University of Trento

Automatic Control 2: Solutions

Exercise 1 (10 points)

The transfer function $P(s)$ can be rewritten in the following Bode form

$$
P(s)=\frac{15}{7200} \frac{(1+s)\left(1+\frac{1}{15} s\right)}{\left(1+\frac{1}{0.1} s\right)\left(1+\frac{1}{2.5} s\right)\left(1+\frac{1}{120} s\right)\left(1+\frac{1}{240} s\right)}
$$

The following table summarizes the contributions of magnitude and phase of each basic component of $P(s)$:

	Magnitude $[\mathrm{dB}]$	Phase $[\mathrm{rad}]$
K_{B}	$20 \log _{10}\left(\frac{15}{7200}\right) \simeq-53.6248$	0
$(s+1)$	$+20 \mathrm{~dB} / \mathrm{dec}, \omega_{z_{1}}=1$	$+\frac{\pi}{2}$
$(s+15)$	$-20 \mathrm{~dB} / \mathrm{dec}, \omega_{z_{2}}=15$	$+\frac{\pi}{2}$
$(s+0.1)$	$-20 \mathrm{~dB} / \mathrm{dec}, \omega_{p_{1}}=0.1$	$-\frac{\pi}{2}$
$(s+2.5)$	$-20 \mathrm{~dB} / \operatorname{dec}, \omega_{p_{2}}=2.5$	$-\frac{\pi}{2}$
$(s+120)$	$-20 \mathrm{~dB} / \operatorname{dec}, \omega_{p_{3}}=120$	$-\frac{\pi}{2}$
$(s+240)$	$-20 \mathrm{~dB} / \operatorname{dec}, \omega_{p_{4}}=240$	$-\frac{\pi}{2}$

The real Bode diagram is depicted in the following figure

The Nyquist diagram is shown in the following figure

As the open-loop transfer function $K P(s)$ is asymptotically stable, by Nyquist's criterion closed-loop stability is ensured if and only if the Nyquist diagram of $K P(s)$ does not have clockwise encirclements of the point -1 , or in other words the Nyquist diagram of $P(s)$ does not have clockwise encirclements of the point $-1 / K+j 0$. Therefore, by restricting K to only assume positive values, closed-loop stability is always ensured.

Exercise 2 (10 points)

The design specifications are translated as follows:

1. Steady-state specifications.

Since $P(s)$ is of type 0, we must add one integrator in the loop function to satisfy the requested steady-state specification
2. $\hat{s} \leq 0.1$.

By recovering the approximate formulae $M_{r}=\frac{\hat{s}+1}{0.85}$ and $M_{p}=\frac{2.3-M_{r}}{1.25}$ the desired phase margin is $M_{p} \simeq 46 \mathrm{deg}$
3. $t_{r} \leq 0.018 \mathrm{~s}$.

Since $t_{r} B_{3} \simeq 3$ and $\omega_{c}=[0.5 \ldots 0.8] B_{3}$, the desired bandwidth is $B_{3} \simeq 167 \mathrm{~dB}$ and $\omega_{c}=[83.3 \ldots 133.3]$.
A good choice is $\omega_{c}=100 \mathrm{rad} / \mathrm{s}$
The transfer function to be shaped is $G(s)=\frac{P(s)}{s}$. By looking at the phase and the magnitude of $G\left(j \omega_{c}\right)$, the gap to compensate is

$$
\angle(G(j 100))=-263.71 \mathrm{deg},|G(j 100)|_{\mathrm{dB}}=-126.05 \mathrm{~dB}
$$

$$
\begin{aligned}
\Delta M & =0-(-126.05)=126.05 \mathrm{~dB} \\
\Delta \phi & =M_{p}-(180-263.71) \simeq 130 \mathrm{deg}
\end{aligned}
$$

In order to satisfy the phase specification, we first insert two lead networks with $\alpha_{1}=0.05$, centered in w_{c} for which $\tau_{1}=\frac{1}{w_{c} \sqrt{\alpha_{1}}}=0.0447 \mathrm{~s}$. Each network increases the phase by about 64 deg and the magnitude by about 13 dB .

After satisfying the phase specification, the new specification on magnitude becomes $\Delta M^{\prime}=\Delta M-26=$ 100 dB . In order to shift the magnitude diagram while preserving the phase diagram at $\omega_{c}=100 \mathrm{rad} / \mathrm{s}$, a second couple of lead networks is placed with $\omega_{\text {low }}=1 / 100 \mathrm{rad} / \mathrm{s}, \alpha_{2}=0.0035$, and $\tau_{2}=\frac{1}{w_{\text {low }} \sqrt{\alpha_{2}}} \simeq 1690.3 \mathrm{~s}$. The lead networks have transfer functions

$$
C_{i}(s)=\frac{1+\tau_{i} s}{1+\alpha_{i} \tau_{i} s}, i=1,2
$$

The design specifications are verified for the closed-loop transfer function

$$
W(s)=\frac{L(s)}{1+L(s)}, \text { where } L(s)=C_{1}^{2}(s) C_{2}^{2}(s) G(s)
$$

The following figure shows the Bode diagram of $L(s)$, showing that the crossover frequency is roughly $100 \mathrm{rad} / \mathrm{s}$, and correspondingly the phase has increased from the original -263.71 deg to -134 deg , i.e., an increase of 129.71 deg .

Exercise 3 (8 points)

As for system (a) it is immediate to see that the matrix

$$
A=\left[\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right]
$$

has two eigenvalues in 1. As a consequence, the system is unstable and there exist no Lyapunov functions. Analyzing system (b), setting $V(x)=x^{\prime} P x$, with $P=P^{\prime} \succ 0$ and $x=\left[\begin{array}{ll}x_{1} & x_{2}\end{array}\right]^{\prime}$, and imposing the negative
definiteness of $\dot{V}(x)=\dot{x}^{\prime} P x+x^{\prime} P \dot{x}$, one obtains that $\dot{V}(x)$ is negative definite if and only if, for some $Q=Q^{\prime} \succ 0, A^{\prime} P+P A=-Q$. Now, we take $Q=I$, and defining $P=\left[\begin{array}{ll}p_{11} & p_{12} \\ p_{12} & p_{22}\end{array}\right]$ we obtain

$$
\left[\begin{array}{cc}
-2 p_{11} & p_{11}-2 p_{12} \\
p_{11}-2 p_{12} & 2 p_{12}-2 p_{22}
\end{array}\right]=\left[\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right]
$$

leading to

$$
P=\left[\begin{array}{ll}
\frac{1}{2} & \frac{1}{4} \\
\frac{1}{4} & \frac{3}{4}
\end{array}\right]
$$

which is positive definite. Therefore, the origin is a globally asymptotically stable equilibrium point for the system.

Exercise 4 (3 points)

The four steps of the general black-box system identification procedure are:

- Experiment design: decide what kind of input excitation $u(k)$ to apply
- Model structure: choose a class of models (for instance, BJ, OE, ARX, ARMAX) in order to fit the data
- Fit criterion between data and model: choose the model within that class (i.e. choose the parameter vector using least squares methods)
- Validation criterion: decide if the identified model is good enough to reproduce the dynamics of the process.

