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Lecture: Optimal control and estimation Linear quadratic regulation

Linear quadratic regulation (LQR)

o State-feedback control via pole placement requires one to assign the
closed-loop poles

@ Any way to place closed-loop poles automatically and optimally ?

@ The main control objectives are

@ Make the state x(k) “small” (to converge to the origin)
@ Use “small” input signals u(k) (to minimize actuators’ effort)

These are conflicting coals |
input w(t) state z(t)
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@ LQR is a technique to place automatically and optimally the closed-loop poles

Prof. Alberto Bemporad (University of Trento) Automatic Control 2 Academic year 2010-2011 2/32
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Finite-time optimal control

@ Let the model of the open-loop process be the dynamical system
x(k+1) = Ax(k) + Bu(k) linear system

with initial condition x(0)

@ We look for the optimal sequence of inputs
U= {u(0), u(1), ..., uN-1)}

driving the state x(k) towards the origin and that minimizes the performance

index
N-1
J(x(0),U) = x'(N)Qux(N) + Zx’(k)Qx(k) +u/(K)Ru(k) ausdratic cost
k=0

where Q=Q > 0,R=R' >0, Qy=Q, > 0'

1For a matrix Q € R™", Q > 0 means that Q is a positive definite matrix, i.e., x'Qx > 0 for all x # 0,
x € R". Qy = 0 means positive semidefinite, xX'Qx > 0, Yx € R"
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Finite-time optimal control

@ Example: Q diagonal Q = Diag(qy,.-.,q,), single input, Qy =0

N—-1 n
Jx(0), 1) =Y. (Z qix?(k)) +Ru*(k)

k=0 \i=1

o Consider again the general performance index of the posed linear quadratic
(LQ) problem

N-1
J(x(0),U) = x' (N)Qux(N) + Zx’(k)Qx(k) +u/(k)Ru(k)

k=0

N is called the time horizon over which we optimize performance

The first term x’Qx penalizes the deviation of x from the desired target x =0

The second term u’Ru penalizes actuator authority

The third term x'(N)Qux(N) penalizes how much the final state x(N) deviates

from the target x =0

@ Q,R,Qy are the tuning parameters of the optimal control design (cf. the
parameters of the PID controller K,,, T;, T), and are directly related to
physical/economic quantities
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Minimum-energy controllability

o Consider again the problem of controllability of the state to zero with
minimum energy input
u(0)
u(1)
ming .
u(N—1)
s.t. x(N)=0
@ The minimum-energy control problem can be seen as a particular case of the
LQ optimal control problem by setting

R:I; Q:O: QNZOOI
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Solution to LQ optimal control problem

@ By substituting x(k) = A*x(0) + Zi:ol ABu(k—1—1) in

N—1

J(x(0),U) = Zx’(k)Qx(k) + u/(K)Ru(k) + x'(N)Qux(N)

k=0
we obtain

J(x(0),U) = %U’HU +x(0)'FU + %x(O)’Yx(O)

where H = H’ > 0 is a positive definite matrix

@ The optimizer U* is obtained by zeroing the gradient

0 = VuJ(x(0),U)=HU +Fx(0)
u*(0)
u*(1)
— Ut = : =—H 'F'x(0)
r(N—1)
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[LQ problem matrix computation] |,

x1) 7'rQ o o .. o0 x(1)
x(2) 0o Q o0 . 0 x(2)
Jx(0),U) = X' (0)Qx(0)+ . : : RO : : +
x(N—1) 0 ... 0 Q © x(N—1)
x(N) 0 0 .. 0 Q x(N)
R 0 0 u(0)
0 R 0 u(1)
[«(0) (1) ... vOW-1)] S .
o .. 0o R]|un-1
|
R
H
x(1) B 0 .. 0 A
x(2) AB B ... 0 “(‘1)) A
: = : T u.(..) + (X0
x(N) Vg avep g | LuN=D AV
—
N
Jx(0),U) = x'(0)Qx(0)+ (SU + Nx(0))'Q(SU + Nx(0)) + U'RU

= lUa@+3a8) U+ (0) 203U+ 1x(0)2(Q + N'ON)x(0)
20 28T RS RE i/

H F Y
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Solution to LQ optimal control problem

