Automatic Control 2

Optimal control and estimation

Prof. Alberto Bemporad

University of Trento

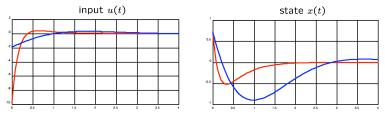
Academic year 2010-2011

Automatic Control 2

Linear quadratic regulation (LQR)

- State-feedback control via pole placement requires one to assign the closed-loop poles
- Any way to place closed-loop poles automatically and optimally ?
- The main control objectives are
 - Make the state x(k) "small" (to converge to the origin)
 - Use "small" input signals u(k) (to minimize actuators' effort)

These are conflicting goals !



• LQR is a technique to place automatically and optimally the closed-loop poles

Finite-time optimal control

• Let the model of the open-loop process be the dynamical system

x(k+1) = Ax(k) + Bu(k) linear system

with initial condition x(0)

• We look for the optimal sequence of inputs

$$U = \{u(0), u(1), \ldots, u(N-1)\}$$

driving the state x(k) towards the origin and that minimizes the performance index

$$J(x(0), U) = x'(N)Q_N x(N) + \sum_{k=0}^{N-1} x'(k)Qx(k) + u'(k)Ru(k) \quad \text{auadratic cost}$$

where $Q = Q' \succeq 0$, $R = R' \succ 0$, $Q_N = Q'_N \succeq 0^1$

¹For a matrix $Q \in \mathbb{R}^{n \times n}$, $Q \succ 0$ means that Q is a *positive definite* matrix, i.e., x'Qx > 0 for all $x \neq 0$, $x \in \mathbb{R}^n$. $Q_N \succeq 0$ means *positive semidefinite*, $x'Qx \ge 0$, $\forall x \in \mathbb{R}^n$

Finite-time optimal control

• Example: *Q* diagonal $Q = \text{Diag}(q_1, \dots, q_n)$, single input, $Q_N = 0$

$$J(x(0), U) = \sum_{k=0}^{N-1} \left(\sum_{i=1}^{n} q_i x_i^2(k) \right) + Ru^2(k)$$

• Consider again the general performance index of the posed *linear quadratic (LQ)* problem

$$J(x(0), U) = x'(N)Q_N x(N) + \sum_{k=0}^{N-1} x'(k)Qx(k) + u'(k)Ru(k)$$

- N is called the *time horizon* over which we optimize performance
- The first term x'Qx penalizes the deviation of x from the desired target x = 0
- The second term u'Ru penalizes actuator authority
- The third term $x'(N)Q_Nx(N)$ penalizes how much the final state x(N) deviates from the target x = 0
- Q, R, Q_N are the tuning parameters of the optimal control design (cf. the parameters of the PID controller K_p , T_i , T_d), and are directly related to physical/economic quantities

Minimum-energy controllability

• Consider again the problem of controllability of the state to zero with minimum energy input

$$\min_{U} \quad \left\| \begin{bmatrix} u(0) \\ u(1) \\ \vdots \\ u(N-1) \end{bmatrix} \right\|$$

s.t.
$$x(N) = 0$$

• The minimum-energy control problem can be seen as a particular case of the LQ optimal control problem by setting

$$R = I, \quad Q = 0, \quad Q_N = \infty \cdot I$$

Solution to LQ optimal control problem

• By substituting
$$x(k) = A^k x(0) + \sum_{i=0}^{k-1} A^i B u(k-1-i)$$
 in

$$J(x(0), U) = \sum_{k=0}^{N-1} x'(k)Qx(k) + u'(k)Ru(k) + x'(N)Q_N x(N)$$

we obtain

$$J(x(0), U) = \frac{1}{2}U'HU + x(0)'FU + \frac{1}{2}x(0)'Yx(0)$$

where $H = H' \succ 0$ is a positive definite matrix

• The optimizer U^* is obtained by zeroing the gradient

$$0 = \nabla_{U} J(x(0), U) = HU + F'x(0)$$

$$\longrightarrow U^{*} = \begin{bmatrix} u^{*}(0) \\ u^{*}(1) \\ \vdots \\ u^{*}(N-1) \end{bmatrix} = -H^{-1}F'x(0)$$

