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Lecture: Advanced linear control techniques Deadbeat control

Advanced linear control design techniques

In this lecture we will consider three useful linear design techniques:

Deadbeat control (discrete-time)

Delay compensation (discrete-time)

Internal model principle (both continuous and discrete-time)
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Deadbeat control – Main idea

Consider the continuous-time system
�

ẋc(t) = Acxc(t) + Bcuc(t)
yc(t) = Cxc(t) +Duc(t)

Compute its discrete-time equivalent by exact sampling
�

x(k+ 1) = Ax(k) + Bu(k)
y(k) = Cx(k) +Du(k)

with uc(t)≡ uc(kT) = u(k), ∀t ∈ [kT, (k+ 1)T), x(k) = xc(kT), y(k) = yc(kT)
Design a linear discrete-time controller u(k) = Kx(k) by placing all the
closed-loop poles in z= 0

det(zI− A− BK) = zn
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Deadbeat control – Main idea

By Cayley-Hamilton theorem (A+ BK)n = 0

As a consequence, the state x(k) vanishes after n steps

x(n) = (A+ BK)nx(0) = 0

and remains at the origin, x(k) = 0, ∀k≥ n

The state xc of the original continuous time system also converges to zero
and remains at zero, xc(t) = 0, ∀t≥ nTs

Deadbeat control brings the state of a continuous-time system to the origin
in finite time nT, where T=sampling time, n=system order
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Remarks on deadbeat control

In continuous-time linear control systems closed-loop modes are exponentials
eλit, ℜλi < 0

There is no continuous-time linear controller that brings the state to zero in
finite time !

The tuning knob of the deadbeat controller is the sampling time T:

T small: the state converges quickly to the origin, but input effort may be large

T large: the state converges slowly, but input effort will be in general small
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Example: deadbeat control of a DC motor







ẋc =

�

0 1
0 −( k2

R
+ β) 1

J

�

x+

�

0
k
JR

�

uc

yc =
�

1 0
�

xc

MATLAB
J=1; R=2;
k=1; beta=0.5;

% State: x=[theta,omega]
Ac=[0 1; 0 -(kˆ2/R+beta)/J];
Bc=[0;k/J/R];
Cc=[1 0];
Dc=0;
sys=ss(Ac,Bc,Cc,Dc);

T=4; % sampling time
sysd=c2d(sys,T);
[A,B,C,D]=ssdata(sysd);

K=-acker(A,B,[0 0]);

R

u
J

!

"e
i
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Example: deadbeat control of a DC motor

T
s
=0.5 s T

s
=2 s T

s
=4 s

Tuesday, May 18, 2010

T = 0.5s

K = [−10.1660 − 5.4136]

T = 2s

K = [−1.1565 − 1.1075]

T = 4s

K = [−0.5093 − 0.5086]
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Deadbeat observer

Let’s design a discrete-time observer for x(k)

x̂(k+ 1) = Ax̂(k) + Bu(k) + L(y(k)− Cx̂(k))

Place now the observer poles in z= 0

det(zI− A+ LC) = zn

By Cayley-Hamilton theorem, (A− LC)n = 0⇒ the estimation error
x̃(k) = x(k)− x̂(k) vanishes after n steps:

x̃(n) = (A− LC)nx̃(0) = 0

i.e., x̂(k) = x(k), ∀k≥ n

Tuning considerations: the smaller the sampling time T, the faster the
convergence of the estimate, but the worst typically the estimation error
during the first n− 1 steps
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Lecture: Advanced linear control techniques Deadbeat observer

Deadbeat dynamic compensator

Recall the overall dynamics of the closed-loop system under dynamic
compensation







x(k+ 1) = Ax(k) + Bu(k)
x̂(k+ 1) = Ax̂(k) + Bu(k) + L(y(k)− Cx̂(k))

u(k) = Kx̂(k) + v(k)
y(k) = Cx(k) +Du(k)

We have seen that the observer poles do not appear in the transfer function
from the reference to the output

Let the feedback gain K be such that (A+ BK) has all zero eigenvalues
(nilpotent)

Will the dynamic compensator be deadbeat independently of the observer
gain L ?
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Example: DC motor under dynamic compensator

R

u
J

!

