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Systems reduction

The complexity of the control law often depends on the order of the system
(for example in state-space methods like dynamic compensation)

For control design purposes, can we approximate the model with another
model of reduced order that preserves the original transfer function as much
as possible ?

We already know that uncontrollable and unobservable modes do not affect
the transfer function. They can be eliminated by operating a canonical
decomposition

Can we try to eliminate other modes that are weakly uncontrollable and/or
weakly observable, and get a numerically well-conditioned lower-order
state-space realization ?

Model reduction and balanced transformations answer the above questions
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Unbalanced realizations and scaling

Consider the linear system
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The state x1 is “weakly” reachable, but “very”observable
The state x2 is “very” reachable, but “weakly” observable
Let’s rescale the system by operating the change of coordinates
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The system expressed in new coordinates is numerically balanced
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Grammians

Consider the discrete-time linear system
�

x(k+ 1) = Ax(k) + Bu(k)
y(k) = Cx(k) +Du(k)

Since now on we assume that matrix A is asymptotically stable

The controllability Grammian for discrete-time systems is the matrix

Wc ¬
∞
∑

j=0

AjBB′(A′)j MATLAB
Wc = gram(sys,’c’)

The observability Grammian for discrete-time systems is the matrix

Wo ¬
∞
∑

j=0

(A′)jC′CAj MATLAB
Wc = gram(sys,’o’)

Similar definitions exist for continuous-time systems

For discrete-time systems the controllability Grammian is related to the cost of minimum energy control:
min

∑∞
j=0 u2(j) = x(0)′W−1

c x(0). The observability Grammian to the output energy of the free response:
∑∞

j=0 y2(j) = x(0)′Wox(0). The Grammians solve the Lyapunov equations Wc = AWcA
′ + BB′ and

Wo = A′WoA+ C′C, respectively
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Balanced state-space realizations

Definition

A state-space realization is called balanced if the Grammians Wc and Wo
are equal and diagonal

Wc =Wo = Σ, Σ =







σ1 0 ... 0
0 σ2 ... 0

...
...

...
...

0 ... 0 σn







A procedure to derive the transformation matrix T such that the equivalent
state-space form Ã= T−1AT, B̃= T−1B, C̃ = CT, D̃= D is balanced is
described in [1]
the procedure is implemented in the MATLAB function balreal

MATLAB
[sysb,σ,T−1,T] = balreal(sys)

where σ = [σ2
1 . . . σ2

n]
′

[1] A.J. Laub, M.T. Heath, C.C. Paige, R.C. Ward, “Computation of System Balancing Transformations and
Other Applications of Simultaneous Diagonalization Algorithms,” IEEE Trans. Automatic Control, vol. 32,
pp. 115-122, 1987
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Model reduction

Once the system is in balanced form we can easily reduce the order of the
model by eliminating the states associated with small σi’s

W̃c = W̃o =
�
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0 Σ2
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Wednesday, May 26, 2010

z1(k+ 1) = Ã11z1(k) + B̃1u(k)
y(k) = C̃1z1(k)

MATLAB
rsys = modred(sys,elim,’del’)

elim = indices of the states
to be eliminated

A similar idea applies to continuous-time systems
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Example

Transfer function: G(s) = s3+11s2+36s+26
s4+14.6s3+74.96s2+153.7s+99.65

State-space realization in canonical reachability form:

A=
� 0 1 0 0

0 0 1 0
0 0 0 1

−99.65 −153.7 −74.96 −14.6

�

, B=
�

0
0
0
1

�

, C = [ 26 36 11 1 ] , D= 0

Controllability and observability Grammians:

Wc =
� 0.0000 0.0000 −0.0001 0.0000

0.0000 0.0001 −0.0000 −0.0006
−0.0001 −0.0000 0.0006 0.0000
0.0000 −0.0006 0.0000 0.0408

�

Wo =
� 84.6757 122.1890 37.4774 3.3919

122.1890 179.5744 55.2945 5.0110
37.4774 55.2945 17.0406 1.5448
3.3919 5.0110 1.5448 0.1401

�

After balancing, we get

W̃c = W̃o =
� 0.1394 0 0 0

0 0.0095 0 0
0 0 0.0006 0
0 0 0 0.0000

�

MATLAB
» sys=ss(A,B,C,D);
» [sysb,sigma,Tinv,T] = balreal(sys);
» Wc=diag(sigma);
» Wo=Wc
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Example

After applying the transformation matrix T we get

Ã=
� −3.601 0.8212 −0.6163 −0.05831
−0.8212 −0.593 1.027 0.09033
−0.6163 −1.027 −5.914 −1.127
0.05831 0.09033 1.127 −4.492