[LQ problem matrix computation]

$$J(x(0), U) = x'(0)Qx(0) + \begin{bmatrix} x(1) \\ x(2) \\ \vdots \\ x(N-1) \\ x(N) \end{bmatrix}' \underbrace{\begin{bmatrix} Q & 0 & 0 & \cdots & 0 \\ 0 & Q & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 & Q & 0 \\ 0 & 0 & \cdots & 0 & Q_N \end{bmatrix}}_{\bar{R}} \begin{bmatrix} x(1) \\ x(2) \\ \vdots \\ x(N-1) \\ x(N) \end{bmatrix} + \begin{bmatrix} u'(0) & u'(1) & \cdots & u'(N-1) \end{bmatrix} \underbrace{\begin{bmatrix} R & 0 & \cdots & 0 \\ 0 & R & \cdots & 0 \\ 0 & R & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & 0 & R \end{bmatrix}}_{\bar{R}} \begin{bmatrix} u(0) \\ u(1) \\ \vdots \\ u(N-1) \end{bmatrix} + \begin{bmatrix} x(1) \\ x(2) \\ \vdots \\ x(N) \end{bmatrix}$$

Solution to LQ optimal control problem

The solution

$$U^* = \begin{bmatrix} u^*(0) \\ u^*(1) \\ \vdots \\ u^*(N-1) \end{bmatrix} = -H^{-1}F'x(0)$$

is an *open-loop* one: $u(k) = f_k(x(0)), k = 0, 1, ..., N-1$

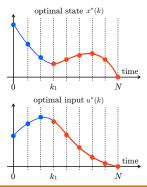
- Moreover the dimensions of the H and F matrices is proportional to the time horizon N
- We use optimality principles next to find a better solution (computationally more efficient, and more elegant)

Bellman's principle of optimality

Bellman's principle

Given the optimal sequence $U^* = [u^*(0), ..., u^*(N-1)]$ (and the corresponding optimal trajectory $x^*(k)$), the subsequence $[u^*(k_1), ..., u^*(N-1)]$ is optimal for the problem on the horizon $[k_1, N]$, starting from the optimal state $x^*(k_1)$

Richard Bellman (1920-1984)



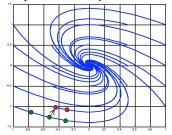
- Given the state $x^*(k_1)$, the optimal input trajectory u^* on the remaining interval $[k_1, N]$ only depends on $x^*(k_1)$
- Then each optimal move $u^*(k)$ of the optimal trajectory on [0, N] only depends on $x^*(k)$
- The optimal control policy can be always expressed in state feedback form $u^*(k) = u^*(x^*(k))$!

Bellman's principle of optimality

• The principle also applies to nonlinear systems and/or non-quadratic cost functions: the optimal control law can be always written in state-feedback form

$$u^{*}(k) = f_{k}(x^{*}(k)), \quad \forall k = 0, \dots, N-1$$

optimal state trajectories x*



• Compared to the open-loop solution $\{u^*(0), \ldots, u^*(N-1)\} = f(x(0))$ the feedback form $u^*(k) = f_k(x^*(k))$ has the big advantage of being more *robust* with respect to perturbations: at each time *k* we apply the best move on the remaining period [k, N]

Dynamic programming

• At a generic instant k_1 and state $x(k_1) = z$ consider the optimal *cost-to-go*

$$V_{k_1}(z) = \min_{u(k_1),\dots,u(N-1)} \left\{ \sum_{k=k_1}^{N-1} x'(k) Q x(k) + u'(k) R u(k) + x'(N) Q_N x(N) \right\}$$

• $V_0(z)$ is the optimal cost in the remaining interval $[k_1, N]$ starting at $x(k_1) = z$

Principle of dynamic programming

$$V_{0}(z) = \min_{\substack{U \triangleq \{u(0), \dots, u(N-1)\}}} J(z, U)$$

=
$$\min_{u(0), \dots, u(k_{1}-1)} \left\{ \sum_{k=0}^{k_{1}-1} x'(k) Qx(k) + u'(k) Ru(k) + V_{k_{1}}(x(k_{1})) \right\}$$

 Starting at x(0), the minimum cost over [0, N] equals the minimum cost spent until step k₁ plus the optimal cost-to-go from k₁ to N starting at x(k₁)

Riccati iterations

By applying the dynamic programming principle, we can compute the optimal inputs $u^*(k)$ recursively as a function of $x^*(k)$ (*Riccati iterations*):

Initialization:
$$P(N) = Q_N$$

For k = N,..., 1, compute recursively the following matrix

 $P(k-1) = Q - A'P(k)B(R+B'P(k)B)^{-1}B'P(k)A + A'P(k)A$

Oefine

$$K(k) = -(R + B'P(k+1)B)^{-1}B'P(k+1)A$$

The optimal input is

 $u^*(k) = K(k)x^*(k)$

Jacopo Francesco Riccati (1676-1754)

The optimal input policy $u^*(k)$ is a (linear time-varying) state feedback !