"e
i

Controller: u(kT) = Kx̂(kT)
Controller poles: 0, 0

Observer poles: 0.5,0.7

The output does not converge to zero
after n= 2 samples !
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Dynamic (deadbeat) compensator

The overall closed-loop dynamics is
� �

x(k+ 1)
x̃(k+ 1)

�

=
�

A+ BK −BK
0 A− LC

��

x(k)
x̃(k)

�

+
�

B
0

�

v(k)

The corresponding state evolution is

x(k) =
�

I 0
�

�

A+ BK −BK
0 A− LC

�k�
x(0)
x̃(0)

�

=
�

I 0
�

�

(A+ BK)k H(k)
0 (A− LC)k

��

x(0)
x̃(0)

�

= (A+ BK)kx(0)
︸ ︷︷ ︸

goes to zero in n steps

+H(k)x̃(0)

where H(k) is a matrix (dependent on k) that may not be zero for k≥ n.
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Dynamic (deadbeat) compensator

Let’s place the eigenvalues of both A+ BK and A− LC at zero
Since

y(k) =
�

C 0
�

�

(A+ BK)k H(k)
0 (A− LC)k

�

︸ ︷︷ ︸

2n× 2n matrix with zero eigenvalues

�

x(0)
x̃(0)

�

the output and state vectors converge to zero after at most 2n steps

Proof:

Matrix
�

A+BK −BK
0 A−LC

�

is nilpotent of order 2n. By Cayley-Hamilton theorem
�

A+BK −BK
0 A−LC

�2n
= 0, and hence H(k) = 0 for all k≥ 2n. �
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Example: DC motor under dynamic compensator

R

u
J

!

"e
i

Controller poles: 0, 0

Observer poles: 0,0

The output converges to zero after
2n= 4 samples !
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The problem of delay

G(s)
!

"

y(t)r(t)
C(s)

e(t) u(t)
e−τds

process with delay

Sunday, May 16, 2010

Control loops sometimes suffer the presence of delays, for example due to
transport phenomena and buffers

According to frequency-domain analysis, time delays introduce phase lag,
and classical linear control techniques (like PID) may be unable to correct the
phase margin adequately

We will see two simple discrete-time control methods that compensate delays
very effectively
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Delay compensation: Method #1

x(k)

process with delay

A, BC(z)
u(k − 1) . . . u(k − τ)

u(k)

Sunday, May 16, 2010

Assume the discrete-time model has delay of τ steps on the input and that
(A, B) is completely reachable

x(k+ 1) = Ax(k) + Bu(k−τ)
y(k) = Cx(k)

Map delays in τ poles in z= 0, introducing τ new states
wj(k)¬ u(k− j), j= 1, . . . ,τ
The augmented system is

x(k+ 1) = Ax(k) + Bwτ(k)
wτ(k+ 1) = wτ−1(k) =u(k−τ+ 1)

...
...

w2(k+ 1) = w1(k) =u(k− 1)

w1(k+ 1) = u(k)

MATLAB
»sysnd = delay2z(sys)
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Delay compensation: Method #1

The extended system is
















x
wτ
...

w2

w1

















(k+ 1) =

















A B 0 . . . 0
0 0 Im . . . 0
...

...
...

. . .
...

0 0 0 . . . Im

0 0 0 . . . 0

































x
wτ
...

w2

w1

















(k) +

















0
0
0
...

Im

















u(k)

and is completely reachable:

R=

















0 0 . . . 0 B AB . . . An−1B
0 0 . . . Im 0 0 . . . 0
...

...
...

...
...

...
...

...
0 Im . . . 0 0 0 . . . 0
Im 0 . . . 0 0 0 . . . 0

















Design a controller K for the extended system (by LQR, pole-placement, etc.)

u(k) = K[x′(k) w′τ(k) . . . w′1(k)]
′ + v(k)

= Kxx(k) +Kτu(k−τ) + . . .+K1u(k− 1) + v(k)
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Delay compensation: Method #2

Consider again the discrete-time model with delay of τ steps on the input

x(k+ 1) = Ax(k) + Bu(k−τ)
y(k) = Cx(k)

Consider the delay-free model with state x̄(k)¬ x(k+τ)

x̄(k+ 1) = Ax̄(k) + Bu(k)
ȳ(k) = Cx̄(k)

Design a controller u(k) = Kx̄(k) + v(k) for the delay-free system

Implementation: at time k predict the state τ steps ahead

x(k+τ) = Aτx(k) +
τ−1
∑

j=0

AjBu(k− 1− j)

Note that any other predictor

of x(k+τ) would be ok,

for instance a predictor based

on a more accurate nonlinear model

The complete control law is u(k) = Kx(k+τ) + v(k)
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Delay compensation: Method #2

The delay-free closed-loop system is

x̄(k+ 1) = (A+ BK)x̄(k) + Bv(k)
ȳ(k) = Cx̄(k)

