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AUTOMATIC CONTROL 2: SOLUTIONS

Exercise 1 (10 points)
The Bode form of P(s) is the following

8(s/2+1)3
(s+1)3(4s2+2s+1)

P(s) =

The second order polynomial is a complex and conjugate pair of poles, then, for the polynomial identity
principle, w, = 0.5 and ¢ = 0.5.

For the sake of simplicity, a table of the magnitude and phase contribution of the basic components is de-
picted in the following

Magnitude dB Phase deg
Kg 20 logo(8) = 18.1 0
(s +2)3 +60 dB/dec, w, =2 +37
(s+1)3 —60 dB/dec, w, =1 —om
(457 +2s+1) | —40 dB/dec, w, = 0.5 —m

The real Bode diagram is depicted in the following Figure
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The Nyquist diagram is shown in the following Figure



Nyquist Diagram
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As the nominal plant is asymptotically stable, exploiting the Nyquist criterion, the stability of the closed
loop is ensured iff there are no (clockwise) encirclements of the point —1, while moving the point —1/K.

The closed loop is stable iff —% < —2.46, or, conveniently, K < ﬁ.

Exercise 2 (10 points)

The design specifications must be translated as follows.

e M, ~1.65dB
By recovering the approximate formulae M, = %, where M, is not in dB, the desired phase
margin is M, ~ 50 deg

o t,.<25s
Since t,B3 ~ 3 and w. = [0.5...0.8] B3, assuming ¢, = 2.5 s, the desired bandwidth is B3 = 1.2 dB
and w, = [0.6...0.96]. A good choice is w. = 0.6 rad/s

In order to satisfy the steady state specification, since the P(s) is of type 0, there is no need to add integrator.
Hence K, can be chosen as K. = 1/(eqKp), where Kp is the dc-gain of P(s). In this case K. = 0.3846.
By looking at the phase and the magnitude of P(jw,), the gap to compensate can be calculated as follows

Z(K.P(j6)) = —152 deg, |K.P(j6)|qs = 4.7 dB

AM =0dB —4.7 dB, A¢ = M, — (180 — 152) ~ 22 deg

In order to satisfy the phase specification, a lead network with a; = 0.45, centered in w, for which 7, =
” \1/071 = 2.4845. This network will increase the phase for about 23 deg and the magnitude for about 3.5 dB.
The phase specification is satisfied, while the new magnitude specification is AM' = AM — 3.5 = —8.2 dB.
In order to shift the magnitude diagram while preserving the phase diagram at w. = 0.6 rad/s, a lag network

is posed at wjpw = w,./1000 rad/s, with ag = 0.4 and 75 = m = 2635.

The corresponding network functions have the form

1+ agmos

) Clag(s) = 1+ o8
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In the following Figure is shown the step response of the closed loop F(s)
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Exercise 3 (6 points)
Setting V(z) = ¢/ Px, with P = P’ > 0, and imposing the decreasing of V' (z), one obtains that AV (z) =
V(z(k+1)) —V(x(k )) is negative definite if and only if for some Q = Q' > 0

APA—P=-Q

Now, we take @ = I, and defining P = { Pn P12 } we obtain
P12 P22

p11/4+pi2 + P22 pi2/4+p22/2 _ -1 0
P12/4 + p22/2 paa/4 0 -1

leading to

-20 8
e[ 4]

which is positive definite. Therefore, the origin is a globally asymptotically stable equilibrium point for the
system.



Exercise 4 (7 points)

e Given the discrete-time system of order n

z(k+1) = Az(k) + Bu(k)
y(k) = Cx(k) + Du(k)

a deadbeat controller is a state feedback controller u(k) = Kx(k) which places all the closed-loop poles
at the origin, i.e. det(z/ — A — BK) = z". Since by Cayley-Hamilton theorem (A + BK)", the state
vanishes after n steps: x(n) = (A + BK)"x(0) = 0, and then remains at the origin. The procedure to
obtain the vector K is exactly the same as in an eigenvalue assignment problem.

e System identification is a procedure to build a mathematical model of the dynamics of a system from
measured data. Such procedure is often used in practice because the dynamical model is difficult to
obtain due to the complexity of the system and/or to lack of knowledge on it. Also, a first principle
model is sometime too complex for the design of a controller.

Three kinds of models: white box (model structure based on first principles, model parameters esti-
mated from measured data); grey box (model structure partially known from first principles, the rest
reconstructed from data), black box (model structure and parameters unknown, all reconstructed from
measured I/0 data).



