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Automatic Control 2: Solutions

Exercise 1 (10 points)

The Bode form of P(s) is the following

P (s) = 300
(s/100 + 1)(s/120 + 1)

(s/10 + 1)(s2/4 + 1/3s+ 1)

The second order polynomial is a complex and conjugate pair of poles, then, for the polynomial identity
principle, ωn = 2 and ζ = 1/3.
For the sake of simplicity, a table of the magnitude and phase contribution of the basic components is de-
picted in the following

Magnitude dB Phase deg
KB 20 log10(300) = 49.5 0

(s/100 + 1) +20 dB/dec, ωz1 = 100 +π/2
(s/120 + 1) +20 dB/dec, ωz2 = 120 +π/2
(s/10 + 1) −20 dB/dec, ωz1 = 10 −π/2

(s2/4 + 1/3s+ 1) −40 dB/dec, ωn = 2 −π

The real Bode diagram is depicted in the following Figure
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Denoting with p1 and p2 the two suggested points on the −π axis, i.e. the purely real negative semiaxis, the
Nyquist diagram is shown in the following Figure
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As the nominal plant is asymptotically stable, exploiting the Nyquist criterion, the stability of the closed
loop is ensured iff there are no (clockwise) encirclements of the point −1, while moving the point −1/K.
We distinguish three cases as follows

• − 1
K < p1. The closed loop is stable (no encirclements)

• p1 < − 1
K < p2. The closed loop is unstable (2 clockwise encirclements)

• p2 < − 1
K < 0. The closed loop is stable (1 clockwise and 1 counter-clockwise encirclement)

As a result, if K = 0.01, the closed loop is stable.

Exercise 2 (10 points)

The design specifications must be translated as follows.

• ŝ ≤ 20%
By recovering the approximate formulae ŝ = 0.85Mr − 1 and Mp = 2.3−Mr

1.25 , the desired phase margin
is Mp ' 41 deg

• tr ≤ 0.3 s
Since trB3 ' 3 and ωc = [0.5 . . . 0.8]B3, assuming tr = 3, the desired bandwidth is B3 = 10 dB and
ωc = [5 . . . 8]. A good choice is ωc = 6 rad/s

In order to satisfy the steady state specification, since the P (s) is of type 0, there is no need to add integrator.
Hence Kc can be chosen as Kc = 1/(KBed), where KB is the dc-gain of P (s). In this case Kc = 0.5.
By looking at the phase and the magnitude of P (jωc), the gap to compensate can be calculated as follows

∠(KcG(j6)) = −210.64 deg, |KcG(j6)|dB = −31.73 dB

∆M = 0− 31.73 ' 32 dB, ∆φ = 210.64− (180−Mp) ' 72 deg

In order to satisfy the phase specification, three lead networks with α1 = 0.4, centered in wc for which
τ1 = 1

wc
√
α1

= 0.2635. These networks will increase the phase for about 75 deg and the magnitude for about



12 dB.
The phase specification is satisfied, while the new magnitude specification is ∆M ′ = ∆M − 12 = 20 dB. In
order to shift the magnitude diagram while preserving the phase diagram at ωc = 6 rad/s, two lead networks
are placed at ωlow = 1/100 rad/s, with α2 = 0.3 and τ2 = 1

wlow
√
α2

= 182.5742.
The corresponding lead network functions have the form

C1,2(s) =
1 + τ1,2s

1 + α1,2τ1,2s

At this point, the design specifications are verified for the closed loop transfer function

F (s) =
L(s)

1 + L(s)
, where L(s) = KcC

3
1 (s)C2

2 (s)G(s)

In the following Figure is shown the Bode diagram of L(s)
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Exercise 3 (6 points)

The auxiliary control variable can be chosen as v(t) = 2u(t)+cos(x1(t)+x2(t)), leading to a linearized system

with matrices A =
[

3 1
−1 −1

]
and B =

[
0
1

]
, and v(t) as control variable. The system is completely

reachable, and then it is possible to fulfill the requirements. Following the usual procedure for pole-placement,
it yields pc(λ) = λ2 + (−2− k2)λ− 2− k1 + 3k2, pd(λ) = λ2 + 3λ+ 2, leading to K = [k1 k2] = [−19 − 5]
for the closed-loop system (A+BK). The overall control law is then

u(t) =
−191(t)− 5x2(t)− cos(x1(t) + x2(t))

2



The same result could be obtained choosing v(t) = −x1(t)− x2(t) + cos(x1(t) + x2(t)) + 2u(t).

Exercise 4 (7 points)

• Closed-loop stability is ensured if (A,B) is stabilizable, R is symmetric positive definite, Q is symmetric
semi-positive definite, and (A,Cq) is detectable, where Cq is the Cholesky factor of Q, i.e. an upper-
triangular matrix such that C ′qCq = Q.

• Fixing Q, to larger values of R will correspond an increasing weight for the control variable in the cost
function. As a consequence, the controller will use less energy for the control variable, and the state
will converge more slowly. For this reason, R1 → c, R2 → a, R3 → b.