The transfer function from v(k) to ȳ(k) = y(k+τ) is

Ȳ(z)
V(z)

=
zτY(z)
V(z)

= C(zI− A− BK)−1B

and therefore
Y(z)
V(z)

= C(zI− A− BK)−1Bz−τ

The characteristic polynomial pd(λ) of the resulting closed-loop system is

pd(λ) = det(λI− A− BK)λτ ←− τ closed-loop poles in z= 0
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Example of delay compensation

Open-loop system

y(t) =
1

(s+ 1)2
e−4su(t)

Set

x(t)¬
�

y(t)
ẏ(t)

�

and obtain the state-space model

ẋ(t) =
�

0 1
−1 −2

�

x(t) +
�

0
1

�

u(t− 4)

y(t) =
�

1 0
�

x(t)

0 2 4 6 8 10 12 14 16
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

step response

time (s) (sec)
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Example of delay compensation (cont’d)

choose the sampling time T = 1 s

convert the system to discrete-time

compare step response

0 5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

step response

time (s) (sec)

x(k+ 1) =
�

0.7358 0.3679
−0.3679 0

�

x(k) +
�

0.2642
0.3679

�

u(k− 4)

y(k) =
�

1 0
�

x(k)

By placing closed-loop poles in 0.4± j0.4 we get

K = [−0.3014 0.3911]

Prof. Alberto Bemporad (University of Trento) Automatic Control 2 Academic year 2010-2011 20 / 33



Lecture: Advanced linear control techniques Delay compensation

Example of delay compensation (cont’d)

The control law is u(k) = Kx̄(k) + v(k), v(k) = Hr(k)
Let’s calculate H to have unit DC-gain

H =
1

C(I− A− BK)−1B
= 1.3014

The control law with delay compensation is






x̂(k+ 4) = A4x(k) + A3Bu(k− 4) + A2Bu(k− 3)+
+ABu(k− 2) + Bu(k− 1)

u(k) = Kx̂(k+ 4) +Hr(k)
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Example of delay compensation (cont’d)

physical delay

control buffer

predicted future state
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Lecture: Advanced linear control techniques Delay compensation

Example of delay compensation (cont’d)

output signal y(t) input signal u(t)
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Remarks on delay compensation

By using method #1, the extended state has dimension n+τ. The
computation of K can be complex if τ is large
Instead, with method #2 the gain K has always n components, independently
of τ
On the other hand, method #2 is a particular case of method #1, as

Kx̂(k+τ) = K[Aτ Aτ−1B . . . AB B]

















x(k)
u(k−τ)

...
u(k− 1)

















Method #2 can only choose n closed-loop poles, by construction the
remaining τ are in z= 0: pd(λ) = det(zI− A− BK)zτ

If the reference r(k) is known in advance, it is possible to compensate the
closed-loop tracking delay τ by sending r(k+τ) to the controller
(anticipative action or preview)
Both methods can be extended to observer design for compensating a delay
σ > 0 on the output channel y(k−σ)

Prof. Alberto Bemporad (University of Trento) Automatic Control 2 Academic year 2010-2011 24 / 33



Lecture: Advanced linear control techniques Internal Model Principle (IMP)

Internal model principle

+

+

C(s) G(s)

!"#$%&'!(%$)*+",-

u(t)
d(t)

y(t)

-

+r(t)
)-.-)-",-

e(t)

Monday, May 17, 2010

Let’s come back to the problem of tracking a reference signal r(t) under the
possible perturbation of an input disturbance d(t)
When r(t), d(t) are constant signals, we’ve seen that by introducing an
integral action we can guarantee zero tracking errors in steady-state

Can we generalize the idea of embedding the “internal model” 1
s

of the
(Laplace transform) of the reference and/or disturbance signal to other
waveforms ?
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IMP for noise models rejection

+

+

C(s) G(s)

!"#$%&'!(%$)*+",-

u(t)
d(t)

y(t)

-

+r=0
)-.-)-",-

e(t)

Monday, May 17, 2010

Consider first the case of disturbance rejection only (r(t)≡ 0)
Let d(t) be a signal whose Laplace transform D(s) is a rational function

D(s) =L [d(t)] =
Nd(s)
Dd(s)

Examples:

d(t) = 1I(t) (unit step) ⇒ D(s) = 1
s

d(t) = sin(ωt)1I(t) ⇒ D(s) = ω

s2+ω2

Let G(s) =
Np(s)

Dp(s)
be the transfer function of the open-loop process
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IMP for noise models rejection

Let the transfer function of the controller C(s) include the disturbance model

C(s) =
Nc(s)

Dc(s)Dd(s)

How to design Nc(s), Dc(s) ? Consider the extended system

Ge(s) =
Np(s)

Dp(s)Dd(s)

and design a stabilizing dynamic compensator Nc(s)
Dc(s)

(by state-feedback control
+ observer design on a realization A, B, C, D of Ge(s), or by loop-shaping, etc.)

