Current Trends in Model Predictive Control

Alberto Bemporad

http://www.imtlucca.it/alberto.bemporad

IMT Institute for Advanced Studies Lucca

A. Bemporad	"Current Trends in MPC" - Scuola Nazionale di Dottorato SIDRA - Bertinoro, 16 luglio 2011	1 /50
MPC res	search is driven by applications	
• Process of	control → linear MPC (some nonlinear too)	1980-2000
• Automot	tive control → explicit, hybrid MPC	2001-2010
• Aerospac	ce systems and UAVs → linear time-varying MPC	>2005
·		
• Informat	ion and Communication Technologies (ICT)	>2005
(wireless	nets, cloud computers) → distributed/decentralize	ed MPC
• Energy, f	finance, automotive → stochastic MPC	>2010

Automotive applications of MPC

<u>PhD students</u>: Bernardini, Borrelli, Di Cairano, Giorgetti, Ripaccioli, Trimboli (2001-2011) & Hrovat, Kolmanovsky, Tseng (Ford)

Linear time-varying MPC

• MPC can easily handle linear time-varying (LTV) problems

$$\begin{cases} x_{k+1} = A_k(t, x(t))x_k + B_k(t, x(t))u_k + f_k(t, x(t)) \\ y_k = C_k(t, x(t))x_k + D_k(t, x(t))u_k + g_k(t, x(t)) \end{cases}$$

$$E_k(t, x(t))x_k + F_k(t, x(t))u_k \le h_k(t, x(t)) \qquad k = 0, 1, \dots, N-1$$

min
$$\sum_{k=0}^{N} \ell_k(y_k, u_k(r(t+k), t, x(t)))$$

 $\ell_k = \text{quadratic function of } y_k, u_k$

$$\min_{U} \quad \frac{1}{2}U'H(t)U + F(t)'U + \alpha(t)$$

s.t.
$$G(t)U \le W(t)$$

LTV-MPC still leads to a **Quadratic Program (QP)**!

• Applications: time-varying systems (e.g.: aerospace), NL systems

A. Bemporad

MPC applications in aerospace

- Linear Time-Varying MPC for wheel momentum damping by thrust orientation mechanism
- LTI MPC for stabilization, Hybrid MPC for navigation of small UAVs
- Hybrid MPC for formation flying of small UAVs
- Decentralized LTV-MPC for formation flying
- Many other contributors:
- A. Richards, P. Trodden (Bristol, UK)
- J. Maciejowski, E.N. Hartley (Cambridge, UK)
- G. Balas, F. Borrelli, T. Keviczky (Minnesota)
- R. Murray, W.B. Dunbar (Caltech)
- J. How, L. Breger, M. Tillerson (MIT)
- (...)

"Current Trends in MPC" - Scuola Nazionale di Dottorato SIDRA - Bertinoro, 16 luglio 2011

Example: LTV-MPC of UAVs

- Two unmanned aerial vehicles (UAVs) avoiding each other and obstacles
- Feasible space approximated as a (time-varying) polyhedron
- Each UAV solves its own MPC problem
- Previous optimal sequences exchanged to improve accuracy in predicting future locations of the other UAV

for MATLAB

MPCSofT Toolbox

(Bemporad, 2010-2011)

(Bemporad, Pascucci, Rocchi, 2009)

(Bemporad, Rocchi, IFAC 2011)

ROBMPC project

Robust Model Predictive Control (MPC) for Space Constrained Systems

5 /50

(Bemporad, Losa, Piliego, Ramirez-Prado, 2009)

Linear MPC: summary of computation effort

	MPC type	off-line computations	on-line computations	
	LTI model, explicit MPC build QP/LP problem, solve multiparametric problem		evaluate PWA function	
	LTI model, implicit	build QP/LP problem	solve QP/LP problem	
<	LTV model	none	build QP/LP problem solve QP/LP problem	

LTI = Linear Time-Invariant

LTV = Linear Time-Varying

A. Bemporad "Current Trends in MPC" - Scuola Nazionale di Dottorato SIDRA - Bertinoro, 16 luglio 2011 7 /50

MPC applications in aerospace

• PRISMA project for autonomous formation flying

(S. Persson, S. Veldman, P. Bodin, 2009)

 MPC objective: minimize fuel consumption subject to keeping motion within a box constraint (solved by linear programming)

 $\min_{dV(t)} \sum_{t=0}^{\infty} \|dV(t)\|_{1}$ s.t. $|r - y_{r}\|_{1} \le y_{\text{box}}$

MPC controller operational in space !

