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Lecture: Sampling Time-discretization of continuous-time controllers

Time-discretization of continuous-time controllers
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Monday, May 10, 2010

We have designed an analog controller C(s) in the continuous-time domain
(by loop shaping, pole-placement, etc.)

We want to implement C(s) in digital form (for example, in a
microcontroller). We need to convert the design to discrete-time
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Lecture: Sampling Time-discretization of continuous-time controllers

Relations between continuous/discrete-time signals
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C̃(z)

Monday, May 10, 2010

Let the digital controller operate with sampling time T
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control input u(t) = ũ(k)¬ u(kT)
for t ∈ [kT, (k+ 1)T)
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Lecture: Sampling Time-discretization of continuous-time controllers

Time-discretization of continuous-time controllers
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Monday, May 10, 2010

Alternative scheme: more often the reference signal r(t) is already given in
digital form by its samples r̃(k), r̃(k) = r(kT), k= 0, 1, . . ., T=sampling time

Problem

How to synthesize a discrete-time control law C̃(z) that in closed-loop
behaves as the given continuous-time controller C(s) ?
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Lecture: Sampling Time-discretization of continuous-time controllers

Time-discretization

Consider the continuous-time controller C(s)

u(t) = C(s)e(t) =
N(s)
D(s)

e(t) =
bn−1sn−1 + . . .+ b0

sn + an−1sn−1 + . . .+ a0
e(t)

We can look at the control law as at a differential equation linking u(t) to e(t)

dn

dtn u(t) + an−1
dn−1

dtn−1 u(t) + . . .+ a0u(t) = bn−1
dn−1

dtn−1 e(t) + . . .+ b0e(t)

A time-discretization of u(t) = C(s)e(t) is nothing else than a numerical
approximation (with constant integration-step T)

ũ(k) = C̃(z)ẽ(k)

linking the input samples ũ(k)¬ u(kT) to the error samples ẽ(k)¬ e(kT)
There are many numerical methods to integrate a differential equation
(constant step, variable step, n-th order approximations, etc.)
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Lecture: Sampling Time-discretization of continuous-time controllers

Numerical integration in Simulink

Fixed-step integration panel

Variable-step integration panel
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Lecture: Sampling Time-discretization of continuous-time controllers

Example of time-discretization

Consider the continuous-time controller

u(t) =
1

s+ 2
e(t) ⇒

d

dt
u(t) + 2u(t) = e(t)

Use Euler method to approximate the derivative

d

dt
u(t)≈

u((k+ 1)T)− u(kT)
T

=
1

T
(ũ(k+ 1)− ũ(k))

Recall that z represents the unit-shift operator zũ(k) = ũ(k+ 1)

ũ(k) =
1

�

z−1
T

�

+ 2
ẽ(k)¬ C̃(z)ẽ(k)

Note that formally this is equivalent to replace s=
�

z−1
T

�

in C(s) to get C̃(z)
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Lecture: Sampling Time-discretization of continuous-time controllers

Finite-difference approximation of the controller

Consider a state-space realization of C(s)
¨

dxc

dt
= Acxc + Bce

u = Ccxc +Dce

C(s) = Cc(sI− Ac)
−1Bc +Dc

Integrate between time kT and (k+ 1)T

xc((k+ 1)T)− xc(kT) =

∫ (k+1)T

kT

dxc(τ)
dt

dτ

gives

xc((k+ 1)T)− xc(kT) = Ac

∫ (k+1)T

kT

xc(τ)dτ+ Bc

∫ (k+1)T

kT

e(τ)dτ

Unfortunately, in general both x(τ) and e(τ) are not constant between
consecutive sampling instants, so we can’t use exact discretization (i.e., the
exponential matrix eAcT)
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Lecture: Sampling Time-discretization of continuous-time controllers

Approximation of the integral of ẋc(τ)

(forward) Euler method

timekT (k+1)T

ẋc((k + 1)T )

ẋc(kT )ẋc(t)

Monday, May 10, 2010

xc((k+ 1)T)− xc(kT)
︸ ︷︷ ︸

(z−1)xc(kT)

