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Lecture: Nonlinear systems Stability analysis

Nonlinear dynamical systems

nonlinear dynamical process

Ml = f(,u)

controller |<«—

@ Most existing processes in practical applications are described by nonlinear
dynamics x = f(x,u)

@ Often the dynamics of the system can be linearized around an operating point
and a linear controller designed for the linearized process

@ Question #1: will the closed-loop system composed by the nonlinear process
+ linear controller be asymptotically stable ? (noniinear staeility analysis)

@ Question #2: can we design a stabilizing nonlinear controller based on the
nonlinear open-loop process ? (nonlinear control desian)

This lecture is based on the book “Applied Nonlinear Control” by J.J.E. Slotine and W. Li,
1991
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Lecture: Nonlinear systems Stability analysis

Positive definite functions

@ Key idea: if the energy of a system dissipates over time, the system
asymptotically reaches a minimum-energy configuration

@ Assumptions: consider the autonomous nonlinear system x = f(x), with f(-)
differentiable, and let x = O be an equilibrium (f(0) = 0)

@ Some definitions of positive definiteness of a function V : R" — R

o Vis called locally positive definite if V(0) = 0 and there exists a ball
B. = {x: x|, < €} around the origin such that V(x) > 0 Vx €B.\ 0
V is called globally positive definite if B, = R" (i.e. € — 00)

V is called negative definite if —V is positive definite

V is called positive semi-definite if V(x) > 0 Vx € B, x # 0

V is called positive semi-negative if —V is positive semi-definite

@ Example: let x = [x; x,], V:R*> > R
o V(x) =x*+x2 is globally positive definite
o V(x) =x>+x2 —x3 is locally positive definite
o V(x)=x}+ sin®(x,) is locally positive definite and globally positive semi-definite
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Lecture: Nonlinear systems Stability analysis

Lyapunov’s direct method

Theorem

Given the nonlinear system x = f(x), f(0) = 0, let V : R" — R be positive definite
in a ball B, around the origin, € > 0, V € C1(R). If the function

V(x) = VV(x)x = VV(x)'f(x)
is negative definite on B, then the origin is an asymptotically stable equilibrium

point with domain of attraction B, (lim,_, ,x(t) = 0 for all x(0) € B,). If V(x) is
only negative semi-definite on B,, then the the origin is a stable equilibrium point.

o

i
\
/\

Such a function V : R" — R is called a Lyapunov function for the system x = f(x)
Automatic Control 2
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Lecture: Nonlinear systems Stability analysis

Example of Lyapunov’s direct method

@ Consider the following autonomous dynamical system
%, =x,0 + x5 — 2) — 4x;%5
Xy = 4x%x2 +x2(xf +x§ —-2)
@ asf;(0,0) =£,(0,0) =0, x = 0 is an equilibrium
@ consider then the candidate Lyapunov function
V(xy,x,) = X2 4 x5
which is globally positive definite. Its time derivative V is
V(xy,%5) = 2063 +3)(x3 +x2 — 2)

e It is easy to check that V(x;,x,) is negative definite if ||x||Z =x? +x% < 2.
Then for any B, with 0 < e < v/2 the hypotheses of Lyapunov’s theorem are
satisfied, and we can conclude that x = 0 is an asymptotically stable
equilibrium

@ Any B, with 0 < € < V2 is a domain of attraction
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Lecture: Nonlinear systems Stability analysis

Example of Lyapunov’s direct method (cont’d)

Cf. Lyapunov’s indirect method: the linearization around x = 0 is

9f(0,0) _ [3d-3g-2 —6x;X, _[-2 o
o 0o -2

dx 10, 5x3 +3x5 — 2
@ Lyapunov’s indirect method tells us that the origin is locally asymptotically
stable

which is an asymptotically stable matrix

@ Lyapunov’s direct method also tells us that B, is a domain of attraction for all
0<e<2

@ Consider this other example: x = —x°. The origin as an equilibrium. But

% = —3-0% =0, so Lyapunov indirect method is useless.