Decentralized MPC

A. Bemporad

"Current Trends in MPC" - Scuola Nazionale di Dottorato SIDRA - Bertinoro, 16 luglio 2011

9 /50

Control of large-scale systems

traffic networks

supply chains

distributed parameter structures

smart grids

water networks

cooperating vehicles

• Lack of centralized computing capabilities

Lack of centralized information

• Characterized by spatial distribution

Centralized vs decentralized/distributed control

Centralized control:

- Need a **global model** of the overall system (and its maintenance)
- Complexity not scalable with plant size
- Computation complexity may become prohibitive
- Control design hard to commission, start-up, and maintain (many tuning "knobs")

- High **risk**: a single controller is running the whole plant
- Good theoretical properties (e.g. closed-loop stability)

A. Bemporad "Current Trends in MPC" - Scuola Nazionale di Dottorato SIDRA - Bertinoro, 16 luglio 2011

11 /50

Centralized vs decentralized/distributed control

Decentralized control:

- Local submodels of system components are enough
- Computational tasks are **parallelized**, each task is simple
- Data gathering is simpler (local measurements used only locally)
- Commissioning, start-up, and maintenance more practical (controller updates do not require a whole plant shutdown)
- Global properties (stability, performance) hard to assess, especially in the presence of input/state constraints

Careful cooperation of controllers is needed to ensure global properties (such as stability and constraint fulfillment)

Typical decentralized approach

- Measure/estimate **local** states
- Compute control actions locally
- Exchange decisions with neighbors, possibly reiterate local computations
- Apply the current command input to local actuator(s)
- Possibly interact with upper level of decision making (hierarchical control)

large-scale process

Main issues: Global closed-loop stability ? Feasibility of global constraints ? Loss of performance w.r.t. centralized control ?

A. Bemporad

"Current Trends in MPC" - Scuola Nazionale di Dottorato SIDRA - Bertinoro, 16 luglio 2011

13/50

Decentralized/distributed MPC

submodels	constraints	intersampling iterations	broadcast prediction	state constraints	stability constraints	authors
coupled	local inputs	no	no	no	none	Alessio, Barcelli, Bemporad
coupled	local inputs	yes	no	no	none	Venkat, Rawlings, Wright
coupled	local inputs	yes	yes	no	none	Mercangöz, Doyle
decoupled	local inputs	no	yes	yes	compatibility	Dunbar, Murray
decoupled		no	yes	yes	none	Keviczy, Borrelli, Balas
coupled	local states	no	yes	yes	contractive	Jia, Krogh
coupled/NL	local inputs	no	no	no	contractive	Magni, Scattolini

Alternative approach: *distribute the optimization* problem associated with the centralized MPC formulation, instead of distributing the problem formulation

A. Bemporad

Distributed MPC of Barcelona water network

A. Bemporad

"Current Trends in MPC" - Scuola Nazionale di Dottorato SIDRA - Bertinoro, 16 luglio 2011

DMPC of Barcelona water network

Network separation to groups

- Benefits evaluated on 3 days historic data set
- Benefits evaluation is complicated by water accumulation (different final accumulation for different control strategies)
- To get comparable data MPC was forced to fill tanks to the same final levels as in historical data (sub-optimal)
- ~20% direct cost savings (pumping and water sources)
- Indirect savings by smooth MV's operation -> leakage prevention by small pressure surges and reduced equipment tear & wear

15/50

WIDE Toolbox for MATLAB

- Networked control systems: modeling, stability analysis, linear control synthesis
- **Model management** of large-scale systems (model reduction, create submodels, ...)
- Data acquisition from physical WSN (Telos motes, E-Senza's nodes)
- WSN simulation (generate TrueTime code)
- **MPC control**: decentralized, hierarchical, network-aware
- Available for public download on September 1st 2011 <u>http://ist-wide.dii.unisi.it/</u>

