unstableif |a| > 1
25
- stableif|a| <1
2
- asymptotically stable if |a| < 1 _ a1
15
4X0 a1
05 O<a<l
Xr a=0
G0 2 4 6 8 10
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STABILITY OF DISCRETE-TIME LINEAR SYSTEMS

The natural response of z(k + 1) = Az (k) + Bu(k) is z(k) = A*z, so stability
only depend on A. We therefore talk about system stability

Let A1,..., A\, m < n bethe eigenvalues of A € R™"*™,
The systema(k + 1) = Ax(k) + Bu(k) is
e asymptotically stableiff |\;| < 1,Vi=1,...,m
e (marginally) stableif |\;| < 1,V¥i = 1,...,m, and the eigenvalues with
unit modulus have equal algebraic and geometric multiplicity ¢
e unstable otherwise(in particular, if 34 such that | ;| > 1)

9Algebraic multiplicity of A; = number of coincident roots \; of det(AI — A). Geometric
multiplicity of A; = number of linearly independent eigenvectors v;, Av; = \;v;

The stability properties of a discrete-time linear system only depend on
the modulus of the eigenvalues of matrix A
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STABILITY OF DISCRETE-TIME LINEAR SYSTEMS

Proof:

e The natural responseis (k) = A¥x
o If matrix A is diagonalizable?, A = TAT 1,

k
A1 O ... 0 AT 0 ... 0
0 Az ... 0 0X ... 0
A=|. .. . |=>4=1| s
0 0 ... dn 0 0 ..k

e Take any eigenvalue A = pe’?:
IAF| = p*le*?) = p*
e Aisalways diagonalizable if algebraic multiplicity - geometric multiplicity O

e Lyapunov theorems also exist for nonlinear discrete-time systems

2|f Ais not diagonalizable, it can be transformed to Jordan form. In this case the natural response
x(t) contains modes k7 N5 =0,1,...,alg multiplicity — geom. multiplicity
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ZERO EIGENVALUES

e Modes corresponding to \;=0 go to zero in finite-time

e This has no continuous-time counterpart, where instead all converging modes
tend to zero in infinite time (e*i?)

e Example: dynamics of a buffer

u(k) 7T TN TN
z3(k) za(k) zi(k)  Jy(k)
z1(k+1 = xzo(k 0 1 0 0
x;EkH; _ wigki — e(k+1) = [0 0 1] o(k) + {o] u(k)
xg(k—i—l) = u(k;) 0O 0 O 1
y(k) = z1(k) k) = [1 0 0]ak

e Natural response: A3x(0) = 0 forall z(0) € R?

e For u(k) = 0, the buffer deploys after at most 3 steps !
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EXACT SAMPLING

e Consider the continuous-time system

z(t) = Az(t) + Bul(t)
y(t) = Cx(t) + Du(t
z(0) = xo

e We want to characterize the value of x(t), y(¢) at the time instants
t=0,Ts,2Ts,...,kTs, ..., under the assumption that the input u(t) is

constant during each sampling interval (zero-order hold, ZOH)
y(, y(kT) u(®), u(kT)

u(t) = a(k), kT, <t < (k+1)T,

o (k) 2 x(kT,) and 5(k) £ y(kT) are the state
and the output samples at the k" sampling
instant, respectively

) 2 4 6
time t time t
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EXACT SAMPLING

e Use Lagrange formula to get the response of the continuous-time system
betweenty = kTs andt = (k + 1)T; fromz(tg) = x(kTs):

t
z(t) = eA(t_tO)x(to)Jr/ A=) Bu(o)do
to
(k+1)Ts
— eA((k+1)T57kTS)I(kTS)+ €A<<k+1>T57U)Bu(O')dO'
kTS

e Since the input u(t) is piecewise constant, u(o) = a(k), kTs < o < (k + 1)Ts.
By setting T = 0 — kT, we get

Ts
z((k+ 1)Ty) = e Tox(kT,) + (/ eA(TsT)dT> Bu(kTs)
0
and hence

T(k+1) =T z(k) + (/T eA(T"_T)d7'> Bi(k)
0

which is a linear difference relation between z (k) and a(k) !

55
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EXACT SAMPLING

e The discrete-time system
z(k+1) = Az(k)+ Bu(k)
y(k) Cz(k) + Du(k)

depends on the original continuous-time system through the relations

Ts
AL AT p& (/ eA(TST)dT> B, C&C, D2D
0

(if Aisinvertiblethen B = (A — I)A~'B)
e Ifu(t) is piecewise constant, (4, B, C, D) provides the exact evolution of state

and output samples at discrete times kT 310, 56T)

[MATLAB | [Python | M

sys=ss(A,BC,D); sys=ctrl.ss(A,B,C,D)
sysd=c2d(sys,Ts); sysd=ctrl.c2d(sys,Ts)
[Ab,Bb,Cb,Db]=ssdata(sysd); Ab,Bb,Cb,Db=ctrl.ssdata(sysd)

s e
time t
u(®), u(kT)

O \‘_‘_\_‘—L‘_\_\_k )'_'_'_,—’J_r
P! FR H
- I T B S R B
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CHOICE OF SAMPLING TIME

Rule of thumb: T, ~ % of rise time = time to move from 10% to
90% of the steady-state value, for input u(t) = 1, 2(0) = 0

risetime y(©), y(kT )
1
0|
0|
04
02
o
s 25
2. time t
3 u(t), u(kT )
0. s’
10%
Y R A R 7 05
risetime
FRY G -
timet it
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EULER'S FORWARD METHOD

2((k+1)T3)-

KT, (k+1)T, ¢ Leonhard Paul Euler
(1707-1783)

e For nonlinear systems @:(t) = f(xz(t), u(t)):
z(k+1) = 2(k) + T. f(2(k), u(k))

o For linear systems &(t) = Ax(t) + Bu(t):
z((k+1)T,) = (I + T, A)z(kTs) + Ts Bu(kTy)

A£I+T,A, BET,B, C£C, D£D

o TA—T 4T A4+ ... + T{fn + ... Euler’'s method ~ exact sampling for T, — 0
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EIGENVALUES MAPPING

o Let \; = eigenvalues of matrix A (continuous-time system),i = 1,...,n.
Assume A diagonalizable, A = TAT !

e The eigenvalues of 754 = TeTsAT—1 gre 75

N, <0— |eTS)‘i <1

e Theeigenvaluesof I + T, A =T(I + T,A)T tarel + T\,
A <041+ TN <1

Euler's forward method can make an asymptotically stable
continuous-time system unstable if T’ is not small enough!

©2021 A Bemporad - * "Identification, Analysis, and Control of Dynamical Systems' 59



EXAMPLE - HYDRAULIC SYSTEM

Continuous-time model

Ght) = —25LVAW + fult)
at) = av29/h(0)

Discrete-time model

{h<k+1> = h(k) - 2920 /h(k) + Lra(k)

ak) = ay2gy/h(k) (Torricelli's Law)

level h(t) (m)

. continuous time. N
‘l q Euler approximation

FO— %
time (s)
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IN-STEPS EULER METHOD

e We can obtain the matrices A, B of the discrete-time linearized model while
integrating the nonlinear continuous-time dynamic equations & = f(x, u)

e N-steps explicit forward Euler method: given z(k), a(k), execute the following
steps

1L z2=2k),A=1,B=0

2. forn=1,2,.,N do
© Ae (14 5 5L (@, uk))
o B (I+ %8 (k)
oz x+ L f(x,a(k))

3. end

4. return Z(k + 1) ~ x and matrices A, B suchthat z(k + 1) ~ Az(k) + Bu(k).

o Property: the difference between the state Z(k + 1) and its approximation x

computed by the above iterations satisfies || z(k + 1) — z)|| = O (%)

o Explicit forward Runge-Kutta 4 method also available
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TUSTIN'S DISCRETIZATION METHOD

o Assume u(t) constant within the sampling interval. Given the linear system
#(t) = Ax(t) + Bu(t), apply the trapezoidal rule to approximate the integral

Z(k+1) — 2(k) = /UM)TS #(t)dt = /k(kH)TS (Az(t) + Bu(t))dt

kTS T,

~ o (AZ(k) + Bu(k) + Az(k + 1) + Ba(k)) (brapezoidal rule)

and therefore

(I— %A):E(k +1)=I+ %)a@(k) + TsBu(k)

F(k+1) = (1 - I;SA)I (1 + %A) (k) + (1 - %A) L Bagk)

o Advantage: simpler to compute than exponential matrix, without too much loss
of approximation quality

A.Bemporad - * " Identification, Analysis, and Control of Dynamical Systems' 62



Z-TRANSFORM

Consider afunction f(k), f : Z — R, f(k) = 0forallk <0

The unilateral Z-transform of f(k) is the function of
the complex variable z € C defined by

(k) )

K
Once F'(z) is computed using the series, it's
extended to all z € C for which F'(z) makes sense

Z-transforms convert difference equations into

Witold Hurewicz . .
(1904-1956) algebraic equations.

©2021 A. Bemporad - * " Identification, Analysis, and Control of Dynamical Systems'

63



EXAMPLES OF Z-TRANSFORMS

e Discrete impulse

e Discrete step

R O R

o Geometric sequence

flk)y =d"L(k) = Z[f]=F(2)
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PROPERTIES OF Z-TRANSFORMS

e Linearity
Zlay fi(k) + azf2(k)] = a1 Z[f1(k)] + a2 Z[f2(k)]

Example: f(k) = 30(k) — 2% I(t)= Z[f] =3 - =

2

e Forward shift®

Z[f(k+1) 1(k)]

2Z[f] - 2f(0)

Example: f(k) = a**1 1(k) = Z[f] = 22

32 is also called forward shift operator
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PROPERTIES OF Z-TRANSFORMS

e Backward shift or unit delay *

Z[f(k =) I(k)] = =~ Z[f]

Example: f(k) = 1(k — 1) = Z[f] = ;7=

e Multiplication by & p
Z[kf (k) = —2Z[f]

Example: f(k) = k1(k) = Z[f] = (=

42—1is also called backward shift operator
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DISCRETE-TIME TRANSFER FUNCTION

Apply forward-shift & linearity rules to z(k 4+ 1) = Az (k) + Bu(k),and
linearity to y(k) = Cz(k) + Du(k):

X(2) = z(zI—A)"lag+ (21 — A)"LBU(2)

Y(z2) = 20(zI — A) "Ly +(C(2I — A)"'B+ D)U(z)

L/Yra,wsgurw\ of waAwral response L/Yramsgurw of Sorced response

Definition

The transfer function of the discrete-time linear system (A, B, C, D) is

G(z)=C(:I —A)'B+D

that is the ratio between the Z-transform Y (z) of the output and the Z-
transform U (z) of the input signals for the initial state zy = 0

| MATLAB | [ Python \
sys:ss(A,B,C,D,Ts);‘ sys=ctrl.ss(A,B,C,D,Ts)

