Lecture: Advanced linear control techniques

Automatic Control 2

Advanced linear control techniques

Prof. Alberto Bemporad

University of Trento

Academic year 2010-2011

Prof. Alberto Bemporad (University of Trento) Automatic Control 2 Academic year 2010-2011 1/33



Lecture: Advanced linear control techniques Deadbeat control

Advanced linear control design techniques

In this lecture we will consider three useful linear design techniques:

@ Deadbeat control (discrete-time)
@ Delay compensation (discrete-time)

o Internal model principle (both continuous and discrete-time)
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Lecture: Advanced linear control techniques Deadbeat control

Deadbeat control — Main idea

@ Consider the continuous-time system

x(t) = Ax(t)+Bu/t)
Y(t) = Cx.(t)+Dut)

o Compute its discrete-time equivalent by exact sampling

x(k+1) = Ax(k)+Bu(k)
{ y(k) = Cx(k)+ Du(k)

with u,(¢) = u,(kT) = u(k), Vt € [kT, (k + 1)T), x(k) = x,(kT), y(k) = y.(kT)

@ Design a linear discrete-time controller u(k) = Kx(k) by placing all the
closed-loop poles in z=0

det(2l —A—BK) = 2"
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Lecture: Advanced linear control techniques Deadbeat control

Deadbeat control — Main idea

@ By Cayley-Hamilton theorem (A + BK)" =0
@ As a consequence, the state x(k) vanishes after n steps

x(n)=(A+BK)"'x(0) =0

and remains at the origin, x(k) =0, Vk > n

@ The state x, of the original continuous time system also converges to zero
and remains at zero, x,(t) =0, Vt > nT;

Deadbeat control brings the state of a continuous-time system to the origin
in finite time nT, where T=sampling time, n=system order J
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Remarks on deadbeat control

@ In continuous-time linear control systems closed-loop modes are exponentials
el RA, <0

@ There is no continuous-time linear controller that brings the state to zero in
finite time !

@ The tuning knob of the deadbeat controller is the sampling time T

e T small: the state converges quickly to the origin, but input effort may be large

o T large: the state converges slowly, but input effort will be in general small
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Lecture: Advanced linear control techniques Deadbeat control

Example: deadbeat control of a DC motor

. 0 1 4
X, = K2 1 X
0 —(F+B);
o = [1 0]x
MATLAB
J=1; R=2;

k=1; beta=0.5;
Ac=[0 1; 0 -
Bc=[0;k/J/R];
Cc=[1 0];
Dc=0;

sys=ss (Ac,Bc,Cc,Dc);

T=4; % sampling time
sysd=c2d(sys,T);
[A,B,C,D]=ssdata(sysd);

K=-acker (A,B, [0 0]);

% State: x=[theta,omega]
(k"2/R+beta) /J];
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Example: deadbeat control of a DC motor

EEEE]

T =0.5s T=2s T=4s

K=[-10.1660 —5.4136] K=[-1.1565 —1.1075] K=[-0.5093 —0.5086]
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Deadbeat observer

@ Let’s design a discrete-time observer for x(k)
X(k + 1) = Ax(k) + Bu(k) + L(y(k) — Cx(k))
@ Place now the observer poles in z =0
det(zl —A+LC) =2"

@ By Cayley-Hamilton theorem, (A — LC)" = 0 = the estimation error
X(k) = x(k) — x(k) vanishes after n steps:

X(n)=(A—-LC)"'%(0)=0

i.e., x(k) =x(k), Vk > n

@ Tuning considerations: the smaller the sampling time T, the faster the
convergence of the estimate, but the worst typically the estimation error
during the first n — 1 steps
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Deadbeat dynamic compensator

@ Recall the overall dynamics of the closed-loop system under dynamic

compensation
x(k+1) = Ax(k)+ Bu(k)
X(k+1) = Ax(k)+Bu(k)+L(y(k) — Cx(k))
u(k) = Kx(k)+v(k)
y(k) = Cx(k)+ Du(k)

@ We have seen that the observer poles do not appear in the transfer function
from the reference to the output

@ Let the feedback gain K be such that (A + BK) has all zero eigenvalues
(nilpotent)

@ Will the dynamic compensator be deadbeat independently of the observer
gain L ?
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Example: DC motor under dynamic compensator

