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Lecture: Optimal control and estimation Linear quadratic regulation

Linear quadratic regulation (LQR)

State-feedback control via pole placement requires one to assign the
closed-loop poles

Any way to place closed-loop poles automatically and optimally ?
The main control objectives are

1 Make the state x(k) “small” (to converge to the origin)
2 Use “small” input signals u(k) (to minimize actuators’ effort)

These are conflicting goals !

LQR is a technique to place automatically and optimally the closed-loop poles
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Finite-time optimal control

Let the model of the open-loop process be the dynamical system

x(k+ 1) = Ax(k) + Bu(k) linear system

with initial condition x(0)
We look for the optimal sequence of inputs

U = {u(0), u(1), . . . , u(N − 1)}
driving the state x(k) towards the origin and that minimizes the performance
index

J(x(0), U) = x′(N)QNx(N) +
N−1∑
k=0

x′(k)Qx(k) + u′(k)Ru(k) quadratic cost

where Q= Q′ ⪰ 0, R= R′ ≻ 0, QN = Q′N ⪰ 01

1For a matrix Q ∈ Rn×n, Q≻ 0 means that Q is a positive definite matrix, i.e., x′Qx > 0 for all x ̸= 0,
x ∈ Rn. QN ⪰ 0 means positive semidefinite, x′Qx ≥ 0, ∀x ∈ Rn

Prof. Alberto Bemporad (University of Trento) Automatic Control 2 Academic year 2010-2011 3 / 32



Lecture: Optimal control and estimation Linear quadratic regulation

Finite-time optimal control

Example: Q diagonal Q= Diag(q1, . . . , qn), single input, QN = 0

J(x(0), U) =
N−1∑
k=0

�
n∑

i=1

qix
2
i (k)

�
+ Ru2(k)

Consider again the general performance index of the posed linear quadratic
(LQ) problem

J(x(0), U) = x′(N)QNx(N) +
N−1∑
k=0

x′(k)Qx(k) + u′(k)Ru(k)

N is called the time horizon over which we optimize performance
The first term x′Qx penalizes the deviation of x from the desired target x = 0
The second term u′Ru penalizes actuator authority
The third term x′(N)QNx(N) penalizes how much the final state x(N) deviates
from the target x = 0

Q, R, QN are the tuning parameters of the optimal control design (cf. the
parameters of the PID controller Kp, Ti, Td), and are directly related to
physical/economic quantities
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Minimum-energy controllability

Consider again the problem of controllability of the state to zero with
minimum energy input

minU












u(0)
u(1)

...
u(N − 1)












s.t. x(N) = 0

The minimum-energy control problem can be seen as a particular case of the
LQ optimal control problem by setting

R= I, Q= 0, QN =∞· I
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Solution to LQ optimal control problem

By substituting x(k) = Akx(0) +
∑k−1

i=0 AiBu(k− 1− i) in

J(x(0), U) =
N−1∑
k=0

x′(k)Qx(k) + u′(k)Ru(k) + x′(N)QNx(N)

we obtain

J(x(0), U) =
1
2

U′HU + x(0)′FU +
1
2

x(0)′Yx(0)

where H = H′ ≻ 0 is a positive definite matrix

The optimizer U∗ is obtained by zeroing the gradient

0 = ∇UJ(x(0), U) = HU + F′x(0)

−→ U∗ =


u∗(0)
u∗(1)

...
u∗(N − 1)

= −H−1F′x(0)
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[LQ problem matrix computation]

J(x(0),U) = x′(0)Qx(0) +


x(1)
x(2)

...
x(N − 1)

x(N)


′

Q̄︷ ︸︸ ︷
Q 0 0 . . . 0
0 Q 0 . . . 0
...

...
. . .

...
...

0 . . . 0 Q 0
0 0 . . . 0 QN




x(1)
x(2)

...
x(N − 1)

x(N)

+

�
u′(0) u′(1) . . . u′(N − 1)

�


R 0 . . . 0
0 R . . . 0
...

...
. . .

...
0 . . . 0 R


︸ ︷︷ ︸

R̄


u(0)
u(1)

...
u(N − 1)




x(1)
x(2)

...
x(N)

 =

S̄︷ ︸︸ ︷
B 0 . . . 0

AB B . . . 0
...

...
. . .

