


System identification: introduction
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Building mathematical models

The design of a controller/observer requires a mathematical model
describing the behaviour of the plant.

A model describes how the signals of the system are related to each other.

A model and a system are two different objects.

Different kinds of models:
− mental or intuitive models. For example:

when driving a car, pushing the break decreases the speed.
− graphical models. For example:

Bode diagram or step response of an LTI system;
current-voltage characteristic of a diode.

− mathematical models, described by equations.

We will focus on mathematical models of dynamical systems, described, in
general, by differential or difference equations.

Mathematical models can be derived from:
− first principle laws of physics, chemistry, biology, etc.

(physical modeling approach)
− observed data generated by the system

(system identification approach)
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System identification procedure

The system identification procedure involves three basic entities:

1 Data, which can be either recorded from specifically designed experiments
or from normal operations of the system.

2 Set of candidate models, obtained by specifying within which set of models
we are going to look for a suitable one. Different kinds of models may be
specified (e.g., linear vs nonlinear; continuous time vs discrete time;
deterministic vs stochastic, etc.). Two types of model sets:

− gray boxes. A model with some unknown parameters is derived from
physical laws. The parameters are then estimated from data.

− black boxes. A model structure is chosen (e.g., linear models). The
parameters of the model do not reflect any physical consideration.

3 Rule to assess candidate models using data. This is the identification
method, used to determinate the “best” model in the set, guided by data.
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Model validation

Test whether the estimated model is an “appropriate” representation of
the system. Assess how the model relates to:

prior knowledge. Does the model adequately describes prior known
physical behaviour of the system?

experimental data (not used for training). Compare the simulated
outputs of the model with the observed outputs.
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System identification loop

design of experiment Prior knowledge

perform experiment

collect data

choose model structure

estimate the model

validate the model

model

accepted

New data

Use it

YES

NO
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LTI systems
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Input/Output representation

Given a discrete-time signal u(k), k = 0, 1, . . ., we define the (unilater) z-transform of u as

Z{u(k)} = U(z) =
∞∑
k=0

u(k)z−k

Z{u(k − d)} = Z{q−du(k)} = z−dU(z), d ∈ Z

Z {g(k) ∗ u(k)} = Z
{ ∞∑

ℓ=0

g(ℓ)u(k − ℓ)

}
= Z {G(q)u(k)} = G(z)U(z)

G(q)
u(k)

-
y(k)
- G(z)

U(z)
-

Y (z)
-

Analogy between the time-domain operator G(q) and the DT transfer function G(z)

Thanks to this analogy, we can treat G(q) as polynomials in q. Product and ratio
between G1(q) and G2(q) have a meaning!

Example: y(k) = b1q
−1

1+a1q−1 u(k) → (1 + a1q−1)y(k) = b1q−1u(k)
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Linear regression representation

Linear regression representation of the system:

y(k) = φ⊤(k)θ

θ: parameter vector, φ(k): regressor vector, typically containing past values of inputs
and outputs.

φ(k) = [−y(k − 1) . . . − y(k − na) u(k) . . . u(k − nb)]
⊤

θ = [a1 . . . ana b0 . . . bnb ]
⊤

Writing out the product gives:

y(k) = G(q)u(k), G(q) =
b0 + b1q−1 + · · ·+ bnbq

−nb

1 + a1q−1 + · · ·+ anaq
−na

Non-linear systems can be easily represented in a linear regression form.
Just include nonlinear terms (e.g., y 2(k − 1); u(k)y(k − 1)) in the regressor!
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Least-squares estimation
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Linear least-squares

Consider a model in the linear regression form: M : ŷ(k, θ) = φ⊤(k)θ

Define the residuals as ε(k, θ) = y(k)− ŷ(k, θ) = y(k)− φ⊤(k)θ

ε(k, θ) represents the error between output observations and model outputs ŷ(k, θ)

Least-squares (LS) estimate:

θ̂LS = argmin
θ

N∑
k=1

ε2(k, θ) = argmin
θ

N∑
k=1

(
y(k)− φ⊤(k)θ

)2

= argmin
θ

∥Y − Φθ∥2

Y =

 y(1)

.

.

.
y(N)

 , Φ =

 φ⊤(1)

.

.

.

φ⊤(N)



Solution of the QP problem:

θ̂LS :
∂ ∥Y − Φθ∥2

∂θ
= 0

→ θ̂LS =
(
Φ⊤Φ

)−1
Φ⊤Y =

(
N∑

k=1

φ(k)φ⊤(k)

)−1 N∑
k=1

φ(k)y(k)

Matlab: θ̂LS = Φ \ Y
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Define the residuals as ε(k, θ) = y(k)− ŷ(k, θ) = y(k)− φ⊤(k)θ
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Linear least-squares: Cholesky factorization

θ̂LS =
(
Φ⊤Φ

)−1
Φ⊤Y

θ̂LS is the solution of the set of linear equations:

