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AUTOMATIC CONTROL 2: SOLUTIONS

Exercise 1 (10 points)

The transfer function P(s) can be rewritten in the following Bode form

15 (1+5)(14 )
7200 (1 + g55)(1+ 255) (1 + 1358) (1 + 5559)

P(s) =

The following table summarizes the contributions of magnitude and phase of each basic component of P(s):

Magnitude [dB] Phase [rad]
Kz | 20 log,o(:55) ~ —53.6248 0
(s+1) +20 dB/dec, w,, =1 +3
(s +15) —20 dB/dec, w,, =15 +3
(5+01) | —20 dB/dec, w,, = 0.1 —z
(s +2.5) —20 dB/dec, wp, =2.5 -5
(5 +120) | —20 dB/dec, wp, — 120 -z
(s +240) | —20 dB/dec, w,, = 240 -5

The real Bode diagram is depicted in the following figure

Bode Diagram
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The Nyquist diagram is shown in the following figure



Nyquist Diagram
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As the open-loop transfer function K P(s) is asymptotically stable, by Nyquist’s criterion closed-loop stability
is ensured if and only if the Nyquist diagram of K P(s) does not have clockwise encirclements of the point —1,
or in other words the Nyquist diagram of P(s) does not have clockwise encirclements of the point —1/K + 50.
Therefore, by restricting K to only assume positive values, closed-loop stability is always ensured.

Exercise 2 (10 points)
The design specifications are translated as follows:
1. Steady-state specifications.

Since P(s) is of type 0, we must add one integrator in the loop function to satisfy the requested
steady-state specification

2. §<0.1.
By recovering the approximate formulae M, = g_'gé and M, = 2'?{2]5% the desired phase margin is
M, ~ 46 deg

3. t, £0.018 s.

Since t,. B3 ~ 3 and w, = [0.5...0.8] B3, the desired bandwidth is Bs ~ 167 dB and w. = [83.3...133.3].
A good choice is w. = 100 rad/s

P(s)

The transfer function to be shaped is G(s) =
the gap to compensate is

. By looking at the phase and the magnitude of G(jw,),

Z(G(j100)) = —263.71 deg, |G(j100)|qp = —126.05 dB

AM = 0-(—126.05) = 126.05 dB
A¢ = M, — (180 —263.71) ~ 130 deg

In order to satisfy the phase specification, we first insert two lead networks with a; = 0.05, centered in w,

for which 7, = wc\lﬁ = 0.0447 s. Each network increases the phase by about 64 deg and the magnitude by

aq -
about 13 dB.




After satisfying the phase specification, the new specification on magnitude becomes AM’ = AM — 26 =
100 dB. In order to shift the magnitude diagram while preserving the phase diagram at w. = 100 rad/s, a
second couple of lead networks is placed with wje,, = 1/100 rad/s, az = 0.0035, and 72 = ﬁ\/@ ~ 1690.3 s.

The lead networks have transfer functions

- ].+Ti8
T 14 aims’

Ci(s) i=1,2

The design specifications are verified for the closed-loop transfer function

L(s)

Wi(s) = TL(s)’

where L(s) = C?(s)C2(s)G(5s)

The following figure shows the Bode diagram of L(s), showing that the crossover frequency is roughly
100 rad/s, and correspondingly the phase has increased from the original —263.71 deg to —134 deg, i.e., an
increase of 129.71 deg.

Bode Diagram
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Exercise 3 (8 points)

As for system (a) it is immediate to see that the matrix

1 2]

has two eigenvalues in 1. As a consequence, the system is unstable and there exist no Lyapunov functions.
Analyzing system (b), setting V(z) = o’ Pz, with P = P’ »= 0 and = [r1 2], and imposing the negative



definiteness of V(z) = @' Px + 2/ Pi;, one obtains that V(z) is negative definite if and only if, for some

Q=Q -0, AP+ PA=—Q. Now, we take Q = I, and defining P = 211 ]];12 } we obtain
12 P22

—2p11 pi—2p12 | _| -1 0
D11 — 2p12 2p12 — 2p22 0o -1

|

which is positive definite. Therefore, the origin is a globally asymptotically stable equilibrium point for the
system.
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Exercise 4 (3 points)

The four steps of the general black-box system identification procedure are:

e Experiment design: decide what kind of input excitation u(k) to apply

e Model structure: choose a class of models (for instance, BJ, OE, ARX, ARMAX) in order to fit the
data

e Fit criterion between data and model: choose the model within that class (i.e. choose the parameter
vector using least squares methods)

e Validation criterion: decide if the identified model is good enough to reproduce the dynamics of the
process.