�

, B̃=
� −1.002
−0.1064
−0.08612
0.008112

�

C̃ = [−1.002 0.1064 −0.08612 −0.008112 ] , D̃= 0

Let’s eliminate states z3, z4 and get a model of reduced order 2

The transfer function of the reduced-order model is

Gb(s) =
0.9926s+ 0.7297

s2 + 4.194s+ 2.81
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Example (cont’d)

Let’s compare the frequency responses of G and Gb: they are almost
indistinguishable !
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In general, the smaller are the
removed singular values σi with
respected to the ones we keep,
the more similar are the
responses of the original and
reduced-order models

Note that after balancing the states completely loose their physical meaning
The original state x can be recovered (approximately) from the reduced state
z1 using the transformation matrix T =

� T11 T12
T21 T22

�

x =
� T11

T21

�

z1 ← x is treated here as an output of the reduced-order model

The reduced state z1 can be estimated by a state observer (the pair Ã1, C̃1 is
observable by construction)
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Matched DC gain method for model reduction

Consider again the complete model

x1(k+ 1) = A11x1(k) + A12x2(k) + B1u(k)
x2(k+ 1) = A21x1(k) + A22x2(k) + B2u(k)

y(k) = C1x1(k) + C2x2(k)

Assume the dynamics of x2 are “infinitely fast”: x2(k+ 1)≈ x2(k)
We can eliminate the states contained in x2 by substituting

x2(k) = (I− A22)
−1(A21x1(k) + B2u(k))

therefore obtaining

x1(k+ 1) = (A11 + A12(I− A22)
−1A21)x1(k) + (B1 + A12(I− A22)

−1B2)u(k)
y(k) = (C1 + C2(I− A22)

−1A21)x1(k) + C2(I− A22)
−1B2u(k)

A similar idea can be applied in continuous-time, by setting ẋ2(t)≈ 0

x2(t) = A−1
22 (A21x1(t) + B2u(t))
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Matched DC gain method for model reduction

Property

The matched DC-gain method preserves the DC gain of the
original full-order model

Proof:
Simply observe that for both the original and the reduced-order model in
steady-state x1, x2 depend on u in the same way �

MATLAB
rsys=modred(sys,elim,’mdc’)

elim is the vector of state indices to
eliminate
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Example (cont’d)

Consider again the state-space realization

A=
� 0 1 0 0

0 0 1 0
0 0 0 1

−99.65 −153.7 −74.96 −14.6

�

, B=
�

0
0
0
1

�

, C = [ 26 36 11 1 ] , D= 0

Let’s eliminate the states x3 and x4 using the matched DC-gain method
We get a 2nd order model whose transfer function is

Gm(s) =
0.1467s2 + 0.4803s+ 0.3469

s2 + 2.05s+ 1.329
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Emphasis here is on matching at low
frequencies (DC gain in particular!)

DC gains: G(0) = Gm(0) = 0.2609
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Example (cont’d)
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Original DC gain: G(0) = 0.2609

DC gain of Gm(s): Gm(0) = 0.2609

DC gain of Gb(s): Gb(0) = 0.2597

The matched DC-gain method is only good to capture the DC gain exactly

Model reduction via balanced transformation provides best match
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Comments on model reduction

How good is the reduced-order model should be judged on the performance
of the original system in closed-loop with a controller based on the reduced
model

A good reduced-order model provides very good closed-loop performance
and a low-order dynamic control law at the same time

Let’s see an example ...
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Example (cont’d)

Consider the LQR performance index

min
∞
∑

k=0

y2(k) +ρu2(k)

LQR controller based on complete model (A, B, C, D):

u(t) = Kx(t) +Hr(t), H =
1

C(−A− BK)−1B+D

LQR controller based on reduced model (A1, B1, C1, D1):
� z1

z2

�

= T−1x
u(t) = Kbz1(t) +Hbr(t), Hb =

1
C(−A−BKb[I 0]T−1)−1B+D

LQR controller based on the model reduced by the matched DC gain method:

x1 =
� 1 0 0 0

0 1 0 0

�

x
u(t) = Kmx1(t) +Hmr(t), Hm =

1
C(−A−BKm[I 0])−1B+D
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Example (cont’d)
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Closed−loop step response of G with different LQR controllers
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u = Kx

= [−29.5403 −43.0578 −13.2412 −1.2001 ]x

u =
�

Kb 0
�

T−1x

= [−29.5145 −43.0825 −13.2468 −1.1999 ]x

u = Km

�

I 0
�

x

= [−17.5373 −21.4324 0 0 ]x

Note the similarity between controllers K and
�

Kb 0
�

T−1
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English-Italian Vocabulary

model reduction riduzione dell’ordine del modello
Grammian gramiano

Translation is obvious otherwise.
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