Φ⊤Φθ̂LS = Φ⊤Y

Use Cholesky decomposition of Φ⊤Φ to solve the above system of linear equations, i.e.,

Φ⊤Φ = LL⊤ L : Lower Triangular Matrix

Matlab: L = chol(Φ⊤Φ,′ lower′)

Least-squares (LS) estimate:

LL⊤θ̂LS = Φ⊤Y

⇓

Lz = Φ⊤Y , L⊤θ̂LS = z

Solve the linear system Lz = Φ⊤Y through forward substitution

Solve the linear system L⊤θ̂LS = z through backward substitution
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Linear least-squares: QR factorization

θ̂LS =
(
Φ⊤Φ

)−1
Φ⊤Y

Compute a QR factorization of the (full-column rank) matrix Φ ∈ RN,n, i.e.,

Φ =
[
[Q1]N,n [Q2]N,(N−n)

]︸ ︷︷ ︸
Q

[
[R1]n,n
0N−n,n

]
︸ ︷︷ ︸

R

with Q⊤
1 Q1 = I , R1 upper triangular, rii > 0 if Φ is full-column rank.

Matlab: qr(Φ)

Substitution:

θ̂LS =
(
Φ⊤Φ

)−1
Φ⊤Y =

(
(Q1R1)

⊤(Q1R1)
)−1

(R⊤
1 Q⊤

1 Y ) =
(
R⊤
1 Q⊤

1 Q1R1

)−1
R⊤
1 Q⊤

1 Y =

=
(
R⊤
1 R1

)−1
R⊤
1 Q⊤

1 Y = R−1
1 R−⊤

1 R⊤
1 Q⊤

1 Y = R−1
1 Q⊤

1 Y

Solve the following linear system through backward substitution to compute θ̂LS:

R1θ̂LS = Q⊤
1 Y
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Compute a QR factorization of the (full-column rank) matrix Φ ∈ RN,n, i.e.,

Φ =
[
[Q1]N,n [Q2]N,(N−n)

]︸ ︷︷ ︸
Q

[
[R1]n,n
0N−n,n

]
︸ ︷︷ ︸

R

with Q⊤
1 Q1 = I , R1 upper triangular, rii > 0 if Φ is full-column rank.

Matlab: qr(Φ)

Substitution:
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Recursive linear least squares

Estimate the parameters θ̂LS recursively in time.

If there is an estimate θ̂LS(k − 1) based on data up to time k − 1,
then θ̂LS(k) is computed based on a “simple” update of θ̂LS(k − 1).

No need to record all data up to time k (low memory requirement).

Recursive LS can be easily modified to estimate time-varying
parameters.

14 / 54



Recursive linear least squares

θ̂LS(k) =

(
k∑

ℓ=1

φ(ℓ)φ⊤(ℓ)

)−1 k∑
ℓ=1

φ(ℓ)y(ℓ)

P(k) =

(
k∑

ℓ=1

φ(ℓ)φ⊤(ℓ)

)−1

, P−1(k) = P−1(k − 1) + φ(k)φ⊤(k)

θ̂LS(k) = P(k)

(
k−1∑
ℓ=1

φ(ℓ)y(ℓ) + φ(k)y(k)

)

θ̂LS(k) = P(k)
(
P−1(k − 1)θ̂LS(k − 1) + φ(k)y(k)

)

θ̂LS(k) = θ̂LS(k − 1) + P(k)φ(k)︸ ︷︷ ︸
K(k)

y(k)− φ⊤(k)θ̂LS(k − 1)︸ ︷︷ ︸
ε(k)


θ̂LS(k) = θ̂LS(k − 1) + K(k)ε(k)

K(k): gain

ε(k): error in the prediction of y(k) based on θ̂LS(k − 1)

If the prediction error is “small”, the estimate θ̂LS(k − 1) is “good” and

should not be modified “very much”
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Recursive linear least squares

θ̂LS(k) = θ̂LS(k − 1) + P(k)φ(k)
(
y(k)− φ⊤(k)θ̂LS(k − 1)

)
P−1(k) = P−1(k − 1) + φ(k)φ⊤(k)

P−1(k) can be easily updated

Updating P(k) requires to invert P−1(k) at each time instant (time consuming)

Solution

P(k) =
[
P−1(k)

]−1

=
[
P−1(k − 1) + φ(k)φ⊤(k)

]−1

From Matrix Inversion Lemma:

P(k) = P(k − 1)− P(k − 1)φ(k)φ⊤(k)P(k − 1)

1 + φ⊤(k)P(k − 1)φ(k)
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Recursive linear LS for real-time identification

Identify (slowly) time-varying parameters (due to slow time-variation of the
process)

Useful for adaptive control

Introduce forgetting factor 0 < λ ≤ 1 in the cost function:

θ̂(k) = argmin
θ

k∑
ℓ=1

λk−ℓ
(
y(ℓ)− φ⊤(ℓ)θ

)2

Decrease λ to forget information on past data faster

Recursive LS with forgetting factor

θ̂(k) = θ̂(k − 1) + P(k)φ(k)
(
y(k)− φ⊤(k)θ̂LS(k − 1)