17/50

```
A. Bemporad "Current Trends in MPC" - Scuola Nazionale di Dottorato SIDRA - Bertinoro, 16 luglio 2011
```

Stochastic MPC

Stochastic systems

- In many control problems decisions must be taken under uncertainty
- **Robust** control approaches do not model uncertainty (only assume that is bounded) and pessimistically consider the worst case
- Stochastic models provide additional information about uncertainty

Need to include stochastic models in control problem formulation

Stochastic Model Predictive Control (SMPC)

Use a **stochastic** dynamical **model** of the process to **predict** its possible future evolutions and choose the "best" **control** action

Stochastic Model Predictive Control

• <u>At time *t*</u>: solve a **stochastic optimal control** problem over a finite future horizon of *N* steps:

$$\begin{array}{ll} \min_{u} & E_{w} \left[\sum_{k=0}^{N-1} \ell(y_{k} - r(t+k), u_{k}) \right] \\ \text{s.t.} & x_{k+1} = f(x_{k}, u_{k}, w_{k}) \\ & y_{k} = g(x_{k}, u_{k}, w_{k}) \\ & u_{\min} \leq u_{t+k} \leq u_{\max} \\ & u_{\min} \leq u_{t+k} \leq u_{\max} \\ & y_{\min} \leq y_{k} \leq y_{\max}, \ \forall w \\ & x_{0} = x(t) \end{array} \right)$$

- Only apply the first optimal move $u^*(t)$, discard $u^*(t+1), u^*(t+2), ...$
- <u>At time t+1</u>: Get new measurement x(t+1), repeat the optimization. And so on ...

A. Bemporad "Current Trends in MPC" - Scuola Nazionale di Dottorato SIDRA - Bertinoro, 16 luglio 2011

21/50

Linear stochastic MPC w/ discrete disturbance

• Linear stochastic prediction model

$$x(t+1) = A(w(t))x(t) + B(w(t))u(t) + E(w(t))$$

• Discrete disturbance

$$w(t) \in \{w_1, \dots, w_s\}$$
 $p_j(t) = \Pr[w(t) = w_j]$ $\sum_{j=1}^s p_j(t) = 1$

• Probabilities $p_j(k)$ can have their own dynamics. Example: Markov chain

• Discrete distributions can be estimated from historical data (and adapted on-line)

Cost functions for SMPC to minimize

performance
$$\longrightarrow$$
 $J(u,w) \triangleq \sum_{k=0}^{N-1} \ell(y_k - r(t+k), u_k)$

• Expected performance

 $\min_{u} E_w \left[J(u, w) \right]$

• Tradeoff between expected performance & risk

 $\min_{u} E_w \left[J(u, w) \right] + \rho \operatorname{Var} \left[J(u, w) \right]$

• Conditional Value-at-Risk (CVaR)

$$\min_{u,\alpha} \left\{ \alpha + \frac{1}{1-\beta} E[\max(J(u,w) - \alpha, 0)] \right\}$$

(Rockafellar, Uryasev, 2000)

= minimize expected loss when things go wrong (convex if *J* convex !)

• Min-max

```
\min_{u} \{\max_{w} J(u, w)\} = \mininimize \text{ worst case performance}
```

A. Bemporad

"Current Trends in MPC" - Scuola Nazionale di Dottorato SIDRA - Bertinoro, 16 luglio 2011

23/50

Linear stochastic MPC formulation

- Performance index
- Goal: ensure mean-square convergence E[x'(t)x(t)] = 0 (for H=0)
- The existence of a stochastic Lyapunov function V(x) = x' P x

$$E_{w(t)}[V(x(t+1)] - V(x(t)) \le -x(t)'Lx(t), \ \forall t \ge 0$$

 $\min E_w \left[x'_N P x_N + \sum_{k=0}^{N-1} x'_k Q x_k + u'_k R u_k \right]$

ensures mean-square stability

• Existing SMPC approaches:

(Schwarme & Nikolaou, 1999)	(Munoz de la Pena, Bemporad, Alamo, 2005)	(Ono, Williams, 2008)
(Wendt & Wozny, 2000)	(Couchman, Cannon, Kouvaritakis, 2006)	(Oldewurtel, Jones, Morari, 2008)
(Batina, Stoorvogel, Weiland, 2002)	(Primbs, 2007)	(Bernardini & Bemporad, 2009)
(van Hessem & Bosgra 2002)	(Bemporad, Di Cairano, 2005)	

p(w)

(Morozan, 1983)

Stochastic program

- Enumerate all possible scenarios $\{w_0^j, w_1^j, \dots, w_{N-1}^j\}, \ j = 1, \dots, S$
- Each scenario has probability $p^j = \prod_{k=0}^{n-1} \Pr[w_k = w_k^j]$
- Each scenario has its own evolution $x_{k+1}^j = A(w_k^j)x_k^j + B(w_k^j)u_k^j$
- Expectations become simple sums

$$\min E_w \left[x'_N P x_N + \sum_{k=0}^{N-1} x'_k Q x_k + u'_k R u_k \right]$$
$$\min \sum_{j=1}^{S} p^j \left((x_N^j)' P x_N^j + \sum_{k=0}^{N-1} (x_N^j)' Q x_k^j + (u_k^j)' R u_k^j \right)$$

This is again a (large & sparse) QP

A. Bemporad "Current Trends in MPC" - Scuola Nazionale di Dottorato SIDRA - Bertinoro, 16 luglio 2011

25/50

Scenario tree

- Scenario = path on the tree
- Number S of scenarios = number of leaf nodes

- Some paths can be removed if their probability is very small (at your own risk)
- Causality constraint: $u_k^j = u_k^h$ when scenarios j and h share the same node at prediction time k (for example: $u_0^j \equiv u_0^h$ at root node k=0)

Scenario enumeration

scenario tree

Causality is exploited: decision u_k only depends on past disturbance realizations $\{w_0, w_1, \dots, w_{k-1}\}$

deterministic

Only a sequence of disturbances is considered

- frozen-time: $w_k \equiv w(t), \ \forall k \ (causal prediction)$
- anticipative action: $w_k \equiv w(t+k)$ (non-causal)
- "expected" problem: $w_k = E[w(t+k)|t]$ (causal)

scenario "fan"

- generate a set of scenarios (Monte Carlo simulation)
- decision u_k also depends on future disturbance
 - realizations $\{w_k, w_{k+1}, \ldots, w_{N-1}\}$

A. Bemporad

"Current Trends in MPC" - Scuola Nazionale di Dottorato SIDRA - Bertinoro, 16 luglio 2011

27/50

Scenario tree generation from data

- Scenario trees can be generated by clustering sample paths
- Paths can be obtained by Monte Carlo simulation of (arbitrarily complex) models, or from historical data

Open-loop vs. closed-loop prediction

closed-loop prediction

A proper move u is optimized to counteract each possible outcome of the disturbance w

open-loop prediction

Only a sequence of inputs $\{u_0, u_1, \ldots, u_{N-1}\}$ is optimized, the same u must be good for all possible disturbance w

- Intuitively: OL prediction is more conservative than CL in handling constraints
- OL problem = CL problem + additional constraints u^j ≡ u, ∀j = 1,...,S
 (=less degrees of freedom)

A. Bemporad

"Current Trends in MPC" - Scuola Nazionale di Dottorato SIDRA - Bertinoro, 16 luglio 2011

29/50

Linear stochastic stabilization

- Assume $w(t) \in \{w_1, \ldots, w_s\}$ and **constant** probability $p(t) \equiv p, \forall t$
- The stochastic convergence condition $E_{w(t)}[V(x(t+1)] V(x(t)) \le -x(t)'Lx(t))$ can be recast as the LMI condition

 $\begin{bmatrix} Q & Q & \sqrt{p_1}(A_1Q+B_1Y)' & \cdots & \sqrt{p_s}(A_sQ+B_sY)' \\ Q & W & 0 & \cdots & 0 \\ \sqrt{p_1}(A_1Q+B_1Y) & 0 & Q & & \\ \vdots & \vdots & & \ddots & \\ \sqrt{p_s}(A_sQ+B_sY) & 0 & & & Q \end{bmatrix} \succeq 0$