@ The solution
u*(0)
u*(1)

Ut = =—H'F'x(0)

u*(N—1)
is an open-loop one: u(k) = f(x(0)), k=0,1,...,N—1

@ Moreover the dimensions of the H and F matrices is proportional to the time
horizon N

@ We use optimality principles next to find a better solution (computationally
more efficient, and more elegant)
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Bellman’s principle of optimality

Bellman’s principle

Given the optimal sequence U* = [u*(0),..., u*(N —1)] (and
the corresponding optimal trajectory x*(k)), the subsequence
[u*(ky),...,u"(N—1)] is optimal for the problem on the horizon

[k,,N], starting from the optimal state x*(k;) Richard Bellman
(1920-1984)

optimal state z* (k)

@ Given the state x*(k;), the optimal input trajectory
u* on the remaining interval [k;,N] only depends on
1;1 x*(kq)
optimal input u* (k) @ Then each optimal move u*(k) of the optimal
U T R trajectory on [0, N] only depends on x*(k)

= 4

@ The optimal control policy can be always expressed
in state feedback form u*(k) = u*(x*(k)) !

kN
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Bellman’s principle of optimality

@ The principle also applies to nonlinear systems
and/or non-quadratic cost functions: the

optimal state trajectories x*

optimal control law can be always written in 1
state-feedback form \ f T~
Nl NN
u'(k) =fi(x*(k)), Vk=0,....N—1
S

L)

i*‘_—//

1/

@ Compared to the open-loop solution {u*(0),...,u*(N —1)} =f(x(0)) the
feedback form u*(k) = fi.(x*(k)) has the big advantage of being more robust
with respect to perturbations: at each time k we apply the best move on the
remaining period [k, N]

Prof. Alberto Bemporad (University of Trento) Automatic Control 2 Academic year 2010-2011 10/ 32



Lecture: Optimal control and estimation Linear quadratic regulation

Dynamic programming
@ At a generic instant k; and state x(k;) = z consider the optimal cost-to-go

V@)=, min {Z X (R)Qx() + 1 (R)Ru(k) +x (N)QNx(N)}

@ Vy(2) is the optimal cost in the remaining interval [k, N] starting at x(k;) =2

Principle of dynamic programming

V = in J(z,U
o(2) VA ((0)BN—-1)} (z,U)

k—1
min { DX (K)Qx(k) + u/ (K)Ru(k) + Vi, (x(kl))}
k=0

u(0),...,u(k;—1)

@ Starting at x(0), the minimum cost over [0, N] equals the minimum cost
spent until step k; plus the optimal cost-to-go from k; to N starting at x(k;)
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Riccati iterations

By applying the dynamic programming principle, we can compute the optimal
inputs u*(k) recursively as a function of x*(k) (Riccati iterations):

@ Initialization: P(N) = Qy

© Fork=N,...,1, compute recursively the following
matrix

P(k—1) = Q—A'P(k)B(R+B'P(k)B)'B'P(k)A+A’P(k)A
© Define
K(k) =—(R+BP(k+1)B)'B'P(k+1)A

The optimal input is

Jacopo Francesco

u*(k) = K(k)x*(k) Riccati (1676-1754)

The optimal input policy u*(k) is a (linear time-varying) state feedback ! )
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Linear quadratic regulation

@ Dynamical processes operate on a very long time horizon (in principle, for
ever). Let’s send the optimal control horizon N — oo

Vo (x(0)) = H(O%i(rll)w;x/(k)Qx(k) + ' ()Ru(k)

Result

Let (A, B) be a stabilizable pair, R > 0, Q > 0. There exists a unique solution
P, of the algebraic Riccati equation (ARE)

Poo =APoA+Q—AP B(B'PouB+R)B'Po A

such that the optimal cost is V°°(x(0)) = x'(0)P,x(0) and the optimal control
law is the constant linear state feedback u(k) = Kjqpx(k) with

Kion = —(R+B'P,B) 'B'Po A

MATLAB MATLAB
P, = dare(A,B,Q,R) [Keos/Poo] = dlgr(A,B,Q,R)
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Linear quadratic regulation

@ Go back to Riccati iterations: starting from P(0o) = P, and going backwards
we get P(j) =P, Vj =0
@ Accordingly, we get

K(j)=—(R+B'PooB) 'BPA=Kior, Vi=0,1,...