LR

<

'\9
K/ )

B

@ Controller: u(kT) = Kx(kT)
@ Controller poles: 0,0
@ Observer poles: 0.5,0.7

The output does not converge to zero
after n = 2 samples !
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Lecture: Advanced linear control techni Deadb

Dynamic (deadbeat) compensator

@ The overall closed-loop dynamics is
x(k+1)7 _ [A+BK —BK ][ x(k) B
{ [i(k—i—l)] = [ 0 A—LC} [i(k)}+_0}v(k)

@ The corresponding state evolution is

A+BK —BK 1°[x(0)]

o = [1 o}[ A A_LC] [;(0)_
(A+BK)X  H(k) x(0)
= [t 0}[ 0 (A—LC)"][J?(O)}

(A+BK)x(0)  +H(k)x(0)
SN—

&oes to zero in n steps

where H(k) is a matrix (dependent on k) that may not be zero for k > n.
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Dynamic (deadbeat) compensator

@ Let’s place the eigenvalues of both A + BK and A — LC at zero
@ Since

~ (A+BK)  H(k) x(0)
yk) = [c 0] [ 0 (A—LC)"} [5((0)}

2n X 2n matrix with zero eigenvalues

the output and state vectors converge to zero after at most 2n steps

Proof:
Matrix [A*;)BK A__'ch] is nilpotent of order 2n. By Cayley-Hamilton theorem
[A““OBK A__BLKC] *" = 0, and hence H(k) = 0 for all k > 2n. O
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Example: DC motor under dynamic compensator

\nl I8 [=] 5 |

@ Controller poles: 0,0
@ Observer poles: 0,0

The output converges to zero after
2n = 4 samples !
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Lecture: Advanced linear control techni Delay comp

The problem of delay

process with delay

u(t) y(t)

S ] il S

@ Control loops sometimes suffer the presence of delays, for example due to
transport phenomena and buffers

@ According to frequency-domain analysis, time delays introduce phase lag,
and classical linear control techniques (like PID) may be unable to correct the
phase margin adequately

@ We will see two simple discrete-time control methods that compensate delays
very effectively
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Delay compensation: Method #1

process with delay

ulk—1) ... wk—7
rmu(k) (k—1) (k=) 4B (k)

@ Assume the discrete-time model has delay of T steps on the input and that
(A,B) is completely reachable
x(k+1) = Ax(k)+Bu(k— 1)
yk) = Cx(k)
@ Map delays in T poles in z = 0, introducing T new states
Wj(k)éu(k_.]):]: 1)'~':T
@ The augmented system is

x(k+1) = Ax(k)+Bw._(k)
wi(k+1) = wy_1(k) =uk—7+1)
i i MATLAB
: . »sysnd = delay2z (sys)
wylk+1) = wi(k) =uk-1)

wy(k+1) u(k)
Prof. Alberto Bemporad (University of Trento) Automatic Control 2 Academic year 2010-2011 15/33
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Delay compensation: Method #1

@ The extended system is

X A B O 0 X 0

w, o o0 I, ... O w, 0
Dl = oo C o+ | O | uto
Wy 0O 0 O I, Wy

w, 00 0 o | w I,

0 0 0 B AB A" B
0 0 I, 0 0 0
R=1: : R : :
o I, ... 00 0 .. O
I, 0 ... 0 0 O .. O

@ Design a controller K for the extended system (by LQR, pole-placement, etc.)

u(k) KIX' (k) wi(k) ... wi(k)] +v(k)
Kx(k)+Kulk—1)+...+Kju(k—1)+v(k)
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Delay compensation: Method #2

@ Consider again the discrete-time model with delay of T steps on the input

x(k+1) = Ax(k)+Bu(k—1)
y(k) = Cx(k)

o Consider the delay-free model with state x(k) = x(k + 7)

x(k+1) = Ax(k)+Bu(k)
yik) = Cx(k)

@ Design a controller u(k) = Kx(k) + v(k) for the delay-free system
@ Implementation: at time k predict the state 7 steps ahead

Note that any other predictor

of x(k+ 7) would Be Ok,

T—1
x(k+7)=Ax(k)+ Y ABu(k —1-j)
j=0

for instance a predictor Based

on a more accurate nonlinear model
@ The complete control law is u(k) = Kx(k + ) + v(k)
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Delay compensation: Method #2