G=tf(sys) G=ctrl.tf(sys)
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DISCRETE-TIME TRANSFER FUNCTION

u(k) y(k) U(z) Y(2)

A,B,C,D G(z) |——
Tzo =0
0.5 1
. e(k+1) = [% o5]ak)+[]ulk)
Example: The linear system
y(k) = [1-1]x(k)
with sampling time T; = 0.1 s has the transfer function
MATLAB Python
Ts=0.1; import numpy as np
_ Ts=0.1
G( ) — LIE) A=[0.51;0-0.5]; A=np.array(([0.5, 11,[0, -0.5]])
22 -0.25 B=[01]; B=np.array([(0}(1]))
C=[1-1); C=np.array(([1,-1]))
sys=ss(A,BC,0,Ts); sys=ctrl.ss(AB,C,0,Ts)
G=tf(sys) G=ctrl.tf(sys)
The transfer function doeS nOt depend Transfer function: Transfer function
. o e +15 z+15
on the input u(k), it is only a property S I
272-025 202-0.25

of the linear system.
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DIFFERENGE EQUATIONS

e Consider the nt"-order difference equation forced by u

any(k —n) +an1y(k —n+1)+ -+ ary(k — 1) + y(k)
=byulk—n)+ -+ bulk—1)

e For zeroinitial conditions we get the transfer function

bpz ™ 4 b1z 4 b2t
Az "+ ap_127 " a2+ 1

b1z 14 4 b1z + by
a2l a1z +ay

G(z) =
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IMPULSE RESPONSE

e Consider the impulsive input u(k) = §(k), U(z) = 1. The corresponding output
y(k) is called impulse response

e The Z-transformof y(k)isY(z) = G(z) - 1 = G(z)

¢ Therefore the impulse response coincides with the inverse Z-transform g(%) of
the transfer function G(z)

Example (integrator:)

y(k)
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POLES, EIGENVALUES, MODES

e Linear discrete-time system

z(k+1) = Ax(k)+ Bu(k) ol
y(k) = Cux(k)+Du(k) G(2)=C(:I-A)~'B+D =2 DG z
z(0) =0 G(2)

e Use the adjugate matrix to represent the inverse of zI — A

C Adj(zI — A)B

C(zI —A)'B+D= dot(-] — 4)

+D
e The denominator Dg(z) = det(zI — A)!
The poles of G(z) coincide with the eigenvalues of A

e Well, not always ... There might be a zero/pole cancellation (we will see later)
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STEADY-STATE SOLUTION AND DC GAIN

o Let A asymptotically stable (|A;| < 1). The natural response vanishes
asymptotically
e Assume constant u(k) = u,, Yk € N. What is the asymptotic value

Ty = limg_y 00 x(k) ?
Impose z,.(k + 1) = z,.(k) = Az, + Bu, andgetx,, = (I — A)~!Bu,
The corresponding steady-state output i, = Cz,. + Du, is

yr = (C(I — A)_lB + D) u,
DU Gain

e Cf. final value theorem in complex analysis:

yoo=  lim y(k) = lim(z = DY (z) = lim (= - DGR)U(2)
= lim(z— 1)G(2) Z“fl = G()u, = (C(I — A)~'B + D)u,

e (G(1)is called the DC gain of the system
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EXAMPLE - STUDENT POPULATION DYNAMICS

e Recall student population dynamics

2 0 0 1
ck+1) = |6 15 0 |a(k)+ |0 uk)
0 8 .08 0
y(k) = [0 0 .9]x(k)

e DCgain:

-3 4) i =0

o001

[=lely
oo

o Transfer function: G(2) = m—gamreseess—o0031 G(1) ~ 0.69
y(K)

. [ MATLAB | [Python
A=[b100; a1 b20;0a2b3]; A=[[b1,0,0][aT, b2, 01[0, a2, b3]]

) B=[1,0,0) B={[11(0}(0]]

20 C=[00a3]; C=[0, 0, a3]

. D=[0]; D=[0]
sys=ss(A,BC,D,1); sys=ctrl.ss(A,BC,D,1)

10) dcgain(sys) ctrl.dcgain(sys)

° 0.6905 0.6905

2006 2008 2010 2012 2014 2016
stepk

e For u(k) = 50 students enrolled steadily, y(k) — 0.6905 - 50 ~ 34.5 graduates
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CLOSED-LOOP CONTROL



PROPORTIONAL INTEGRAL DERIVATIVE (PID) CONTROLLERS

¢ PID (proportional integrative derivative) controllers are the most used
controllers in industrial automation since the '30s

! /ot e(r)dr + Ty dil(tt)]

wheree(t) = r(t) — y(t) is the tracking error

o Initially constructed by analog electronic components, today they are
implemented digitally
- ad hoc digital devices
- just few lines of C code included in the control unit
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PID PARAMETERS

ro+_el z + u y
O— 7 | et K, #—>| Process
de(t)
P T— - i
= * Controller

e K, isthe controller gain, determining the “aggressiveness” of the controller

e T, isthereset time, determining the weight of the integral action. The integral
action guarantees that in steady-state y(¢t) = r(t)

de(t)
dt

e Tyisthe derivative time. Theterme(t) + T,
tracking error attimet + Ty

provides a “prediction” of the

e We call the controller P, PD, PI, or PID depending on the feedback terms
included in the control law
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STRUCTURE OF PID CONTROLLER

e In practice one implements the following version of the PID controller

)= 16,0 ~y0)+ 7 [ r) —utehar = dte) |

—_——— T; ~—~
";ru?ar'hnwa,\ Acr'\\lajhut
ukegral
action N acion
o

T, .
d(t) + 7 d(t) = ~Tui (1)
¢ thereference signal r(¢) is not included in the derivative term (r(¢) may have
abrupt changes)

e the proportional action K, (br(t) — y(t) only uses afraction b < 1 of the
reference signal r(¢)

o thederivative term d(t) is a filtered version of y(¢)

©2021 A. Bemporad - * " Identification, Analysis, and Control of Dynamical Systems' 76



DIGITAL IMPLEMENTATION OF PID CONTROLLER

e Indigital (=discrete-time) form with sampling time T, the PID controller takes
the following form

u(k) = P(k) + I(k) + D(k)

P(k) = Kp(br(k) —y(k))

T (r(k) —y(k)) forward differences

_ Ty L K,TyN _ _
backward differences
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PID CONTROLLER: PROS AND CONS

Very simple to implement, only 3 parameters to calibrate

It only requires the measurement of the output signal ()

The control law does not exploit the knowledge of the model of the process

Achievable closed-loop performance is limited
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STATE-FEEDBACK CONTROL



REACHABILITY ANALYSIS

e Consider the linear discrete-time system

x(k+1) = Ax(k) + Bu(k)

withz € R", u € R™ and initial condition 2(0) = zy, € R™
k—1

e Thesolutionis z(k) = Az + Z AV Bu(k — 1 —j)
3=0
Thesystemz(k + 1) = Ax(k) + Bu(k) is (completely) reachable if Vi1, 25 €
R™ there exist k € Nand u(0), u(1),...,u(k — 1) € R™ such that

E—1
xo = AFxq + ZAjBu(k —-1-9)

=0

e Insimple words: a system is completely reachable if from any state x; we can
reach any state x5 at some time &, by applying a suitable input sequence

©2021 A. Bemporad - * " Identification, Analysis, and Control of Dynamical Systems' 79



REACHABILITY

e Determine a sequence of n inputs transferring the state vector from z; to zo

after n steps

u(n —1)
(n—2)

25— A"ty =[BAB ... A" 'B] ,

X R .

u(0)
| S —
U

e Thisis equivalent to solve with respect to U the linear system of equations
RU =X

e Matrix R € R™"*"™™ js called the reachability matrix of the system
e Asolution U exists if and only if X € Im(R)
(Rouché-Capelli theorem: a solution exists < rank([R X|) = rank(R))
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REACHABILITY

The system (A, B) is completely reachable < rank(R) = n

Proof:
(=) Assume (A, B) reachable, choose 1 = 0 and x5 = z. Then 3k > 0 such

that

k—1
z = A Bu(k—1-j)
§=0
If k < n,thenclearly x € Im(R). If k > n, by Cayley-Hamilton theorem we
have again x € Im(R). Since x is arbitrary, Im(R) = R", sorank(R) = n.

(<) If rank(R) = n,thenIm(R) = R". Let X = zo — A"z and
U=[u(n—1) ... u1) u(0)]. Thesystem X = RU can be solved with
respect to U, VX, so any state x; can be transferred to x5 in k = n steps.
Therefore, the system (A, B) is completely reachable.
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MINIMUM-ENERGY CONTROL

e Let (A, B) reachable and consider steering the state from 2(0) = z; into

z(k) =20,k >n u(k — 1)
u(k —2)
xQ—Aka:[BAB...Ak_lB] ,
—x 1
e u(0)
U

(R). € R™**m js the reachability matrix for k steps)

e Sincerank(Ry) = rank(R) = n,Vk > n (Cayley-Hamilton), we get
rank Ry, = rank[Ry X] =n

e Hencethe system X = R, U admits solutions U

Determine the input sequence {u(j)};:é that brings the state from z(0) = x4
k—1
1 1
to z(k) = a2 with mini =) I =sU'U
o z(k) = o with minimum energy 5 2 [lw()]I 5
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MINIMUM-ENERGY CONTROL

e The problem is equivalent to finding the solution U of the system of equations
X =RyU

with minimum norm ||U |
e We must solve the optimization problem

1
U* = arg min 5 |U|* subjectto X = R U
e Let’s apply the method of Lagrange multipliers:

1
LN =5 IUNI? + N (X — RyU) Lagrangian function

%:U—R;C)\ZO MATLAB
= U*= R(RyR,)™" -X [U-pnvRX
oL _ _ — —
X=X -RU=0 % ' Python \
Rk = ’?SC\LAO\V\.\I(‘.FS(’_ f n n n
rom numpy.linalg import pinv
U=pinv(Rk)@X

¢ Note that Ry R, is invertible because rank(Ry) = rank(R) = n,Vk > n
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CONTROLLABILITY

o |fthe system is completely reachable, we have seen that we can bring the state
vector from any value z(0) = x; to any other value z(n) =

e Let’s focus on the subproblem of determining a finite sequence of inputs that
brings the state to the final value z(n) = 0

