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Automatic Control 1: Solutions

Exercise 1 (8 points)

The physical equations of the system are

J1ω̇1(t) =− k(θ1(t)− θ2(t))− β(ω1(t)− ω2(t)) + u(t)

J2ω̇2(t) =− k(θ2(t)− θ1(t))− β(ω2(t)− ω1(t))

Introducing, as required, the state variables as x1 = θ2− θ1, x2 = ω1 and x3 = ω2, for the given input u and
output y = x3, we obtain the state-space representation

ẋ1(t) = x3(t)− x2(t)

ẋ2(t) =
k

J1
x1(t)− β

J1
(x2(t)− x3(t)) +

1

J1
u(t)

ẋ3(t) = − k

J2
x1(t)− β

J2
(x3(t)− x2(t))

from which we define the system matrices

A =

 0 −1 1
k
J1

− β
J1

β
J1

− k
J2

β
J2

− β
J2

 , B =

 0
1
J1
0

 , C =
[

0 0 1
]
, D = 0

Substituting the numerical values, matrix A becomes

A =

 0 −1 1
2 −1 1
−2 1 −1


which has eigenvalues in 0 and −1 ±

√
3i. Having only one eigenvalue in 0, its algebraic and geometric

multiplicity coincide. Therefore, since the other two eigenvalues have strictly negative real part, the system
is marginally stable.

Exercise 2 (9 points)

Solving ẋ1 = ẋ2 = 0 with ū = −1, one obtains x̄1 = −1, x̄2 = 0. Linearizing around these values, the
required matrices are

A =

[
3x̄2

1 −1
0 ex̄2

]
=

[
3 −1
0 1

]
, B =

[
0
1

]
, C =

[
−1 0

]
, D = 1

The transfer function is

G(s) = C(sI −A)−1B +D =
(s− 2)2

(s− 1)(s− 3)



which has two zeros in 2, and two poles in 1 and 3, respectively. The eigenvalues of matrix A coincide
with the poles of the transfer function, which have both strictly positive real part. Therefore, the linearized
system is unstable.

Exercise 3 (10 points)

Given the system matrices A =

[
1 0
2 a

]
and B =

[
1
1

]
, the reachability matrix is

R =
[
B AB

]
=

[
1 1
1 a+ 2

]

Since det(R) = 1 + a, the system is completely reachable for all a 6= −1. If a = −1, we have R =

[
1 1
1 1

]
.

A base for Im(R) is v1 = [1 1]′, and we choose , for instance, w1 = [1 0]′ as a completion. We obtain

T =

[
1 1
0 1

]
. The matrices in the canonical reachability form are Ã = T−1AT =

[
−1 0
2 1

]
, and

B̃ = T−1B =

[
0
1

]
. Since Auc = −1, if a = −1 the system is not controllable, nor stabilizable.

For a = 0, it is possible to steer the state of the system from an initial condition x(0) to any other state
value in 2 time steps, because the system is completely reachable. Given x(0), the state at time k = 2 is
x(2) = A2x(0) +ABu(0) +Bu(1). Then, we solve

x(2)−A2x(0) = R

[
u(1)
u(0)

]
⇒
[

1
0

]
=

[
1 1
1 2

] [
u(1)
u(0)

]
leading to u(0) = −1 and u(1) = 2.

To design the state-feedback control law u = Kx, with K = [k1 k2], we first compute the desired polynomial
pd(λ) = (λ− 1

2 )2 = λ2−λ+ 1
4 . The characteristic polynomial is pc(λ) = det(λI −A−BK) = λ2− (1 + k1 +

k2)λ− k2, which leads to k1 = 1
4 and k2 = − 1

4 . The control law is then

u(k) =
1

4
x1(k)− 1

4
x2(k)

Exercise 4 (4 points)

If no = n, the system is completely observable. The system is reconstructable if all the eigenvalues of Auo
are equal to 0, while it is detectable if all the eigenvalues of Auo are in absolute value strictly smaller than 1.