...
AN−1B AN−2B . . . B


 u(0)

u(1)
. . .

u(N − 1)

+


A
A2

...
AN


︸ ︷︷ ︸

N̄

x(0)

J(x(0),U) = x′(0)Qx(0) + (S̄U + N̄x(0))′Q̄(S̄U + N̄x(0)) +U′R̄U

=
1
2

U′ 2(R̄+ S̄′Q̄S̄)︸ ︷︷ ︸
H

U + x′(0)2N̄′Q̄S̄︸ ︷︷ ︸
F

U +
1
2

x′(0)2(Q+ N̄′Q̄N̄)︸ ︷︷ ︸
Y

x(0)
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Solution to LQ optimal control problem

The solution

U∗ =


u∗(0)
u∗(1)

...
u∗(N − 1)

= −H−1F′x(0)

is an open-loop one: u(k) = fk(x(0)), k= 0, 1, . . . , N − 1

Moreover the dimensions of the H and F matrices is proportional to the time
horizon N

We use optimality principles next to find a better solution (computationally
more efficient, and more elegant)
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Bellman’s principle of optimality

Bellman’s principle

Given the optimal sequence U∗ = [u∗(0), . . . , u∗(N − 1)] (and
the corresponding optimal trajectory x∗(k)), the subsequence
[u∗(k1), . . . , u∗(N−1)] is optimal for the problem on the horizon
[k1, N], starting from the optimal state x∗(k1) Richard Bellman

(1920-1984)

time

Nk10

optimal state x∗(k)

time

Nk10

optimal input u∗(k)

Tuesday, May 11, 2010

Given the state x∗(k1), the optimal input trajectory
u∗ on the remaining interval [k1, N] only depends on
x∗(k1)
Then each optimal move u∗(k) of the optimal
trajectory on [0, N] only depends on x∗(k)
The optimal control policy can be always expressed
in state feedback form u∗(k) = u∗(x∗(k)) !
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Bellman’s principle of optimality

The principle also applies to nonlinear systems
and/or non-quadratic cost functions: the
optimal control law can be always written in
state-feedback form

u∗(k) = fk(x
∗(k)), ∀k= 0, . . . , N − 1

optimal state trajectories x∗

Compared to the open-loop solution {u∗(0), . . . , u∗(N − 1)}= f(x(0)) the
feedback form u∗(k) = fk(x∗(k)) has the big advantage of being more robust
with respect to perturbations: at each time k we apply the best move on the
remaining period [k, N]
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Dynamic programming

At a generic instant k1 and state x(k1) = z consider the optimal cost-to-go

Vk1
(z) = min

u(k1),...,u(N−1)

(
N−1∑
k=k1

x′(k)Qx(k) + u′(k)Ru(k) + x′(N)QNx(N)

)
V0(z) is the optimal cost in the remaining interval [k1, N] starting at x(k1) = z

Principle of dynamic programming

V0(z) = min
U≜{u(0),...,u(N−1)} J(z, U)

= min
u(0),...,u(k1−1)

(
k1−1∑
k=0

x′(k)Qx(k) + u′(k)Ru(k) + Vk1
(x(k1))

)
Starting at x(0), the minimum cost over [0, N] equals the minimum cost
spent until step k1 plus the optimal cost-to-go from k1 to N starting at x(k1)
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Riccati iterations

By applying the dynamic programming principle, we can compute the optimal
inputs u∗(k) recursively as a function of x∗(k) (Riccati iterations):

1 Initialization: P(N) = QN

2 For k= N, . . . , 1, compute recursively the following
matrix

P(k−1) = Q−A′P(k)B(R+B′P(k)B)−1B′P(k)A+A′P(k)A

3 Define

K(k) = −(R+ B′P(k+ 1)B)−1B′P(k+ 1)A

The optimal input is

u∗(k) = K(k)x∗(k)
Jacopo Francesco

Riccati (1676-1754)

The optimal input policy u∗(k) is a (linear time-varying) state feedback !
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Linear quadratic regulation

Dynamical processes operate on a very long time horizon (in principle, for
ever). Let’s send the optimal control horizon N→∞

V∞(x(0)) = min
u(0),u(1),...

∞∑
k=0

x′(k)Qx(k) + u′(k)Ru(k)

Result

Let (A, B) be a stabilizable pair, R≻ 0, Q⪰ 0. There exists a unique solution
P∞ of the algebraic Riccati equation (ARE)

P∞ = A′P∞A+Q− A′P∞B(B′P∞B+ R)−1B′P∞A

such that the optimal cost is V∞(x(0)) = x′(0)P∞x(0) and the optimal control
law is the constant linear state feedback u(k) = KLQRx(k) with

KLQR = −(R+ B′P∞B)−1B′P∞A

MATLAB
P∞ = dare(A,B,Q,R)

MATLAB
[-K∞,P∞] = dlqr(A,B,Q,R)
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Linear quadratic regulation

Go back to Riccati iterations: starting from P(∞) = P∞ and going backwards
we get P(j) = P∞, ∀j≥ 0

Accordingly, we get

K(j) = −(R+ B′P∞B)−1B′P∞A≜ KLQR, ∀j= 0, 1, . . .