Definition

Asystem z(k + 1) = Ax(k) + Bu(k) is controllable to the origin in k steps
if Vzo € R™ there exists a sequence u(0), u(1), ..., u(k — 1) € R™ such that
0= AFzg + Y55 ATBu(k — 1 j)

e Controllability is a weaker condition than reachability
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CONTROLLABILITY, STABILIZABILITY

e The linear system of equations

u(k — 1)
u(k —2)
—A"zo=[BAB ... A" 'B] _
A :
u(0)

admits a solution if and only if A"z € Im(R),Vzy € R"

Theorem
The system is controllable to the origin (in n steps) if and only if

Im(A™) C Im(R)

Alinear system z(k 4+ 1) = Axz(k) + Bu(k) is called stabilizable if can be
driven asymptotically to the origin

o Stabilizability is a weaker condition than controllability
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CANONICAL REACHABILITY DECOMPOSITION

o Goal: Make a change of coordinates to separate reachable from unreachable
states

e Letrank(R) = n. < nand consider the change of coordinates
T=|wp4+1 ... wWp V1 ... Unc]

where {v1,...,v,, }isabasisof Im(R),and {wy 41, ..., wy} isacompletion
to obtain a basis of R" (i.e., a basis of ker(R’), R'w; = 0)

e AsIm(R)is A-invariant (Az € Im(R), V2 € Im(R), follows from
Cayley-Hamilton theorem), Av; has no components along the basis vectors

Wy 41y o0 Wiy

o Since T~ Av; are the new coordinates of Av;, the first n — n. components of
T-1 Av; are zero
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CANONICAL REACHABILITY DECOMPOSITION

e The columns of B also have zero components along w41, ..., w,, because
Im(B) C Im(R)

e Inthe new coordinates, the system has matrices A = T-'AT, B = T~ B and
C = CT in the canonical reachability form
(a.k.a. controllability staircase form)

A [MATLAB |
A 01 5 0| A [ACBLCETINVI=
ue ’ ’ 1
A= Ay A ~|B = [O“C CC} ctrbfiA,B,0)

c c L= |

o Letz =[] be the coordinates of the state vector in the new coordinate
system, z,. € R" ", . € R"

e Wehave that z,,.(k) = A _2,.(0), s0 z,.(k) does not depend on u (k)
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REACHABILITY AND TRANSFER FUNCTION

PROPOSITION
The eigenvalues of A, are not poles of the transfer function
C(zI —A)'B+D

Proof: Let 7" transform (A, B) to canonical reachability decomposition (A4, B).
The transfer function is

G(z) = CGI-A)'B+D=C(I-A"'B+D
—1
Auc 0 0
- [Cuc CC]<ZI|:A21 AC:|> |:BC +D
— (ZI—Auc)_l 0 O
=[G <] { . (1—a)-1| B | TP

= Co(2I —A)™'B.+D

Clearly G(z) does not depend on the eigenvalues of A,

Lack of reachability — zero/pole cancellations!
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REACHABILITY AND TRANSFER FUNCTION

e Why are the eigenvalues of A,,. not appearing in the transfer function G(z) ?
e Remember: G(z) explains the forced response, i.e., the response for 2:(0) = 0
e Expressed in canonical decomposition, the system evolution is

Tuc(k+1) = Ayctuc(k)
ze(k+1) = Acwe(k) + Beu(k) + Az12uc(k)
y(k) = Cuctyc(k) + Cexc(k) + Du(k)

e Forz,.(0) = 0,z.(0) = 0, we get x,,.(k) = 0and

z(k+1) = A.x.(k)+ Bou(k)
y(k) Cexc(k) + Du(k)
z.(0) = 0

so the forced response does not depend atallon A4, !
e Theinput u(k) only affects the output y(k) through the reachable subsystem
(A, B, C., D), not through the unreachable part A,
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REACHABILITY ANALYSIS OF CONTINUOUS-TIME SYSTEMS

o Similar definitions of reachability, controllability, and stabilizability can be given
for continuous-time systems

#(t) = Ax(t) + Bu(t)

e Nodistinction between controllability and reachability in continuous-time
(because no finite-time convergence of modal response exists)

e Reachability matrix and canonical reachability decomposition are identical to
discrete-time

e rank R = nis also a necessary and sufficient condition for reachability

e A,.asymptotically stable (all eigenvalues with negative real part) is also a
necessary and sufficient condition for stabilizability
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STABILIZATION BY STATE FEEDBACK

e Main idea: design a device that makes the process (A, B, C') asymptotically
stable by manipulating the input u to the process

dynamical process

LCRQ SICI N = IECIN s BETO)

+
L Jog P P

e |f measurements of the state vector are available, we can set

u(k) = krx1(k) + koxo(k) + ... + knzn (k) +v(k)

o v(k)is an exogenous signal exciting the closed-loop system

Problem
Find a feedback gain K = [k ks ... k] that makes the closed-loop system
asymptotically stable.
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STABILIZATION BY STATE FEEDBACK

v(k) +O u(k) A,B ) C Wy(k)

closed-loop system

o Letu(k) = Kz(k) + v(k). The overall systemis

z(k+1) = (A+ BK)z(k)+ Bu(k)
y(k) = (C+ DK)xz(k)+ Du(k)

Theorem
(A, B) "reachable” (rank [ B AB ... A""!B| = n) = the eigenvalues of
(A + BK) can be decided arbitrarily.
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EIGENVALUE ASSIGNMENT PROBLEM

(A, B) reachable < (A, B) is algebraically equivalent to a pair (A, B) in
controllable canonical form

0 0

A= n—1 B =
0 0
—ag —a1 ... —Qp—1 1

The transformation matrix 7' suchthat A = T AT, B = T~ ' Bis

ai a2 an—1 1
as as 1 0
T=[BAB ... A" !B| :
Ap—1 1 0 0
1 0 0 0

where a1, as, . . ., a,,_1 are the coefficients of the characteristic polynomial
pa(N) = A" +a, A" ag A+ ag = det( M — A)
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Let (A, B) reachable and assume m = 1 (single input)

Characteristic polynomials:

pA()\) = A"+ an_l)\n—l +...+a1 A+ ag (open—LooF eigenvalues)
pd(>\) = N+ dn_1>\n71 + ...+ diA+dy (desired cLosed—LooF eigenvalues)

Let (A, B) be in controllable canonical form

0 0
A=| I B=
0 )
—agp —al —Qnp—1 1
AsK =[ky ... ky],wehave
0
A+ BK = In1
0
—(ap — k1) —(a1 —k2) ... —(an—1—kn)
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e The characteristic polynomial of A + BK is therefore
Nt (apy — k)N (a1 — ko)A + (ap — K1)
e To match p;(\) we impose

ag—ki=do, a1 —ky=dy, ..., an 1 —ky=dyp 1

Procedure

If (4, B) is in controllable canonical form, the feedback gain

K= [ao—doal—dl ...an_l—dn_l}

makes pg(\) the characteristic polynomial of (A + BK)
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If (A, B) is not in controllable canonical form we must set

K = |:a0—d0 al—dl .o an_l—dn_l
K = KT7'  dont tavert T, solve instead T'K' = K’ wrtb, K
where
al a2 ap—1 1
as as 1 0
T=R :
Ap—1 1 0 0
1 0 0 . 0

Explanation: a matrix M and T~ M T have the same eigenvalues

det(\ —T*MT) = det(T"'TA—T 'MT) = det(T~*)det(\] — M)
det(T) = det(AI — M)

e Since (A4 BK) =T 'AT + T-'BKT = T~ (A + BK)T, it follows that
(A + BK)and (A + BK) have the same eigenvalues
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ACKERMANN'S FORMULA

e Let (A, B) reachable and assume m = 1 (single input)
e Characteristic polynomials:

pa(A) = A"+ an_l)\nil +...+a1 X+ ag (open-Loop eigenvalues)
pa(A) = A"+ dn,1AH_1 4+ ...+ diA+dy (desired closed-loop eigenvalues)

o letpy(A) =A™ + A1 A"V 4 diA+dol  « (This is n x n makrix 1)

Ackermann’s formula MATLAB

K=-acker(AB,P);
K=-[0...01][BAB ... A" 'B] 'py(4) |[=PlaccABP) |

- . Python ‘
where P = [A1 Ay ... \,;] are the desired K—ctrlackerABP)

closed-loop poles K=-ctrl.place(A,B,P)

e Numerically robust methods to solve the pole assignment problem exist
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ZEROS OF CLOSED-LOOP SYSTEM

In case of no feedthrough (D = 0) the zeros of the system are the same under
state feedback

o Example for € R3: change the coordinates to canonical reachability form

0 1 0 0
A= 0 0 1 |,B=|0| K=k k» k]
—a3 —a2 —ai 1
22 + a1z + az z+a 1 0 1
Adj(zI — A)B = —asz z(z+a1) =z 0| =1 =
—aszz —agz — a3z 22 1 22

e Adj(zI — A)B does not depend on the coefficients a1, as, as
e Hencealso Adj(zI — A — BK)B doesnotdependona; — ki, as — ko, a3 — k3

N(z) = CAdj(zI-A)B = C Adj(:1-A—BK)B = Nk (z), VK' € R"
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EXAMPLE - STUDENT POPULATION DYNAMICS

e The open-loop poles are (0.8,0.15,0.2)
e Say we want to place the closed-loop polesin (0.1 & 0.27,0.1) by setting

u(k) = Kz(k) + Hr(k)

where (k) is the desired reference signal

o First, design K by pole placement:
MATLAB
K=-place(AB,[.1+.2%],.1-.2%],1])

Python ‘
K=-place(AB[.1+.2}.1-2),.1]) |

e Then choose H such that the DC-gain from r to y is 1:

MATLAB | [ Python \
sys_cl=ss(A+B*K,B,C+D*K,D,1); sys_cl=ctrl.ss(A+B@K,BC+D@K,D, 1)
dc_cl=dcgain(sys_cl); dc_cl=ctrl.dcgain(sys_cl)

H=1/dc_cl; H=1/dc_cl

e Weget K =[—0.1300 — 0.0698 0.0017], H = 1.7708
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EXAMPLE - STUDENT POPULATION DYNAMICS

o Compare open-loop vs. closed-loop response

60 T T T y(‘k)

50

Se

reference —
40 b

301 b
20 *

101 *

0 . . I I I I I I
2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022

step k
90 U(‘k)
85 b
80 b

meo | ]

70 . . . . .
2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022
step k
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STATE ESTIMATION



OBSERVABILITY

dynamical process

O AB
X
I_’ ? '—» Z(k) state estimate

¢ Implementing a state feedback controller u(k) = Kxz(k) requires the entire
state vector z(k)

l%
g

¢ Problem: often sensors only provide the measurements of output y (k)

o ldea: isit possible to estimate the state x by measuring only the output y and
knowing the applied input « ?

e Observability analysis addresses this problem, telling us when and how the
state estimation problem can be solved

