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Automatic Control 2: Solutions

Exercise 1 (10 points)
The Bode form of P (s) is the following

P (s) =
5

48000

(1 + 1
5s)(1 + s)

(1 + 1
4s)

2(1 + 1
30s)(1 + 1

100s)

A table of the magnitude and phase contribution of the basic components of P (s) is the following

Magnitude dB Phase deg
KB 20 log10(5/48000) = −79.64 0

(s+ 5) +20 dB/dec, ωz1 = 5 +π
2

(s+ 1) +20 dB/dec, ωz2 = 1 +π
2

(s+ 4)2 −40 dB/dec, ωp1 = 4 −π
(s+ 30) −20 dB/dec, ωp2 = 30 −π2
(s+ 100) −20 dB/dec, ωp3 = 100 −π2

The real Bode diagram is depicted in the following Figure
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The Nyquist diagram is shown in the following figure
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As the nominal plant is asymptotically stable, exploiting the Nyquist criterion, the stability of the closed
loop is ensured iff there are no (clockwise) encirclements of the point −1, while moving the point −1/K.
The closed loop is stable iff K > 0.

Exercise 2 (10 points)
The design specifications can be translated as follows:

• Mr ' 1.5 dB
By recalling the approximate formulae Mp = 2.3−Mr

1.25 , where Mr is not in dB, the desired phase margin
is Mp ' 51 deg

• tr ≤ 0.01 s
Since trB3 ' 3 and ωc = [0.5 . . . 0.8]B3, assuming tr = 0.01 s, the desired bandwidth is B3 = 300 dB
and ωc = [150 . . . 240] rad/s. A good choice is ωc = 180 rad/s

By looking at the phase and the magnitude of P (jωc), the gap to compensate can be calculated as follows

∠(P (j180)) = −176.81 deg, |P (j180)|dB = −88.63 dB

∆M = 0 dB− (−88.63) dB, ∆φ = Mp − (180− 176.81) ' 48 deg

In order to satisfy the phase specification, we choose a lead network with α1 = 0.15, centered in wc for which
τ1 = 1

wc
√
α1

= 0.0143. This network increases the phase for about 48 deg and the magnitude for about

1.35 dB.
The phase specification is satisfied, while the new magnitude specification is ∆M ′ = ∆M − 1.35 ' 80 dB.
In order to shift the magnitude diagram while preserving the phase diagram at ωc = 180 rad/s, four lead
network are chosen at ωlow = ωc/1000 rad/s, with α2 = 0.1 and τ2 = 1

wlow
√
α2

= 17.5682.

The corresponding network functions have the form

Clead(s) =
1 + τis

1 + αiτis
, i = 1, 2



At this point, the design specifications are verified for the closed loop transfer function

F (s) =
L(s)

1 + L(s)
, where L(s) = Clead1(s)Clead2(s)4G(s)

In the following Figure is shown the Bode diagram of L(s)
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Exercise 3 (8 points)

The resulting autonomous system for u(t) = 0 is

ẋ(t) = −x(t)− x3(t)

for which the origin is an equilibrium point. Taking for instance V (x) = x2/2, which is positive definite for

all x ∈ R (i.e. V (x) > 0 ∀x 6= 0, V (0) = 0), one obtains V̇ (x) = ∂V (x)
∂x ẋ = x(−x− x3) = −x2 − x4, which is

negative definite for all x ∈ R (i.e. V̇ (x) < 0 ∀x 6= 0, V̇ (0) = 0). Therefore, V (x) is a Lyapunov function for
the given system, which proves that the origin is an asymptotically stable equilibrium point with domain of
attraction equal to R.

As for the feedback linearization, the system can be represented as ẋ(t) = f(x(t)) + g(x(t))u(t), with
f(x(t)) = −x(t)− x3(t), and g(x(t)) = sin(x(t)) + 2. Defining v(t) = f(x(t)) + g(x(t))u(t) one obtains

ẋ(t) = v(t)

which is a linear system (more precisely, an integrator). A scalar system with the only pole in −1 is ẋ(t) =
−x(t), and then it is sufficient to define v(t) = −x(t) as the state-feedback control law (i.e. v(t) = Kx(t),



with K = −1). The resulting control law u(t) = v(t)−f(x(t))
g(x(t)) is

u(t) =
x3(t)

2 + sin(x(t))

Another choice leading to an easy solution is to take f(x(t)) = −x3(t), and g(x(t)) = sin(x(t)) + 2. Defining
v(t) = f(x(t)) + g(x(t))u(t) one obtains

ẋ(t) = −x(t) + v(t)

which is again a linear system. To obtain ẋ(t) = −x(t) one can define v(t) = 0 as the state-feedback control

law (i.e. K = 0). The resulting control law u(t) = v(t)−f(x(t))
g(x(t)) is clearly the same as with the previous choice:

u(t) =
x3(t)

2 + sin(x(t))

Exercise 4 (3 points)

For the given nonlinear system, let V : Rn 7→ R be positive definite in a ball Bε around the origin, ε > 0,
V ∈ C1(R). If the function

V̇ (x) = ∇V (x)′ẋ = ∇V (x)′f(x)

is negative definite on Bε, then the origin is an asymptotically stable equilibrium point with domain of
attraction Bε (limt→+∞ x(t) = 0 for all x(0) ∈ Bε). Such a function V : Rn 7→ R is called a Lyapunov
function for the system ẋ = f(x).

Therefore, the existence of a Lyapunov function is a sufficient condition for the asymptotic stability of an
equilibrium point.


