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Lecture: Nonlinear systems Stability analysis

Nonlinear dynamical systems

x(t)u(t)

controller
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ẋ = f(x, u)

Sunday, May 16, 2010

Most existing processes in practical applications are described by nonlinear
dynamics ẋ = f(x, u)
Often the dynamics of the system can be linearized around an operating point
and a linear controller designed for the linearized process

Question #1: will the closed-loop system composed by the nonlinear process
+ linear controller be asymptotically stable ? (nonlinear stability analysis)

Question #2: can we design a stabilizing nonlinear controller based on the
nonlinear open-loop process ? (nonlinear control design)

This lecture is based on the book “Applied Nonlinear Control” by J.J.E. Slotine and W. Li,
1991
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Lecture: Nonlinear systems Stability analysis

Positive definite functions

Key idea: if the energy of a system dissipates over time, the system
asymptotically reaches a minimum-energy configuration

Assumptions: consider the autonomous nonlinear system ẋ = f(x), with f(·)
differentiable, and let x = 0 be an equilibrium (f(0) = 0)
Some definitions of positive definiteness of a function V : Rn 7→ R

V is called locally positive definite if V(0) = 0 and there exists a ball
Bε =

�

x : ‖x‖2 ≤ ε
	

around the origin such that V(x)> 0 ∀x ∈ Bε \ 0
V is called globally positive definite if Bε = Rn (i.e. ε→∞)
V is called negative definite if −V is positive definite
V is called positive semi-definite if V(x)≥ 0 ∀x ∈ Bε, x 6= 0
V is called positive semi-negative if −V is positive semi-definite

Example: let x = [x1 x2]′, V : R2→ R
V(x) = x2

1 + x2
2 is globally positive definite

V(x) = x2
1 + x2

2 − x3
1 is locally positive definite

V(x) = x4
1 + sin2(x2) is locally positive definite and globally positive semi-definite
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Lecture: Nonlinear systems Stability analysis

Lyapunov’s direct method

Theorem

Given the nonlinear system ẋ = f(x), f(0) = 0, let V : Rn 7→ R be positive definite
in a ball Bε around the origin, ε > 0, V ∈ C1(R). If the function

V̇(x) =∇V(x)′ẋ =∇V(x)′f(x)

is negative definite on Bε, then the origin is an asymptotically stable equilibrium
point with domain of attraction Bε (limt→+∞ x(t) = 0 for all x(0) ∈ Bε). If V̇(x) is
only negative semi-definite on Bε, then the the origin is a stable equilibrium point.

Such a function V : Rn 7→ R is called a Lyapunov function for the system ẋ = f(x)
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Lecture: Nonlinear systems Stability analysis

Example of Lyapunov’s direct method

Consider the following autonomous dynamical system

ẋ1 = x1(x
2
1 + x2

2 − 2)− 4x1x2
2

ẋ2 = 4x2
1x2 + x2(x

2
1 + x2

2 − 2)

as f1(0, 0) = f2(0,0) = 0, x = 0 is an equilibrium
consider then the candidate Lyapunov function

V(x1, x2) = x2
1 + x2

2

which is globally positive definite. Its time derivative V̇ is

V̇(x1, x2) = 2(x2
1 + x2

2)(x
2
1 + x2

2 − 2)

It is easy to check that V̇(x1, x2) is negative definite if ‖x‖2
2 = x2

1 + x2
2 < 2.

Then for any Bε with 0< ε <
p

2 the hypotheses of Lyapunov’s theorem are
satisfied, and we can conclude that x = 0 is an asymptotically stable
equilibrium
Any Bε with 0< ε <

p
2 is a domain of attraction
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Lecture: Nonlinear systems Stability analysis

Example of Lyapunov’s direct method (cont’d)

Cf. Lyapunov’s indirect method: the linearization around x = 0 is

∂ f(0, 0)
∂ x

=
�

3x2
1 − 3x2

2 − 2 −6x1x2
10x1x2 5x2

1 + 3x2
2 − 2

�
�

�

�

�

x=0

=
�

−2 0
0 −2

�

which is an asymptotically stable matrix

Lyapunov’s indirect method tells us that the origin is locally asymptotically
stable

Lyapunov’s direct method also tells us that Bε is a domain of attraction for all
0< ε <

p
2

Consider this other example: ẋ =−x3. The origin as an equilibrium. But
∂ f(0,0)
∂ x
=−3 · 02 = 0, so Lyapunov indirect method is useless.