- The Lyapunov function is $V(x) = x'Q^{-1}x$
- Mean-square stability guaranteed by linear feedback $u(k) = Kx(k), K = YQ^{-1}$
- A minimum decrease rate *L* can be imposed

A. Bemporad

Linear stochastic stabilization

• The approach can be generalized to uncertain probabilities $p(t) \in \mathcal{P}$ (Example: time-varying probabilities)

- If $\mathcal{P} \equiv \mathcal{D}$ we have a **robust** control problem (robust convergence)
- The more information we have about the probability distribution p(t) of w(t) the less conservative is the control action

Stabilizing SMPC

 Impose stochastic stability constraint in SMPC problem (=quadratic constraint w.r.t. u₀) (Bernardini, Bemporad, CDC'09)

• SMPC approach:

- 1. Solve LMI problem off-line to find stochastic Lyapunov fcn $V(x) = x'Q^{-1}x$
- 2. Optimize stochastic performance based on scenario tree

Theorem: The closed-loop system is as. stable in the mean-square sense

• SMPC can be generalized to handle input and state constraints

Note: recursive feasibility guaranteed by backup solution u(k) = Kx(k)

A few sample applications of SMPC

 Financial engineering: dynamic hedging of portfolios replicating synthetic (Bemporad, Bellucci, Gabbriellini, 2009) (Bemporad, Gabbriellini, Puglia, Bollucci, and)

(Bemporad, Bellucci, Gabbriellini, 2009) (Bemporad, Gabbriellini, Puglia, Bellucci, 2010) (Bemporad,Puglia, Gabbriellini, 2011)

- Energy systems: power dispatch in smart grids, optimal bidding on electricity markets (Patrinos, Trimboli, Bemporad 2011) (Puglia, Bernardini, Bemporad 2011)
- Automotive control: energy management in HEVs, adaptive cruise control (human-machine interaction)

(Bichi, Ripaccioli, Di Cairano, Bernardini, Bemporad, Kolmanovsky, CDC 2010)

 Networked control: improve robustness against communication imperfections
 (Bernardini, Donkers, Bemporad, Heemels, NECSYS 2010)

A. Bemporad "Current Trends in MPC" - Scuola Nazionale di Dottorato SIDRA - Bertinoro, 16 luglio 2011

SMPC for real-time market-based power dispatch

- A Balance Responsible Party (BRP) is the only legal entity trading on the energy (PX) and ancillary service (AS) markets
- **Objective**: Minimize (expected) costs via efficient use of intermittent resources, and maximize (expected) profits by trading on PX and AS markets
- Constraints: Grid capacity constraints, rate limits, load balancing, AS balancing

33/50

SMPC for real-time market-based power dispatch

(Patrinos, Trimboli, Bemporad 2011)

• Stochastic MPC architecture

A. Bemporad "Current Trends in MPC" - Scuola Nazionale di Dottorato SIDRA - Bertinoro, 16 luglio 2011 35/50

SMPC for market-based optimal power dispatch

Unit	x_i^{\min}	x_i^{\max}	Δx_i^{\min}	Δx_i^{\min}	α_i	α_i^c	α_i^{d}
S1	15	300	-120	120	0.95	0.85	0.90
	$u_i^{c,\min} = u_i^{d,\min}$			$u_i^{c,\max} = u_i^{d,\max}$			
	0			300			

SMPC for market-based optimal power dispatch

• Numerical results

Dynamic hedging problem for financial options

- The financial institution sells a synthetic option to a customer and gets x(0) ($\mathbf{\in}$)
- Such money x(0) is used to create a portfolio x(t) of n underlying assets (e.g., stocks) whose prices at time t are $w_1(t)$, $w_2(t)$, ..., $w_n(t)$
- At the expiration date T, the option is worth the payoff r(T) = wealth (€) to be returned to the customer

Portfolio dynamics

• Portfolio wealth at time *t*:

$$x(t) = u_0(t) + \sum_{i=1}^{n} w_i(t)u_i(t)$$

money in bank account num (risk-free asset) price of asset #i

(stochastic process)