Linear quadratic regulation

• Dynamical processes operate on a very long time horizon (in principle, for ever). Let's send the optimal control horizon $N \to \infty$

$$V^{\infty}(x(0)) = \min_{u(0),u(1),\dots} \sum_{k=0}^{\infty} x'(k)Qx(k) + u'(k)Ru(k)$$

Result

Let (A, B) be a stabilizable pair, $R \succ 0$, $Q \succeq 0$. There exists a unique solution P_{∞} of the *algebraic Riccati equation (ARE)*

$$P_{\infty} = A'P_{\infty}A + Q - A'P_{\infty}B(B'P_{\infty}B + R)^{-1}B'P_{\infty}A$$

such that the optimal cost is $V^{\infty}(x(0)) = x'(0)P_{\infty}x(0)$ and the optimal control law is the constant linear state feedback $u(k) = K_{LQR}x(k)$ with



Linear quadratic regulation

- Go back to Riccati iterations: starting from $P(\infty) = P_{\infty}$ and going backwards we get $P(j) = P_{\infty}$, $\forall j \ge 0$
- Accordingly, we get

$$K(j) = -(R + B'P_{\infty}B)^{-1}B'P_{\infty}A \triangleq K_{LQR}, \quad \forall j = 0, 1, \dots$$

• The LQR control law is linear and time-invariant

MATLAB
»
$$[-K_{\infty}, P_{\infty}, E] = lqr(sysd, Q, R)$$

E = closed-loop poles $= \text{eigenvalues of } (A + BK_{LQR})$

- Closed-loop stability is ensured if (A, B) is stabilizable, $R \succ 0$, $Q \succeq 0$, and $(A, Q^{\frac{1}{2}})$ is detectable, where $Q^{\frac{1}{2}}$ is the *Cholesky factor*² of Q
- LQR is an automatic and optimal way of placing poles !
- A similar result holds for continuous-time linear systems (MATLAB: lqr)

²Given a matrix $Q = Q' \succeq 0$, its Cholesky factor is an upper-triangular matrix C such that C'C = Q (MATLAB: chol)

LQR with output weighting

• We often want to regulate only y(k) = Cx(k) to zero, so define

$$V^{\infty}(x(0)) = \min_{u(0),u(1),\dots} \sum_{k=0}^{\infty} y'(k) Q_{y} y(k) + u'(k) R u(k)$$

- The problem is again an LQR problem with equivalent state weight
 - $Q = C'Q_yC \qquad \boxed{\begin{array}{c} \text{MATLAB} \\ & \gg \ [-K_{\infty}, P_{\infty}, E] \ = \ \text{dlqry(sysd, Qy, R)} \end{array}}$

Corollary

Let (A, B) stabilizable, (A, C) detectable, R > 0, $Q_y > 0$. Under the LQR control law $u(k) = K_{LQR}x(k)$ the closed-loop system is asymptotically stable

$$\lim_{t\to\infty} x(t) = 0, \quad \lim_{t\to\infty} u(t) = 0$$

• Intuitively: the minimum $\cot x'(0)P_{\infty}x(0)$ is finite $\Rightarrow y(k) \rightarrow 0$ and $u(k) \rightarrow 0$. $y(k) \rightarrow 0$ implies that the observable part of the state $\rightarrow 0$. As $u(k) \rightarrow 0$, the unobservable states remain undriven and goes to zero spontaneously (=detectability condition)

LQR example

• Two-dimensional single input single output (SISO) dynamical system (double integrator)

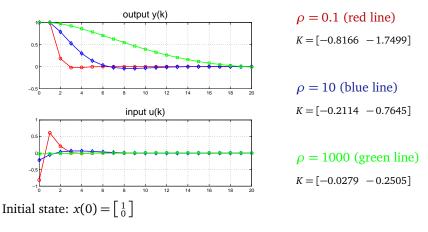
$$\begin{aligned} x(k+1) &= \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} x(k) + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u(k) \\ y(k) &= \begin{bmatrix} 1 & 0 \end{bmatrix} x(k) \end{aligned}$$

• LQR (infinite horizon) controller defined on the performance index

$$V^{\infty}(x(0)) = \min_{u(0),u(1),\dots} \sum_{k=0}^{\infty} \frac{1}{\rho} y^{2}(k) + u^{2}(k), \quad \rho > 0$$