)
P(k) =

1

λ

[
P(k − 1)− P(k − 1)φ(k)φ⊤(k)P(k − 1)

λ+ φ⊤(k)P(k − 1)φ(k)

]
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Estimate of FIR models through LS

Use a Finite Impulse Response (FIR) model to describe the dynamical system S
to be identified:

M :ŷ(k, g) =
M∑
ℓ=0

g(ℓ)u(k − ℓ)

= φ⊤(k)g

φ(k) = [u(k) u(k − 1) · · · u(k −M)]⊤ , g = [g(0) g(1) · · · g(M)]⊤

Good approximation if M is “large” and S is BIBO stable (which implies
lim

ℓ→∞
|g(ℓ)| = 0)

Collect N >> M observations of the pairs {u(k), y(k)}Nk=1

LS estimate of g :

ĝ =
(
Φ⊤Φ

)−1

Φ⊤Y
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Estimate of FIR models through LS

ĝ =
(
Φ⊤Φ

)−1

Φ⊤Y

Assume that the “true” system S is described by

S : y(k) =
M∑
ℓ=0

go(ℓ)u(k − ℓ) + vo(k) = φ⊤(k)go + vo(k)

vo(k): zero-mean quasi-stationary noise independent of u

Is ĝ a consistent estimate of go?

Does lim
N→∞

ĝ = go?

ĝ =
(
Φ⊤Φ

)−1
Φ⊤Y =

(
1

N

N∑
k=1

φ(k)φ⊤(k)

)−1
1

N

N∑
k=1

φ(k)y(k) =

(
1

N

N∑
k=1

φ(k)φ⊤(k)

)−1
1

N

N∑
k=1

φ(k)
(
φ⊤(k)go + vo(k)

)
=

go +

(
1

N

N∑
k=1

φ(k)φ⊤(k)

)−1
1

N

N∑
k=1

φ(k)vo(k)
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k=1
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ij
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N∑
k=1

u(k − i + 1)u(k − j + 1)

If u is quasi-stationary, lim
N→∞

1

N

N∑
k=1

u(k)u(k−τ)=E [u(k)u(k − τ)] = Ru(τ)

Thus, lim
N→∞
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]
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Estimate of FIR models through LS: example
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SNR = 10 log10

(∑N
k=1 y

2(k)∑N
k=1 v

2
o(k)

)
= 6 db

BFR = 1−
∑Nv

k=1 (y(k)− ŷ(k))2∑Nv
k=1 (y(k)− y)2

= 72%
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Estimate of FIR models through LS: example
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Estimate of FIR models through LS: example
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Estimate of FIR models through LS: example
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Estimate of FIR models through LS: example
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k=1 (y(k)− y)2

= 99.7%

25 / 54



Estimate of ARX models through LS

y(k) = G(q)u(k) + H(q)e(k)

Gu
-

y
- ev?-

H

e
?

+

AutoRegressive with eXogenous input (ARX) model structure:

G(q) =
B(q)

A(q)
=

b1q
−1 + · · ·+ bnbq

−nb

1 + a1q−1 + · · ·+ anaq
−na

H(q) =
1

A(q)
=

1

1 + a1q−1 + · · ·+ anaq
−na

Corresponding input/output relationship

y(k) = −a1y(k − 1)− · · · − anay(k − na) + b1u(k − 1) + · · ·+ bnbu(k − nb) + e(k)

Unknown parameter vector: θ = [a1 . . . ana b1 . . . bnb ]
⊤

Regressor vector: φ = [−y(k − 1) . . . − y(k − na) u(k − 1) . . . u(k − nb)]
⊤

Output representation: y(k) = φ⊤(k)θ + e(k)
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Estimate of ARX models through LS

Output representation: y(k) = φ⊤(k)θ + e(k)

Model structure: M : ŷ(k, θ) = φ⊤(k)θ (linear regression)

LS estimate: θ̂LS = argmin
θ

∥Y − Φθ∥2 =
(
Φ⊤Φ

)−1

Φ⊤Y

Assume the “true” system is described by S : y(k) = φ⊤(k)θo + e(k)

Is θ̂LS a consistent estimate of θo?

Does lim
N→∞

θ̂LS = θo?