Theorem: Internal Model Principle (disturbance rejection)

A sufficient condition for the steady-state rejection of an input disturbance
signal d(t) with Laplace transform Nd(s)/Dd(s) is that the denominator
polynomial of C(s) contains Dd(s) (more generally: the denominator
polynomial of the the loop function L(s) = C(s)G(s) contains Dd(s))

Prof. Alberto Bemporad (University of Trento) Automatic Control 2 Academic year 2010-2011 27 / 33



Lecture: Advanced linear control techniques Internal Model Principle (IMP)

IMP for noise models rejection

Proof:

For r≡ 0, the Laplace transform Y(s) of the output y(t) is

Y =
NdNpDc

DpDdDc +NpNc

The closed-loop poles are the roots of the polynomial

Pd = (DpDd)Dc +NpNc

and therefore, by design, they have negative real part

Then y(t) =L −1[Y(s)] converges to zero asymptotically as t→∞
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Example

process model: G(s) =
5

s+ 5

input disturbance model: D(s) =
1

s2 (ramp)

MATLAB
G=tf(5,[1 5]);
Gd=tf(1,[1 0 0]);

Ge=G*Gd;
ssGe=ss(Ge);

[A,B,C,D]=ssdata(ssGe);
K=-place(A,B,[-8 -5+j -5-j]);
L=place(A’,C’,[-10 -12 -15])’;

Ce=-reg(ssGe,-K,L);

[Nc,Dc]=tfdata(Ce);
Nc=Nc{1};
Dc=Dc{1};

u(t)

d(t)

Monday, May 17, 2010
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IMP for reference tracking

Let r(t) be a signal whose Laplace transform R(s) =L [r(t)] =
Nr(s)
Dr(s)

consider the extended system Ge(s) =
Np(s)

Dp(s)Dr(s)

design a stabilizing dynamic compensator Nc(s)
Dc(s)

, and let C(s) = Nc(s)
Dc(s)Dr(s)

Theorem: Internal Model Principle (reference tracking)

A sufficient condition for tracking a reference signal r(t) with Laplace
transform Nr(s)/Dr(s) with zero offset in steady-state is that the denominator
polynomial of C(s) contains Dr(s) (more generally: the denominator
polynomial of the the loop function L(s) = C(s)G(s) contains Dr(s))

Proof: Compute the Laplace transform E(s) = R(s)− Y(s) =
NrNpDc

DpDcDr+NpNc
. Its inverse

Laplace transform L −1[E(s)] = r(t)− y(t) tends to zero asymptotically �
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Example

Problem data:

G(s) =
s+ 1

s(s+ 10)(s+ 20)
, r(t) = 1+ sin

t

2
, d(t) = 20cos

t

2

Compute Laplace transforms of reference and disturbance signals

R(s) =
1

s
+

1
2

s2 + 1
4

, D(s) =
20s

s2 + 1
4

We need to include the polynomial s(s2+ 1
4
). Since 1

s
already appears in G(s),

it’s enough to augment by 1
s2+ 1

4

the system

Design a regulator C(s) to stabilize the extended system

Ge(s) =
s+ 1

s(s+ 10)(s+ 20)(s2 + 1
4
)
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Example

Dynamic compensator: LQR controller +
state observer designed by pole placement

MATLAB
omega=0.5;

G=tf([1 1],[1 30 200 0]);
Gsin=tf(1,[1 0 omega^2]);
Ge=G*Gsin;

[A,B,C,D]=ssdata(ss(Ge));

%LQR state-feedback
K=-lqr(A,B,C’*C,.001);

%Observer
L=place(A’,C’,[-10 -15 -20 -25 -30])’;

% Dynamic compensator (for augmented system)
C=-reg(ss(Ge),-K,L)

% The overall compensator is C*Gsin

Perfect tracking of
r(t) = 1+ sin(0.5t) with
complete rejection of
d(t) = 20cos(0.5t)
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English-Italian Vocabulary

deadbeat controller controllore deadbeat
internal model principle principio del modello interno
time-delay system sistema con ritardo

Translation is obvious otherwise.
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