=

∫ (k+1)T

kT

ẋc(τ)dτ≈ T ẋc(kT)
︸ ︷︷ ︸

Tsxc(kT)

→ s=
z− 1

T

backward Euler method

timekT(k-1)T

ẋc((k − 1)T )

ẋc(kT )ẋc(t)

Sunday, May 16, 2010

xc(kT)− xc((k− 1)T)
︸ ︷︷ ︸

(1−z−1)xc(kT)

=

∫ kT

(k−1)T

ẋc(τ)dτ≈ Tẋc(kT)
︸ ︷︷ ︸

Tsxc(kT)

→ s=
1− z−1

T

Trapezoidal rule

timekT (k+1)T

ẋc((k + 1)T )

ẋc(kT )ẋ! (t)

Monday, May 10, 2010

xc((k+ 1)T)− xc(kT)
︸ ︷︷ ︸

(z−1)xc(kT)

=

∫ (k+1)T

kT

ẋc(τ)dτ≈
T[ẋc((k+ 1)T) + ẋc(kT)]

2
︸ ︷︷ ︸

T
2 (z+1)sxc(kT)

→ s=
2(z− 1)
T(z+ 1)
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Lecture: Sampling Time-discretization of continuous-time controllers

Finite-difference approximation of the controller

(z− 1)xc = T(Acxc + Bce) −→
��

z− 1

T

�

I− Ac

�

xc = Bce

C̃(z) =
U(z)
E(z)

= Cc

��

z− 1

T

�

I− Ac

�−1

Bc +Dc = C
�

z− 1

T

�

forward

Euler method

(1− z−1)xc = T(Acxc + Bce) −→
��

z− 1

zT

�

I− Ac

�

xc = Bce

C̃(z) =
U(z)
E(z)

= Cc

��

1− z−1

T

�

I− Ac

�−1

Bc +Dc = C

�

1− z−1

T

�

backward

Euler method

C̃(z) = Cc

��

2(z− 1)
T(z+ 1)

�

I− Ac

�−1

Bc +Dc = C
�

2(z− 1)
T(z+ 1)

�

Tustin’s

method
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Lecture: Sampling Time-discretization of continuous-time controllers

Finite-difference approximation of the controller

Formally, we just replace s in C(s) with the corresponding function of z:
forward Euler method

s=
z− 1

T
−→ ẋc(kT)≈

xc((k+ 1)T)− xc(kT)
T

backward Euler method

s=
1− z−1

T
−→ ẋc(kT)≈

xc(kT)− xc((k− 1)T)
T

Trapezoidal rule (Tustin’s method)

s=
2(z− 1)
T(z+ 1)

(bilinear transformation)

Note that all three methods preserve the DC gain: z= 1→ s= 0
(no approximation error exists in constant steady-state !)

Compare to the exact discretization method: Ãc = eTAc , B̃c =
∫ T

0
etAcdtBc,

C̃c = Cc, D̃c = Dc

Prof. Alberto Bemporad (University of Trento) Automatic Control 2 Academic year 2010-2011 11 / 31



Lecture: Sampling Time-discretization of continuous-time controllers

Relations between poles in s and z

What is the relation between the poles si of C(s) and the poles zi of C̃(z) ?
forward Euler differences:

zi − 1

T
= si ⇒ zi = 1+ Tsi

backward Euler differences:

zi − 1

Tzi
= si ⇒ zi =

1

1− siT

Tustin’s method:
2(zi − 1)
T(zi + 1)

= si ⇒ zi =
1+ siT/2

1− siT/2

Exact method: zi = esiT

Note that the three (approximate) integration methods approximate the
function z= esT by a rational function
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Lecture: Sampling Time-discretization of continuous-time controllers

Relations between poles in s and z

forward Euler
differences

backward Euler
differences

Tustin’s rule

z = 1 + sT

!s !z

Im zIm s
1

Monday, May 10, 2010

!s !z

Im zIm s
1

z =
1

1 − sT

Monday, May 10, 2010

!s !z

Im zIm s
1

z =
1 + sT/2

1 − sT/2

Monday, May 10, 2010

stable poles in s may be
mapped to unstable poles
in z

stable poles in s are also
stable poles in z,
marginally stable poles
may become
asymptotically stable

stable poles in s are also
stable poles in z
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Lecture: Sampling Time-discretization of continuous-time controllers

Time-discretization in MATLAB

MATLAB
C2D Conversion of continuous-time models to discrete time.