Lyapunov’s direct method with V = x2 provides V̇ =−2x4, and therefore we
can conclude that x = 0 is (globally) asymptotically stable
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Lecture: Nonlinear systems Stability analysis

Case of continuous-time linear systems

Let’s apply Lyapunov’s direct method to linear autonomous systems ẋ = Ax

Let V(x) = x′Px, with P= P′ � 0 (P=positive definite and symmetric matrix)

The derivative V̇(x) = ẋ′Px+ x′Pẋ = x′(A′P+ PA)x
V̇(x) is negative definite if and only if

A′P+ PA=−Q

for some Q� 0 (for example, Q= I)

Given a matrix Q� 0, the matrix equation A′P+ PA=−Q is called Lyapunov
equation

Theorem:

The autonomous linear system ẋ = Ax is asymptotically stable⇔∀Q� 0 the
Lyapunov equation A′P+ PA=−Q has one and only one solution P� 0

MATLAB
»P=lyap(A’,Q)

←− Note the transposition of matrix A !
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Lecture: Nonlinear systems Stability analysis

Case of discrete-time linear systems

Lyapunov’s direct method also applies to discrete-time nonlinear systems 1

x(k+ 1) = f(x(k)), considering positive definite functions V(x) and the
differences along the system trajectories

∆V(x(k)) = V(x(k+ 1))− V(x(k))

instead of the derivative V̇(x)
Set again V(x) = x′Px, with P� 0, and impose ∆V is negative definite

∆V(x) = (Ax)′P(Ax)− x′Px = x′(A′PA− P)x =−x′Qx

∆V(x) is negative definite if and only if for some Q� 0

A′PA− P=−Q
MATLAB
»P=dlyap(A’,Q)

The matrix equation A′PA− P=−Q is called discrete-time Lyapunov equation

1J.P. LaSalle, “Stability Theory for Difference Equations,” in Studies in Ordinary Differential
Equations, MAA studies in Mathematics, Jack Hale Ed., vol. 14, pp.1–31, 1997
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Lecture: Nonlinear systems Feedback linearization

Nonlinear control design

In nonlinear control design a (usually nonlinear) feedback control law is
designed based on the nonlinear dynamics ẋ = f(x, u)
Most nonlinear control design techniques are based on simultaneously
constructing a feedback control law u(x) and a Lyapunov function V for
ẋ = f(x, u(x))
A simple nonlinear technique is feedback linearization, that is to algebraically
transform the dynamics of the nonlinear system into a linear one and then
apply linear control techniques to stabilize the transformed system
Example:

ẋ1 = a11x1 + a12x2 ẋ1 = a11x1 + a12x2
ẋ2 = f2(x1, x2) + g2(x1, x2)u

︸ ︷︷ ︸

v

−→ ẋ2 = v

v = Kx (stabilizing gain) −→ u=
Kx− f2(x1, x2)

g2(x1, x2)

Very successful in several control applications (robotics, aeronautics, ...)
Note the difference between feedback linearization and conventional
linearization ẋ = ∂ f

∂ x
(x− x0) +

∂ f
∂ u
(u− u0) we’ve seen earlier !
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Lecture: Nonlinear systems Feedback linearization

Example of feedback linearization

h

u

q

h(t)

Qij(t)
aij

Ai

a  
Q(t) 

Sunday, May 16, 2010

Consider the problem of regulating the fluid level h in a tank to a fixed
set-point hd

The process is described by the nonlinear dynamics

Aḣ(t) =−a
p

2gh(t) + u(t)

We don’t want to linearize around h= hd and use linear control techniques,
that would only ensure local stability (cf. Lyapunov linearization method)
Define instead

u(t) = a
p

2gh(t) + Av(t)

where v(t) is a new “equivalent input” to be defined next by a control law
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Lecture: Nonlinear systems Feedback linearization

Example of feedback linearization (cont’d)

The resulting dynamics becomes

ḣ(t) = v(t)

Choose v(t) =−αe(t), with α > 0 and e(t) = h(t)− hd. The resulting
closed-loop error dynamics becomes

ė(t) =−αe(t)

which is asymptotically stable (h(t) tends asymptotically to hd)

The resulting nonlinear control law applied to the tank system is

u(t) = a
p

2gh(t)
︸ ︷︷ ︸

nonlinearity cancellation

−Aα( h(t)− hd
︸ ︷︷ ︸

linear error feedback

)

Can we generalize this idea ?
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Lecture: Nonlinear systems Feedback linearization

Feedback linearization

Consider for simplicity single-input nonlinear systems, u ∈ R
Let the dynamical system be in nonlinear canonical controllability form

ẋ1(t) = x2(t)
ẋ2(t) = x3(t)

...

ẋn(t) = fn(x(t)) + gn(x(t))u(t)

and assume gn(x) 6= 0, ∀x ∈ Rn

Define u(t) = 1
gn(x(t))

�

v(t)− fn(x(t))
�

to get the equivalent linear system

ẋ1(t) = x2(t)
ẋ2(t) = x3(t)

...