@ The LQR control law is linear and time-invariant
MATLAB E= closed-loop poles
» [Koo/Poo,E] = 1qgr(sysd,Q,R) = eigenvalues of (A + BK;or)

@ Closed-loop stability is ensured if (A, B) is stabilizable, R > 0, Q > 0, and
(A,Q?) is detectable, where Q2 is the Cholesky factor® of Q

@ LQR is an automatic and optimal way of placing poles !

@ A similar result holds for continuous-time linear systems ( MATLAB: 1qr)

2Given a matrix Q = Q' > 0, its Cholesky factor is an upper-triangular matrix C such that C'C = Q
(MATLAB: chol)
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LQR with output weighting

@ We often want to regulate only y(k) = Cx(k) to zero, so define

Ve(0)= min Zy (R)Qy () + 1 (IRu(k)
@ The problem is again an LQR problem with equivalent state weight

o MATLAB
Q_CQ'yC » [KoorPoo,E] = dlgry(sysd,Qy,R)

Corollary

Let (A, B) stabilizable, (A, C) detectable, R > 0, Q, > 0. Under the LOR control
law u(k) = K orx(k) the closed-loop system is asymptotically stable

tlir& x(t) =0, tlirglo u(t)=0

o Intuitively: the minimum cost x"(0)P,x(0) is finite = y(k) — 0 and
u(k) — 0. y(k) — 0 implies that the observable part of the state — 0. As
u(k) — 0, the unobservable states remain undriven and goes to zero
spontaneously (=detectability condition)
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LQR example

e Two-dimensional single input single output (SISO) dynamical system (double

integrator)
[(1) 1 :|x(k)+|:(1):|u(k)

yk) = [1 0]x(k)

x(k+1)

@ LQR (infinite horizon) controller defined on the performance index
o 1
V®(x(0))= min —*(k)+u%(k), p>0
u(0),u(1),... =0 P
o Weights: Qy=% (orQ:[})]-%-[m]:[g g]),Rzl

@ Note that only the ratio Q,/R = ;1) matters, as scaling the cost function does
not change the optimal control law
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LQR Example

output y(K) p =0.1 (red line)

K=[-0.8166 —1.7499]

o N S S S S S S S p =10 (blue line)

input u(k) K=[-0.2114 —0.7645]

i p = 1000 (green line)

K =[-0.0279 —0.2505]

o 2 4 6 s 10 12 14 16 18 20
Initial state: x(0) =[§ ]

[ee]

1
V®(x(0)) = min —y*(k) + u?(k)
u(@u(D),.. =5 P
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Kalman filtering — Introduction

@ Problem: assign observer poles in an optimal way, that is to minimize the
state estimation error X =x —Xx

@ Information comes in two ways: from sensors measurements (a posteriori)
and from the model of the system (a priori)

@ We need to mix the two information sources optimally, given a probabilistic
description of their reliability (sensor precision, model accuracy)

The Kalman filter solves this problem, and is now the
most used state observer in most engineering fields
(and beyond)

Rudolf E. Kalman*

(born 1930)

*R.E. Kalman receiving the Medal of Science from the President of the USA on October 7, 2009
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Modeling assumptions

@ The process is modeled as the stochastic linear system

x(k+1) = Ax(k)+Bu(k)+&(k)
yk) = Cx(k)+ (k)
x(0) Xo

@ £(k) € R™ = process noise. We assume E[£(k)] = 0 (zero mean),
E[E(K)E'(j)] = 0 Yk #j (white noise), and E[£(k)E’(k)] = Q > 0 (covariance
matrix)

o (k) € RP = measurement noise, E[{(k)] =0, E[{(k){'(j)] = 0 Vk #},
E[{(K)¢'(k)]=R >0

@ x, € R" is a random vector, E[x,] =X, E[ (3o — %) (g —X0)'] = Var[x,] = Py,
Py =0