SYSD = C2D(SYSC,TS,METHOD) converts the continuous-time LTI
model SYSC to a discrete-time model SYSD with sample time TS.
The string METHOD selects the discretization method among the
following:

’zoh’ Zero-order hold on the inputs.
’foh’ Linear interpolation of inputs (triangle appx.)
’tustin’ Bilinear (Tustin) approximation.
’prewarp’ Tustin approximation with frequency prewarping.

The critical frequency Wc is specified as fourth
input by C2D(SYSC,TS,’prewarp’,Wc).

’matched’ Matched pole-zero method (for SISO systems only).
The default is ’zoh’ when METHOD is omitted.
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Lecture: Sampling Analysis of sampled-data systems

Sampled-data systems

continuous-time control system (Laplace transform/frequency analysis)

G(s)!

"

y(t)r(t)
C(s)

e(t) u(t)

Monday, May 10, 2010

t = continuous time

discrete-time control system (Z-transform)

!

"

ẽ(k) ũ(k)
C̄(z) Ḡ(z)

r̃(k) ỹ(k)

Monday, May 10, 2010

k = discrete-time step
counter

sampled-data system

G(s)
!

"
A/D D/A

y(t)r(t) e(t)
u(t)

ẽ(k) ũ(k)
C̃(z)

Monday, May 10, 2010

continuous-time and
discrete-time signals
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Lecture: Sampling Analysis of sampled-data systems

Why analyzing sampled-data systems

The model G(s) of the process to be controlled is (very often) given in
continuous time

differential equations
actuator signals (electrical voltages to motors, etc.) vary continuously in time
output variables (temperature, pressure, position, etc.) vary continuously in time

On the other hand, the controller is (almost always) implemented in digital
form, C̃(z):

cheaper to implement (computer code)
easier to reconfigure
can exploit time-sharing (multiple controllers on the same hardware)
much more versatile (arbitrary nonlinear control laws)

Hence the need to analyze sampled-data systems, namely a continuous
process in closed loop with a digital controller
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Lecture: Sampling Analysis of sampled-data systems

Ways to analyze sampled-data systems

G(s)
!

"
A/D D/A

y(t)r(t) e(t)
u(t)

ẽ(k) ũ(k)
C̃(z)

Monday, May 10, 2010

1 Convert the system G(s) to its discrete-time equivalent Ḡ(z) (use for instance
exact sampling), ignoring its inter-sampling behavior (controller’s point of
view or “stroboscopic model”) =⇒ discrete-time analysis

2 Model the digital controller in continuous time

U(s)'
1− e−sT

sT
C̃(esT)E(s) (this can be shown ...)

(process’ point of view) =⇒ continuous-time analysis
3 Use numerical simulation (e.g., Simulink) (only provides an answer for a

certain finite set of initial states)

Prof. Alberto Bemporad (University of Trento) Automatic Control 2 Academic year 2010-2011 17 / 31



Lecture: Sampling Sampling theory

Choosing the sampling time

How to choose the sampling time T ?

Example: sampling of sin(t)

0 5 10 15
−1

−0.5

0
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1
sampling time T=π/100

0 5 10 15
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−0.5
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sampling time T=π/10

0 5 10 15
−1
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0
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1
sampling time T=π

How can we say that a sampling time is “good” ?
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Lecture: Sampling Sampling theory

Nyquist-Shannon sampling theorem

time

e(t)

ideal 
low-pass 

filter

timekT (k+1)T

e(t)

ẽ(k) = e(kT )e(t) e(t)

time

e(t)

sampler

original signal sampled signal reconstructed signal

Monday, May 10, 2010

Claude Elwood
Shannon

(1916–2001)

Sampling theorem

Let e(t) be a signal and E(jω) =

∫ +∞

−∞
e(τ)e−jωτdτ its Fourier transform F [e].