ẋn(t) = v(t)
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Lecture: Nonlinear systems Feedback linearization

Feedback linearization (cont’d)

The resulting equivalent linear system ẋ = Ax+ Bv is the cascade of n
integrators

A=

















0 1 0 · · · 0
0 0 1 · · · 0

0 0 0
... 0

0 0 0 · · · 1
0 0 0 · · · 0

















, B=













0
0
0
0
1













and is completely reachable
To steer the state x asymptotically to the origin, we design a control law
v= Kx (by pole-placement, LQR, etc.)

K
x(t)

pole-placement loop

linearization loop

ẋ = f(x, u)
u(t)v(t)

u(x, v)

Sunday, May 16, 2010

Note that the nonlinear model must be rather accurate for feedback
linearization to work
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Lecture: Nonlinear systems Feedback linearization

Feedback linearization for robotic manipulation

Consider a two-link robot

Each joint equipped with a motor providing
input torque τi, an encoder measuring the
joint position qi, and a tachometer
measuring the joint velocity q̇i, i= 1, 2

Objective of control design: make q1(t) and
q2(t) follow desired position histories qd1(t)
and qd2(t)
qd1(t) and qd2(t) are specified by the motion
planning system of the robot

Sect. 6.1

Example 6.2: Feedback linearization of a two-link robot

Intuitive Concepts 211

Figure 6.2 provides the physical model of a two-link robot, with each joint equipped with a motor
for providing input torque, an encoder for measuring joint position, and a tachometer for
measuring joint velocity. The objective of the control design is to make the joint positions q s and
q2 follow desired position histories q^(t) and q^t) , which are specified by the motion planning
system of the robot. Such tracking control problems arise when a robot hand is required to move
along a specified path, e.g., to draw circles.

Figure 6.2 : A two-link robot

Using the well-known Lagrangian equations in classical dynamics, one can easily show that
the dynamic equations of the robot is

(6.9)1
"21 "22|52

_J_
~hq2

hqx

-hqx-hq2

L S\

82

= [<7j q2]T being the two joint angles, T = [lj X2] r being the joint inputs, and

Hu=mxl , 2 + / 2 + 2 / , / co S < ? 2 ]+ / 2

I = H2\ = m2l\ ' c ^ ^ + m2lc2
2 + !2
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Lecture: Nonlinear systems Feedback linearization

Feedback linearization for robotic manipulation

Use Lagrangean equations to determine the dynamic equations of the robot
�

H11 H12
H21 H22

��

q̈1
q̈2

�

+
�

−hq̇2 −hq̇1 − hq̇2
hq̇1 0

��

q̇1
q̇2

�

+
�

g1
g2

�

=
�

τ1
τ2

�

where

H11 =m1l2c1
+ I1 +m2

�

l21 + l2c2
+ 2l1lc2

cos q2

�

+ I2

H22 =m2l2c2
+ I2

H12 = H21 =m2l1lc2
cos q2 +m2l2c2

+ I2

h=m2l1lc2
sin q2

g1 =m1lc1
g cos q1 +m2g

�

lc2
cos(q1 + q2) + l1 cos q1

�

g2 =m2lc2
g cos(q1 + q2)
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Lecture: Nonlinear systems Feedback linearization

Feedback linearization for robotic manipulation

The system dynamics can be compactly written as

H(q)q̈+ C(q, q̇)q̇+ g(q) = τ

Multiply both sides by H−1(q) and obtain the second-order differential
equation

q̈=−H−1(q)C(q, q̇)q̇−H−1(q)g(q) +τ

Define the control input τ to feedback-linearize the robot dynamics
�

τ1
τ2

�

=
�

H11 H12
H21 H22

��

v1
v2

�

+
�

−hq̇2 −hq̇1 − hq̇2
hq̇1 0

��

q̇1
q̇2

�

+
�

g1
g2

�

where
v= q̈d − 2λė−λ2e, λ > 0

v= [v1 v2] is the equivalent input, and e= q− qd being the tracking error on
positions
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Lecture: Nonlinear systems Feedback linearization

Feedback linearization for robotic manipulation

The resulting error dynamics is

ë+ 2λė+λ2e= 0, λ > 0

leading to the asymptotic convergence of the tracking error e(t) = q(t)− qd(t)
and its derivative ė(t) = q̇(t)− q̇(t) to zero
�

e(t)
ė(t)

�

= e−λt
�

1+λt t
−λ2t 1−λt

��

e(0)
ė(0)

� MATLAB
» syms lam t
» A=[0 1;-lam^2 -2*lam];
» factor(expm(A*t))

In robotics, feedback linearization is also known as computed torque, and can
be applied to robots with an arbitrary number of joints

Prof. Alberto Bemporad (University of Trento) Automatic Control 2 Academic year 2010-2011 17 / 18



Lecture: Nonlinear systems Feedback linearization

English-Italian Vocabulary

nonlinear system sistema non lineare
Lyapunov function funzione di Lyapunov
feedback linearization feedback linearization

Translation is obvious otherwise.
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