
University of Trento

Prof. Alberto Bemporad July 19, 2010

Automatic Control 2: Solutions

Exercise 1 (10 points)
The Bode form of P(s) is the following

P (s) =
8(s/2 + 1)3

(s+ 1)3(4s2 + 2s+ 1)

The second order polynomial is a complex and conjugate pair of poles, then, for the polynomial identity
principle, ωn = 0.5 and ζ = 0.5.
For the sake of simplicity, a table of the magnitude and phase contribution of the basic components is de-
picted in the following

Magnitude dB Phase deg
KB 20 log10(8) = 18.1 0

(s+ 2)3 +60 dB/dec, ωz = 2 + 3
2π

(s+ 1)3 −60 dB/dec, ωp = 1 − 3
2π

(4s2 + 2s+ 1) −40 dB/dec, ωn = 0.5 −π

The real Bode diagram is depicted in the following Figure
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The Nyquist diagram is shown in the following Figure
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As the nominal plant is asymptotically stable, exploiting the Nyquist criterion, the stability of the closed
loop is ensured iff there are no (clockwise) encirclements of the point −1, while moving the point −1/K.
The closed loop is stable iff − 1

K < −2.46, or, conveniently, K < 1
2.46 .

Exercise 2 (10 points)
The design specifications must be translated as follows.

• Mr ' 1.65 dB
By recovering the approximate formulae Mp = 2.3−Mr

1.25 , where Mr is not in dB, the desired phase
margin is Mp ' 50 deg

• tr ≤ 2.5 s
Since trB3 ' 3 and ωc = [0.5 . . . 0.8]B3, assuming tr = 2.5 s, the desired bandwidth is B3 = 1.2 dB
and ωc = [0.6 . . . 0.96]. A good choice is ωc = 0.6 rad/s

In order to satisfy the steady state specification, since the P (s) is of type 0, there is no need to add integrator.
Hence Kc can be chosen as Kc = 1/(edKB), where KB is the dc-gain of P (s). In this case Kc = 0.3846.
By looking at the phase and the magnitude of P (jωc), the gap to compensate can be calculated as follows

∠(KcP (j6)) = −152 deg, |KcP (j6)|dB = 4.7 dB

∆M = 0 dB− 4.7 dB, ∆φ = Mp − (180− 152) ' 22 deg

In order to satisfy the phase specification, a lead network with α1 = 0.45, centered in wc for which τ1 =
1

wc
√
α1

= 2.4845. This network will increase the phase for about 23 deg and the magnitude for about 3.5 dB.

The phase specification is satisfied, while the new magnitude specification is ∆M ′ = ∆M − 3.5 = −8.2 dB.
In order to shift the magnitude diagram while preserving the phase diagram at ωc = 0.6 rad/s, a lag network
is posed at ωlow = ωc/1000 rad/s, with α2 = 0.4 and τ2 = 1

wlow
√
α2

= 2635.

The corresponding network functions have the form

Clead(s) =
1 + τ1s

1 + α1τ1s
, Clag(s) =

1 + α2τ2s

1 + τ2s



At this point, the design specifications are verified for the closed loop transfer function

F (s) =
L(s)

1 + L(s)
, where L(s) = KcClead(s)Clag(s)G(s)

In the following Figure is shown the step response of the closed loop F (s)
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Exercise 3 (6 points)

Setting V (x) = x′Px, with P = P ′ > 0, and imposing the decreasing of V (x), one obtains that ∆V (x) =
V (x(k + 1))− V (x(k)) is negative definite if and only if for some Q = Q′ > 0

A′PA− P = −Q

Now, we take Q = I, and defining P =

[
p11 p12
p12 p22

]
we obtain

[
p11/4 + p12 + p22 p12/4 + p22/2
p12/4 + p22/2 p22/4

]
=

[
−1 0
0 −1

]
leading to

P =

[
−20 8

8 −4

]
which is positive definite. Therefore, the origin is a globally asymptotically stable equilibrium point for the
system.



Exercise 4 (7 points)

• Given the discrete-time system of order n

x(k + 1) = Ax(k) +Bu(k)

y(k) = Cx(k) +Du(k)

a deadbeat controller is a state feedback controller u(k) = Kx(k) which places all the closed-loop poles
at the origin, i.e. det(zI − A − BK) = zn. Since by Cayley-Hamilton theorem (A + BK)n, the state
vanishes after n steps: x(n) = (A+BK)nx(0) = 0, and then remains at the origin. The procedure to
obtain the vector K is exactly the same as in an eigenvalue assignment problem.

• System identification is a procedure to build a mathematical model of the dynamics of a system from
measured data. Such procedure is often used in practice because the dynamical model is difficult to
obtain due to the complexity of the system and/or to lack of knowledge on it. Also, a first principle
model is sometime too complex for the design of a controller.

Three kinds of models: white box (model structure based on first principles, model parameters esti-
mated from measured data); grey box (model structure partially known from first principles, the rest
reconstructed from data), black box (model structure and parameters unknown, all reconstructed from
measured I/O data).