The LQR control law is linear and time-invariant
MATLAB
» [-K∞,P∞,E] = lqr(sysd,Q,R)

E= closed-loop poles
= eigenvalues of (A+ BKLQR)

Closed-loop stability is ensured if (A, B) is stabilizable, R≻ 0, Q⪰ 0, and
(A, Q

1
2 ) is detectable, where Q

1
2 is the Cholesky factor2 of Q

LQR is an automatic and optimal way of placing poles !

A similar result holds for continuous-time linear systems ( MATLAB: lqr)

2Given a matrix Q= Q′ ⪰ 0, its Cholesky factor is an upper-triangular matrix C such that C′C = Q
( MATLAB: chol)
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LQR with output weighting

We often want to regulate only y(k) = Cx(k) to zero, so define

V∞(x(0)) = min
u(0),u(1),...

∞∑
k=0

y′(k)Qyy(k) + u′(k)Ru(k)

The problem is again an LQR problem with equivalent state weight

Q= C′QyC
MATLAB
» [-K∞,P∞,E] = dlqry(sysd,Qy,R)

Corollary

Let (A, B) stabilizable, (A, C) detectable, R> 0, Qy > 0. Under the LQR control
law u(k) = KLQRx(k) the closed-loop system is asymptotically stable

lim
t→∞x(t) = 0, lim

t→∞u(t) = 0

Intuitively: the minimum cost x′(0)P∞x(0) is finite⇒ y(k)→ 0 and
u(k)→ 0. y(k)→ 0 implies that the observable part of the state→ 0. As
u(k)→ 0, the unobservable states remain undriven and goes to zero
spontaneously (=detectability condition)
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LQR example

Two-dimensional single input single output (SISO) dynamical system (double
integrator)

x(k+ 1) =
�

1 1
0 1

�
x(k) +
�

0
1

�
u(k)

y(k) =
�

1 0
�

x(k)

LQR (infinite horizon) controller defined on the performance index

V∞(x(0)) = min
u(0),u(1),...

∞∑
k=0

1
ρ

y2(k) + u2(k), ρ > 0

Weights: Qy =
1
ρ (or Q=
�

1
0

� · 1
ρ · [ 1 0 ] =
� 1
ρ 0
0 0

�
), R= 1

Note that only the ratio Qy/R=
1
ρ matters, as scaling the cost function does

not change the optimal control law

Prof. Alberto Bemporad (University of Trento) Automatic Control 2 Academic year 2010-2011 16 / 32



Lecture: Optimal control and estimation Linear quadratic regulation

LQR Example

0 2 4 6 8 10 12 14 16 18 20
−0.5

0

0.5

1
output y(k)

0 2 4 6 8 10 12 14 16 18 20
−1

−0.5

0

0.5

1
input u(k)

ρ = 0.1 (red line)

K = [−0.8166 − 1.7499]

ρ = 10 (blue line)

K = [−0.2114 − 0.7645]

ρ = 1000 (green line)

K = [−0.0279 − 0.2505]

Initial state: x(0) =
�

1
0

�
V∞(x(0)) = min

u(0),u(1),...

∞∑
k=0

1
ρ

y2(k) + u2(k)
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Kalman filtering – Introduction

Problem: assign observer poles in an optimal way, that is to minimize the
state estimation error x̃ = x− x̂

Information comes in two ways: from sensors measurements (a posteriori)
and from the model of the system (a priori)

We need to mix the two information sources optimally, given a probabilistic
description of their reliability (sensor precision, model accuracy)

Rudolf E. Kalman∗

(born 1930)

The Kalman filter solves this problem, and is now the
most used state observer in most engineering fields
(and beyond)

∗R.E. Kalman receiving the Medal of Science from the President of the USA on October 7, 2009
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Modeling assumptions

The process is modeled as the stochastic linear system

x(k+ 1) = Ax(k) + Bu(k) + ξ(k)
y(k) = Cx(k) + ζ(k)
x(0) = x0

ξ(k) ∈ Rn = process noise. We assume E[ξ(k)] = 0 (zero mean),
E[ξ(k)ξ′(j)] = 0 ∀k ̸= j (white noise), and E[ξ(k)ξ′(k)] = Q⪰ 0 (covariance
matrix)