θ̂LS =
(
Φ⊤Φ

)−1
Φ⊤Y =

(
1

N

N∑
k=1

φ(k)φ⊤(k)

)−1
1

N

N∑
k=1

φ(k)y(k) =

(
1

N

N∑
k=1

φ(k)φ⊤(k)

)−1
1

N

N∑
k=1

φ(k)
(
φ⊤(k)θo + e(k)

)
=

θo +

(
1

N

N∑
k=1

φ(k)φ⊤(k)

)−1
1

N

N∑
k=1

φ(k)e(k)
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)−1

1
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N∑
k=1

φ(k)e(k)

R(N) =
1

N

N∑
k=1

φ(k)φ⊤(k) is filled out with the estimate of auto/cross

covariance function estimates

If u is quasi-stationary, lim
N→∞

R(N) = R∗

lim
N→∞

1

N

N∑
k=1

φ(k)e(k) = E [φ(k)e(k)] = E [φ(k)]E [e(k)] = 0, since φ(k) is

independent of e(k) and E [e(k)] = 0.

lim
N→∞

θ̂LS = θo + R∗E [φ(k)e(k)] = θo

Thus, θ̂LS is a consistent estimate of θo
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Estimate of LPV-ARX models through LS

Linear Parameter-Varying (LPV) systems

Linear relationship between inputs and outputs:

y(k) = G(q−1, p(k))u(k) + v(k)

The input/output relationship changes over time according
to a measurable signal p (called scheduling signal)

The scheduling signal can be, for instance, an external
variable used to describe different operating conditions of
the system (e.g., temperature, space coordinates)

Figure provided by R. Tóth

LPV-ARX models

A(q−1, p(k))y(k) = B(q−1, p(k))u(k) + e(k), e white

A(q−1, p(k)) = 1 +

na∑
i=1

ai (p(k))q
−i , B(q−1, p(k)) =

nb∑
j=1

bj (p(k))q
−j

ai (p(k)) and bj (p(k)) are a-priori parametrized functions of p(k) (e.g., polynomials):

ai (p(k)) = ai,0 +

nl∑
l=1

ai,lp
l (k), bj (p(k)) = bj,0 +

nl∑
l=1

bj,lp
l (k)
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Estimate of LPV-ARX models through LS

LPV-ARX models: example

A(q−1, p(k))y(k) = B(q−1, p(k))u(k) + e(k), e white

Example:

y(k) =− [a1,0 + a1,1p(k)] y(k − 1) + [b1,0 + b1,1p(k)] u(k − 1) + e(k)

y(k) =[−y(k − 1) −p(k)y(k − 1) u(k − 1) p(k)u(k − 1)]︸ ︷︷ ︸
φ⊤(k)


a1,0
a1,1
b1,0
b1,1


︸ ︷︷ ︸

θ

+ e(k)

Estimate θ through least-squares

Consistency is guaranteed if e is white
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Inconsistency of LS: OE case

y(k) = G(q)u(k) + H(q)e(k)

Gu
-

y
- eη?-

H

e
?

+

Output Error (OE) model structure:

G(q) =
B(q)

A(q)
=

b1q
−1 + · · ·+ bnbq

−nb

1 + a1q−1 + · · ·+ anaq
−na

H(q) =1

Corresponding input/output relationship

yo(k) =− a1yo(k − 1)− · · · − anayo(k − na) + b1u(k − 1) + · · ·+ bnbu(k − nb)

y(k) =yo(k) + e(k)

Unknown parameter vector: θ = [a1 . . . ana b1 . . . bnb ]
⊤

Regressor vector: φ = [−y(k − 1) . . . − y(k − na) u(k − 1) . . . u(k − nb)]
⊤

Output representation: y(k) = φ⊤(k)θ + e(k) + a1e(k − 1) + · · ·+ anae(k − na)︸ ︷︷ ︸
v(k)

v(k) is not white!
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Inconsistency of LS: OE case

Output representation: y(k) = φ⊤(k)θ + v(k)

Model structure: M : ŷ(k, θ) = φ⊤(k)θ (linear regression)

LS estimate: θ̂LS = argmin
θ

∥V ∥2 = argmin
θ

∥Y − Φθ∥2 =
(
Φ⊤Φ

)−1

Φ⊤Y

Assume the “true” system is described by S : y(k) = φ⊤(k)θo + v(k)

Is θ̂LS a consistent estimate of θo?

Does lim
N→∞

θ̂LS = θo?

θ̂LS =
(
Φ⊤Φ

)−1
Φ⊤Y =

(
1

N

N∑
k=1

φ(k)φ⊤(k)

)−1
1

N

N∑
k=1

φ(k)y(k) =

(
1

N

N∑
k=1

φ(k)φ⊤(k)

)−1
1

N

N∑
k=1

φ(k)
(
φ⊤(k)θo + v(k)

)
=

θo +

(
1

N

N∑
k=1

φ(k)φ⊤(k)

)−1
1

N

N∑
k=1

φ(k)v(k)
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Inconsistency of LS: OE case

θ̂LS = θo+

(
1

N

N∑
k=1

φ(k)φ⊤(k)

)−1

1

N

N∑
k=1

φ(k)v(k)

R(N) =
1

N

N∑
k=1

φ(k)φ⊤(k) is filled out with the estimate of auto/cross

covariance function estimates

If u is quasi-stationary, lim
N→∞

R(N) = R∗

lim
N→∞

1

N

N∑
k=1

φ(k)v(k) = E [φ(k)v(k)] ̸= 0 since φ(k) is correlated with v(k)