- Weights: $Q_y = \frac{1}{\rho}$ (or $Q = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \cdot \frac{1}{\rho} \cdot \begin{bmatrix} 1 & 0 \end{bmatrix} = \begin{bmatrix} \frac{1}{\rho} & 0 \\ 0 & 0 \end{bmatrix}$), R = 1
- Note that only the ratio $Q_y/R = \frac{1}{\rho}$ matters, as scaling the cost function does not change the optimal control law

LQR Example



$$V^{\infty}(x(0)) = \min_{u(0), u(1), \dots} \sum_{k=0}^{\infty} \frac{1}{\rho} y^{2}(k) + u^{2}(k)$$

Kalman filtering – Introduction

- **Problem:** assign observer poles in an optimal way, that is to minimize the state estimation error $\tilde{x} = x \hat{x}$
- Information comes in two ways: from sensors measurements (*a posteriori*) and from the model of the system (*a priori*)
- We need to mix the two information sources optimally, given a probabilistic description of their reliability (sensor precision, model accuracy)

Rudolf E. Kalman* (born 1930) The *Kalman filter* solves this problem, and is now the most used state observer in most engineering fields (and beyond)

^{*}R.E. Kalman receiving the Medal of Science from the President of the USA on October 7, 2009

Modeling assumptions

• The process is modeled as the stochastic linear system

$$\begin{aligned} x(k+1) &= Ax(k) + Bu(k) + \xi(k) \\ y(k) &= Cx(k) + \zeta(k) \\ x(0) &= x_0 \end{aligned}$$

- ξ(k) ∈ ℝⁿ = process noise. We assume E[ξ(k)] = 0 (zero mean), E[ξ(k)ξ'(j)] = 0 ∀k ≠ j (white noise), and E[ξ(k)ξ'(k)] = Q ≥ 0 (covariance matrix)
- $\zeta(k) \in \mathbb{R}^p$ = measurement noise, $E[\zeta(k)] = 0$, $E[\zeta(k)\zeta'(j)] = 0 \quad \forall k \neq j$, $E[\zeta(k)\zeta'(k)] = R \succ 0$
- $x_0 \in \mathbb{R}^n$ is a random vector, $E[x_0] = \bar{x}_0$, $E[(x_0 \bar{x}_0)(x_0 \bar{x}_0)'] = Var[x_0] = P_0$, $P_0 \ge 0$
- Vectors $\xi(k)$, $\zeta(k)$, x_0 are uncorrelated: $E[\xi(k)\zeta'(j)] = 0$, $E[\xi(k)x'_0] = 0$, $E[\zeta(k)x'_0] = 0$, $\forall k, j \in \mathbb{Z}$
- Probability distributions: we often assume *normal* (=*Gaussian*) distributions $\xi(k) \sim \mathcal{N}(0, Q), \zeta(k) \sim \mathcal{N}(0, R), x_0 \sim \mathcal{N}(\bar{x}_0, P_0)$

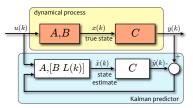
Kalman predictor

• Introduce some quantities:

 $\hat{x}(k+1|k) \rightarrow state prediction$

 $\tilde{x}(k+1|k) = x(k+1) - \hat{x}(k+1|k) \rightarrow prediction \ error$

 $P(k+1|k) = E\left[\tilde{x}(k+1|k)\tilde{x}(k+1|k)'\right] \rightarrow prediction \ error \ covariance$



• The observer dynamics is

 $\hat{x}(k+1|k) = A\hat{x}(k|k-1) + Bu(k) + L(k)(y(k) - C\hat{x}(k|k-1))$

starting from an initial estimate $\hat{x}(0|-1) = \hat{x}_0$.

