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Automatic Control 2: Solutions

Exercise 1 (10 points)
The transfer function P (s) can be rewritten approximately in the following Bode form

P (s) =
2

75

1 + s

(1 + 1
3s)(1 + 0.75s)(1 + 0.1s)(1 + 0.054s)

The following table summarizes the contributions of magnitude and phase of each basic component of P (s):

Magnitude [dB] Phase [rad]
KB 20 log10( 20

75 ) ' −31.4806 0
(s+ 1) +20 dB/dec, ωz = 1 +π

2

(s+ 3) −20 dB/dec, ωp1 = 3 −π2
(s+ 1.34) −20 dB/dec, ωp2 ' 1.34 −π2
(s+ 10) −20 dB/dec, ωp3 = 10 −π2

(s+ 18.66) −20 dB/dec, ωp4 ' 18.5 −π2

The real Bode diagram is depicted in the following figure

−200

−150

−100

−50

0

M
a
g
n
it
u
d
e
 (

d
B

)

10
−1

10
0

10
1

10
2

10
3

−270

−225

−180

−135

−90

−45

0

P
h
a
s
e
 (

d
e
g
)

Bode Diagram

Frequency  (rad/sec)

The Nyquist diagram is shown in the following figure
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As the open-loop transfer function KP (s) is asymptotically stable, by Nyquist’s criterion closed-loop stability
is ensured if and only if the Nyquist diagram of KP (s) does not have clockwise encirclements of the point
−1, or in other words the Nyquist diagram of P (s) does not have clockwise encirclements of the point
−1/K + j0. Therefore, by restricting K to only assume positive values, closed-loop stability is ensured by
− 1
K < Re[P (jω∗)] = −0.0023, or equivalently K < 435.

Exercise 2 (10 points)
The design specifications must be translated as follows.

1. Steady-state specifications.
Since P (s) is of type 0, we must add one integrator in the loop function to satisfy the requested
steady-state specification

2. ŝ ≤ 0.1.
By recovering the approximate formulas Mr = ŝ+1

0.85 and Mp = 2.3−Mr

1.25 the desired phase margin is
Mp ' 46 deg

3. tr ≤ 0.2 s.
Since trB3 ' 3 and ωc = [0.5 . . . 0.8]B3, assuming tr = 0.2 s, the desired bandwidth is B3 = 1.2 dB
and ωc = [7.5 . . . 12]. A good choice is ωc = 9 rad/s

The transfer function to be shaped is G(s) = P (s)
s . By looking at the phase and the magnitude of G(jωc),

the gap to compensate is
∠(G(j9)) = −317 deg, |G(j9)|dB = −55 dB

∆M = 0− (−55) = 55 dB

∆φ = Mp − (180− 317) ' 183 deg

In order to satisfy the phase specification, we first insert two lead networks with α1 = 0.05, centered in wc
for which τ1 = 1

wc
√
α1
' 0.5 s. Each network increases the phase by about 64 deg and the magnitude by



about 13 dB. We need a third lead network with α2 = 0.1, centered in wc for which τ2 = 1
wc
√
α1
' 0.35 s.

This network increases the phase by about 55 deg and the magnitude by about 10 dB.

After satisfying the phase specification, the new specification on magnitude becomes ∆M ′ = ∆M−26−10 =
19 dB. In order to shift the magnitude diagram while preserving the phase diagram at ωc = 9 rad/s, another
lead network is selected with ωlow = 1/100 rad/s, α3 = 0.3, and τ3 = 1

wlow
√
α2
' 316 s.

The lead networks have transfer functions

Ci(s) =
1 + τis

1 + αiτis
, i = 1, 2, 3

The design specifications are verified for the closed-loop transfer function

W (s) =
L(s)

1 + L(s)
, where L(s) = C2

1 (s)C2(s)C3(s)G(s)

The following figure shows the Bode diagram of L(s), showing that the crossover frequency is roughly 9 rad/s,
and correspondingly the phase has increased from the original −317 deg to −132 deg, i.e., an increase of
317− 132 = 185 deg.
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Exercise 3 (3 points)

• Both the functions Va(x) and Vb(x) are C1(R). Va(x) is not positive definite, hence cannot be a
Lyapunov function. Regarding Vb(x) we get

V̇b(x) =
∂Vb(x)

∂x
ẋ = x(−x5) = −x6



which is negative definite for all x ∈ R. Since Vb is a positive definite function, Vb is also a Lyapunov
function.

• Since the system is linear it is straightforward to note that it is unstable (one eigenvalue outside the
unit circle). As a consequence, there exist no Lyapunov function for such a system.

Exercise 4 (7 points)

• In model predictive control an optimal control problem is solved at each time t over a finite future
horizon ofN steps. As a result, we obtain a sequence ofN control moves u∗(t), u∗(t+1), ..., u∗(t+N−1).
The receding horizon policy consists in applying only the first move u∗(t): at the next time instant the
optimal control problem will be solved again after getting a new measurement, and so on.

• The “windup” effect is due to the presence of a saturation of the control variable when the controller
has an integral action (e.g. PID controllers suffer such problem, while purely proportional controller do
not). The reason is the “windup” of the integrator contained in the controller, which keeps integrating
the tracking error even if the input is saturating.
To solve the problem, some “anti-windup” techniques are available. In particular, one of the follow-
ing should be described: incremental algorithm, back-calculation, conditional integration, or observer
approach. The reader is referred to the course slides for their detailed description.