Let E(jω) = 0 for |ω| ≥ωmax. For all T such that ωN ¬
π

T
>ωmax

e(t) =
+∞
∑

k=−∞

e(kT)
sin(ωN(t− kT))
ωN(t− kT)

ωN is called the Nyquist frequency, equal to half the sampling frequency ωs =
2π
T
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Lecture: Sampling Sampling theory

Shannon’s reconstruction

We can look at sampling as at the modulation of a Dirac comb
∞
∑

k=−∞

δ(t− kT)

Let’s go to Fourier transforms

F





∞
∑

k=−∞

e(kT)δ(t− kT)





︸ ︷︷ ︸

modulated Dirac comb

=
∞
∑

k=−∞

e(kT)e−jkTω =
1

T

∞
∑

k=−∞

E(j(ω+kωs))¬
1

T
Es(jω)

Es(jω) is the periodic repetition of E(jω) with period ωs

The ideal low-pass filter can only reconstruct e(t) if E(jω) = 0 for |ω| ≥ωmax

frequency

ideal 
low-pass 

filterẽ(k) = e(kT )e(t) e(t)sampler

original signal sampled signal reconstructed signal

|E(jω)|

frequency

|Es(jω)|

frequency

|E(jω)|

π

T

Monday, May 10, 2010

Prof. Alberto Bemporad (University of Trento) Automatic Control 2 Academic year 2010-2011 20 / 31



Lecture: Sampling Sampling theory

Aliasing

Es(jω) =
1

T

+∞
∑

k=−∞

E(j(ω+ kωs))

The value Es(jω1) at a certain frequency ω1 not only depends on E(jω1), but
also on all the (infinite) contributions E(j(ω1 ± kωs))
The frequency ω1 ± kωs is called an alias of ω1

Example: consider the signals sin(ω1t) and sin(ω2t) and let the sampling
time T = 1 s

0 1 2 3 4 5 6 7 8 9 10
−1

−0.5

0

0.5

1
sampling time T=1

ω1 =
2π
10

ω2 =
2π
T
+ 2π

10
= 22π

10
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Lecture: Sampling Sampling theory

Aliasing

What if e(t) has spectral contributions E(jω) 6= 0 for ω>ωN =
π

T
?

frequency

ideal 
low-pass 

filterẽ(k) = e(kT )e(t) e(t)sampler

original signal sampled signal reconstructed signal

|E(jω)|

frequency

|Es(jω)|

frequency

|E(jω)|

π

T

Monday, May 10, 2010

Aliasing is the phenomenon for which frequencies ω>ωN make
contributions in the frequency range [−ωN,ωN]
Under aliasing conditions it is impossible to reconstruct the original signal

An anti-aliasing filter is a low-pass filter that removes from e(t) its
high-frequency contents before sampling it. It partially mitigates the problem
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Lecture: Sampling Choice of sampling time

Selecting the sampling time

In signal processing one is interested in making the difference between the
original and the reconstructed signal as small as possible (=high fidelity)

In control systems one is interested that the closed-loop system behaves
according to specs, not much in carefully reconstructing e(t) = y(t)− r(t) !

For control purposes, the sampling time is mainly related to the closed-loop
bandwidth / settling-time

The sampling time used in control is typically larger than the one used signal
processing

That’s why in control applications we are often ok with micro-controllers and
don’t need DSPs (digital signal processors)
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Lecture: Sampling Choice of sampling time

Selecting the sampling time

Let ωc be the desired bandwidth of the closed-loop system
To avoid aliasing effects (and satisfy the sampling theorem) we must set

π

T
>ωc

A good choice is

5ωc ≤
2π

T
≤ 100ωc

so that the (non-ideal) anti-aliasing filter has cutoff frequency ωf in between
ωc and ωN

By recalling the approximate relation tsωc ≈
5
ζ
, where ts is the settling time

(1%) and ζ is the damping factor, we get

ts

100
≤ T ≤

ts

5

A related good choice is also to let T =
tr

10
, where tr is the rise time of the

open-loop system
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Lecture: Sampling Choice of sampling time

Numerical errors

Recall the relation between poles si and zi

zi = esiT

For T→ 0, we have zi→ 1 whatever the poles si are !