Thus, θ̂LS is not a consistent estimate of θo

33 / 54



Inconsistency of LS: OE case

θ̂LS = θo+

(
1

N

N∑
k=1

φ(k)φ⊤(k)

)−1

1

N

N∑
k=1

φ(k)v(k)

R(N) =
1

N

N∑
k=1

φ(k)φ⊤(k) is filled out with the estimate of auto/cross

covariance function estimates

If u is quasi-stationary, lim
N→∞

R(N) = R∗

lim
N→∞

1

N

N∑
k=1

φ(k)v(k) = E [φ(k)v(k)] ̸= 0 since φ(k) is correlated with v(k)

Thus, θ̂LS is not a consistent estimate of θo

33 / 54



Inconsistency of LS: OE case

θ̂LS = θo+

(
1

N

N∑
k=1

φ(k)φ⊤(k)

)−1

1

N

N∑
k=1

φ(k)v(k)

R(N) =
1

N

N∑
k=1

φ(k)φ⊤(k) is filled out with the estimate of auto/cross

covariance function estimates

If u is quasi-stationary, lim
N→∞

R(N) = R∗

lim
N→∞

1

N

N∑
k=1

φ(k)v(k) = E [φ(k)v(k)] ̸= 0 since φ(k) is correlated with v(k)

Thus, θ̂LS is not a consistent estimate of θo

33 / 54



Inconsistency of LS: OE case

θ̂LS = θo+

(
1

N

N∑
k=1

φ(k)φ⊤(k)

)−1

1

N

N∑
k=1

φ(k)v(k)

R(N) =
1

N

N∑
k=1

φ(k)φ⊤(k) is filled out with the estimate of auto/cross

covariance function estimates

If u is quasi-stationary, lim
N→∞

R(N) = R∗

lim
N→∞

1

N

N∑
k=1

φ(k)v(k) = E [φ(k)v(k)] ̸= 0 since φ(k) is correlated with v(k)

Thus, θ̂LS is not a consistent estimate of θo

33 / 54



Inconsistency of LS: OE case

θ̂LS = θo+

(
1

N

N∑
k=1

φ(k)φ⊤(k)

)−1

1

N

N∑
k=1

φ(k)v(k)

R(N) =
1

N

N∑
k=1

φ(k)φ⊤(k) is filled out with the estimate of auto/cross

covariance function estimates

If u is quasi-stationary, lim
N→∞

R(N) = R∗

lim
N→∞

1

N

N∑
k=1

φ(k)v(k) = E [φ(k)v(k)] ̸= 0 since φ(k) is correlated with v(k)

Thus, θ̂LS is not a consistent estimate of θo

33 / 54



Instrumental Variable Methods
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Instrumental Variables (IV)

y(k) = G(q)u(k) + H(q)e(k)

Gu
-

y
- ev?-

H

e
?

+

Given a model structure A(q−1)y(k) = B(q−1)u(k) + v(k), LS provides a
consistent estimate of the “true” system parameters only when {v(k)} is not
correlated with the regressor (equivalently, if v is white).

Instrumental Variables (IV) methods provide solutions to guarantee consistency
also when {v(k)} is correlated with the regressor
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Instrumental Variables (IV): main idea

θ̂LS =
(
Φ⊤Φ

)−1

Φ⊤Y =

(
N∑

k=1

φ(k)φ⊤(k)

)−1 N∑
k=1

φ(k)y(k)

Instrumental Variables Estimate

Chose a vector z(k), called instrument, with the same dimension of the regressor
φ(k) and such that

E [z(k)v(k)] = 0 (i.e., z(k) is not correlated with v(k))

Modify the LS estimate as follows

θ̂IV =
(
Z⊤Φ

)−1

Z⊤Y =

(
N∑

k=1

z(k)φ⊤(k)

)−1 N∑
k=1

z(k)y(k)

with

Z =

 z⊤(1)
...

z⊤(N)



(
Z⊤Φ

)
θ̂IV = Z⊤Y → R θ̂IV = Q⊤Z⊤Y , [Q,R] = qr(Z⊤Φ)
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Instrumental Variables: consistency analysis

Output representation: y(k) = φ⊤(k)θ + v(k)

Model structure: M : ŷ(k, θ) = φ⊤(k)θ (linear regression)

IV estimate: θ̂IV =
(
Z⊤Φ

)−1

Z⊤Y

Assume the “true” system is described by S : y(k) = φ⊤(k)θo + v(k)

Is θ̂IV a consistent estimate of θo?

Does lim
N→∞

θ̂IV = θo?