ζ(k) ∈ Rp = measurement noise, E[ζ(k)] = 0, E[ζ(k)ζ′(j)] = 0 ∀k ̸= j,
E[ζ(k)ζ′(k)] = R≻ 0

x0 ∈ Rn is a random vector, E[x0] = x̄0, E[(x0 − x̄0)(x0 − x̄0)′] = Var[x0] = P0,
P0 ⪰ 0

Vectors ξ(k), ζ(k), x0 are uncorrelated: E[ξ(k)ζ′(j)] = 0, E[ξ(k)x′0] = 0,
E[ζ(k)x′0] = 0, ∀k, j ∈ Z
Probability distributions: we often assume normal (=Gaussian) distributions
ξ(k)∼N (0, Q), ζ(k)∼N (0, R), x0 ∼N (x̄0, P0)
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Kalman predictor

Introduce some quantities:

x̂(k+ 1|k) → state prediction

x̃(k+ 1|k) = x(k+ 1)− x̂(k+ 1|k) → prediction error

P(k+ 1|k) = E
�
x̃(k+ 1|k)x̃(k+ 1|k)′� → prediction error covariance

x(k) y(k)
A,B

u(k)
C

A,[B L(k)]

!"#$%&'$()*+,'-..

x(k)ˆ

./$/-)

-./&%$/-

/+0-)./$/-

+
-

C
y(k)ˆ

1$(%$#)*+-!&'/,+

Tuesday, May 11, 2010

The observer dynamics is

x̂(k+ 1|k) = Ax̂(k|k− 1) + Bu(k) + L(k)(y(k)− Cx̂(k|k− 1))

starting from an initial estimate x̂(0| − 1) = x̂0.
The Kalman predictor minimizes the covariance matrix P(k+ 1|k) of the
prediction error x̃(k+ 1|k)
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Kalman predictor

Theorem

The observer gain L(k) minimizing the trace of P(k|k− 1) is

L(k) = AP(k|k− 1)C′
�
CP(k|k− 1)C′ + R

�−1

where P(k|k− 1) solves the iterative equations

P(k+ 1|k) = AP(k|k− 1)A′ +Q− AP(k|k− 1)C′
�
CP(k|k− 1)C′ + R

�−1
CP(k|k− 1)A′

with initial condition P(0| − 1) = P0

The Kalman predictor is a time-varying observer, as the gain L(k) depends on
the time index k

In many cases we are interested in a time-invariant observer gain L, to avoid
computing P(k+ 1|k) on line

Note the similarities with Riccati iterations in LQR
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Stationary Kalman predictor

Theorem

Let (A, C) observable, and (A, Bq) stabilizable, where Q= BqB′q (Bq=Cholesky
factor of Q). Then

the stationary optimal predictor is

x̂(k+ 1|k) = Ax̂(k|k− 1) + Bu(k) + L(y(k)− Cx̂(k|k− 1))
= (A− LC)x̂(k|k− 1) + Bu(k) + Ly(k)

with
L= AP∞C′
�
CP∞C′ + R
�−1

where P∞ is the only positive-definite solution of the algebraic Riccati
equation

P∞ = AP∞A′ +Q− AP∞C′
�
CP∞C′ + R
�−1

CP∞A′

the observer is asymptotically stable, i.e. all the eigenvalues of (A− LC) are
inside the unit circle
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Example of Kalman predictor: time-varying gain

Noisy measurements y(k) of an exponentially decaying signal x(k)

x(k+ 1) = ax(k) + ξ(k) E[ξ(k)] = 0 E[ξ2(k)] = Q
y(k) = x(k) + ζ(k) E[ζ(k)] = 0 E[ζ2(k)] = R

|a|< 1 E[x(0)] = 0 E[x2(0)] = P0

The equations of the Kalman predictor are

x̂(k+ 1|k) = ax̂(k|k− 1) + L(k) (y(k)− x̂(k|k− 1)) , x̂(0| − 1) = 0

L(k) =
aP(k|k− 1)

P(k|k− 1) + R

P(k+ 1|k) = a2P(k|k− 1) +Q− a2P2(k|k− 1)
P(k|k− 1) + R

, P(0| − 1) = P0

Let a= 0.98, Q= 10−5, R= 5 · 10−3, P0 = 1, x̂(0) = 0.4, x(0) = 1
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Example of Kalman predictor: time-varying gain

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

k

state x(k), output y(k)

 

 
x
y

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

k

state prediction (time−varying gain)

 

 
x
x

est

+/− 2(sqrt P) band
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Example of Kalman predictor: stationary gain

Let’s compute the stationary Kalman predictor (the pair (a, 1) is observable,
the pair (a, Bq), with Bq =

p
10−5 is stabilizable)