This can make troubles when working in finite precision (both in control
design and in controller implementation)
Consider the following example: we have two poles s1 =−1 e s2 =−10

Sample with T = 1 ms and get z1 = e−0.001 ≈ 0.9990, z2 = e−0.01 ≈ 0.9900. If we
truncate after two digits, we get z1 = z2, and then s1 =

1
T

ln z1 =
1
T

ln z2 =
s2 ≈−10.05
Sample with T = 100 ms and truncate, we get z1 = 0.90, z2 = 0.36, and then
s1 ≈−1.05, s2 ≈−10.21
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Lecture: Sampling Choice of sampling time

Final remarks on choice of sampling time

Make the sampling time T small enough to reproduce the open-loop time
response enough precisely (T = tr

10
), and to avoid aliasing effects (Nyquist

frequency π

T
larger than closed-loop bandwidth)

Make the sampling time T small enough to react enough readily to
disturbances affecting the system

Make the sampling time large enough to avoid numerical issues

Make the sampling time large enough to avoid fast and expensive control
hardware
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Lecture: Sampling Digital PID

Digital PID control

Any of the time-discretization we have seen so far can be used to convert a PID
design in digital form. The following is most used:

proportional part

P(t) = Kp(br(t)− y(t)) static relation, no need to approximate it !

integral part

I(t) =
Kp

Ti

∫ t

0

e(τ) dτ

is approximated by forward Euler as

I((k+ 1)T) = I(kT) +
KpT

Ti
e(kT)
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Lecture: Sampling Digital PID

Digital PID

derivative part:
Td

N

dD(t)
dt
+D(t) =−KpTd

dy(t)
dt

is approximated by backward Euler as

D(kT) =
Td

Td +NT
D((k− 1)T)−

KpTdN

Td +NT
�

y(kT)− y((k− 1)T)
�

Note that the discrete pole z= Td

Td+NT
is inside the unit circle

The complete control signal is

u(kT) = P(kT) + I(kT) +D(kT)

This type of approximation allows one to calculate P, I, and D actions separately
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Lecture: Sampling Digital PID

Digital PID in incremental form

The digital PID form we described provides the full signal u(kT) (positional
algorithm)

An alternative form is the so called incremental form (velocity algorithm),
where the PID controller computes instead the input increments

∆u(kT) = u(kT)− u((k− 1)T) = ∆P(kT) +∆I(kT) +∆D(kT)

where

∆P(kT) = Kp(br(kT)− br((k− 1)T)− y(kT) + y((k− 1)T)
∆I(kT) = α1(r(kT)− y(kT)) +α2(r((k− 1)T)− y((k− 1)T))
∆D(kT) = β1∆D((k− 1)T)− β2(y(kT)− 2y((k− 1)T) + y((k− 2)T))

Advantage: increased numerical precision in the presence of finite
word-length (signal quantization)

This form cannot be used for P and PD controllers
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Lecture: Sampling Digital PID

Digital PID in incremental form

y(kT)
r(KT)

u(kT)incremental 
PID

1

1 − z−1 G(z)
∆u(kT )

Sunday, May 16, 2010

An integrator is needed to reconstruct the input signal u(kT) from the
incremental PID form

u(kT) = u((k− 1)T) +∆u(kT) −→ u(kT) =
1

1− z−1∆u(kT)
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Lecture: Sampling Digital PID

English-Italian Vocabulary

forward Euler method metodo di Eulero in avanti
backward Euler method metodo di Eulero all’indietro
trapezoidal rule regola dei trapezi
sampled-data system sistema a dati campionati
Nyquist-Shannon sampling theorem Teorema di Shannon
Dirac comb pettine di Dirac
aliasing aliasing
cutoff frequency frequenza di taglio

Translation is obvious otherwise.
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