• The Kalman predictor minimizes the covariance matrix P(k + 1|k) of the prediction error $\tilde{x}(k + 1|k)$

Kalman predictor

Theorem

The observer gain L(k) minimizing the trace of P(k|k-1) is

$$L(k) = AP(k|k-1)C' [CP(k|k-1)C' + R]^{-1}$$

where P(k|k-1) solves the iterative equations

$$P(k+1|k) = AP(k|k-1)A' + Q - AP(k|k-1)C' [CP(k|k-1)C' + R]^{-1} CP(k|k-1)A'$$

with initial condition $P(0|-1) = P_0$

- The Kalman predictor is a *time-varying* observer, as the gain *L*(*k*) depends on the time index *k*
- In many cases we are interested in a *time-invariant* observer gain *L*, to avoid computing P(k + 1|k) on line
- Note the similarities with Riccati iterations in LQR

Stationary Kalman predictor

Theorem

Let (*A*, *C*) observable, and (*A*, *B_q*) stabilizable, where $Q = B_q B'_q$ (*B_q*=Cholesky factor of *Q*). Then

• the stationary optimal predictor is

$$\hat{x}(k+1|k) = A\hat{x}(k|k-1) + Bu(k) + L(y(k) - C\hat{x}(k|k-1))$$
$$= (A - LC)\hat{x}(k|k-1) + Bu(k) + Ly(k)$$

with

$$L = AP_{\infty}C' \left[CP_{\infty}C' + R \right]^{-1}$$

where P_{∞} is the only positive-definite solution of the algebraic Riccati equation

$$P_{\infty} = AP_{\infty}A' + Q - AP_{\infty}C' \left[CP_{\infty}C' + R\right]^{-1} CP_{\infty}A'$$

• the observer is asymptotically stable, i.e. all the eigenvalues of (A - LC) are inside the unit circle

Example of Kalman predictor: time-varying gain

• Noisy measurements *y*(*k*) of an exponentially decaying signal *x*(*k*)

$$\begin{aligned} x(k+1) &= ax(k) + \xi(k) \quad E[\xi(k)] = 0 \quad E[\xi^2(k)] = Q \\ y(k) &= x(k) + \zeta(k) \quad E[\zeta(k)] = 0 \quad E[\zeta^2(k)] = R \\ &|a| < 1 \quad E[x(0)] = 0 \quad E[x^2(0)] = P_0 \end{aligned}$$

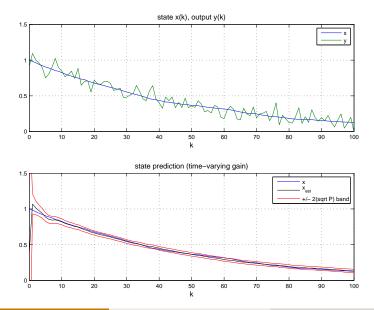
• The equations of the Kalman predictor are

$$\hat{x}(k+1|k) = a\hat{x}(k|k-1) + L(k)(y(k) - \hat{x}(k|k-1)), \quad \hat{x}(0|-1) = 0$$

$$L(k) = \frac{aP(k|k-1)}{P(k|k-1) + R}$$

$$P(k+1|k) = a^2P(k|k-1) + Q - \frac{a^2P^2(k|k-1)}{P(k|k-1) + R}, \quad P(0|-1) = P_0$$
• Let $a = 0.98, Q = 10^{-5}, R = 5 \cdot 10^{-3}, P_0 = 1, \hat{x}(0) = 0.4, x(0) = 1$

Example of Kalman predictor: time-varying gain



Example of Kalman predictor: stationary gain

- Let's compute the stationary Kalman predictor (the pair (*a*, 1) is observable, the pair (*a*, *B_q*), with $B_q = \sqrt{10^{-5}}$ is stabilizable)
- Solve the algebraic Riccati equation for a = 0.98, $Q = 10^{-5}$, $R = 5 \cdot 10^{-3}$, $P_0 = 1$. We get two solutions:

$$P_{\infty} = -3.366 \cdot 10^{-4}, \quad P_{\infty} = 1.486 \cdot 10^{-4}$$

the positive solution is the correct one

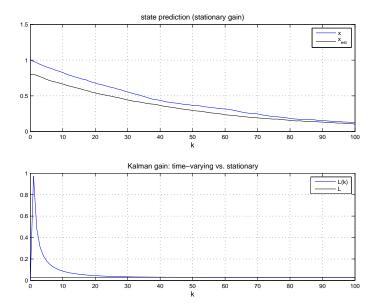
- Compute $L = \frac{aP_{\infty}}{P_{\infty} + R} = 2.83 \cdot 10^{-2}$
- The stationary Kalman predictor is

$$\hat{x}(k+1|k) = 0.98 \,\hat{x}(k) + 2.83 \cdot 10^{-2}(y(k) - C\hat{x}(k|k-1))$$

• Check asymptotic stability:

$$\tilde{x}(k+1|k) = (a-L)\tilde{x}(k|k-1) = 0.952 \,\tilde{x}(k|k-1) \Rightarrow \lim_{k \to +\infty} \tilde{x}(k|k-1) = 0$$