A. Bemporad - * " Identification, Analysis, and Control of Dynamical Systems' 101



OBSERVABILITY

e Consider z(k+1) = Ax(k) + Bu(k)
y(k) = Cux(k)+ Du(k)
with®> z € R”,u € R,y € R and initial condition z(0) = 2o € R"

e The solution for the output is
y(k, zo,u(-)) = CAFzg + Y520 CAIBu(k — 1 — j) + Duf(k)

The pair of states z; # x5 € R™ is called indistinguishable from the output
y(+) if for any input sequence u(+)

y(k, z1,u(-)) = y(k, x2,u(-)),Vk >0

A linear system is called (completely) observable if no pair of states are indis-
tinguishable from the output

5Everything here can be easily generalized to multivariable systems u € R™,y € R
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OBSERVABILITY

e Consider the problem of reconstructing the initial condition x from n output
measurements, applying a known input sequence

y(0) = Cuzo+ Du(0)
y(1) = CAxo+ CBu(0)+ Du(l)

yn—1) = CA" 1z + Z;T‘;f CA’Bu(n —2 —j) + Du(n — 1)

e Define
c y(0) — Du(0)
OA y(1) — CBu.(O) — Du(1)
0= . Y =
CA.n—l y(n—1)—ZCAjBu(n—2—j)—Du(n—1)
N—— Jj=1

n X n makrix
n-th dimensional vector
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OBSERVABILITY

e Theinitial state x( is determined by solving the linear system
Y = @JJO

The matrix © € R™*" is called the observability matrix of the system
¢ |f we assume perfect knowledge of the output (i.e., no noise on output
measurements), we can always solve the system Y = ©z. In particular:

- Thereis only one solution if rank(©) = n

- There are infinite solutions if rank(©) < n.
In this case, all solutions are given by 2o + ker(©), where zq is any particular
solution of the system (e.g., the true initial state)

e Knowing g, we know z(k) = AFzq + Zf:ol A'Bu(k — 1 —i)forallk >0
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OBSERVABILITY

The system of equations ©Oxy = Y has a solution if and only if

rank(©) = rank([© Y]) (Rouché-Capelli Theorem)

e Because we have © € R™"*",ifrank(0©) = n = rank([@ Y]) = nforeachY

The solution is unique if and only if rank(©) = n

The input u(k) only influences Y, not ©

Then, for linear systems the observability property only depends on A and C
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OBSERVABILITY

Alinear system is observable if and only if rank(©) = n

o Asthe observability property of a system depends only on matrices A and C,
we call a pair (4, C) observable if
C
CA

rank . =n
C’A'"_1
e |t can be proved that ker(©) is the set of states z € R™ that are
indistinguishable from the origin x = 0
y(k,z,u(-)) = y(k,0,u(-)), Vk > 0
for any input sequence u(+)

¢ Hence, since ker(0) = {0} if and only if rank(©) = n, a system is observable if
and only if there are no states that are indistinguishable fromz = 0

©2021 A. Bemporad - * " Identification, Analysis, and Control of Dynamical Systems'

106



RECONSTRUCTABILITY

Under observability assumptions, we just saw that it is possible to determine
the initial condition x( from n input/output measurements

z(0) =07y

To close the control loop at time & it is enough to know the current z(k)

e If the initial condition 2:(0) is known, it is possible to calculate z(k) as
k=1
2(k) = A*O7'Y + ) A'Bu(k —1—1)
i=0

Question: Can we determine the current state z:(k) even if the system is not
completely observable?
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RECONSTRUCTABILITY

Alinearsystemz(k+1) = Ax(k)+ Bu(k) is called reconstructable in & steps

if, for each initial condition z¢, z (k) is uniquely determined by {u (), y(5) ?;&
The solutions of the system
[ 5(0) — Du(0) ] c
y(1) — CBu(0) — Du(1)
CA
Yk e = T
k=2 :
y(k —1) =Y CABu(k — 2 — j) + Du(k — 1) CAF-1
L j=1 ] \—@,—/
k

are given by x = xg + ker(©y), where x is the “true” (unknown) initial state
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RECONSTRUCTABILITY

e Let ¢ be theinitial (unknown) “true” state, and x = x¢ + Z be a generic initial
state, where Z € ker(Oy,). An estimation Z(k) of the current state z:(k) is
k-1
(k) = AFxo + A¥z + > A/ Bu(k -1 - j)

Jj=1

e #(k) coincides with z(k) if and only if z € ker( A¥). Because this must hold for
any Z € ker(©y,), we have the following

Lemma

A system is reconstructable in k steps if and only if ker(0},) C ker(A¥)

A system is detectable if it is reconstructable asymptotically for &k — o0
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CANONICAL OBSERVABILITY DECOMPOSITION

Goal: Change coordinates to separate observable and unobservable states

o Letdim(ker(®)) = n — n, > 1 and consider the change of coordinates
T = [Uno+1 el Up WP ... wno}
where {v,,_41,...,v,} isabasis of ker(0),and {wy, ..., w,, } isacompletion

to obtain a basis of R™

e By Cayley-Hamilton theorem, ker(©) is A-invariant (Az € ker(©),Vz € ©),
and hence Av; has no components along the basis vector wy, ..., w,,,
Vi=n,+1,...,n

e Note also that C'v; = 0,because Ov; = 0,Vi=n,+1,...,n

¢ Inthe new coordinates the system has matrices A= T-1AT, B=T"1Band
C = CT inthe canonical observability form

N " MATLAB
P uo 12| 5 Buo |~ [ALBLCLTINV]=
= = c=lo c]

0 Ao Bo o obsvf(A,B,C)
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OBSERVABILITY AND TRANSFER FUNCTION

PROPOSITION
The eigenvalues of A, are not poles of the transfer function
C(zI -—A)"'B+D

Proof: Consider a matrix T' changing the state coordinates to canonical
observability decomposition of (A, C'). The transfer function is

G(z) = ClEI-AT'B+D=C(I-A)"'B+D=
-1
Auo A12 Buo
[0 Co]<zl— . Ao> el +p

= [o Co][(ZI_AuO)l ) HB”" D

0 (2 — Ap)~ 1 B,
= Co(z2l —Ap)"'Bo+ D

Clearly G(z) does not depend on the eigenvalues of 4,

Lack of observability — zero/pole cancellations!
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OBSERVABILITY AND TRANSFER FUNCTION

e Why are the eigenvalues of A,,, not appearing in the transfer function G(z) ?

e Expressed in canonical decomposition, the system evolution is

Tuo(k+1) = Auouo(k) + A122,(k) + Byou(k)
To(k+1) = Aozo(k) + Bou(k)
y(k) = Coxo(k) + Du(k)

¢ The evolution of z, (k) is not affected by the unobservable states z,,, (k)

k—1
zo(k) = ARz, (0) + ZAZBOu(k: —1-4)
i=0

so the output y(k) = Cox,(k) + Du(k) does not depend at allon A, !
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CANONICAL OBSERVABILITY DECOMPOSITION

PROPOSITION
A, € R"*" and C, € RP*" are a completely observable pair

Proof:
e We have that oT c
CTT—'AT CA
no = rank® =rank©®T = rank . = rank
CTT-tA™-1T CAr—1
o Co
0
Co
. . CoA,
= rank |0 CoAr° ! | =rank
0 CoAL° :
: . CoAge!
L0 CoAp™" |

e The last equality follows by Cayley-Hamilton theorem (the last n — n, rows
[0 CoA?] are a linear combination of the first n,, rows). Hence, (A,, C,) is

completely observable
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DUALITY

e Givenalinear system (A, B, C, D),withz € R™,u € R™and y € RP, we call
dual system the system
2(k+1) = Azk)+ Cu(k)
g(k) = Ba(k)+ D'a(k)
wherez € R", 4 € RPandy € R™
e The reachability [observability] matrix of the dual system is equal to the
transpose of the observability [reachability] matrix of the original system

R o= [c ac o o(ayier] =
B/
BA
@ = . :R,
B/(A/)n—l

e Thesystem (A, B, C, D) is reachable [observable] if and only if its dual system
(A", C", B, D') is observable [reachable]
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STATE ESTIMATION

State estimation problem

At eachtime k construct an estimate & (k) of the state 2:(k), by only measuring
the output y(k) and input u (k).

e Open-loop observer: Build an artificial copy of the system, fed in parallel by
with the same input signal u(k)

dynamical process
u(k) (k)

y(k)
F A’B true state C

o AB |— ik

state estimate

e The “copy” is a numerical simulator £(k + 1) = Ad(k) + Bu(k) reproducing
the behavior of the real system
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OPEN-LOOP OBSERVER

dynamical process

AB

—_—
true state

C y(k)

(

AB p—— ik

’ state estimate

e The dynamics of the real system and of the numerical copy are

z(k+1) = Ax(k)+ Bu(k) True process
.@(k -+ 1) = A.’i(k) + Bu(k) Numerical copy

e The dynamics of the estimation error (k) = z(k) — Z(k) are
z(k + 1) = Az(k) + Bu(k) — Az(k) — Bu(k) = Az(k)
and then (k) = A*(x(0) — 2(0))
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OPEN-LOOP OBSERVER

dynamical process
u(k)

.| A.B
(

z(k)

_—
true state

AB b— ik

state estimate

The estimation error is Z(k) = A¥(z(0) — £(0)). This is not ideal, because

e The dynamics of the estimation error are fixed by the eigenvalues of A and
cannot be modified

e The estimation error vanishes asymptotically if and only if A is asymptotically
stable

¢ Note that we are not exploiting (k) to compute the state estimate Z (k) !
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LUENBERGER OBSERVER

dynamical process ]
u(k z(k k
( )l A’B true(stlte C J o
(k) 10
:: A’[B L] itate c ?/_.C)
estimate

state observer

Luenberger observer: Correct the estimation equation with a
feedback from the estimation error y(k) — 4 (k)

#(k+1) = A2(k) + Bu(k) +  L(y(k) — Ci(k))
—_————

feedback on estimation error David G. Luenberger
(1937-)
where L € R™*P is the observer gain
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LUENBERGER OBSERVER

dynamical process

z(k y(k
T
—'l AL © |~<|>
estimate

state observer

u(k

¢ The dynamics of the state estimation error Z(k) = z(k) — &(k) is
Z(k+1) Az (k) + Bu(k) — Az(k) — Bu(k) — Lly(k) — Ci(k)]
= (A-LC)z(k)
and then (k) = (A — LC)*(x(0) — 2(0))
e Same idea for continuous-time systems () = Az(t) + Bu(t)
dz(t)
dt

The dynamlcs of the state estimation error are dm(t) =(A—-LCO)Z(t)

— A2(t) + Bu(t) + Ly(t) — C(t) — Du(t)]
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EIGENVALUE ASSIGNMENT OF STATE OBSERVER

If the pair (A4, C) is “observable” (= (A’, C") “reachable”), then the eigenvalues
of (A — LC) can be placed arbitrarily.