Solve the algebraic Riccati equation for a= 0.98, Q= 10−5, R= 5 · 10−3,
P0 = 1. We get two solutions:

P∞ = −3.366 · 10−4, P∞ = 1.486 · 10−4

the positive solution is the correct one

Compute L=
aP∞

P∞ + R
= 2.83 · 10−2

The stationary Kalman predictor is

x̂(k+ 1|k) = 0.98 x̂(k) + 2.83 · 10−2(y(k)− Cx̂(k|k− 1))

Check asymptotic stability:

x̃(k+ 1|k) = (a− L)x̃(k|k− 1) = 0.952 x̃(k|k− 1) ⇒ lim
k→ +∞ x̃(k|k− 1) = 0
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Kalman predictor: example

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

k

state prediction (stationary gain)

 

 
x
x

est

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

k

Kalman gain: time−varying vs. stationary

 

 
L(k)
L
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Kalman filter

The Kalman filter provides an optimal estimate of x(k) given the
measurements up to time k
The Kalman filter proceeds in two steps:

1 measurement update based on the most recent y(k)

M(k) = P(k|k− 1)C′[CP(k|k− 1)C′ + R]−1 P(0| − 1) = P0

x̂(k|k) = x̂(k|k− 1) +M(k) (y(k)− Cx̂(k|k− 1)) x̂(0| − 1) = x̂0

P(k|k) = (I−M(k)C)P(k|k− 1)

2 time update based on the model of the system

x̂(k+ 1|k) = Ax̂(k|k) + Bu(k)

P(k+ 1|k) = AP(k|k)A′ +Q

Same as Kalman predictor, as L(k) = AM(k)
Stationary version: M = P∞C′(CP∞C′ + R)−1

MATLAB
»[KEST,L,P∞,M,Z]=kalman(sys,Q,R) Z = E[(x(k)− x(k|k))(x(k)− x(k|k))′]
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Tuning Kalman filters

It is usually hard to quantify exactly the correct values of Q and R for a given
process

The diagonal terms of R are related to how noisy are output sensors

Q is harder to relate to physical noise, it mainly relates to how rough is the
(A, B) model

After all, Q and R are the tuning knobs of the observer (similar to LQR)

The “larger” is R with respect to Q the “slower” is the observer to converge (L,
M will be small)

On the contrary, the “smaller” is R than Q, the more precise are considered
the measurments, and the “faster” observer will be to converge
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LQG control

Linear Quadratic Gaussian (LQG) control combines an LQR control law and a
stationary Kalman predictor/filter

Consider the stochastic dynamical system

x(k+ 1) = Ax(k) + Bu(k) + ξ(k), w∼N (0, QKF)
y(k) = Cx(k) + ζ(k), v∼N (0, RKF)

with initial condition x(0) = x0, x0 ∼N (x̄0, P0), P, QKF ⪰ 0, RKF ≻ 0, and ζ
and ξ are independent and white noise terms.

The objective is to minimize the cost function

J(x(0), U) = lim
T→∞

1
T

E

�
T∑

k=0

x′(k)QLQx(k) + u′(k)RLQu(k)

�
when the state x is not measurable
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LQG control

If we assume that all the assumptions for LQR control and Kalman predictor/filter
hold, i.e.

the pair (A, B) is reachable and the pair (A, Cq) with Cq such that QLQ = CqC′q
is observable (here Q is the weight matrix of the LQ controller)

the pair (A, Bq), with Bq s.t. QKF = BqB′q, is stabilizable, and the pair (A, C) is
observable (here Q is the covariance matrix of the Kalman predictor/filter)

Then, apply the following procedure:

1 Determine the optimal stationary Kalman predictor/filter, neglecting the fact
that the control variable u is generated through a closed-loop control scheme,
and find the optimal gain LKF

2 Determine the optimal LQR strategy assuming the state accessible, and find
the optimal gain KLQR
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LQG control

x(k) y(k)
A,B

u(k)
C

3$(%$#

4(2-+

!"#$%&'$()*+,'-..

v(k)

/01)',#2+,((-+

KLQR
x(k)ˆ++

Sunday, May 16, 2010

Analogously to the case of output feedback control using a Luenberger observer, it
is possible to show that the extended state [x′ x̃′]′ has eigenvalues equal to the
eigenvalues of (A+ BKLQR) plus those of (A− LKFC) (2n in total)
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English-Italian Vocabulary

positive (semi)definite matrix matrice (semi)definita positiva
dynamic programming programmazione dinamica

Translation is obvious otherwise.
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