@ Lyapunov’s direct method with V = x? provides V = —2x*, and therefore we
can conclude that x = 0 is (globally) asymptotically stable
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Lecture: Nonlinear systems Stability analysis

Case of continuous-time linear systems

Let’s apply Lyapunov’s direct method to linear autonomous systems x = Ax
@ Let V(x) = x'Px, with P = P’ = 0 (P=positive definite and symmetric matrix)
@ The derivative V(x) = x’Px + x'Px = x'(A’P + PA)x
@ V(x) is negative definite if and only if

AP+PA=—-Q

for some Q > 0 (for example, Q =1)
@ Given a matrix Q > 0, the matrix equation A’P + PA = —Q is called Lyapunov
equation
Theorem:

The autonomous linear system x = Ax is asymptotically stable < VQ >~ 0 the
Lyapunov equation A’P + PA = —Q has one and only one solution P > 0

MATLAB
»P=lyap (A", Q)

«—— Note the transposition of matrix A !
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Lecture: Nonlinear systems Stability analysis

Case of discrete-time linear systems

@ Lyapunov’s direct method also applies to discrete-time nonlinear systems *
x(k 4+ 1) = f(x(k)), considering positive definite functions V(x) and the
differences along the system trajectories

AV(x(k)) = V(x(k + 1)) — V(x(k))

instead of the derivative V(x)
@ Set again V(x) = x’Px, with P > 0, and impose AV is negative definite

AV(x) = (Ax)'P(Ax) — x'Px = x'(A’PA — P)x = —x'Qx

@ AV(x) is negative definite if and only if for some Q > 0

, MATLAB
APA—P=-Q »P=dlyap (A’ ,Q)

@ The matrix equation A’PA — P = —Q is called discrete-time Lyapunov equation

e LaSalle, “Stability Theory for Difference Equations,” in Studies in Ordinary Differential
Equations, MAA studies in Mathematics, Jack Hale Ed., vol. 14, pp.1-31, 1997
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Lecture: Nonlinear systems Feedback linearization
Nonlinear control design

@ In nonlinear control design a (usually nonlinear) feedback control law is
designed based on the nonlinear dynamics x = f(x, u)

@ Most nonlinear control design techniques are based on simultaneously
constructing a feedback control law u(x) and a Lyapunov function V for
x = f(x,u(x))

@ A simple nonlinear technique is feedback linearization, that is to algebraically
transform the dynamics of the nonlinear system into a linear one and then
apply linear control techniques to stabilize the transformed system

e Example:

X1 = QX+ apX, X1 = a11X1 + A1aXp
X3 fo(x1,%0) + g (X, Xx)u — Xy =v

v

_ Kx — fo(x1,%5)

GRS

@ Very successful in several control applications (robotics, aeronautics, ...)

o Note the difference between feedback linearization and conventional
linearization x = %(x —Xo) + %(u —uy) we've seen earlier !
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Lecture: Nonlinear systems Feedback linearization

Example of feedback linearization

@ Consider the problem of regulating the fluid level h in a tank to a fixed
set-point hy
@ The process is described by the nonlinear dynamics

AR(t) = —a/2gh(t) + u(t)

@ We don’t want to linearize around h = h; and use linear control techniques,
that would only ensure local stability (cf. Lyapunov linearization method)

@ Define instead
u(t) = ay/2gh(t) + Av(t)
where v(t) is a new “equivalent input” to be defined next by a control law
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Lecture: Nonlinear systems Feedback linearization

Example of feedback linearization (cont’d)

@ The resulting dynamics becomes
h(t) = v(1)

@ Choose v(t) = —ae(t), with a > 0 and e(t) = h(t) — hy. The resulting
closed-loop error dynamics becomes

é(t) = —ae(t)

which is asymptotically stable (h(t) tends asymptotically to h,)
@ The resulting nonlinear control law applied to the tank system is

u(t) = ay/ 2gh(t) —Aa( h(t) — hy )
——— ~—
nonlinearity cancellation linear error feedrack