MATLAB Python where P = [AAg... \,] =

L=acker(A,C,P); L=ctrl.acker(ATCT,p).T i .
L=place(A,C\PY: L=ctrl.place(AT.CT,p)T desired observer eigenvalues

80
—true state
—estimator L1
60[ —estimator L2
——estimator L3 response from initial conditions
40f| —[-17 4 — [0
x(0) = [ 1 }x(O) =[] for
20 u(k) = 0.1 for different choices of
the observer poles
!
2% 10 20 20 40
time (s)
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POTENTIAL ISSUES IN STATE FEEDBACK CONTROL

e Measuring the entire state vector may be too expensive (many sensors)

¢ |t may be even impossible (high temperature, high pressure, inaccessible
environment)

Can we use the estimate & (k) instead of (k) to close the loop ?

!
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DYNAMIC COMPENSATOR

dynamical process

)] 1 =) ] 1w
‘ LS L |

(k) +< )+ (k) state
estimator

dynamic output feedback controller

e Assume the open-loop system is completely observable and reachable
e Construct the linear state observer

#(k +1) = Az(k) + Bu(k) + L(y(k) — Ci(k))

o Setu(k) = Ki&(k) + v(k)
e The dynamics of the error estimate (k) = z(k) — Z(k) is

#(k+1) = Az(k)+Bu(k)—Ai(k)— Bu(k)+L(Cx(k)—Ci(k)) = (A—LC)&(k)

The error estimate does not depend on the feedback gain K !
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CLOSED-LOOP DYNAMICS

e Let’s combine the dynamics of the system, observer, and feedback gain

z(k+1) = Ax(k)+ Bu(k)

#k+1) = Ai(k)+ Bu(k)+ L(y(k) — Ci(k))
ulk) = Ki(k)+v(k)
y(k) = Cux(k)

o Take z(k), Z(k) as state components of the closed-loop system

k] [0 | [em)] .
(k) = [I —[] (k) (it is indeed a change of coordinates)
e The closed-loop dynamics is
w(k+1) [ A+BK -BK | [ax(k) B
#(k+1) 0  A-LC||#k) 0
T (k)
vy = [c o] [i(k)]
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CLOSED-LOOP DYNAMICS

e The transfer function from v(k) to y(k) is
—1

2 — A— BK BK B
G = [c 0][ 0 d-A+LC| |0
B (21 — A — BK)™! * B
= [¢ o 0 (z:I-A+LC)"| |0
_ N(z)
= C(:I-A-BK)'B=
(2 ) Dre(2)

e Even if we substituted z(k) with &(k), the input-output behavior of the
closed-loop system didn’t change !

The closed-loop poles can be assigned arbitrarily using dynamic output feed-
back, as in the state feedback case

The closed-loop transfer function does not depend on the observer gain L
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SEPARATION PRINCIPLE

The design of the control gain K and of the observer gain L can be done inde-
pendently

e Watchout! G(z) = C(2I — A — BK)~!Bonly represents the I/O
(=input/output) behavior of the closed-loop system

e The complete set of poles of the closed-loop system are given by
det(zI— [ PX B ]) = det(2I-A—BK) det(:1—A+LC) = Dk (2)Dy(z)
e A zero/pole cancellation of the observer poles has occurred:

B
0

6 =[C o] CI- ("D ) | = Dbyt
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TRANSIENT EFFECTS OF THE ESTIMATOR GAIN

e [ has an effect on the natural response of the system !

o Tosee this, consider the effect of a nonzero initial condition [I(O) } forv(k) =0

#(0)
y(0) = Cz(0)
y() = [ o (M 2B [30)]
= [ o [T = ca+ BR)w(0) - CBK#(0)
2 = [ o [*F B [50)]
= C(A+ BK)z(1) - CBK#(1)
= CO(A+ BK)?z(0) — C(A+ BK)BKi#(0) — CBK(A — LC)#(0)

e If (0) # 0, L has an effect during the transient !
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CHOOSING THE ESTIMATOR GAIN

o Intuitively, if Z(k) is a poor estimate of x(k) then the control action will also be
poor

Rule of thumb: place the observer poles ~ 10 times faster than
the controller poles

e Optimal methods exist to choose the observer poles (Kalman filter)

e Fact: The choice of L is very important for determining the sensitivity of the
closed-loop system with respect to input and output noise
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EXAMPLE: CONTROL OF A DC MOTOR

MATLAB

K=1; beta=.3; alpha=1;
G=tf(K,[1 beta alpha 0]);

ts=0.5; % sampling time
Gd=c2d(Gts);
sysd=ss(Gd);
[AB,C,D]=ssdata(sysd);

% Controller
polesK=[-1,-0.5+0.6%},-0.5-0.6%]];
polesKd=exp(ts*polesK);
K=-place(A B,polesKd);

% Observer
polesL=[-10, -9, -8];
polesLd=exp(ts*polesL);
L=place(A,C',polesLd);

MATLAB

% Closed-loop system, state=[x;xhat]

bigA=[A B*K;L*C A+B*K-L*C];
bigB=[B;BI;

bigC=[C,zeros(1,3)];

bigD=0;
clsys=ss(bigA,bigB,bigC,bigD,ts);

x0=[111]; % Initial state
xhat0=[0 0 0]; % Initial estimate
T=20;

initial(clsys, [x0;xhat0],T);

pause

t=(0:ts:T);
v=ones(size(t));
Isim(clsys,v);
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EXAMPLE: CONTROL OF A DC MOTOR

C

Python

import numpy as np
Kbeta,alpha =1,3,1
G=ctrl.tf(K,[1,beta,alpha,0])

ts=0.5 # sampling time
Gd=ctrl.c2d(G,ts)
sysd=ctrl.ss(Gd)
AB,C,D=ctrl.ssdata(sysd)

# Controller
polesK=np.array([-1,-0.5+0.6},-0.5-0.6j])
polesKd=np.exp(ts*polesK)
K=-ctrl.place(A B polesKd)

# Observer
polesL=np.array([-10, -9, -8])
polesLd=np.exp(ts*polesL)
L=ctrl.place(AT,C.T,polesLd).T

Python

# Closed-loop system, state=[x;xhat]

bigA=np.vstack((np.hstack((A, B@K)),
np.hstack(L@CA+B@K-L@Q))))
bigB=np.vstack((B,B))
bigC=np.hstack((C,np.zeros((1,3))))
bigD=0
clsys=ctrl.ss(bigA,bigB,bigC,bigD,ts)

x0=np.array([[11,[11,[1]1]) # Initial state
xhatO=np.zeros((3,1)) # Initial estimate
t=np.arange(0,20+ts,ts)
_y=ctrl.initial_response(clsys,t,np.vstack((x0,xhat0)))

v=np.ones(t.size)
_yfxf=ctrl.forced_response(clsys,t,v)

©20
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EXAMPLE: CONTROL OF A DC MOTOR

y(k) y(k)

2 O
15 25
2

1
15

0.5
1
0 0.5]

_0'50 10 15 20 00 10 15 20
time (s) time (s)
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LINEAR QUADRATIC REGULATION (LQR)

o State-feedback control via pole placement requires one to assign the
closed-loop poles

e Any way to place closed-loop poles automatically and optimally ?

e The main control objectives are
1. Make the state z(k) “small” (to converge to the origin)
2. Use “small” input signals u(k) (to minimize actuators’ effort)

These are conflicting goals !
input u(t) ‘ state z(t)

I INA T -
: N

o LQRisatechnique to place automatically and optimally the closed-loop poles
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FINITE-TIME OPTIMAL CONTROL

e Linearsystemax(k 4+ 1) = Az (k) + Bu(k) with initial condition 2:(0)

¢ We look for the optimal sequence of inputs
U = {u(0), u(l), ..., u(N —=1)}

driving z(k) towards the origin while minimizing the performance index

2

J(x(0),U) = ' (N)Qnz(N) + : o' (k)Qz(k) + u'(k)Ru(k) quadratic cost
0

>
Il

whereQ =Q' = 0,R=R = 0,Qn = Q)y = 0°

6For amatrix @ € R"*™,Q > 0 means that Q is a positive definite matrix, i.e., 2’ Qz > 0 for all
z # 0,z € R™. Q > 0means positive semidefinite, z’Qz > 0,Vx € R".
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FINITE-TIME OPTIMAL CONTROL

e Example: @) diagonal Q = diag(qs, ..., qy),singleinput, Qn =0

J(x(0),U) = i (Z qm?(@) + Ru*(k)

k=0 i=1
e Consider again the general linear quadratic (LQ) problem

J(2(0),U) = 2" (N)Qnz(N) + : o' (k)Qx (k) + v’ (k) Ru(k)

k=0

N is called the time horizon over which we optimize performance

The first term 2’ Qx penalizes the deviation of = from the desired target z = 0

The second term v’ Ru penalizes actuator authority

The third term 2’ (N)Q Nz (N ) penalizes how much the final state z(N) deviates

fromthetargetz =0

® ), R, QN are the tuning parameters of optimal control design (cf. the
parameters of the PID controller K, T;, T)
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MINIMUM-ENERGY CONTROLLABILITY

e Consider again the problem of controllability of the state to zero with minimum
energy input

u) |f
_ u(1)
ming :
u(N —1) ],
s.t x(N) =

e The minimum-energy control problem can be seen as a particular case of the LQ
optimal control problem by setting

R=1I1 Q=0, Qn=00-1
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SOLUTION TO L OPTIMAL CONTROL PROBLEM

e By substituting z(k) = A¥z(0) + Zf;ol A'Bu(k —1—14)in

N-1

J(2(0),U) = Z 2 (k)Qz(k) + u'(k)Ru(k) + 2’ (N)Qnz(N)
k=0

we obtain

J(@(0),U) = SUHU +2(0) FU + 22(0)'¥a(0)

where H = H' ~ (s a positive definite matrix
e Theoptimizer U* is obtained by zeroing the gradient

0 = VyJ(x(0),U)=HU + F'z(0)
u*(0)
u*(1) i
— U = : — —H 'F'z(0)
u*(N -1)

©2021 A. Bemporad - * " Identification, Analysis, and Control of Dynamical Systems' 135