Example: $w_i(t) =$ log-normal model (used in Black-Scholes' theory)

 $dw_i = (\mu dt + \sigma dz_i)w_i$

geometric Brownian motion

number of assets #i

• Assets traded at discrete-time intervals under the self-balancing constraint:

	$x(t+1) = (1+r)x(t) + \sum_{i=0}^{n} b_i(t)u_i(t)$	r = interest rate
	$b_i(t) riangleq w_i(t+$	$(+ 1) - (1 + r)w_i(t)$
A. Bemporad	"Current Trends in MPC" - Scuola Nazionale di Dottorato SIDRA - Bertinoro, 16 luglio 2	011 39/5

Option hedging = linear stochastic control

• Block diagram of dynamic option hedging problem:

• Payoff function example: $r(T) = \max\{w(T) - K, 0\}$

European call

• **Control objective:** x(T) should be as close as possible to r(T), for any possible realization of the asset prices w(t) ("tracking w/ disturbance rejection")

SMPC for dynamic option hedging

• Stochastic finite-horizon optimal control problem:

$$\min_{\substack{\{u(k,z)\}\\ \text{s.t.} \\ x(t,z) = x(t)}} \quad \text{Var}_{z} \left[x(t+N,z) - r(t+N,z) \right]$$

$$\text{s.t.} \quad x(k+1,z) = (1+r)x(k,z) + \sum_{i=0}^{n} b_{i}(k,z)u_{i}(k,z), \ k = t, \dots, t+N$$

A. Bemporad

"Current Trends in MPC" - Scuola Nazionale di Dottorato SIDRA - Bertinoro, 16 luglio 2011

41/50

;)

SMPC for dynamic option hedging

• Drawback: the longer the horizon N, the largest the number of scenarios !

• Special case: use
$$N=1$$
 !
minimum
variance
control !
• Special case: use $N=1$!
minimum
variance

- \checkmark **Only one** vector u(t) to optimize
- ✓ No further branching, so we can generate
 a lot of scenarios for *z*! (example: 1000)
- Need to compute target wealth r(t+1,z) for all z

Optimize up to time t+1

Example: Hedging an European call

Example: Hedging an exotic option

• CPU time = 1625 ms per SMPC step (Matlab R2009 on this mac) $t_i = 0.8, 16, 24$ weeks

SMPC for hybrid electric vehicles

(Bichi, Ripaccioli, Di Cairano, Bernardini, Bemporad, Kolmanovsky, CDC 2010)

How to split **power** optimally among different power sources in **HEVs** (hybrid electric vehicles) to match power demanded by driver ?

Stochastic model of power demand

• Power demanded by driver modeled as a Markov chain

- requested power quantized in 16 levels
- Markov chain is modeling the probabilities of transition from one level to another
- transition probabilities estimated off-line on a collection of driving cycles (FTP, NEDC, 10-15 Mode)

Stochastic vs. prescient and deterministic MPC

driver model	fuel cons. [kg]	fuel improv. [%]	
frozen-time MPC	0.281	-	
stochastic MPC	0.243	13.5	
prescient MPC	0.197	29.8	

A single Markov chain is tuned off-line

A. Bemporad "Current Trends in MPC" - Scuola Nazionale di Dottorato SIDRA - Bertinoro, 16 luglio 2011

47/50

SMPC results (NEDC driving cycle)

Conclusions and open research issues

• MPC is a very rich control methodology, with a variety of variants to handle different problems (large-scale, decentralized, networked, stochastic, ...) in different application domains (automotive, energy, water, aerospace, ...)

- Explicit MPC very good for small-size MPC problems based on LTI models that require fast sampling and simple control code. Theory: mature
- Hybrid MPC very versatile MPC framework for complex problems involving logic constraints. Theory: mature
- Decentralized/distributed MPC:
 - Theory: some contributions exist, not yet mature. A lot to gain from distrib. optim.
- Stochastic MPC:
 - Theory: some contributions exist, but large space for new approaches

A. Bemporad"Current Trends in MPC" - Scuola Nazionale di Dottorato SIDRA - Bertinoro, 16 luglio 201149/50