Kalman predictor: example



Prof. Alberto Bemporad (University of Trento)

Kalman filter

- The Kalman filter provides an optimal estimate of *x*(*k*) given the measurements *up to time k*
- The Kalman filter proceeds in two steps:
 - measurement update based on the most recent y(k)

$$\begin{aligned} M(k) &= P(k|k-1)C'[CP(k|k-1)C'+R]^{-1} & P(0|-1) = P_0 \\ \hat{x}(k|k) &= \hat{x}(k|k-1) + M(k)(y(k) - C\hat{x}(k|k-1)) & \hat{x}(0|-1) = \hat{x}_0 \\ P(k|k) &= (I - M(k)C)P(k|k-1) \end{aligned}$$

2 time update based on the model of the system

$$\hat{x}(k+1|k) = A\hat{x}(k|k) + Bu(k)$$
$$P(k+1|k) = AP(k|k)A' + Q$$

- Same as Kalman predictor, as L(k) = AM(k)
- Stationary version: $M = P_{\infty}C'(CP_{\infty}C' + R)^{-1}$

MATLAB

»[KEST, L, P_{∞} , M, Z]=kalman(sys, Q, R)

$$Z = E[(x(k) - x(k|k))(x(k) - x(k|k))']$$

Tuning Kalman filters

- It is usually hard to quantify exactly the correct values of *Q* and *R* for a given process
- The diagonal terms of *R* are related to how noisy are output sensors
- *Q* is harder to relate to physical noise, it mainly relates to how rough is the (*A*,*B*) model
- After all, *Q* and *R* are the tuning knobs of the observer (similar to LQR)
- The "larger" is *R* with respect to *Q* the "slower" is the observer to converge (*L*, *M* will be small)
- On the contrary, the "smaller" is *R* than *Q*, the more precise are considered the measurments, and the "faster" observer will be to converge

LQG control

- *Linear Quadratic Gaussian (LQG)* control combines an LQR control law and a stationary Kalman predictor/filter
- Consider the stochastic dynamical system

$$\begin{aligned} x(k+1) &= Ax(k) + Bu(k) + \xi(k), \ w \sim \mathcal{N}(0, Q_{KF}) \\ y(k) &= Cx(k) + \zeta(k), \ v \sim \mathcal{N}(0, R_{KF}) \end{aligned}$$

with initial condition $x(0) = x_0$, $x_0 \sim \mathcal{N}(\bar{x}_0, P_0)$, $P, Q_{KF} \succeq 0$, $R_{KF} \succ 0$, and ζ and ξ are independent and white noise terms.

• The objective is to minimize the cost function

$$J(x(0), U) = \lim_{T \to \infty} \frac{1}{T} E \left[\sum_{k=0}^{T} x'(k) Q_{LQ} x(k) + u'(k) R_{LQ} u(k) \right]$$

when the state *x* is not measurable

LQG control

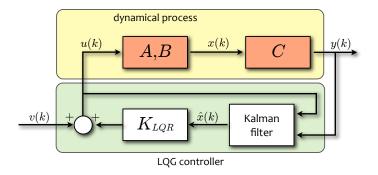
If we assume that all the assumptions for LQR control and Kalman predictor/filter hold, i.e.

- the pair (A, B) is reachable and the pair (A, C_q) with C_q such that $Q_{LQ} = C_q C'_q$ is observable (here *Q* is the weight matrix of the LQ controller)
- the pair (A, B_q) , with B_q s.t. $Q_{KF} = B_q B'_q$, is stabilizable, and the pair (A, C) is observable (here *Q* is the covariance matrix of the Kalman predictor/filter)

Then, apply the following procedure:

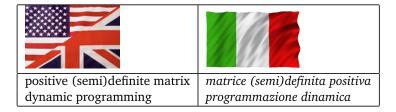
- Determine the optimal stationary Kalman predictor/filter, neglecting the fact that the control variable u is generated through a closed-loop control scheme, and find the optimal gain L_{KF}
- **②** Determine the optimal LQR strategy assuming the state accessible, and find the optimal gain K_{LQR}

LQG control



Analogously to the case of output feedback control using a Luenberger observer, it is possible to show that the extended state $[x' \tilde{x}']'$ has eigenvalues equal to the eigenvalues of $(A + BK_{LQR})$ plus those of $(A - L_{KF}C)$ (2*n* in total)

English-Italian Vocabulary



Translation is obvious otherwise.