[LQ PROBLEM MATRIX COMPUTATIONI

z(1) N e} 0 0 0o 117 =)
x(2) 0 Q 0 0 x(2)
J(2(0), U) 2’(0)Qu(0) + : : : . : : : +
2(N — 1) 0o ... o @ 0 2(N — 1)
z(N) 0 0 0 Qn 1 L z(N)
Q
R 0 L. 07T w0 7
0 R 0 u(1)
[u'(O) w’ (1) u'(Nfl)] .
o . o0 rRllun-nl
-~
R
3
(1) B 0 0 A
z(2) AB B 0 u(0) A2
. [ “"(_14) } +1 . | e
: . . . . W(N —1 :
z(N) AN—-1p aAN-2p = B ¢ ) anN
—
N
J(@(0),U) = ' (0)Qx(0) + (5U + Nx(0)) Q(5U + Nx(0)) + U'RU

Lo 2R+ 5'Q5)U +2'(0)2N' Q5 U + lz’(0> 2(Q + N'QN) (0)
2 — > —

-
G
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SOLUTION TO L OPTIMAL CONTROL PROBLEM

e The solution

U* = . = -H 'F'z(0)
u*(N —1)

is an open-loop one: u* (k) = fx(x(0)),k=0,1,...,N —1

e Moreover the dimensions of the H and I’ matrices is proportional to the time
horizon N

e We use optimality principles next to find a better solution (computationally
more efficient, and more elegant)
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DYNAMIC PROGRAMMING

e Consider the following basic fact in optimization
Vo2 minf(z,y) =min{  minf(zy) }
this is o function of =
¢ Incase f is separable in the sum of two functions
fzy) £ fol2) + fi(z,y)
we get miny, f(z,y) = fo(z) + miny fi(z,y)
e Therefore we can compute 1} in two steps:
Vi(z) = myin filz,v)
Vo = min{fo(z) +Vi(2)}
¢ We apply the above reasoningto f = J(x(0),U),z = [v/(0) ... u(ky — 1)'T,
y=I[u(k) . w(N=1)
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DYNAMIC PROGRAMMING

e Atagenericinstant k; and state 2(k;) = Z(z) consider the optimal cost-to-go

Tk

Vi, (2(2)) = mi}}(NiU { - z' (k)Qz(k) + v (k) Ru(k) + m'(N)QNx(N)}

Vo(2(0)) = min J(x(0),U)
U£{u(0),...,u(N—-1)}

k1—1
=  min { > &' (k)Qu(k) + o (k) Ru(k) + Vkl(x(krl))}

u(0),...,u(k1—1) =0

¢ Solvingover [0, k1] with terminal weight equal to the optimal cost-to-go from &
to IV at 2(k1) is the same as solving over [0, T']

©2021 A. Bemporad - * " Identification, Analysis, and Control of Dynamical Systems' 139



BELLMAN'S PRINCIPLE OF OPTIMALITY

Given the optimal sequence U* = [u"(0),..., u"(N — 1)]
(and the corresponding optimal trajectory =* (k)), the subsequence
[u*(k1),...,u"(IN — 1)] is optimal for the problem on the horizon
[k1, N], starting from the optimal state 2™ (k1)

Richard Bellman
(1920-1984)

optimal state z*(k)

¢ Given the state x* (k1 ), the optimal input trajectory u*

L on the remaining interval [k, N] only depends on
: kl : : : : ;thnlc :1:* (kl)
 optimal input u'(k) e Then each optimal move u* (k) of the optimal trajectory
SRR on [0, N]only depends on x* (k)
‘ e The optimal control policy can be always expressed in
: ume  state feedback form u* (k) = up(z*(k))!

k1 N
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BELLMAN'S PRINCIPLE OF OPTIMALITY

e The principle also applies to nonlinear systems

optimal state trajectories x*
and/or non-quadratic cost functions: the optimal R

T [
control law can be always written in state-feedback \ (’—“\\\
I~
form —
RN
u* (k) = fe(z*(k)), YVk=0,...,N —1 N

ST )

Fimme

ANAVA

e Compared to the open-loop solution {u*(0), ..., u*(N — 1)} = f(z(0)) the
feedback form u* (k) = fi(x*(k)) has the big advantage of being more robust
with respect to perturbations: at each time k we apply the best move on the
remaining period [k, N
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RICCATI ITERATIONS

By applying the dynamic programming principle, we can compute the optimal
inputs u* (k) recursively as a function of 2* (k) (Riccati iterations):

1. Initialization: P(N) = Qn
2. Fork = N,...,1,compute recursively the following
matrix

P(k—1) = Q—A'P(k)B(R+B'P(k)B) " 'B'P(k)A+A'P(k)A
3. Define

K(k)=—-(R+B'Pk+1)B)"'B'Pk+1)A

The optimal input is

Jacopo Francesco Riccati

u*(k) = K(k)z* (k) (1676-1754)

The optimal input policy u* (k) is a (linear time-varying) state feedback !
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LINEAR QUADRATIC REGULATION

e Consider the infinite-horizon optimal control problem

Vo (x(0)) _u(o) in Zx u' (k) Ru(k)

Result
Let (A, B) be a stabilizable pair, R = 0, Q = 0. There exists a unique solution
P, of the algebraic Riccati equation (ARE)

= AP A+Q— AP, B(B'P.,B+ R)"'B'P A

such that the optimal cost is V°°(z(0)) = 2'(0) Poox(0) and the optimal con-
trol law is the constant linear state feedback u(k) = Krqrz(k) with

Kiqr = —(R+ B'PB) " 'B'PLA.

\ l\/IATLAB \

|_Python | E=closed-loop poles
b dare(Ag‘Q R; SOR) Poo EKmM=ctrl.dare(ABQR) ) PP
{ o ] e ‘C;fr SySSQ . Ko =-Km = eigenvalues of (A + BKLqr)
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LINEAR QUADRATIC REGULATION

e Go back to Riccati iterations: starting from P(c0) = P, and going backwards
weget P(j) = Py, Vj >0

e Accordingly, we get

K(j)= —(R+B'PB) 'B'P,A= Kiqr, Vi =0,1,...
e The LQR control law is linear and time-invariant
e (A, B) stabilizable implies closed-loop asymptotic stability, VR, Q = 07

e LQRisanautomatic and optimal way of placing poles !

e Asimilar result holds for continuous-time linear systems

"R+ 0,Q > 0withQ = F'F,F € R"™*"a, ng = rank Q,and (A, F') detectable also ensures
closed-loop asymptotic stability. Matrix F' can be obtained for example by the LD L™

1
decomposition Q = [L1 L2] [%1 8] [L1 L), F = D L, with Dy € R™a*"a,
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LOR WITH OUTPUT WEIGHTING

e We often want to regulate only (k) = Cx(k) to zero, so define

o0

Ve ((0) = w(©) (L), Z £)Quy(k) + ' (k) Ru(k)

k=
e The problem s again an LQR problem with equivalent state weight Q = C'Q,C
| MATLAB | [ Python \
| [-Koo,PooE] = dIgry(sysd QYR) | | PooE Koo = ctrl.dare(ABCT@Qy@O)R) |
Let (A, B) stabilizable, (A, C) detectable, R > 0, Q, > 0. The LQR control
law u(k) = Krqrz(k) the asymptotically stabilizes the closed-loop system

lim z(t) =0, tlg& u(t) =0

t—o0

Intuitively: the minimum cost 2’ (0) Poo (0) is finite = y(k) — 0 and u(k) — 0.
y(k) — Oimplies that the observable part of the state — 0. As u(k) — 0, the unobservable states

remain undriven and go to zero spontaneously (=detectability condition)
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LOR EXAMPLE

e Two-dimensional single input single output (SISO) dynamical system (double

integrator)
sk+1) = [(1) ”x(kwmu(k)

[1 o}x(k)

¢ LQR (infinite horizon) controller defined on the performance index

<

N
>

S—
I

oo

Ve(z(0)) = +u , p>0
@0) = o... kz (k).
OWeights:Q:[(l)]-%-[lo]:[g },Rzl

0

0
e Note that only the ratio Q11 /R = %
not change the optimal control law

matters, as scaling the cost function does
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LOR EXAMPLE

p = 0.1(red line)

output y(k)
&\N K = [~0.8166 — 1.7499]
D p =10 (blue line)
. input u(k) K =[-0.2114 — 0.7645]
" ] p = 1000 (green line)
S T S R R VI TR TS K = [-0.0279 — 0.2505]

Initial state: #(0) = [}]

V@) = min 3 2k + u(k)

w(0);u(1),.. = p
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KALMAN FILTERING - INTRODUCTION

e Problem: assign observer poles in an optimal way, that is to minimize the state
estimationerrorz =z — &

o Information comes in two ways: from sensors measurements (a posteriori) and
from the model of the system (a priori)

e We need to mix the two information sources optimally, given a probabilistic
description of their reliability (sensor precision, model accuracy)

The Kalman filter solves this problem, and is now
the most used state observer in most engineering
fields (and beyond)

Rudolf E. Kalman™
(1930-2016)

* R.E. Kalman receiving the Medal of Science from the President of the USA on October 7, 2009
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PROCESS MODEL

e The process is modeled as the linear time-varying system with noise

w(k+1) = A(k)x(k) + B(k)u(k) + G(k)§(k)
y(k) = Ck)z(k) + D(k)u(k) + (k) 2(0) = @0

e {(k) € RY=process noise, E[{(k)] = 0 (zeromean), E[{(k)¢' ()] = 0,Vk # 4,
(white noise), E[§(k)E' (k)] = Q(k) = 0 (covariance matrix)

e ((k) € R? = measurement noise, E[((k)] = 0, E[¢(k)(' ()] = OVE # 4,
E[C(k)C' (k)] = R(k) = 0

e 1y € R™isarandom vector, E[zg] = Zo, Py = E[(zo — To)(x0 — ZT0)'], Po = 0

o Vectors¢(k), ¢(k), zg are uncorrelated: E[(k)¢(5)] = 0, E[¢(k)xz(] = 0,
EGi(k)zy) =0,Vk,j € ZVi=1,...,p

e Probability distributions: we often assume normal (=Gaussian) distributions

§(k) ~ N(0,Q()), ((k) ~ N(0, R(E)), w0 ~ N (Zo, Po)
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KALMAN FILTER

In formulating the Kalman filter we use the following notation:

Z(klk —1) state estimate at time k based on
datauptotimek —1

2(0] — 1) = Zo initial state estimate

Z(klk —1) = z(k) — 2(klk — 1) state estimation error

P(klk — 1) = E[Z(k|k — 1)@(k|k — 1)’] | covariance of state estimation error

Z(k|k) state estimate at time k
based on data up to time k

z(k|k) = (k) — 2(k|k) state estimation error
P(k|k) = E [%(k|k)Z(k|k)'] covariance of state estimation error
Z(k + 1|k) state prediction at time k + 1

based on data up to time k
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KALMAN FILTER

e The Kalman filter provides the optimal estimate Z(k|k) of z(k) given the
measurements up to time k

e Optimality means that the trace of the variance P(k + 1|k) is minimized
e The filter is based on two steps:

1. measurement update based on the most recent y(k)

M(k) = P(klk—1)C(k)'[C(k)P(k|k = 1)C(k)" + R(K)] "
&(klk) = @(klk—1)+ M(k) (y(k) — C(k)2(k|k — 1) — D(k)u(k))
P(klk) = (I - M(K)C(k)P(klk— 1)

with initial conditions (0] — 1) = Zo, P(0| — 1) = P

2. time update based on the model of the system
Z(k + 1|k) = A(k)z(k|k) + B(k)u(k)
Pk +1]k) = A(k)P(K|k)A(k) + G(k)Q(K)G(k)
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STATIONARY KALMAN FILTER

e Assume A, C, G, Q, R are constant (time-invariant case)
e Under suitable assumptions®, P(k|k — 1), M (k) converge to constant matrices

Py = AP A +GQG — AP.,C' [CPC' + R] " CP A’
My, = P,C'(CP.C'+R)™!

e Bysetting L, = AM,, the dynamics of the prediction Z(k|k — 1) becomes the
Luenberger observer

#(k +1|k) = A@(klk — 1) + B(k)u(k) + Loo (y(k) — Ci(k|k — 1) — D(k)u(k))

with all the eigenvalues of (A — Lo, C) inside the unit circle

Python
Poo,_Lt=ctrl.dare(ATCTGT@Q@G,R)
L=Lt.T; M=np.linalg.Istsq(A,L)[0]

8(A, C) observable, and (A, GBy) stabilizable, where By is such that Q = Bgy B, cf. conditions
for asymptotic stability of LQR

MATLAB
[~,L, Pso,M]=kalman(sys,Q,R)
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TUNING KALMAN FILTERS

o |tisusually hard to quantify exactly the correct values of Q@ and R for a given
process

e The diagonal terms of R are related to how noisy are output sensors

e (is harder torelate to physical noise, it mainly relates to how rough is the
(A, B) model

o After all, Q and R are the tuning knobs of the observer (similar to LQR)

o The “larger” is R with respect to Q) the “slower” is the observer to converge (L,
M will be small)

e Onthe contrary, the “smaller” is R than (), the more precise are considered the
measurments, and the “faster” observer will be to converge
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EXTENDED KALMAN FILTER

e The Kalman filter can be extended to nonlinear systems

z(k+1) f@(k), u(k),&(k))
= g(z(k),u(k)) +¢(k)

1. Measurement update:
g

Clk) = 5 (@klk—1),u(k))

M(k) = P(klk—1)C (k) [C(k)P(klk - 1)C (k) + R(k)] ™
E(klk) = 2(klk—1) 4+ M(k) (y(k) — g(&(k[k — 1), u(k)))
P(klk) = (I —=M(K)C(k))P(k[k—1)

2. Time update:
Bk 4 11E) = F(E(K[E), u(k), BIE(R)), #(0] 1) = 2o
A = 2L aklh), uik), BE®), GH) = 2L (ahik), utk), BlE®)
P(k+1|k) = A(k)P(k|k)A(k) + G(k)Q(k)G(k)', P(0| — 1) = Py

e The EKF isin general not optimal and may even diverge, due to linearization.
But is the de-facto standard in nonlinear state estimation
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LOG CONTROL

e Linear Quadratic Gaussian (LQG) control combines an LQR control law and a
stationary Kalman predictor/filter
e Consider the stochastic dynamical system

w(k+1) = Ax(k) + Bu(k) + £(k), £(k) ~ N (0, Qkr)
y(k) = Ca(k) + ((k), (k) ~ N(0, Rkr)

with initial condition x(O) = X, Lo ~~ N(.fo, Po), Po, QKF >~ 0, RKF > 0, and
¢ and ¢ are independent and white noise terms.

o The objective is to minimize the cost function
J(x(0),U) = lim — Z ' (k)Qroz(k) + v (k) Rrou(k)

when the state x is not measurable
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LOG CONTROL

If we assume that all the assumptions for LQR control and Kalman
predictor/filter hold, i.e.

e the pair (4, B) is reachable and the pair (A, C,;) with C, such that
Qro = CqC; is observable (here ) is the weight matrix of the LQ controller)

e thepair (4, B,), with B, st. Qxr = B, By, is stabilizable, and the pair (A4, C) is
observable (here @ is the covariance matrix of the Kalman predictor/filter)

Then, apply the following procedure:

1. Determine the optimal stationary Kalman predictor/filter, neglecting the fact
that the control variable u is generated through a closed-loop control scheme,
and find the optimal gain Lx ¢

2. Determine the optimal LQR strategy assuming the state accessible, and find the
optimal gain K1.qr
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LOG CONTROL

( N\

dynamical process
k k k
?L( ) A,B (k) C y( )’
A J
( N\
k) | +-N+ z(k "'J
O Ko S
& J

LQG controller

Analogously to the case of output feedback control using a Luenberger
observer, it is possible to show that the extended state [’ Z']’ has eigenvalues
equal to the eigenvalues of (A + BKgr) plus those of (A — LxpC) (2nin
total)
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SYSTEM IDENTIFICATION



MODEL IDENTIFICATION

e Designing a control system requires a dynamical model of the process

e Often adynamical model can be difficult to obtain due to the complexity of the
process, whose dynamics may be even (partially or completely) unknown

e Even if we have a mathematical model, sometimes this is too complex to base a
controller design on it (large state dimensions, nonlinearities, etc.)

System identification is a procedure to build a mathematical model of
the dynamics of a system from measured data

Lecture based on
[1] L. Ljung, “System Identification,” Control Systems Handbook (W. Levine ed.), CRC Press, pp. 1033-1054, 1995
[2] L. Ljung, “System Identification: Theory for the User,” Prentice Hall, 1987
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MODEL IDENTIFICATION

input output
(measured) 2 (measured)
uft) . y(t)
dynamical process estimated
identification model
Igorithm oy
- G(:)

Different types of identification:

e White box: model structure based on first principles (e.g., Newton's law), model
parameters estimated from measured data

o Grey box: model structure partially known from first principles, the rest is
reconstructed from data

e Black box: model structure and its parameters completely unknown, they are
only estimated from I/O data
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STEP-RESPONSE IDENTIFICATION

?

dynamical process ~
identification
algorithm

o Excite the process with a step u(t) = 1(t), record output response y(t)

e Observe the shape of y(t) and reconstruct G(z)
(1st-order response ? 2nd-order undamped response ? Any delay ? ...)

e Mostly used in process control: excitation experiment is easily done,
superposition of effects can be used in the multivariable case to identify each
entry G;;(z) of the transfer matrix G(z), one at the time
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BLACK-BOX IDENTIFICATION VIA LINEAR REGRESSION

e Consider the black-box ARX (AutoRegressive eXogenous) model
y(k)+ary(k—1)+...4an, y(k—ng) = biu(k—ng)+...4+bp, u(k—ng—np+1)+e(k)
where e(k) is zero-mean white noise and y(k), u(k), e(k) € R

e We can predict the next output value given previous observations
y(k) = —a1y(k—1)—...—an, y(k—ng)+byu(k—ng)+...4+bp, u(k—ng—np+1)+e(k)

e |In more compact form
y(k) = ¢’ (k)0 + e(k)

’
0= [ ai ... QGp, by ... bnb } unknowin Parame&er vector
’
(k) :[ —ylk—1) ...—ylk—ny) ulk—mng) ... ulk—ng—mnp+1)
regressor
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BLACK-BOX IDENTIFICATION VIA LINEAR REGRESSION

o Lety(k|0) = ¢ (k)0 = output prediction, which is an estimate of y(k) based on
the parameter vector § and past data (e(k) = 0 is the best we can assume)

e We don’t know 6, but we have collected a set Z» of measured data
ZN = {u(-n),y(=n),...,u(N = 1),y(N — 1)}, n = max{ng, ny +np — 1}
o We solve a least-squares problem to estimate the vector 6* that best makes
9(k|0) fit y (k)
* . N
0" = arg min {ve,z")}

with
ez = &Y 6 -ake? 2
& .
= N (y(k) — ¢ (k)0)
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BLACK-BOX IDENTIFICATION VIA LINEAR REGRESSION

e V(0, Z")is aquadratic function of §. We find the minimum by zeroing the
derivative of V/

N—-1
0= %VN 9, zN) = 2 o(k ©'(k)6)
k=0
or
N-—1 N
Z p(k)y(k) = Z p(k)y' (k)0
k=0 k=1

e The best parameter vector we can choose is therefore

o = [Z so(k)sow] S w(ku(k)

k=0 k=0

[ MATLAB \
| 07=arx(Z" [na np ni)) |
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RECURSIVE LINEAR REGRESSION

¢ Drawback of (batch) linear regression: if a new data pair u(N), y(V) is acquired
-1
the new matrix ZkN:O cp(k)(p/(k)} is required to compute the new optimal
parameter vector 6*

e Computations become more and more expensive as IV keeps growing

¢ Given the best estimate 6*(k — 1) obtained using k — 1 data points

k-1 k—1 -t
0" (k—1) = P(k=1)Y_o(iyi), Plk—1)= > e()¢' ()
§=0 j=0

we would like to get 6* (k) without solving the regression problem from scratch
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RECURSIVE LINEAR REGRESSION

e Since
k—1
P k) =P k=1 + k)¢ (k), P Hk=1)0"(k=1)=)> o()y())
=0
we get

= P(k) (P71 (k= 1)8"(k — 1) + p(k)y(k)
= P(k) (P7'(k) — o(k)¢' (k)8* (k — 1) + p(k)y(k))
and therefore

0" (k) = 0" (k — 1) + P(k)p(k)(y(k) — 6" (k — 1) o(k))
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RECURSIVE LINEAR REGRESSION

e Since

-1

-1
k
= [Z @(j)w/(j)] = [P7Hk = 1) + (k)¢ (k)]
=0
we can apply the Matrix Inversion Lemma to update P(k) recursively and get

Pk = 1)e(k)e' (k) Pk —1)

Pk)=Pk-1)-—
“ T4 ¢/ (R)P(E— Dp(h)
k-1
o Letm = dim 0 = n, + np. Matrix Z w(5)¢’(j) is not invertible for k < m
=0 m—1 -1
o We can start the recursions after m steps with P(m — 1) = [Z go(j)<p’(j)]
m—1 =
(if the inverse exists) and 6" (m — 1) = P(m — 1)"" Y 0()y()
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RECURSIVE LINEAR REGRESSION

e Alternatively, we can initialize P(—1) = p?I,p > 0,and 6*(—1) = 0

e Interpretation: we are adding a regularization term on ¢

P

<.