θ̂IV =
(
Z⊤Φ

)−1
Z⊤Y =

(
1

N

N∑
k=1

z(k)φ⊤(k)

)−1
1

N

N∑
k=1

z(k)y(k) =

(
1

N

N∑
k=1

z(k)φ⊤(k)

)−1
1

N

N∑
k=1

z(k)
(
φ⊤(k)θo + v(k)

)
=

θo +

(
1

N

N∑
k=1

z(k)φ⊤(k)

)−1
1

N

N∑
k=1

z(k)v(k)
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z(k)v(k)

R(N) =
1

N

N∑
k=1

z(k)φ⊤(k) is filled out with the estimate of cross covariance

function estimates

Under mild assumptions, lim
N→∞

R(N) = R∗

z(k) should be correlated with φ(k) (but not with v(k)!) otherwise R(N)

converges to a zero matrix!

lim
N→∞

1

N

N∑
k=1

z(k)v(k) = E [z(k)v(k)] = 0

Thus, θ̂IV is a consistent estimate of θo
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Instrumental Variables: how to choose the instruments?

The instrument z(k) should be such that E[z(k)v(k)] = 0

The instrument z(k) should be correlated with φ(k)

In order to minimize the variance of the estimate, we would like to choose:

z(k) = [−yo(k − 1) · · · − yo(k − na) u(k − 1) · · · u(k − nb)]
⊤

Summarizing, z(k) should be as much as possible correlated with the noise-free
regressor, but not correlated with the residual v(k).

Choice of the instrument: idea

1 Estimate the model parameters θ̂ through LS (biased estimate!)

2 Perform an open-loop simulation of the estimated model:

ŷ(k) = [−ŷ(k − 1) · · · − ŷ(k − na) u(k − 1) · · · u(k − nb)]
⊤ θ̂

3 Construct the instrument z(k) as follows

z(k) = [−ŷ(k − 1) · · · − ŷ(k − na) u(k − 1) · · · u(k − nb)]
⊤

4 Estimate the model parameters θ̂ through IV (consistent estimate)

5 Repeat from step 2 until convergence
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Prediction Error Methods
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Description of Prediction Error Methods

y(k) = G(q, θ)u(k) + H(q, θ)e(k)

E
[
e(t)e⊤(s)

]
= Λeδ(s − t) (i.e., e is white)

G(0, θ) = 0, H(0, θ) = I , H−1(q, θ) is stable

Gu
-

y
- ev?-

H

e
?

+

Linear predictor

ŷ(k|k − 1; θ) = Ly (q
−1, θ)y(k) + Lu(q

−1, θ)u(k)
Ly (0, θ) = 0, Lu(0, θ) = 0

ŷ(k|k − 1; θ) only depends on
past input/output data

Prediction error

ε(k, θ) = y(k)− ŷ(k|k − 1, θ)

The estimated parameters θ̂ should make the prediction errors {ε(k, θ)}Nk=1 “small”
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Description of Prediction Error Methods

Prediction Error Methods

Choice of model structure (parametrization of G(q, θ) and H(q, θ) as a function of θ)

Choice of predictor (define filters of Ly (q−1, θ) and Lu(q−1, θ))

Choice of criterion VN(θ) (scalar function of the prediction errors {ε(k, θ)}Nk=1 to assess
the performance of the predictor)

Estimate the parameters θ̂ = argmin
θ

VN(θ)
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SISO model structures

AutoRegressive with Exogenous inputs (ARX) models

y(k) =
B(q, θ)

A(q, θ)
u(k) +

1

A(q, θ)
e(k)

AutoRegressive-Moving-Average with Exogenous inputs (ARMAX) models

y(k) =
B(q, θ)

A(q, θ)
u(k) +

C(q, θ)

A(q, θ)
e(k)

Output Error (OE) models

y(k) =
B(q, θ)

A(q, θ)
u(k) + e(k)

Box-Jenkins (BJ) models

y(k) =
B(q, θ)

A(q, θ)
u(k) +

C(q, θ)

D(q, θ)
e(k)
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Choice of the predictor filters

Optimal predictor

Choose the prediction filters Ly (q−1, θ) and Lu(q−1, θ) providing the prediction error with
smallest variance

Compute the optimal predictor

y(k) =G(q, θ)u(k) + H(q, θ)e(k) = G(q, θ)u(k) + (H(q, θ)− I ) e(k) + e(k) =

=G(q, θ)u(k) + (H(q, θ)− I )H−1(q, θ) (y(k)− G(q, θ)u(k)) + e(k) =

=
[(
I − H−1(q, θ)

)
y(k) + H−1(q, θ)G(q, θ)u(k)

]
+ e(k) =

=z(k) + e(k)

z(k) and e(k) are uncorrelated

Let y∗(k) be an arbitrary predictor of y(k) based on data up to time k − 1

E
[
(y(k)− y∗(k)) (y(k)− y∗(k))⊤

]
= E

[
(z(k) + e(k)− y∗(k)) (z(k) + e(k)− y∗(k))⊤

]
=

=E
[
(z(k)− y∗(k)) (z(k)− y∗(k))⊤

]
+ E

[
e(k)e⊤(k)

]
≽ Λe

z(k) is the optimal predictor and e(k) is the “optimal” prediction error

ŷ(k|k − 1, θ) =
(
I − H−1(q−1, θ)

)
y(k) + H−1(q−1, θ)G(q−1, θ)u(k)

ε(k, θ) =e(k) = H−1(q−1, θ)
(
y(k)− G(q−1, θ)u(k)

)
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Minimization criterion

Choice of the loss function VN(θ)

Sample covariance matrix

RN(θ) =
1

N

N∑
k=1

ε(k, θ)ε⊤(k, θ)

If y is scalar, RN(θ) can be taken as the criterion VN(θ) to be minimized

In the multivariable case, we can minimize

VN(θ) = h(RN(θ))

with h continuous monotonically increasing function defined on the set of positive
semidefinite matrices:

h(Q +∆Q) ≥ h(Q) ∀Q,∆Q ≽ 0.