@ The delay-free closed-loop system is

x(k+1) = (A+BK)x(k)+Bv(k)
yk) = Cx(k)

@ The transfer function from v(k) to y(k) =y(k+ 7) is

Y(2) _ 2'Y(2)

— A -1

and therefore
Y= =C(zl—A—BK) Bz "
V(z)

@ The characteristic polynomial p;(A) of the resulting closed-loop system is

pg(A) = det(Al —A — BK)A® — ¢ dosed-loop poles in z=0
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Example of delay compensation

@ Open-loop system

e *u(t)

¥(t)

_ 1
T (s+1)2

A y(t)
X0 = [y‘(t) ]

and obtain the state-space model

@ Set

step response

0 [_01 _12]x(t)+[ﬂu(t—4)
¥ = [1 0]x(t)

tfme (s)E (sec)JD
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Example of delay compensation (cont’d)

step response

@ choose the sampling time T=1s
@ convert the system to discrete-time
@ compare step response

tin":le (s) (se:)

0.7358  0.3679 0.2642
k+1) = [—0.3679 0 }x(k)+[o.3679}”(k_4)

yk) = [1 0]x(k)

@ By placing closed-loop poles in 0.4 +j0.4 we get
K =[—-0.3014 0.3911]
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Example of delay compensation (cont’d)

@ The control law is u(k) = Kx(k) + v(k), v(k) = Hr(k)
@ Let’s calculate H to have unit DC-gain

1

H=———————
CI—-A—-BK)™'B

=1.3014

@ The control law with delay compensation is

#(k+4) = A%(k)+A3Bu(k —4)+A%Bu(k — 3)+
+ABu(k —2) +Bu(k — 1)
u(k) = Kx(k+4)+Hr(k)
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Delay

Example of delay compensation (cont’d)

physical delay

ut)

Zero-Order
Holdd

tput
derivative

Output
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Holdt
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Example of delay compensation (cont’d)

output signal y(t) input signal u(t)
000 Output 000 Input
~ 8B LLL ARBBE B AR ~ 8B LRL ARBEB @A F
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Remarks on delay compensation

@ By using method #1, the extended state has dimension n + 7. The
computation of K can be complex if 7 is large
o Instead, with method #2 the gain K has always n components, independently

of T
@ On the other hand, method #2 is a particular case of method #1, as
x(k)
u(tk—1)
Kx(k+1)=K[A" A""'B ...AB B]
ulk—1)

@ Method #2 can only choose n closed-loop poles, by construction the
remaining 7 are in z = 0: p4(A) = det(zl — A — BK)z"

o If the reference r(k) is known in advance, it is possible to compensate the
closed-loop tracking delay 7 by sending r(k + 7) to the controller
(anticipative action or preview)

@ Both methods can be extended to observer design for compensating a delay
o > 0 on the output channel y(k — o)
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Internal model principle

input disturbance

reference d(t)

r(t) s~ et) u(t) A y(t)

—»O—» C(s) —ﬁO—» G(s) >
@ Let’s come back to the problem of tracking a reference signal r(t) under the

possible perturbation of an input disturbance d(t)

@ When r(t), d(t) are constant signals, we’ve seen that by introducing an
integral action we can guarantee zero tracking errors in steady-state

@ Can we generalize the idea of embedding the “internal model” 2 of the
(Laplace transform) of the reference and/or disturbance signal to other
waveforms ?
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Lecture: Advanced linear control techniques Internal Model Principle (IMP)

IMP for noise models rejection

d(t)
r05+:- e(t) C(s) u(t)+:+ | s y(t)ﬁ

@ Consider first the case of disturbance rejection only (r(t) = 0)
@ Let d(t) be a signal whose Laplace transform D(s) is a rational function

Do) = £[d0) =

reference

linput disturbance

@ Examples:
I(t) (unitstep) = D(s) = %

sin(eot) 1(t) = D(s) = #x

d(t)
d(t)

N,(s)
o Let G(s) = Dp ® be the transfer function of the open-loop process
s
P
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IMP for noise models rejection

@ Let the transfer function of the controller C(s) include the disturbance model

) N.(s)
$)=——"—
D.(s)D4(s)
@ How to design N,(s), D.(s) ? Consider the extended system
N, (s
G,(s) = L
D,(s)Dy(s)

and design a stabilizing dynamic compensator 7<= N, (5) (by state-feedback control
+ observer design on a realization A, B, C, D of G (s) or by loop-shaping, etc.)