J

k m k
min%neféu% WG) — £ (0)* = = 30— 8 + 3 (wh) - ¥ ()6)°

Tl 1 ; _— 2
=2 (;"i - 5629) +2_ (@) - ¢09)’ = 32 (0) —#0)0)

j=0

where we replaced y(—j) = 105, ¢(—j) = Sej e;=ithcolumnl,j=1,...,m

* Therefore P(~1) = [i @(J')so'(j)] = [i ;Qe_je’_j] =pI
and0”(~1) = P(-1) 3 olily(i) = PTY. bhe: =0
j=-m i=1
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BLACK-BOX IDENTIFICATION: THE GENERAL PROCEDURE

¢ Design of experiment: What kind of input excitation u(k) to apply ?

e Model structure: Which class of models do | choose to fit my data?

e Fit criterion between data and model: How do | best choose the model within
that class (=the parameter vector) ?

e Validation criterion: Is the model that | have identified good enough to
reproduce the dynamics of the process ?
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DESIGN OF EXPERIMENT

e Collecting datais a very crucial (and most expensive) step
e Some theory is available, as well as some practical rules

e Thedataset Z" should be as informative as possible to fully identify the model’

o6l

e Pseudo-random binary signals (PRBS) randomly
switching between +1 are a good choice

MATLAB
» u=idinput(N,'PRBS");

?Sinusoidal signals u(t) = sin(wt) are not good, as only G (jw) would be captured. The input
signal must at least contain as many different frequencies as the order of the chosen structure of

linear models. Step responses are not ideal but ok: | F[L(¢)]| = % (the Fourier transform of the
continuous-time signal 1(¢)) has in infinite number of frequencies, although decreasing in
amplitude.
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MODEL STRUCTURE

¢ Alinear system with additive disturbance v(k) can be described as
y(k) = G(2)u(k) + v(k)
where G(z) is a transfer function (z~"x (k) = x(k —m))

B(z) bo+biz7t+ . by, 2
A(z) T 14 aiz 4 asz2+...+ G, 27

G(z) =

e Alternatively, it can be described by perturbing the difference equation:

ylk)=—awylk — 1) —agy(k —2) — ... —an, y(k — ng)

+ bou(k) + byu(k — 1) + ...+ by, u(k —np) + w(k)

e The two models are equivalent if we set
w(k) =v(k) + arv(k — 1) + agv(k —2) + ... + an,v(k —ng)
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MODEL STRUCTURE

e Thedisturbance v(k) is not necessarily white noise, but can be colored noise

where e(k) is white noise and H (z) is another transfer function

Clz) T+cz b+ +ep 2"
D(z) 1+diz7 ' +dyz24...+dy,z7 "

H(z) =

and H(z) =0forz=1 =0

e The overall model is called Box-Jenkins (BJ) model %8
D(z)
B(z) C(2)
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MODEL STRUCTURE - SPECIAL CASES

e Output Error (OE) model: v(k) is white noise (C(z) = D(z) = 1)
B
V) = FETulE) + ()

Auto-Regressive Moving-Average with eXogenous variable (ARMAX) model:
G(z) and H (z) have the same denominator (A(z) = D(z))

A(2)y(k) = B(z)u(k) + C(z)e(k)

ARX models are a particular case of ARMAX models (C'(z) = 1)

A(2)y(k) = B(z)u(k) + e(k)

ARX and ARMAX models are the most used in practice
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MODEL STRUCTURE

¢ Differently from BJ models, in ARMAX models v(k) and u(k) are filtered by the
same dynamics ﬁ

o This s justified if the source of disturbance enters early in the process, together
with the input
Example: in airplanes, the disturbances from wind blasts create the same kind

of forces on the airplane as the deflections of the control surfaces

o ARX models are the simplest to compute numerically

lf(’f)

)

_uk) [BG) | i vk (k) 1 o (k) (k)l ) )
e o[ I —o—
OE model ARMAX model ARX model
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FIT CRITERION

Let us consider BJ models, which is the most general structure

Let 6 collect all the parameters in the transfer functions G(z) and H (z) to be
estimated from data

y(k) = G(z,0)u(k) + H(z,0)e(k)
H™Y(z,0)y(k) = H'(2,0)G(
y(k) +H (2, 0)y(k) = y(k) + H™'(z,

Finally, we get
y(k) = (1- H (2, 9)) y(k) + H Y (2,0)G(z,0)u(k) + e(k)

Notethat1 — H=1(2,0) = hyz=1 + ha2~2 + ... for some coefficients {h;}3°;
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FIT CRITERION

e For e(k) = 0 (=the best estimate of e(k) we can make), the one-step ahead
prediction of y(k) based on previous measurements is

GIO) = (1 — H\(2,0)) y(k) + B~ (2,0)G (=, O)u(k)

¢ Assuming we have enough data (N > max(ng, np, ne, nq)), we compute the
residual

e(k|0) = y(k) — 4(k|0)
e The most used fit criterion s

N 1N12
V(0,2%) = 5 D (ko)
k:O

e The optimal vector 6* is determined by solving the optimization problem

0" = argm@in V(6,zN)
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COMPLEXITY

o |deally e should depend linearly on 6, so we can get the explicit solution of a
least-squares problem. This only happens for ARX models

e Besides choosing the model structure (ARX, ARMAX, etc.) we also need to
decide the order of the model, i.e., the number of free parameters to optimize

e A small number of parameters could make the model too simple, and not able to
explain the data

e Alarge number of parameters could make the model more complex than we
need and overfit the datain Z¥, resulting in poor predictions on new data

e How to choose the right model complexity?
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MODEL VALIDATION

o Usually to avoid being fooled by overfitting the data set we split ZV in two
subsets: estimation data Z.; and validation data 2Z,;:
- Zest is used to compute the optimal parameter vector 6
- Zyai is used to see how the estimated model behaves on fresh data

e Avalidation criterion is to look at one-step prediction errors

nothing to oFEi.m'Lza here,

(9* val N Z ?) k‘e*))

Jjust substitute 6%, Z,. and evaluate
e Another validation criterion is to simulate the model completely in “open-loop”
Ysim (k. 07) = G(z,0%)u(k)
and to look at

AT Z y51m k 9*))

(or just observe how much the plots of y(k) and ysim (k, 6*) differ)
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MODEL VALIDATION - RESIDUAL ANALYSIS

o |deally the prediction error (or prediction residual) e(k|6) should be white
noise and uncorrelated with u(k)

¢ To test whiteness of €(k|¢) we compute the auto-correlation function

N—7-1

R.(7) N Z (k + 7]0)e(k|6)

o To test correlation between ¢(k|6) and u(k) we compute the sample covariance

N-1

Ralr) = 3 e(ko)ulk—7)

k=1—1

e Both R.(7) and R, (7) should be small
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MODEL SELECTION

e Which model structure to choose (ARX, ARMAX, OE, etc. )? Which model
orders ng, ny, N, etc. ?

e Cross-validation is the procedure that compares the quality of fit of different
models, by validating them on a data set where neither of them was estimated

e Letfy, ..., 0% asetof optimal parameters

for different model structures ===]
e The best model 8} is the one for which
V(07, Zyar) is smallest I B S e S S B
e Often V;(0*, Z.:) decreases as the model " — ]|
complexity increases, while V; (6%, Z,41) *
starts increasing when the model R

I
e 7

complexity becomes excessive (=overfit of

. . model index 7 (growing complexity)
estimation data)
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MODEL SELECTION

e If fresh validation data are not available (=no cross-validation), we can use the
same performance figures, but in addition penalize overfit (we want a good

balance between simplicity and accuracy)
e Let d; = number of elements of 6} (=model complexity)
o We look for the model that minimizes one of the following figures:

- Akaike’s Information theoretic Criterion (AIC):

(1+2) L5 e

k=0

- Akaike’s Final Prediction Error (FPE):

1+3F\ 1
( )N 2 (k107)

- Rissanen’s Minimum Descriptlon Length (MDL)'

-In N

N Z (k167) N
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IDENTIFICATION EXAMPLE

e Assume that the real (unknown) process is

z) = 00372621 — 0.096762"2 + 0.083552 2 — 0.0242~*
T 1 3.464271 +4.493272 — 2.58627° + 0.55772—*

with sample time T' = 0.04 s

¢ Input excitation: PRBS sequence

¢ We have 200 samples. The first 100 samples
are used for estimation of 6*, the rest for
validation R
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IDENTIFICATION EXAMPLE (CONT'D)

We try five different ARX model structures ARX(n,,ny,n1):

A(2)y(t) = B(2)u(t) + e(t)

Nya1—1 Nest —1

€2 k\@)—q Z €2(k|67)

k:()

1= 1: ARX(1,1,1)
1 = 2: ARX(2,2,1)
i = 3: ARX(3,3,1)
1 = 4: ARX(4,4,1)
1 = 5: ARX(5,5,1)
i = 6: ARX(6,6,1)

model structure index i

The best model structures arei = 2, 3,4
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IDENTIFICATION EXAMPLE (CONT'D)

Residual analysis:

L se 19 o o lss ety 7] % 99, 9. o | ° I i |
o 1] { o4 31 i o 10 %1 )
1 TTV (I SR 3 R A IO B e VL? fo . f¢ ‘ 91 . 7 oo ott T e VL?W fe__.99 o o1 .9 900 ot
o1 AlMdlM lAllél IR N élgb O l lAl ll TT 1T 2 mlié’ = (L ll’ll 1T
ARX(2,2,1) ARX(3,3,1) ARX(4,4,1)
A(z) =1 —0.2153z"1 — 0.56242"2  A(z) =14 0.12282"1 —0.33962"2  A(z) =14 0.1451z"! — 0.3192"2
—0.4444273 —0.4258z 7% — 0.03208z 4
B(z) = 0.04041z ! 4 0.024562 2
B(z) = 0.04014z ! 4+ 0.0372 "2 B(z) = 0.03912z ! 4 0.038262 2
+0.02247z 73 4 0.02476z % 4 0.004177z "4

not much different from

ARX(3,3,1)
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CONCLUDING REMARKS ON SYSTEM IDENTIFICATION

e System identification and control design are complementary: no controller
without a model, but identified model only useful for control and/or estimation

¢ |f model parameters change on-line, one can use adaptive control, by
identifying the model and changing the controller accordingly in real-time
(caveat: closed-loop stability may be an issue A)

e If linear model structures are not able to capture the model well, one should use
nonlinear models, like artificial neural networks, piecewise affine functions,
and other general function approximation methods available in machine
learning

¢ In general, the more a-priori knowledge of the process we can exploit (e.g., from
physical principles), the better. Sometimes black-box identification fails
because its very difficult to guess the right model structure
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