Ex: VN(θ) = h(RN(θ)) = tr (RN(θ))

Final estimate

θ̂PEM = argmin
θ

VN(θ)
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PEM: Asymptotic analysis

What happens when N → ∞?

lim
N→∞

RN(θ) = E
[
ε(k, θ)ε⊤(k, θ)

]
= R∞(θ)

lim
N→∞

h (RN(θ)) = h (R∞(θ)) = V∞(θ)

Convergence is uniform on a compact set Θ, i.e.,

sup
θ∈Θ

|VN(θ)− V∞(θ)| → 0

lim
N→∞

θ̂PEM = θ∗ = argmin
θ

V∞(θ)

Is θ̂PEM a consistent estimate of θo?

Let θo be the true system parameters:

y(k) = G(q, θo)u(k) + H(q, θo)e(k), E
[
e(t)e⊤(s)

]
= Λeδ(s − t),

G(0, θo) = 0, H(0, θo) = I , H−1(q, θo) stable
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y(k) = G(q, θo)u(k) + H(q, θo)e(k), E
[
e(t)e⊤(s)

]
= Λeδ(s − t),

G(0, θo) = 0, H(0, θo) = I , H−1(q, θo) stable

Thus:

ε(k, θ) =H−1(q, θ) (G(q, θo)u(k) + H(q, θo)e(k)− G(q, θ)u(k)) =

=H−1(q, θ) (G(q, θo)− G(q, θ)) u(k) + H−1(q, θ)H(q, θo)e(k) =

=e(k) + terms independent of e(k)

Thus: R∞(θ) = E
[
ε(k, θ)ε⊤(k, θ)

]
≥ E

[
e(k)e⊤(k)

]
= Λe

θo is a minimizer of h(R∞(θ)) = V∞.

If u(k) and e(k) are not correlated, only the “true” parameters θo minimize
h(R∞(θ)) = V∞

Thus lim
N→∞

θ̂PEM = θo.
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PEM: examples

ŷ(k|k − 1, θ) =
(
I − H−1(q−1, θ)

)
y(k) + H−1(q−1, θ)G(q−1, θ)u(k)

ε(k, θ) =e(k) = H−1(q−1, θ)
(
y(k)− G(q−1, θ)u(k)

)
Predictor for ARX models

y(k) =
B(q−1, θ)

A(q−1, θ)
u(k) +

1

A(q−1, θ)
e(k), e white

Optimal predictor:

ŷ(k|k − 1, θ) =
(
I − A(q−1, θ)

)
y(k) + B(q−1, θ)u(k)

=− a1y(k − 1)− · · · − anay(k − na) + b1u(k − 1) + · · ·+ bnbu(k − nb) =

=φ⊤(k)θ Linear regression representation

PEM estimate:

θ̂PEM=min
θ

N∑
k=1

(y(k)− ŷ(k|k − 1, θ))2

=min
θ

N∑
k=1

(
y(k)− φ⊤(k)θ

)2
=
(
Φ⊤Φ

)−1
Φ⊤Y

LS method and PEM coincide!
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ε(k, θ) =e(k) = H−1(q−1, θ)
(
y(k)− G(q−1, θ)u(k)

)
Predictor for OE models

y(k) =
B(q−1, θ)

A(q−1, θ)
u(k) + e(k), e white

Optimal predictor:

ŷ(k|k − 1, θ) =
B(q−1, θ)

A(q−1, θ)
u(k) =

=− a1ŷ(k − 1|k − 2)− · · · − ana ŷ(k − na|k − na − 1)+

+b1u(k − 1) + · · ·+ bnbu(k − nb) =

=φ̂⊤(k)θ

φ̂⊤(k) depends on the noise-free past outputs ŷ(k − i |k − i − 1, θ) =
B(q−1, θ)

A(q−1, θ)
u(k − i)
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PEM: numerical optimization

PEM estimate:

θ̂PEM = argmin
θ

VN(θ) = argmin
θ

h

(
1

N

N∑
k=1

ε(k, θ)ε⊤(k, θ)

)

The solution cannot be always computed analytically

Numerical iterative algorithms for non-convex optimization should be used:

i initialize with an initial estimate θ̂(0)

ii update: θ̂(i+1) = f (θ̂(i)) (the estimate is iteratively refined)
iii we would like that the estimate converges to the optimum θ̂PEM:

θ̂(0) → θ̂(1) → θ̂(2) → · · · → θ̂PEM

VN(θ)

θ

50 / 54



PEM: numerical optimization

Gradient method

choose an initial condition θ̂(0);

iterate
(i) line search: choose a positive step size t > 0

(ii) update: θ̂(i+1) = θ̂(i) − t
∂VN(θ)

∂θ

∣∣∣∣
θ=θ̂(i)

until stopping criterion is satisfied (typically:

∥∥∥∥∂VN(θ)

∂θ

∥∥∥∥ ≤ ϵ)

in case of scalar output, VN(θ)=
1

N

N∑
k=1

ε2(k, θ) and
∂VN(θ)

∂θ
=

2

N

N∑
k=1

ε(k, θ)
∂ε(k, θ)

∂θ

it converges (slowly) to the global optimum if VN(θ) is convex

in case of non-convex VN(θ), convergence to the global minimum is not
guaranteed

Exact line search

t = argmin
t>0

VN

(
θ̂(i) + t∆θ

)
, with ∆θ = − ∂VN(θ)

∂θ

∣∣∣∣
θ=θ̂(i)
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PEM: numerical optimization

Gauss-Newton method

choose an initial condition θ̂(0);

iterate
(i) line search: choose a positive step size t > 0

(ii) update: θ̂(i+1) = θ̂(i) − t
(
∇2VN(θ̂

(i))
)−1

∇VN

(
θ̂(i)
)

until stopping criterion is satisfied. Typically:
∣∣∣∣∇VN

(
θ̂
(i)

)⊤(
∇2VN (θ̂(i))

)−1
∇VN

(
θ̂
(i)

)∣∣∣∣≤ϵ

in case of scalar output, VN(θ)=
1

N

N∑
k=1

ε2(k, θ) and

∇VN (θ) =
2

N

N∑
k=1

ε(k, θ)
∂ε(k, θ)

∂θ
, ∇2VN (θ) =

2

N

N∑
k=1

∂ε(k, θ)

∂θ

∂ε⊤(k, θ)

∂θ
+

2

N

N∑
k=1

∂2ε(k, θ)

∂θ2
ε(k, θ)
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θ̂(i+1) = θ̂(i)+t∆θ, with ∆θ = −
(
∇2VN(θ̂

(i))
)−1

∇VN

(
θ̂(i)
)

Gauss-Newton method: interpretation

θ̂(i+1) = θ̂(i) +∆θ minimizes the second order approximation:

V̂N (θ(i) + ∆θ) = VN (θ(i)) + ∇VN (θ(i))⊤∆θ +
1

2
∆θ

⊤∇2VN (θ(i))∆θ

The minimum of the quadratic function above is achieved at ∆θ=−
(
∇2VN (θ̂(i))

)−1
∇VN

(
θ̂
(i)
)

VN(θ)

θ

(θ(i), VN (θ(i)))
VN

V̂N

(θ(i)+∆θ, VN (θ(i)+∆θ))

Careful: if the Hessian is not positive definite, we move to the “wrong” direction

Hessian approximation:

∇2VN (θ) =
2

N

N∑
k=1

∂ε(k, θ)

∂θ

∂ε⊤(k, θ)

∂θ
+

2

N

N∑
k=1

∂2ε(k, θ)

∂θ2
ε(k, θ) ≈

2

N

N∑
k=1

∂ε(k, θ)

∂θ

∂ε⊤(k, θ)

∂θ
+ δI︸︷︷︸
regularization

≻0
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PEM: numerical optimization

Example: evaluation of the gradient for ARMAX models

ARMAX model: y(k) =
B(q−1, θ)

A(q−1, θ)
u(k) +

C(q−1, θ)

A(q−1, θ)
e(k)

prediction error ε(k, θ) : C(q−1, θ)ε(k, θ) = A(q−1, θ)y(k)− B(q−1, θ)u(k)

compute derivatives of both left and right hand of the above equation:

C(q−1, θ)
∂ε(k, θ)

∂ai
= y(k − i) ⇒

∂ε(k, θ)

∂ai
=

1

C(q−1, θ)
y(k − i)

C(q−1, θ)
∂ε(k, θ)

∂bi
= −u(k − i) ⇒

∂ε(k, θ)

∂bi
= −

1

C(q−1, θ)
u(k − i)

ε(k − i , θ) + C(q−1, θ)
∂ε(k, θ)

∂ci
= 0 ⇒

∂ε(k, θ)

∂ci
= −

1

C(q−1, θ)
ε(k − i , θ)

Thus:

∂ε(k, θ)

∂θ
=[yF (k−1) · · · yF (k−na) −uF (k− 1) · · · −uF (k−nb) −εF (k−1) · · · −εF (k−nc)]

⊤

with:

yF (k) =
1

C(q−1, θ)
y(k), uF (k) =

1

C(q−1, θ)
u(k), εF (k) =

1

C(q−1, θ)
ε(k)
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