@ Can we generalize this idea ?
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Lecture: Nonlinear systems Feedback linearization

Feedback linearization

@ Consider for simplicity single-input nonlinear systems, u € R
@ Let the dynamical system be in nonlinear canonical controllability form

%1 (t) = x,(t)
%o (t) = x3(t)

X (8) = f(x()) + g (x())u(t)

and assume g,(x) #0, Vx e R"

@ Define u(t) = . (;(t))

(v(t) — f,(x(t))) to get the equivalent linear system

%1 (t) = x,(t)
%, (t) = x3(t)

X, () = v(t)
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Feedback linearization (cont’d)

Lecture: Nonlinear systems

Feedback linearization

@ The resulting equivalent linear system x = Ax + By is the cascade of n

integrators

0 1
0 0
0 0
0 0
0 0

and is completely reachable

0
1

0
0
0

o o

o = O

>~}
Il
~oooo

@ To steer the state x asymptotically to the origin, we design a control law
v = Kx (by pole-placement, LQR, etc.)

K

v(t)

u(x,v)

u(t)

pole-placement loop

A

x(t)

linearization loop

@ Note that the nonlinear model must be rather accurate for feedback
linearization to work
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Lecture: Nonlinear systems Feedback linearization

Feedback linearization for robotic manipulation

@ Consider a two-link robot

@ Each joint equipped with a motor providing
input torque 7;, an encoder measuring the
joint position g;, and a tachometer
measuring the joint velocity g;, i = 1,2

@ Objective of control design: make g, (t) and
q,(t) follow desired position histories g4;(t)
and qg,(t)

@ ¢4 (t) and g4, (t) are specified by the motion
planning system of the robot
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Lecture: Nonlinear systems Feedback linearization

Feedback linearization for robotic manipulation

@ Use Lagrangean equations to determine the dynamic equations of the robot

[Hn Hyp } [ ‘h }-i—[ _}f‘b —hq, —hq, } |: ‘:11 }_’_[81 ]:[ 1 }
Hy  Hy Y hq, 0 a 82 T2
where
Hyy =mylZ +1 +my (l% +2 +20L, cosqz) +1,
Hyp = myl2 +1,
Hyp = Hy =mylil,, cosqy +myl2 +1,
h =m,l1;, sing,
g1 =myl, gcosq; +myg (ZCZ cos(q; +qy) +1; cos ql)
82 =Myl gcos(qy +q,)
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Lecture: Nonlinear systems Feedback linearization

Feedback linearization for robotic manipulation

@ The system dynamics can be compactly written as

H(q9)j+C(q,9)q+g(@) =1

@ Multiply both sides by H~!(q) and obtain the second-order differential
equation
G=-H'(9)C(q,9)q —H '(Qg(g) +

@ Define the control input 7 to feedback-linearize the robot dynamics

Ty | _ | Hn Hi Vi _}f('IZ —hq, —hgs 5:11 +| &
T Hy Hj Vo hq, 0 bl &2
where
V={y— 21— A%, A >0
v = [v; v,] is the equivalent input, and e = g — g, being the tracking error on

positions
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Lecture: Nonlinear systems Feedback linearization

Feedback linearization for robotic manipulation

@ The resulting error dynamics is
é+21e+2A%=0,1>0

leading to the asymptotic convergence of the tracking error e(t) = q(t) — q4(t)
and its derivative é(t) = g(t) — q(t) to zero

MATLAB
e(t) Y 14+ At t 6(0) » syms lam t
é(t) =e ——Azt 1—At é(O) » A=[0 1;-lam”2 -2xlam];

» factor (expm (Axt))

@ In robotics, feedback linearization is also known as computed torque, and can
be applied to robots with an arbitrary number of joints
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Lecture: Nonlinear systems Feedback linearization

English-Italian Vocabulary

;';f'l

nonlinear system sisterna non lineare
Lyapunov function fungzione di Lyapunov
feedback linearization | feedback linearization

Translation is obvious otherwise.
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