@ Vectors &(k), {(k), x, are uncorrelated: E[£(k)¢'(j)] = 0, E[£(k)xy] =0,
E[L(k)x,]1=0, Vk,j € Z

@ Probability distributions: we often assume normal (=Gaussian) distributions
(k) ~ A(0,Q), (k) ~ A(O,R), xg ~ A (%, Po)
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Kalman predictor

@ Introduce some quantities:
X(k+ 1|k) — state prediction
X(k+1|k) =x(k +1)—x(k + 1lk) — prediction error
P(k+1k)=E [J”c(k + 1|k)x(k + 1|k)’] — prediction error covariance

dynamical process

u(k) RGN IM’C)
] | A"B 'truestate| C IJ

-
z(k) g(k)-
ABLK) o= C P
estimate

Kalman predictor

@ The observer dynamics is
X(k + 1|k) = Ax(k|k — 1) + Bu(k) + L(k)(y(k) — Cx(k|k — 1))

starting from an initial estimate %(0| — 1) = X,.
@ The Kalman predictor minimizes the covariance matrix P(k + 1|k) of the
prediction error x(k + 1|k)
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Kalman predictor

Theorem

The observer gain L(k) minimizing the trace of P(k|k —1) is
L(k) = AP(k|k — 1)C' [CP(k|k — 1)C +R] "

where P(k|k — 1) solves the iterative equations

P(k + 1]k) = AP(k|k — 1)A’ + Q — AP(k|k — 1)C’ [ CP(k|k — 1)C’ + R]_1 CP(k|k —1)A’

with initial condition P(0| — 1) =P,

@ The Kalman predictor is a time-varying observer, as the gain L(k) depends on
the time index k

o In many cases we are interested in a time-invariant observer gain L, to avoid
computing P(k + 1]k) on line

@ Note the similarities with Riccati iterations in LQR
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Stationary Kalman predictor

Theorem

Let (A, C) observable, and (A, B;) stabilizable, where Q = BqB; (B;=Cholesky
factor of Q). Then

o the stationary optimal predictor is

X(k + 1]k) = Ax(k|k — 1) + Bu(k) + L(y(k) — Cx(k|k — 1))
= (A—LC)x(k|k — 1) + Bu(k) + Ly(k)
with »
L=AP,,C'[CP,,C' +R]
where P, is the only positive-definite solution of the algebraic Riccati
equation
Poo = APooA’ + Q—APoyC' [CPooC' +R] ' CPo A’

@ the observer is asymptotically stable, i.e. all the eigenvalues of (A —LC) are
inside the unit circle

v
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Example of Kalman predictor: time-varying gain

@ Noisy measurements y(k) of an exponentially decaying signal x(k)

x(k+1) = ax(k)+&(k) E[E(R)]=0 E[E*(K)]=Q
yk) = x(k)+¢(k)  E[C(K)]=0 E[{*(k)]=R
la <1 E[x(0)]=0 E[x*(0)]=P,
@ The equations of the Kalman predictor are

X(k+1lk) = ax(k|k — 1) + L(k) (y(k) —x(k|[k— 1)), x(0|—1)=0

_ aP(k|k—1)
Lty = P(klk—1)+R
2p2 _
p(k+1|k):a2p(k|k—1)+Q—%, P(0|—=1)=P,

o Leta=0.98,Q=10"5R=5-1073,P,=1,%0) = 0.4, x(0) = 1
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Example of Kalman predictor: time-varying gain

state x(k), output y(k)
T T

15 T
1 i
05 : i
0 1 1 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80 90 100
k
state prediction (time-varying gain)
15 T T T T T
X
xesl
+/- 2(sqrt P) band
1 i
0.5 s
0 1 1 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80 90 100
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Example of Kalman predictor: stationary gain

@ Let’s compute the stationary Kalman predictor (the pair (a, 1) is observable,

the pair (a, B;), with B, = /107> is stabilizable)

@ Solve the algebraic Riccati equation for a =0.98, Q =10">,R=5-1073,
P, =1. We get two solutions:

Poo =—3.366-10"%, P,, =1.486-10"*

the positive solution is the correct one

aPe o
o Compute L = =2.83-10
Po, +R
@ The stationary Kalman predictor is

%(k + 1]k) = 0.98 (k) + 2.83 - 1072(y(k) — Cx(k|k — 1))
@ Check asymptotic stability:

%(k-+ 1) = (a = L)x(klk—1) = 0.952 X(klk—1) = lim %(klk—1)=
— +00
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Kalman predictor: example

state prediction (stationary gain)

15

% fo zij 30 40 50 60 70 80 90 100
k
Kalman gain: time-varying vs. stationary
1 T T T T T
038
0.6 i
0.4 =
02t =
° T T T T T T T T T
0 10 20 30 40 50 60 70 80 90 100
k
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Kalman filter

o The Kalman filter provides an optimal estimate of x(k) given the
measurements up to time k

@ The Kalman filter proceeds in two steps:
@ measurement update based on the most recent y(k)

M(k) = P(klk—1)C'[CP(klk—1)C'+R]™ P(0|—1) =P,
(k) = (klk—1)+M(K) (y(k)—Ci(klk—1)) %(0]—1)=%,
P(klk) = (I—M(K)C)P(klk—1)

@ time update based on the model of the system
X(k + 1|k) = Ax(k|k) + Bu(k)
P(k + 1]k) = AP(k|k)A’ + Q

@ Same as Kalman predictor, as L(k) = AM(k)
@ Stationary version: M = P, C'(CPs,C’' +R)™*

MATLAB
» [KEST, L,Ps,M,Z]=kalman (sys,Q,R)
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Tuning Kalman filters

o It is usually hard to quantify exactly the correct values of Q and R for a given
process

@ The diagonal terms of R are related to how noisy are output sensors

@ Q is harder to relate to physical noise, it mainly relates to how rough is the
(A, B) model

@ After all, Q and R are the tuning knobs of the observer (similar to LQR)

@ The “larger” is R with respect to Q the “slower” is the observer to converge (L,
M will be small)

@ On the contrary, the “smaller” is R than Q, the more precise are considered
the measurments, and the “faster” observer will be to converge
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LQG control

@ Linear Quadratic Gaussian (LQG) control combines an LQR control law and a
stationary Kalman predictor/filter

@ Consider the stochastic dynamical system

x(k + 1) = Ax(k) + Bu(k) + &(k), w ~ A (0, Qgr)
y(k) = Cx(k) + {(k), v ~ A(0,Rgz)

with initial condition x(0) = xg, xg ~ A (Xy,Py), P, Qxr = 0, Rz > 0, and ¢
and & are independent and white noise terms.

@ The objective is to minimize the cost function
T
= li L ‘(k k "(k k
Jx(0),U) = lim E ;x( )Qux(k) +u ()R qu(k)

when the state x is not measurable
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LQG control

If we assume that all the assumptions for LQR control and Kalman predictor/filter
hold, i.e.
e the pair (A, B) is reachable and the pair (A, C;) with C, such that Q;o = CqCé
is observable (here Q is the weight matrix of the LQ controller)
e the pair (A, B,), with By s.t. Qgr = BqB;, is stabilizable, and the pair (A, C) is
observable (here Q is the covariance matrix of the Kalman predictor/filter)
Then, apply the following procedure:

@ Determine the optimal stationary Kalman predictor/filter, neglecting the fact

that the control variable u is generated through a closed-loop control scheme,
and find the optimal gain Lgy

© Determine the optimal LQR strategy assuming the state accessible, and find
the optimal gain Kjog
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LQG control

( dynamical process )
k
AN J
e N
(k) | +-N- (k) Kalman ‘J
_.O*_ KLQR filter
N J

LQG controller

Analogously to the case of output feedback control using a Luenberger observer, it

is possible to show that the extended state [x’ ¥']" has eigenvalues equal to the

eigenvalues of (A + BK; o) plus those of (A —LiC) (2n in total)
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English-Italian Vocabulary

L

positive (semi)definite matrix | matrice (semi)definita positiva
dynamic programmin rogrammagione dinamica
yn prog g prog

Translation is obvious otherwise.
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