Theorem: Internal Model Principle (disturbance rejection)

A sufficient condition for the steady-state rejection of an input disturbance
signal d(t) with Laplace transform N(s)/D4(s) is that the denominator
polynomial of C(s) contains Dy(s) (more generally: the denominator
polynomial of the the loop function L(s) = C(s)G(s) contains Dy(s))
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IMP for noise models rejection

Proof:
@ For r =0, the Laplace transform Y(s) of the output y(t) is

y N,N,D,
~ D,DsD, +N,N,

@ The closed-loop poles are the roots of the polynomial
Pd = (Dde)DC +NpNC

and therefore, by design, they have negative real part

@ Then y(t) = £ 1[Y(s)] converges to zero asymptotically as t — 0o
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Example

Famp oty &)

process ¥t

5
del: G(s) = —
process model: G(s) po

1
input disturbance model: D(s) = — (ramp)
s

000 )
~ 8B LPLL ABE B 7

Prof. Alberto Bemporad (University of Trento)

MATLAB

G=tf(5,[1 5]);
Gd=tf(1,[1 0 0]);

Ge=G*Gd;
ssGe=ss (Ge) ;

[A,B,C,D]=ssdata (ssGe) ;
K=-place (A,B, [-8 -5+7 -5-71);
L=place(A’,C’, [-10 -12 -15]1)";

Ce=-reg(ssGe,-K,L);
[Nc,Dcl=tfdata(Ce);

Nc=Nc{1l};
Dc=Dc{l};

u(®, d@©

SB LAL A
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IMP for reference tracking

N.(s
@ Let r(t) be a signal whose Laplace transform R(s) = £ [r(t)] = D E ;
(s
) N,(s)
@ consider the extended system G,(s) = —————
D,(5)D,()
o design a stabilizing dynamic compensator <& and let C(s) = _Nels)
& gay p D.(s)’ = D.5)D,0)

Theorem: Internal Model Principle (reference tracking)

A sufficient condition for tracking a reference signal r(t) with Laplace
transform N,(s)/D,(s) with zero offset in steady-state is that the denominator
polynomial of C(s) contains D,(s) (more generally: the denominator
polynomial of the the loop function L(s) = C(s)G(s) contains D,(s))

Proof: Compute the Laplace transform E(s) = R(s) — Y(s) = I%. Its inverse
—_— p~cEr p-c

Laplace transform . ' [E(s)] = r(t) — y(t) tends to zero asymptotically O
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Example

@ Problem data:

s+1

GO = T 1006+20)

t t
r(t) =1+sin > d(t) = 20cos >

@ Compute Laplace transforms of reference and disturbance signals

1 20s
Re)=—-+—5=7, D&)=—5—7

s 52+‘_l 52+4_1

@ We need to include the polynomial s(s? + %). Since % already appears in G(s),
it’s enough to augment by 52% the system
4
@ Design a regulator C(s) to stabilize the extended system

s+1

) = T TG 1206 T S
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Example

Internal Model Principle (IMP)

MATLAB

LT Systemt

omega=0.5;

G=tf([1 1],[1 30 200 0]
Gsin=tf (1, [1 0 omega"2]
Ge=G+*Gsin;

)i
)i
[A,B,C,D]=ssdata(ss (Ge));

$LOR state-feedback
K=-1gr (A,B,C’*C, .001);

pTy %Observer
L=place(A’,C’, [-10 -15 -20 -25 -301)";
Dy‘namic compensator' LQR Controller + % Dynamic compensator (for augmented system)
. : C=-reg(ss (Ge),-K, L)
state observer designed by pole placement
% The overall compensator is CxGsin
000 output 000 input
~ 8B PPLHL AB > ~ 8B PLRLHL ABRER B 7
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Perfect tracking of

r(t) = 1 +sin(0.5t) with
complete rejection of
d(t) = 20 cos(0.5t)
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English-Italian Vocabulary

B

deadbeat controller controllore deadbeat
internal model principle | principio del modello interno
time-delay system sistema con ritardo

Translation is obvious otherwise.
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